]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/regulator/core.c
Merge remote-tracking branch 'regulator/topic/list' into regulator-next
[mirror_ubuntu-zesty-kernel.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64 * struct regulator_map
65 *
66 * Used to provide symbolic supply names to devices.
67 */
68 struct regulator_map {
69 struct list_head list;
70 const char *dev_name; /* The dev_name() for the consumer */
71 const char *supply;
72 struct regulator_dev *regulator;
73 };
74
75 /*
76 * struct regulator_enable_gpio
77 *
78 * Management for shared enable GPIO pin
79 */
80 struct regulator_enable_gpio {
81 struct list_head list;
82 struct gpio_desc *gpiod;
83 u32 enable_count; /* a number of enabled shared GPIO */
84 u32 request_count; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89 * struct regulator_supply_alias
90 *
91 * Used to map lookups for a supply onto an alternative device.
92 */
93 struct regulator_supply_alias {
94 struct list_head list;
95 struct device *src_dev;
96 const char *src_supply;
97 struct device *alias_dev;
98 const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 struct device *dev,
112 const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 if (rdev->constraints && rdev->constraints->name)
123 return rdev->constraints->name;
124 else if (rdev->desc->name)
125 return rdev->desc->name;
126 else
127 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132 return has_full_constraints || of_have_populated_dt();
133 }
134
135 /**
136 * of_get_regulator - get a regulator device node based on supply name
137 * @dev: Device pointer for the consumer (of regulator) device
138 * @supply: regulator supply name
139 *
140 * Extract the regulator device node corresponding to the supply name.
141 * returns the device node corresponding to the regulator if found, else
142 * returns NULL.
143 */
144 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
145 {
146 struct device_node *regnode = NULL;
147 char prop_name[32]; /* 32 is max size of property name */
148
149 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
150
151 snprintf(prop_name, 32, "%s-supply", supply);
152 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
153
154 if (!regnode) {
155 dev_dbg(dev, "Looking up %s property in node %s failed",
156 prop_name, dev->of_node->full_name);
157 return NULL;
158 }
159 return regnode;
160 }
161
162 static int _regulator_can_change_status(struct regulator_dev *rdev)
163 {
164 if (!rdev->constraints)
165 return 0;
166
167 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
168 return 1;
169 else
170 return 0;
171 }
172
173 /* Platform voltage constraint check */
174 static int regulator_check_voltage(struct regulator_dev *rdev,
175 int *min_uV, int *max_uV)
176 {
177 BUG_ON(*min_uV > *max_uV);
178
179 if (!rdev->constraints) {
180 rdev_err(rdev, "no constraints\n");
181 return -ENODEV;
182 }
183 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
184 rdev_err(rdev, "voltage operation not allowed\n");
185 return -EPERM;
186 }
187
188 if (*max_uV > rdev->constraints->max_uV)
189 *max_uV = rdev->constraints->max_uV;
190 if (*min_uV < rdev->constraints->min_uV)
191 *min_uV = rdev->constraints->min_uV;
192
193 if (*min_uV > *max_uV) {
194 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
195 *min_uV, *max_uV);
196 return -EINVAL;
197 }
198
199 return 0;
200 }
201
202 /* Make sure we select a voltage that suits the needs of all
203 * regulator consumers
204 */
205 static int regulator_check_consumers(struct regulator_dev *rdev,
206 int *min_uV, int *max_uV)
207 {
208 struct regulator *regulator;
209
210 list_for_each_entry(regulator, &rdev->consumer_list, list) {
211 /*
212 * Assume consumers that didn't say anything are OK
213 * with anything in the constraint range.
214 */
215 if (!regulator->min_uV && !regulator->max_uV)
216 continue;
217
218 if (*max_uV > regulator->max_uV)
219 *max_uV = regulator->max_uV;
220 if (*min_uV < regulator->min_uV)
221 *min_uV = regulator->min_uV;
222 }
223
224 if (*min_uV > *max_uV) {
225 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
226 *min_uV, *max_uV);
227 return -EINVAL;
228 }
229
230 return 0;
231 }
232
233 /* current constraint check */
234 static int regulator_check_current_limit(struct regulator_dev *rdev,
235 int *min_uA, int *max_uA)
236 {
237 BUG_ON(*min_uA > *max_uA);
238
239 if (!rdev->constraints) {
240 rdev_err(rdev, "no constraints\n");
241 return -ENODEV;
242 }
243 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
244 rdev_err(rdev, "current operation not allowed\n");
245 return -EPERM;
246 }
247
248 if (*max_uA > rdev->constraints->max_uA)
249 *max_uA = rdev->constraints->max_uA;
250 if (*min_uA < rdev->constraints->min_uA)
251 *min_uA = rdev->constraints->min_uA;
252
253 if (*min_uA > *max_uA) {
254 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
255 *min_uA, *max_uA);
256 return -EINVAL;
257 }
258
259 return 0;
260 }
261
262 /* operating mode constraint check */
263 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
264 {
265 switch (*mode) {
266 case REGULATOR_MODE_FAST:
267 case REGULATOR_MODE_NORMAL:
268 case REGULATOR_MODE_IDLE:
269 case REGULATOR_MODE_STANDBY:
270 break;
271 default:
272 rdev_err(rdev, "invalid mode %x specified\n", *mode);
273 return -EINVAL;
274 }
275
276 if (!rdev->constraints) {
277 rdev_err(rdev, "no constraints\n");
278 return -ENODEV;
279 }
280 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
281 rdev_err(rdev, "mode operation not allowed\n");
282 return -EPERM;
283 }
284
285 /* The modes are bitmasks, the most power hungry modes having
286 * the lowest values. If the requested mode isn't supported
287 * try higher modes. */
288 while (*mode) {
289 if (rdev->constraints->valid_modes_mask & *mode)
290 return 0;
291 *mode /= 2;
292 }
293
294 return -EINVAL;
295 }
296
297 /* dynamic regulator mode switching constraint check */
298 static int regulator_check_drms(struct regulator_dev *rdev)
299 {
300 if (!rdev->constraints) {
301 rdev_err(rdev, "no constraints\n");
302 return -ENODEV;
303 }
304 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
305 rdev_dbg(rdev, "drms operation not allowed\n");
306 return -EPERM;
307 }
308 return 0;
309 }
310
311 static ssize_t regulator_uV_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
313 {
314 struct regulator_dev *rdev = dev_get_drvdata(dev);
315 ssize_t ret;
316
317 mutex_lock(&rdev->mutex);
318 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
319 mutex_unlock(&rdev->mutex);
320
321 return ret;
322 }
323 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
324
325 static ssize_t regulator_uA_show(struct device *dev,
326 struct device_attribute *attr, char *buf)
327 {
328 struct regulator_dev *rdev = dev_get_drvdata(dev);
329
330 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
331 }
332 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
333
334 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
335 char *buf)
336 {
337 struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339 return sprintf(buf, "%s\n", rdev_get_name(rdev));
340 }
341 static DEVICE_ATTR_RO(name);
342
343 static ssize_t regulator_print_opmode(char *buf, int mode)
344 {
345 switch (mode) {
346 case REGULATOR_MODE_FAST:
347 return sprintf(buf, "fast\n");
348 case REGULATOR_MODE_NORMAL:
349 return sprintf(buf, "normal\n");
350 case REGULATOR_MODE_IDLE:
351 return sprintf(buf, "idle\n");
352 case REGULATOR_MODE_STANDBY:
353 return sprintf(buf, "standby\n");
354 }
355 return sprintf(buf, "unknown\n");
356 }
357
358 static ssize_t regulator_opmode_show(struct device *dev,
359 struct device_attribute *attr, char *buf)
360 {
361 struct regulator_dev *rdev = dev_get_drvdata(dev);
362
363 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
364 }
365 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
366
367 static ssize_t regulator_print_state(char *buf, int state)
368 {
369 if (state > 0)
370 return sprintf(buf, "enabled\n");
371 else if (state == 0)
372 return sprintf(buf, "disabled\n");
373 else
374 return sprintf(buf, "unknown\n");
375 }
376
377 static ssize_t regulator_state_show(struct device *dev,
378 struct device_attribute *attr, char *buf)
379 {
380 struct regulator_dev *rdev = dev_get_drvdata(dev);
381 ssize_t ret;
382
383 mutex_lock(&rdev->mutex);
384 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
385 mutex_unlock(&rdev->mutex);
386
387 return ret;
388 }
389 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
390
391 static ssize_t regulator_status_show(struct device *dev,
392 struct device_attribute *attr, char *buf)
393 {
394 struct regulator_dev *rdev = dev_get_drvdata(dev);
395 int status;
396 char *label;
397
398 status = rdev->desc->ops->get_status(rdev);
399 if (status < 0)
400 return status;
401
402 switch (status) {
403 case REGULATOR_STATUS_OFF:
404 label = "off";
405 break;
406 case REGULATOR_STATUS_ON:
407 label = "on";
408 break;
409 case REGULATOR_STATUS_ERROR:
410 label = "error";
411 break;
412 case REGULATOR_STATUS_FAST:
413 label = "fast";
414 break;
415 case REGULATOR_STATUS_NORMAL:
416 label = "normal";
417 break;
418 case REGULATOR_STATUS_IDLE:
419 label = "idle";
420 break;
421 case REGULATOR_STATUS_STANDBY:
422 label = "standby";
423 break;
424 case REGULATOR_STATUS_BYPASS:
425 label = "bypass";
426 break;
427 case REGULATOR_STATUS_UNDEFINED:
428 label = "undefined";
429 break;
430 default:
431 return -ERANGE;
432 }
433
434 return sprintf(buf, "%s\n", label);
435 }
436 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
437
438 static ssize_t regulator_min_uA_show(struct device *dev,
439 struct device_attribute *attr, char *buf)
440 {
441 struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443 if (!rdev->constraints)
444 return sprintf(buf, "constraint not defined\n");
445
446 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
447 }
448 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
449
450 static ssize_t regulator_max_uA_show(struct device *dev,
451 struct device_attribute *attr, char *buf)
452 {
453 struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455 if (!rdev->constraints)
456 return sprintf(buf, "constraint not defined\n");
457
458 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
459 }
460 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
461
462 static ssize_t regulator_min_uV_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
464 {
465 struct regulator_dev *rdev = dev_get_drvdata(dev);
466
467 if (!rdev->constraints)
468 return sprintf(buf, "constraint not defined\n");
469
470 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
471 }
472 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
473
474 static ssize_t regulator_max_uV_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
476 {
477 struct regulator_dev *rdev = dev_get_drvdata(dev);
478
479 if (!rdev->constraints)
480 return sprintf(buf, "constraint not defined\n");
481
482 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
483 }
484 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
485
486 static ssize_t regulator_total_uA_show(struct device *dev,
487 struct device_attribute *attr, char *buf)
488 {
489 struct regulator_dev *rdev = dev_get_drvdata(dev);
490 struct regulator *regulator;
491 int uA = 0;
492
493 mutex_lock(&rdev->mutex);
494 list_for_each_entry(regulator, &rdev->consumer_list, list)
495 uA += regulator->uA_load;
496 mutex_unlock(&rdev->mutex);
497 return sprintf(buf, "%d\n", uA);
498 }
499 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
500
501 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
502 char *buf)
503 {
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505 return sprintf(buf, "%d\n", rdev->use_count);
506 }
507 static DEVICE_ATTR_RO(num_users);
508
509 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
510 char *buf)
511 {
512 struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514 switch (rdev->desc->type) {
515 case REGULATOR_VOLTAGE:
516 return sprintf(buf, "voltage\n");
517 case REGULATOR_CURRENT:
518 return sprintf(buf, "current\n");
519 }
520 return sprintf(buf, "unknown\n");
521 }
522 static DEVICE_ATTR_RO(type);
523
524 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
525 struct device_attribute *attr, char *buf)
526 {
527 struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
530 }
531 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
532 regulator_suspend_mem_uV_show, NULL);
533
534 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
535 struct device_attribute *attr, char *buf)
536 {
537 struct regulator_dev *rdev = dev_get_drvdata(dev);
538
539 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
540 }
541 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
542 regulator_suspend_disk_uV_show, NULL);
543
544 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
545 struct device_attribute *attr, char *buf)
546 {
547 struct regulator_dev *rdev = dev_get_drvdata(dev);
548
549 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
550 }
551 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
552 regulator_suspend_standby_uV_show, NULL);
553
554 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
555 struct device_attribute *attr, char *buf)
556 {
557 struct regulator_dev *rdev = dev_get_drvdata(dev);
558
559 return regulator_print_opmode(buf,
560 rdev->constraints->state_mem.mode);
561 }
562 static DEVICE_ATTR(suspend_mem_mode, 0444,
563 regulator_suspend_mem_mode_show, NULL);
564
565 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
566 struct device_attribute *attr, char *buf)
567 {
568 struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570 return regulator_print_opmode(buf,
571 rdev->constraints->state_disk.mode);
572 }
573 static DEVICE_ATTR(suspend_disk_mode, 0444,
574 regulator_suspend_disk_mode_show, NULL);
575
576 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
577 struct device_attribute *attr, char *buf)
578 {
579 struct regulator_dev *rdev = dev_get_drvdata(dev);
580
581 return regulator_print_opmode(buf,
582 rdev->constraints->state_standby.mode);
583 }
584 static DEVICE_ATTR(suspend_standby_mode, 0444,
585 regulator_suspend_standby_mode_show, NULL);
586
587 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
589 {
590 struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592 return regulator_print_state(buf,
593 rdev->constraints->state_mem.enabled);
594 }
595 static DEVICE_ATTR(suspend_mem_state, 0444,
596 regulator_suspend_mem_state_show, NULL);
597
598 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
599 struct device_attribute *attr, char *buf)
600 {
601 struct regulator_dev *rdev = dev_get_drvdata(dev);
602
603 return regulator_print_state(buf,
604 rdev->constraints->state_disk.enabled);
605 }
606 static DEVICE_ATTR(suspend_disk_state, 0444,
607 regulator_suspend_disk_state_show, NULL);
608
609 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
611 {
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614 return regulator_print_state(buf,
615 rdev->constraints->state_standby.enabled);
616 }
617 static DEVICE_ATTR(suspend_standby_state, 0444,
618 regulator_suspend_standby_state_show, NULL);
619
620 static ssize_t regulator_bypass_show(struct device *dev,
621 struct device_attribute *attr, char *buf)
622 {
623 struct regulator_dev *rdev = dev_get_drvdata(dev);
624 const char *report;
625 bool bypass;
626 int ret;
627
628 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
629
630 if (ret != 0)
631 report = "unknown";
632 else if (bypass)
633 report = "enabled";
634 else
635 report = "disabled";
636
637 return sprintf(buf, "%s\n", report);
638 }
639 static DEVICE_ATTR(bypass, 0444,
640 regulator_bypass_show, NULL);
641
642 /* Calculate the new optimum regulator operating mode based on the new total
643 * consumer load. All locks held by caller */
644 static int drms_uA_update(struct regulator_dev *rdev)
645 {
646 struct regulator *sibling;
647 int current_uA = 0, output_uV, input_uV, err;
648 unsigned int mode;
649
650 lockdep_assert_held_once(&rdev->mutex);
651
652 /*
653 * first check to see if we can set modes at all, otherwise just
654 * tell the consumer everything is OK.
655 */
656 err = regulator_check_drms(rdev);
657 if (err < 0)
658 return 0;
659
660 if (!rdev->desc->ops->get_optimum_mode &&
661 !rdev->desc->ops->set_load)
662 return 0;
663
664 if (!rdev->desc->ops->set_mode &&
665 !rdev->desc->ops->set_load)
666 return -EINVAL;
667
668 /* get output voltage */
669 output_uV = _regulator_get_voltage(rdev);
670 if (output_uV <= 0) {
671 rdev_err(rdev, "invalid output voltage found\n");
672 return -EINVAL;
673 }
674
675 /* get input voltage */
676 input_uV = 0;
677 if (rdev->supply)
678 input_uV = regulator_get_voltage(rdev->supply);
679 if (input_uV <= 0)
680 input_uV = rdev->constraints->input_uV;
681 if (input_uV <= 0) {
682 rdev_err(rdev, "invalid input voltage found\n");
683 return -EINVAL;
684 }
685
686 /* calc total requested load */
687 list_for_each_entry(sibling, &rdev->consumer_list, list)
688 current_uA += sibling->uA_load;
689
690 current_uA += rdev->constraints->system_load;
691
692 if (rdev->desc->ops->set_load) {
693 /* set the optimum mode for our new total regulator load */
694 err = rdev->desc->ops->set_load(rdev, current_uA);
695 if (err < 0)
696 rdev_err(rdev, "failed to set load %d\n", current_uA);
697 } else {
698 /* now get the optimum mode for our new total regulator load */
699 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
700 output_uV, current_uA);
701
702 /* check the new mode is allowed */
703 err = regulator_mode_constrain(rdev, &mode);
704 if (err < 0) {
705 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
706 current_uA, input_uV, output_uV);
707 return err;
708 }
709
710 err = rdev->desc->ops->set_mode(rdev, mode);
711 if (err < 0)
712 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
713 }
714
715 return err;
716 }
717
718 static int suspend_set_state(struct regulator_dev *rdev,
719 struct regulator_state *rstate)
720 {
721 int ret = 0;
722
723 /* If we have no suspend mode configration don't set anything;
724 * only warn if the driver implements set_suspend_voltage or
725 * set_suspend_mode callback.
726 */
727 if (!rstate->enabled && !rstate->disabled) {
728 if (rdev->desc->ops->set_suspend_voltage ||
729 rdev->desc->ops->set_suspend_mode)
730 rdev_warn(rdev, "No configuration\n");
731 return 0;
732 }
733
734 if (rstate->enabled && rstate->disabled) {
735 rdev_err(rdev, "invalid configuration\n");
736 return -EINVAL;
737 }
738
739 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
740 ret = rdev->desc->ops->set_suspend_enable(rdev);
741 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
742 ret = rdev->desc->ops->set_suspend_disable(rdev);
743 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
744 ret = 0;
745
746 if (ret < 0) {
747 rdev_err(rdev, "failed to enabled/disable\n");
748 return ret;
749 }
750
751 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
752 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
753 if (ret < 0) {
754 rdev_err(rdev, "failed to set voltage\n");
755 return ret;
756 }
757 }
758
759 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
760 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
761 if (ret < 0) {
762 rdev_err(rdev, "failed to set mode\n");
763 return ret;
764 }
765 }
766 return ret;
767 }
768
769 /* locks held by caller */
770 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
771 {
772 lockdep_assert_held_once(&rdev->mutex);
773
774 if (!rdev->constraints)
775 return -EINVAL;
776
777 switch (state) {
778 case PM_SUSPEND_STANDBY:
779 return suspend_set_state(rdev,
780 &rdev->constraints->state_standby);
781 case PM_SUSPEND_MEM:
782 return suspend_set_state(rdev,
783 &rdev->constraints->state_mem);
784 case PM_SUSPEND_MAX:
785 return suspend_set_state(rdev,
786 &rdev->constraints->state_disk);
787 default:
788 return -EINVAL;
789 }
790 }
791
792 static void print_constraints(struct regulator_dev *rdev)
793 {
794 struct regulation_constraints *constraints = rdev->constraints;
795 char buf[160] = "";
796 size_t len = sizeof(buf) - 1;
797 int count = 0;
798 int ret;
799
800 if (constraints->min_uV && constraints->max_uV) {
801 if (constraints->min_uV == constraints->max_uV)
802 count += scnprintf(buf + count, len - count, "%d mV ",
803 constraints->min_uV / 1000);
804 else
805 count += scnprintf(buf + count, len - count,
806 "%d <--> %d mV ",
807 constraints->min_uV / 1000,
808 constraints->max_uV / 1000);
809 }
810
811 if (!constraints->min_uV ||
812 constraints->min_uV != constraints->max_uV) {
813 ret = _regulator_get_voltage(rdev);
814 if (ret > 0)
815 count += scnprintf(buf + count, len - count,
816 "at %d mV ", ret / 1000);
817 }
818
819 if (constraints->uV_offset)
820 count += scnprintf(buf + count, len - count, "%dmV offset ",
821 constraints->uV_offset / 1000);
822
823 if (constraints->min_uA && constraints->max_uA) {
824 if (constraints->min_uA == constraints->max_uA)
825 count += scnprintf(buf + count, len - count, "%d mA ",
826 constraints->min_uA / 1000);
827 else
828 count += scnprintf(buf + count, len - count,
829 "%d <--> %d mA ",
830 constraints->min_uA / 1000,
831 constraints->max_uA / 1000);
832 }
833
834 if (!constraints->min_uA ||
835 constraints->min_uA != constraints->max_uA) {
836 ret = _regulator_get_current_limit(rdev);
837 if (ret > 0)
838 count += scnprintf(buf + count, len - count,
839 "at %d mA ", ret / 1000);
840 }
841
842 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
843 count += scnprintf(buf + count, len - count, "fast ");
844 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
845 count += scnprintf(buf + count, len - count, "normal ");
846 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
847 count += scnprintf(buf + count, len - count, "idle ");
848 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
849 count += scnprintf(buf + count, len - count, "standby");
850
851 if (!count)
852 scnprintf(buf, len, "no parameters");
853
854 rdev_dbg(rdev, "%s\n", buf);
855
856 if ((constraints->min_uV != constraints->max_uV) &&
857 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
858 rdev_warn(rdev,
859 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
860 }
861
862 static int machine_constraints_voltage(struct regulator_dev *rdev,
863 struct regulation_constraints *constraints)
864 {
865 const struct regulator_ops *ops = rdev->desc->ops;
866 int ret;
867
868 /* do we need to apply the constraint voltage */
869 if (rdev->constraints->apply_uV &&
870 rdev->constraints->min_uV == rdev->constraints->max_uV) {
871 int current_uV = _regulator_get_voltage(rdev);
872 if (current_uV < 0) {
873 rdev_err(rdev,
874 "failed to get the current voltage(%d)\n",
875 current_uV);
876 return current_uV;
877 }
878 if (current_uV < rdev->constraints->min_uV ||
879 current_uV > rdev->constraints->max_uV) {
880 ret = _regulator_do_set_voltage(
881 rdev, rdev->constraints->min_uV,
882 rdev->constraints->max_uV);
883 if (ret < 0) {
884 rdev_err(rdev,
885 "failed to apply %duV constraint(%d)\n",
886 rdev->constraints->min_uV, ret);
887 return ret;
888 }
889 }
890 }
891
892 /* constrain machine-level voltage specs to fit
893 * the actual range supported by this regulator.
894 */
895 if (ops->list_voltage && rdev->desc->n_voltages) {
896 int count = rdev->desc->n_voltages;
897 int i;
898 int min_uV = INT_MAX;
899 int max_uV = INT_MIN;
900 int cmin = constraints->min_uV;
901 int cmax = constraints->max_uV;
902
903 /* it's safe to autoconfigure fixed-voltage supplies
904 and the constraints are used by list_voltage. */
905 if (count == 1 && !cmin) {
906 cmin = 1;
907 cmax = INT_MAX;
908 constraints->min_uV = cmin;
909 constraints->max_uV = cmax;
910 }
911
912 /* voltage constraints are optional */
913 if ((cmin == 0) && (cmax == 0))
914 return 0;
915
916 /* else require explicit machine-level constraints */
917 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
918 rdev_err(rdev, "invalid voltage constraints\n");
919 return -EINVAL;
920 }
921
922 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
923 for (i = 0; i < count; i++) {
924 int value;
925
926 value = ops->list_voltage(rdev, i);
927 if (value <= 0)
928 continue;
929
930 /* maybe adjust [min_uV..max_uV] */
931 if (value >= cmin && value < min_uV)
932 min_uV = value;
933 if (value <= cmax && value > max_uV)
934 max_uV = value;
935 }
936
937 /* final: [min_uV..max_uV] valid iff constraints valid */
938 if (max_uV < min_uV) {
939 rdev_err(rdev,
940 "unsupportable voltage constraints %u-%uuV\n",
941 min_uV, max_uV);
942 return -EINVAL;
943 }
944
945 /* use regulator's subset of machine constraints */
946 if (constraints->min_uV < min_uV) {
947 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
948 constraints->min_uV, min_uV);
949 constraints->min_uV = min_uV;
950 }
951 if (constraints->max_uV > max_uV) {
952 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
953 constraints->max_uV, max_uV);
954 constraints->max_uV = max_uV;
955 }
956 }
957
958 return 0;
959 }
960
961 static int machine_constraints_current(struct regulator_dev *rdev,
962 struct regulation_constraints *constraints)
963 {
964 const struct regulator_ops *ops = rdev->desc->ops;
965 int ret;
966
967 if (!constraints->min_uA && !constraints->max_uA)
968 return 0;
969
970 if (constraints->min_uA > constraints->max_uA) {
971 rdev_err(rdev, "Invalid current constraints\n");
972 return -EINVAL;
973 }
974
975 if (!ops->set_current_limit || !ops->get_current_limit) {
976 rdev_warn(rdev, "Operation of current configuration missing\n");
977 return 0;
978 }
979
980 /* Set regulator current in constraints range */
981 ret = ops->set_current_limit(rdev, constraints->min_uA,
982 constraints->max_uA);
983 if (ret < 0) {
984 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
985 return ret;
986 }
987
988 return 0;
989 }
990
991 static int _regulator_do_enable(struct regulator_dev *rdev);
992
993 /**
994 * set_machine_constraints - sets regulator constraints
995 * @rdev: regulator source
996 * @constraints: constraints to apply
997 *
998 * Allows platform initialisation code to define and constrain
999 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1000 * Constraints *must* be set by platform code in order for some
1001 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1002 * set_mode.
1003 */
1004 static int set_machine_constraints(struct regulator_dev *rdev,
1005 const struct regulation_constraints *constraints)
1006 {
1007 int ret = 0;
1008 const struct regulator_ops *ops = rdev->desc->ops;
1009
1010 if (constraints)
1011 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1012 GFP_KERNEL);
1013 else
1014 rdev->constraints = kzalloc(sizeof(*constraints),
1015 GFP_KERNEL);
1016 if (!rdev->constraints)
1017 return -ENOMEM;
1018
1019 ret = machine_constraints_voltage(rdev, rdev->constraints);
1020 if (ret != 0)
1021 goto out;
1022
1023 ret = machine_constraints_current(rdev, rdev->constraints);
1024 if (ret != 0)
1025 goto out;
1026
1027 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1028 ret = ops->set_input_current_limit(rdev,
1029 rdev->constraints->ilim_uA);
1030 if (ret < 0) {
1031 rdev_err(rdev, "failed to set input limit\n");
1032 goto out;
1033 }
1034 }
1035
1036 /* do we need to setup our suspend state */
1037 if (rdev->constraints->initial_state) {
1038 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1039 if (ret < 0) {
1040 rdev_err(rdev, "failed to set suspend state\n");
1041 goto out;
1042 }
1043 }
1044
1045 if (rdev->constraints->initial_mode) {
1046 if (!ops->set_mode) {
1047 rdev_err(rdev, "no set_mode operation\n");
1048 ret = -EINVAL;
1049 goto out;
1050 }
1051
1052 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1053 if (ret < 0) {
1054 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1055 goto out;
1056 }
1057 }
1058
1059 /* If the constraints say the regulator should be on at this point
1060 * and we have control then make sure it is enabled.
1061 */
1062 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1063 ret = _regulator_do_enable(rdev);
1064 if (ret < 0 && ret != -EINVAL) {
1065 rdev_err(rdev, "failed to enable\n");
1066 goto out;
1067 }
1068 }
1069
1070 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1071 && ops->set_ramp_delay) {
1072 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1073 if (ret < 0) {
1074 rdev_err(rdev, "failed to set ramp_delay\n");
1075 goto out;
1076 }
1077 }
1078
1079 if (rdev->constraints->pull_down && ops->set_pull_down) {
1080 ret = ops->set_pull_down(rdev);
1081 if (ret < 0) {
1082 rdev_err(rdev, "failed to set pull down\n");
1083 goto out;
1084 }
1085 }
1086
1087 if (rdev->constraints->soft_start && ops->set_soft_start) {
1088 ret = ops->set_soft_start(rdev);
1089 if (ret < 0) {
1090 rdev_err(rdev, "failed to set soft start\n");
1091 goto out;
1092 }
1093 }
1094
1095 if (rdev->constraints->over_current_protection
1096 && ops->set_over_current_protection) {
1097 ret = ops->set_over_current_protection(rdev);
1098 if (ret < 0) {
1099 rdev_err(rdev, "failed to set over current protection\n");
1100 goto out;
1101 }
1102 }
1103
1104 print_constraints(rdev);
1105 return 0;
1106 out:
1107 kfree(rdev->constraints);
1108 rdev->constraints = NULL;
1109 return ret;
1110 }
1111
1112 /**
1113 * set_supply - set regulator supply regulator
1114 * @rdev: regulator name
1115 * @supply_rdev: supply regulator name
1116 *
1117 * Called by platform initialisation code to set the supply regulator for this
1118 * regulator. This ensures that a regulators supply will also be enabled by the
1119 * core if it's child is enabled.
1120 */
1121 static int set_supply(struct regulator_dev *rdev,
1122 struct regulator_dev *supply_rdev)
1123 {
1124 int err;
1125
1126 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1127
1128 if (!try_module_get(supply_rdev->owner))
1129 return -ENODEV;
1130
1131 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1132 if (rdev->supply == NULL) {
1133 err = -ENOMEM;
1134 return err;
1135 }
1136 supply_rdev->open_count++;
1137
1138 return 0;
1139 }
1140
1141 /**
1142 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1143 * @rdev: regulator source
1144 * @consumer_dev_name: dev_name() string for device supply applies to
1145 * @supply: symbolic name for supply
1146 *
1147 * Allows platform initialisation code to map physical regulator
1148 * sources to symbolic names for supplies for use by devices. Devices
1149 * should use these symbolic names to request regulators, avoiding the
1150 * need to provide board-specific regulator names as platform data.
1151 */
1152 static int set_consumer_device_supply(struct regulator_dev *rdev,
1153 const char *consumer_dev_name,
1154 const char *supply)
1155 {
1156 struct regulator_map *node;
1157 int has_dev;
1158
1159 if (supply == NULL)
1160 return -EINVAL;
1161
1162 if (consumer_dev_name != NULL)
1163 has_dev = 1;
1164 else
1165 has_dev = 0;
1166
1167 list_for_each_entry(node, &regulator_map_list, list) {
1168 if (node->dev_name && consumer_dev_name) {
1169 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1170 continue;
1171 } else if (node->dev_name || consumer_dev_name) {
1172 continue;
1173 }
1174
1175 if (strcmp(node->supply, supply) != 0)
1176 continue;
1177
1178 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1179 consumer_dev_name,
1180 dev_name(&node->regulator->dev),
1181 node->regulator->desc->name,
1182 supply,
1183 dev_name(&rdev->dev), rdev_get_name(rdev));
1184 return -EBUSY;
1185 }
1186
1187 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1188 if (node == NULL)
1189 return -ENOMEM;
1190
1191 node->regulator = rdev;
1192 node->supply = supply;
1193
1194 if (has_dev) {
1195 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1196 if (node->dev_name == NULL) {
1197 kfree(node);
1198 return -ENOMEM;
1199 }
1200 }
1201
1202 list_add(&node->list, &regulator_map_list);
1203 return 0;
1204 }
1205
1206 static void unset_regulator_supplies(struct regulator_dev *rdev)
1207 {
1208 struct regulator_map *node, *n;
1209
1210 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1211 if (rdev == node->regulator) {
1212 list_del(&node->list);
1213 kfree(node->dev_name);
1214 kfree(node);
1215 }
1216 }
1217 }
1218
1219 #define REG_STR_SIZE 64
1220
1221 static struct regulator *create_regulator(struct regulator_dev *rdev,
1222 struct device *dev,
1223 const char *supply_name)
1224 {
1225 struct regulator *regulator;
1226 char buf[REG_STR_SIZE];
1227 int err, size;
1228
1229 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1230 if (regulator == NULL)
1231 return NULL;
1232
1233 mutex_lock(&rdev->mutex);
1234 regulator->rdev = rdev;
1235 list_add(&regulator->list, &rdev->consumer_list);
1236
1237 if (dev) {
1238 regulator->dev = dev;
1239
1240 /* Add a link to the device sysfs entry */
1241 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1242 dev->kobj.name, supply_name);
1243 if (size >= REG_STR_SIZE)
1244 goto overflow_err;
1245
1246 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1247 if (regulator->supply_name == NULL)
1248 goto overflow_err;
1249
1250 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1251 buf);
1252 if (err) {
1253 rdev_dbg(rdev, "could not add device link %s err %d\n",
1254 dev->kobj.name, err);
1255 /* non-fatal */
1256 }
1257 } else {
1258 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1259 if (regulator->supply_name == NULL)
1260 goto overflow_err;
1261 }
1262
1263 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1264 rdev->debugfs);
1265 if (!regulator->debugfs) {
1266 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1267 } else {
1268 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1269 &regulator->uA_load);
1270 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1271 &regulator->min_uV);
1272 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1273 &regulator->max_uV);
1274 }
1275
1276 /*
1277 * Check now if the regulator is an always on regulator - if
1278 * it is then we don't need to do nearly so much work for
1279 * enable/disable calls.
1280 */
1281 if (!_regulator_can_change_status(rdev) &&
1282 _regulator_is_enabled(rdev))
1283 regulator->always_on = true;
1284
1285 mutex_unlock(&rdev->mutex);
1286 return regulator;
1287 overflow_err:
1288 list_del(&regulator->list);
1289 kfree(regulator);
1290 mutex_unlock(&rdev->mutex);
1291 return NULL;
1292 }
1293
1294 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1295 {
1296 if (rdev->constraints && rdev->constraints->enable_time)
1297 return rdev->constraints->enable_time;
1298 if (!rdev->desc->ops->enable_time)
1299 return rdev->desc->enable_time;
1300 return rdev->desc->ops->enable_time(rdev);
1301 }
1302
1303 static struct regulator_supply_alias *regulator_find_supply_alias(
1304 struct device *dev, const char *supply)
1305 {
1306 struct regulator_supply_alias *map;
1307
1308 list_for_each_entry(map, &regulator_supply_alias_list, list)
1309 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1310 return map;
1311
1312 return NULL;
1313 }
1314
1315 static void regulator_supply_alias(struct device **dev, const char **supply)
1316 {
1317 struct regulator_supply_alias *map;
1318
1319 map = regulator_find_supply_alias(*dev, *supply);
1320 if (map) {
1321 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1322 *supply, map->alias_supply,
1323 dev_name(map->alias_dev));
1324 *dev = map->alias_dev;
1325 *supply = map->alias_supply;
1326 }
1327 }
1328
1329 static int of_node_match(struct device *dev, const void *data)
1330 {
1331 return dev->of_node == data;
1332 }
1333
1334 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1335 {
1336 struct device *dev;
1337
1338 dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1339
1340 return dev ? dev_to_rdev(dev) : NULL;
1341 }
1342
1343 static int regulator_match(struct device *dev, const void *data)
1344 {
1345 struct regulator_dev *r = dev_to_rdev(dev);
1346
1347 return strcmp(rdev_get_name(r), data) == 0;
1348 }
1349
1350 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1351 {
1352 struct device *dev;
1353
1354 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1355
1356 return dev ? dev_to_rdev(dev) : NULL;
1357 }
1358
1359 /**
1360 * regulator_dev_lookup - lookup a regulator device.
1361 * @dev: device for regulator "consumer".
1362 * @supply: Supply name or regulator ID.
1363 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1364 * lookup could succeed in the future.
1365 *
1366 * If successful, returns a struct regulator_dev that corresponds to the name
1367 * @supply and with the embedded struct device refcount incremented by one,
1368 * or NULL on failure. The refcount must be dropped by calling put_device().
1369 */
1370 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1371 const char *supply,
1372 int *ret)
1373 {
1374 struct regulator_dev *r;
1375 struct device_node *node;
1376 struct regulator_map *map;
1377 const char *devname = NULL;
1378
1379 regulator_supply_alias(&dev, &supply);
1380
1381 /* first do a dt based lookup */
1382 if (dev && dev->of_node) {
1383 node = of_get_regulator(dev, supply);
1384 if (node) {
1385 r = of_find_regulator_by_node(node);
1386 if (r)
1387 return r;
1388 *ret = -EPROBE_DEFER;
1389 return NULL;
1390 } else {
1391 /*
1392 * If we couldn't even get the node then it's
1393 * not just that the device didn't register
1394 * yet, there's no node and we'll never
1395 * succeed.
1396 */
1397 *ret = -ENODEV;
1398 }
1399 }
1400
1401 /* if not found, try doing it non-dt way */
1402 if (dev)
1403 devname = dev_name(dev);
1404
1405 r = regulator_lookup_by_name(supply);
1406 if (r)
1407 return r;
1408
1409 mutex_lock(&regulator_list_mutex);
1410 list_for_each_entry(map, &regulator_map_list, list) {
1411 /* If the mapping has a device set up it must match */
1412 if (map->dev_name &&
1413 (!devname || strcmp(map->dev_name, devname)))
1414 continue;
1415
1416 if (strcmp(map->supply, supply) == 0 &&
1417 get_device(&map->regulator->dev)) {
1418 mutex_unlock(&regulator_list_mutex);
1419 return map->regulator;
1420 }
1421 }
1422 mutex_unlock(&regulator_list_mutex);
1423
1424 return NULL;
1425 }
1426
1427 static int regulator_resolve_supply(struct regulator_dev *rdev)
1428 {
1429 struct regulator_dev *r;
1430 struct device *dev = rdev->dev.parent;
1431 int ret;
1432
1433 /* No supply to resovle? */
1434 if (!rdev->supply_name)
1435 return 0;
1436
1437 /* Supply already resolved? */
1438 if (rdev->supply)
1439 return 0;
1440
1441 r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1442 if (!r) {
1443 if (ret == -ENODEV) {
1444 /*
1445 * No supply was specified for this regulator and
1446 * there will never be one.
1447 */
1448 return 0;
1449 }
1450
1451 /* Did the lookup explicitly defer for us? */
1452 if (ret == -EPROBE_DEFER)
1453 return ret;
1454
1455 if (have_full_constraints()) {
1456 r = dummy_regulator_rdev;
1457 get_device(&r->dev);
1458 } else {
1459 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1460 rdev->supply_name, rdev->desc->name);
1461 return -EPROBE_DEFER;
1462 }
1463 }
1464
1465 /* Recursively resolve the supply of the supply */
1466 ret = regulator_resolve_supply(r);
1467 if (ret < 0) {
1468 put_device(&r->dev);
1469 return ret;
1470 }
1471
1472 ret = set_supply(rdev, r);
1473 if (ret < 0) {
1474 put_device(&r->dev);
1475 return ret;
1476 }
1477
1478 /* Cascade always-on state to supply */
1479 if (_regulator_is_enabled(rdev) && rdev->supply) {
1480 ret = regulator_enable(rdev->supply);
1481 if (ret < 0) {
1482 _regulator_put(rdev->supply);
1483 return ret;
1484 }
1485 }
1486
1487 return 0;
1488 }
1489
1490 /* Internal regulator request function */
1491 static struct regulator *_regulator_get(struct device *dev, const char *id,
1492 bool exclusive, bool allow_dummy)
1493 {
1494 struct regulator_dev *rdev;
1495 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1496 const char *devname = NULL;
1497 int ret;
1498
1499 if (id == NULL) {
1500 pr_err("get() with no identifier\n");
1501 return ERR_PTR(-EINVAL);
1502 }
1503
1504 if (dev)
1505 devname = dev_name(dev);
1506
1507 if (have_full_constraints())
1508 ret = -ENODEV;
1509 else
1510 ret = -EPROBE_DEFER;
1511
1512 rdev = regulator_dev_lookup(dev, id, &ret);
1513 if (rdev)
1514 goto found;
1515
1516 regulator = ERR_PTR(ret);
1517
1518 /*
1519 * If we have return value from dev_lookup fail, we do not expect to
1520 * succeed, so, quit with appropriate error value
1521 */
1522 if (ret && ret != -ENODEV)
1523 return regulator;
1524
1525 if (!devname)
1526 devname = "deviceless";
1527
1528 /*
1529 * Assume that a regulator is physically present and enabled
1530 * even if it isn't hooked up and just provide a dummy.
1531 */
1532 if (have_full_constraints() && allow_dummy) {
1533 pr_warn("%s supply %s not found, using dummy regulator\n",
1534 devname, id);
1535
1536 rdev = dummy_regulator_rdev;
1537 get_device(&rdev->dev);
1538 goto found;
1539 /* Don't log an error when called from regulator_get_optional() */
1540 } else if (!have_full_constraints() || exclusive) {
1541 dev_warn(dev, "dummy supplies not allowed\n");
1542 }
1543
1544 return regulator;
1545
1546 found:
1547 if (rdev->exclusive) {
1548 regulator = ERR_PTR(-EPERM);
1549 put_device(&rdev->dev);
1550 return regulator;
1551 }
1552
1553 if (exclusive && rdev->open_count) {
1554 regulator = ERR_PTR(-EBUSY);
1555 put_device(&rdev->dev);
1556 return regulator;
1557 }
1558
1559 ret = regulator_resolve_supply(rdev);
1560 if (ret < 0) {
1561 regulator = ERR_PTR(ret);
1562 put_device(&rdev->dev);
1563 return regulator;
1564 }
1565
1566 if (!try_module_get(rdev->owner)) {
1567 put_device(&rdev->dev);
1568 return regulator;
1569 }
1570
1571 regulator = create_regulator(rdev, dev, id);
1572 if (regulator == NULL) {
1573 regulator = ERR_PTR(-ENOMEM);
1574 put_device(&rdev->dev);
1575 module_put(rdev->owner);
1576 return regulator;
1577 }
1578
1579 rdev->open_count++;
1580 if (exclusive) {
1581 rdev->exclusive = 1;
1582
1583 ret = _regulator_is_enabled(rdev);
1584 if (ret > 0)
1585 rdev->use_count = 1;
1586 else
1587 rdev->use_count = 0;
1588 }
1589
1590 return regulator;
1591 }
1592
1593 /**
1594 * regulator_get - lookup and obtain a reference to a regulator.
1595 * @dev: device for regulator "consumer"
1596 * @id: Supply name or regulator ID.
1597 *
1598 * Returns a struct regulator corresponding to the regulator producer,
1599 * or IS_ERR() condition containing errno.
1600 *
1601 * Use of supply names configured via regulator_set_device_supply() is
1602 * strongly encouraged. It is recommended that the supply name used
1603 * should match the name used for the supply and/or the relevant
1604 * device pins in the datasheet.
1605 */
1606 struct regulator *regulator_get(struct device *dev, const char *id)
1607 {
1608 return _regulator_get(dev, id, false, true);
1609 }
1610 EXPORT_SYMBOL_GPL(regulator_get);
1611
1612 /**
1613 * regulator_get_exclusive - obtain exclusive access to a regulator.
1614 * @dev: device for regulator "consumer"
1615 * @id: Supply name or regulator ID.
1616 *
1617 * Returns a struct regulator corresponding to the regulator producer,
1618 * or IS_ERR() condition containing errno. Other consumers will be
1619 * unable to obtain this regulator while this reference is held and the
1620 * use count for the regulator will be initialised to reflect the current
1621 * state of the regulator.
1622 *
1623 * This is intended for use by consumers which cannot tolerate shared
1624 * use of the regulator such as those which need to force the
1625 * regulator off for correct operation of the hardware they are
1626 * controlling.
1627 *
1628 * Use of supply names configured via regulator_set_device_supply() is
1629 * strongly encouraged. It is recommended that the supply name used
1630 * should match the name used for the supply and/or the relevant
1631 * device pins in the datasheet.
1632 */
1633 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1634 {
1635 return _regulator_get(dev, id, true, false);
1636 }
1637 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1638
1639 /**
1640 * regulator_get_optional - obtain optional access to a regulator.
1641 * @dev: device for regulator "consumer"
1642 * @id: Supply name or regulator ID.
1643 *
1644 * Returns a struct regulator corresponding to the regulator producer,
1645 * or IS_ERR() condition containing errno.
1646 *
1647 * This is intended for use by consumers for devices which can have
1648 * some supplies unconnected in normal use, such as some MMC devices.
1649 * It can allow the regulator core to provide stub supplies for other
1650 * supplies requested using normal regulator_get() calls without
1651 * disrupting the operation of drivers that can handle absent
1652 * supplies.
1653 *
1654 * Use of supply names configured via regulator_set_device_supply() is
1655 * strongly encouraged. It is recommended that the supply name used
1656 * should match the name used for the supply and/or the relevant
1657 * device pins in the datasheet.
1658 */
1659 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1660 {
1661 return _regulator_get(dev, id, false, false);
1662 }
1663 EXPORT_SYMBOL_GPL(regulator_get_optional);
1664
1665 /* regulator_list_mutex lock held by regulator_put() */
1666 static void _regulator_put(struct regulator *regulator)
1667 {
1668 struct regulator_dev *rdev;
1669
1670 if (IS_ERR_OR_NULL(regulator))
1671 return;
1672
1673 lockdep_assert_held_once(&regulator_list_mutex);
1674
1675 rdev = regulator->rdev;
1676
1677 debugfs_remove_recursive(regulator->debugfs);
1678
1679 /* remove any sysfs entries */
1680 if (regulator->dev)
1681 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1682 mutex_lock(&rdev->mutex);
1683 list_del(&regulator->list);
1684
1685 rdev->open_count--;
1686 rdev->exclusive = 0;
1687 put_device(&rdev->dev);
1688 mutex_unlock(&rdev->mutex);
1689
1690 kfree(regulator->supply_name);
1691 kfree(regulator);
1692
1693 module_put(rdev->owner);
1694 }
1695
1696 /**
1697 * regulator_put - "free" the regulator source
1698 * @regulator: regulator source
1699 *
1700 * Note: drivers must ensure that all regulator_enable calls made on this
1701 * regulator source are balanced by regulator_disable calls prior to calling
1702 * this function.
1703 */
1704 void regulator_put(struct regulator *regulator)
1705 {
1706 mutex_lock(&regulator_list_mutex);
1707 _regulator_put(regulator);
1708 mutex_unlock(&regulator_list_mutex);
1709 }
1710 EXPORT_SYMBOL_GPL(regulator_put);
1711
1712 /**
1713 * regulator_register_supply_alias - Provide device alias for supply lookup
1714 *
1715 * @dev: device that will be given as the regulator "consumer"
1716 * @id: Supply name or regulator ID
1717 * @alias_dev: device that should be used to lookup the supply
1718 * @alias_id: Supply name or regulator ID that should be used to lookup the
1719 * supply
1720 *
1721 * All lookups for id on dev will instead be conducted for alias_id on
1722 * alias_dev.
1723 */
1724 int regulator_register_supply_alias(struct device *dev, const char *id,
1725 struct device *alias_dev,
1726 const char *alias_id)
1727 {
1728 struct regulator_supply_alias *map;
1729
1730 map = regulator_find_supply_alias(dev, id);
1731 if (map)
1732 return -EEXIST;
1733
1734 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1735 if (!map)
1736 return -ENOMEM;
1737
1738 map->src_dev = dev;
1739 map->src_supply = id;
1740 map->alias_dev = alias_dev;
1741 map->alias_supply = alias_id;
1742
1743 list_add(&map->list, &regulator_supply_alias_list);
1744
1745 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1746 id, dev_name(dev), alias_id, dev_name(alias_dev));
1747
1748 return 0;
1749 }
1750 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1751
1752 /**
1753 * regulator_unregister_supply_alias - Remove device alias
1754 *
1755 * @dev: device that will be given as the regulator "consumer"
1756 * @id: Supply name or regulator ID
1757 *
1758 * Remove a lookup alias if one exists for id on dev.
1759 */
1760 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1761 {
1762 struct regulator_supply_alias *map;
1763
1764 map = regulator_find_supply_alias(dev, id);
1765 if (map) {
1766 list_del(&map->list);
1767 kfree(map);
1768 }
1769 }
1770 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1771
1772 /**
1773 * regulator_bulk_register_supply_alias - register multiple aliases
1774 *
1775 * @dev: device that will be given as the regulator "consumer"
1776 * @id: List of supply names or regulator IDs
1777 * @alias_dev: device that should be used to lookup the supply
1778 * @alias_id: List of supply names or regulator IDs that should be used to
1779 * lookup the supply
1780 * @num_id: Number of aliases to register
1781 *
1782 * @return 0 on success, an errno on failure.
1783 *
1784 * This helper function allows drivers to register several supply
1785 * aliases in one operation. If any of the aliases cannot be
1786 * registered any aliases that were registered will be removed
1787 * before returning to the caller.
1788 */
1789 int regulator_bulk_register_supply_alias(struct device *dev,
1790 const char *const *id,
1791 struct device *alias_dev,
1792 const char *const *alias_id,
1793 int num_id)
1794 {
1795 int i;
1796 int ret;
1797
1798 for (i = 0; i < num_id; ++i) {
1799 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1800 alias_id[i]);
1801 if (ret < 0)
1802 goto err;
1803 }
1804
1805 return 0;
1806
1807 err:
1808 dev_err(dev,
1809 "Failed to create supply alias %s,%s -> %s,%s\n",
1810 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1811
1812 while (--i >= 0)
1813 regulator_unregister_supply_alias(dev, id[i]);
1814
1815 return ret;
1816 }
1817 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1818
1819 /**
1820 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1821 *
1822 * @dev: device that will be given as the regulator "consumer"
1823 * @id: List of supply names or regulator IDs
1824 * @num_id: Number of aliases to unregister
1825 *
1826 * This helper function allows drivers to unregister several supply
1827 * aliases in one operation.
1828 */
1829 void regulator_bulk_unregister_supply_alias(struct device *dev,
1830 const char *const *id,
1831 int num_id)
1832 {
1833 int i;
1834
1835 for (i = 0; i < num_id; ++i)
1836 regulator_unregister_supply_alias(dev, id[i]);
1837 }
1838 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1839
1840
1841 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1842 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1843 const struct regulator_config *config)
1844 {
1845 struct regulator_enable_gpio *pin;
1846 struct gpio_desc *gpiod;
1847 int ret;
1848
1849 gpiod = gpio_to_desc(config->ena_gpio);
1850
1851 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1852 if (pin->gpiod == gpiod) {
1853 rdev_dbg(rdev, "GPIO %d is already used\n",
1854 config->ena_gpio);
1855 goto update_ena_gpio_to_rdev;
1856 }
1857 }
1858
1859 ret = gpio_request_one(config->ena_gpio,
1860 GPIOF_DIR_OUT | config->ena_gpio_flags,
1861 rdev_get_name(rdev));
1862 if (ret)
1863 return ret;
1864
1865 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1866 if (pin == NULL) {
1867 gpio_free(config->ena_gpio);
1868 return -ENOMEM;
1869 }
1870
1871 pin->gpiod = gpiod;
1872 pin->ena_gpio_invert = config->ena_gpio_invert;
1873 list_add(&pin->list, &regulator_ena_gpio_list);
1874
1875 update_ena_gpio_to_rdev:
1876 pin->request_count++;
1877 rdev->ena_pin = pin;
1878 return 0;
1879 }
1880
1881 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1882 {
1883 struct regulator_enable_gpio *pin, *n;
1884
1885 if (!rdev->ena_pin)
1886 return;
1887
1888 /* Free the GPIO only in case of no use */
1889 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1890 if (pin->gpiod == rdev->ena_pin->gpiod) {
1891 if (pin->request_count <= 1) {
1892 pin->request_count = 0;
1893 gpiod_put(pin->gpiod);
1894 list_del(&pin->list);
1895 kfree(pin);
1896 rdev->ena_pin = NULL;
1897 return;
1898 } else {
1899 pin->request_count--;
1900 }
1901 }
1902 }
1903 }
1904
1905 /**
1906 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1907 * @rdev: regulator_dev structure
1908 * @enable: enable GPIO at initial use?
1909 *
1910 * GPIO is enabled in case of initial use. (enable_count is 0)
1911 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1912 */
1913 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1914 {
1915 struct regulator_enable_gpio *pin = rdev->ena_pin;
1916
1917 if (!pin)
1918 return -EINVAL;
1919
1920 if (enable) {
1921 /* Enable GPIO at initial use */
1922 if (pin->enable_count == 0)
1923 gpiod_set_value_cansleep(pin->gpiod,
1924 !pin->ena_gpio_invert);
1925
1926 pin->enable_count++;
1927 } else {
1928 if (pin->enable_count > 1) {
1929 pin->enable_count--;
1930 return 0;
1931 }
1932
1933 /* Disable GPIO if not used */
1934 if (pin->enable_count <= 1) {
1935 gpiod_set_value_cansleep(pin->gpiod,
1936 pin->ena_gpio_invert);
1937 pin->enable_count = 0;
1938 }
1939 }
1940
1941 return 0;
1942 }
1943
1944 /**
1945 * _regulator_enable_delay - a delay helper function
1946 * @delay: time to delay in microseconds
1947 *
1948 * Delay for the requested amount of time as per the guidelines in:
1949 *
1950 * Documentation/timers/timers-howto.txt
1951 *
1952 * The assumption here is that regulators will never be enabled in
1953 * atomic context and therefore sleeping functions can be used.
1954 */
1955 static void _regulator_enable_delay(unsigned int delay)
1956 {
1957 unsigned int ms = delay / 1000;
1958 unsigned int us = delay % 1000;
1959
1960 if (ms > 0) {
1961 /*
1962 * For small enough values, handle super-millisecond
1963 * delays in the usleep_range() call below.
1964 */
1965 if (ms < 20)
1966 us += ms * 1000;
1967 else
1968 msleep(ms);
1969 }
1970
1971 /*
1972 * Give the scheduler some room to coalesce with any other
1973 * wakeup sources. For delays shorter than 10 us, don't even
1974 * bother setting up high-resolution timers and just busy-
1975 * loop.
1976 */
1977 if (us >= 10)
1978 usleep_range(us, us + 100);
1979 else
1980 udelay(us);
1981 }
1982
1983 static int _regulator_do_enable(struct regulator_dev *rdev)
1984 {
1985 int ret, delay;
1986
1987 /* Query before enabling in case configuration dependent. */
1988 ret = _regulator_get_enable_time(rdev);
1989 if (ret >= 0) {
1990 delay = ret;
1991 } else {
1992 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1993 delay = 0;
1994 }
1995
1996 trace_regulator_enable(rdev_get_name(rdev));
1997
1998 if (rdev->desc->off_on_delay) {
1999 /* if needed, keep a distance of off_on_delay from last time
2000 * this regulator was disabled.
2001 */
2002 unsigned long start_jiffy = jiffies;
2003 unsigned long intended, max_delay, remaining;
2004
2005 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2006 intended = rdev->last_off_jiffy + max_delay;
2007
2008 if (time_before(start_jiffy, intended)) {
2009 /* calc remaining jiffies to deal with one-time
2010 * timer wrapping.
2011 * in case of multiple timer wrapping, either it can be
2012 * detected by out-of-range remaining, or it cannot be
2013 * detected and we gets a panelty of
2014 * _regulator_enable_delay().
2015 */
2016 remaining = intended - start_jiffy;
2017 if (remaining <= max_delay)
2018 _regulator_enable_delay(
2019 jiffies_to_usecs(remaining));
2020 }
2021 }
2022
2023 if (rdev->ena_pin) {
2024 if (!rdev->ena_gpio_state) {
2025 ret = regulator_ena_gpio_ctrl(rdev, true);
2026 if (ret < 0)
2027 return ret;
2028 rdev->ena_gpio_state = 1;
2029 }
2030 } else if (rdev->desc->ops->enable) {
2031 ret = rdev->desc->ops->enable(rdev);
2032 if (ret < 0)
2033 return ret;
2034 } else {
2035 return -EINVAL;
2036 }
2037
2038 /* Allow the regulator to ramp; it would be useful to extend
2039 * this for bulk operations so that the regulators can ramp
2040 * together. */
2041 trace_regulator_enable_delay(rdev_get_name(rdev));
2042
2043 _regulator_enable_delay(delay);
2044
2045 trace_regulator_enable_complete(rdev_get_name(rdev));
2046
2047 return 0;
2048 }
2049
2050 /* locks held by regulator_enable() */
2051 static int _regulator_enable(struct regulator_dev *rdev)
2052 {
2053 int ret;
2054
2055 lockdep_assert_held_once(&rdev->mutex);
2056
2057 /* check voltage and requested load before enabling */
2058 if (rdev->constraints &&
2059 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2060 drms_uA_update(rdev);
2061
2062 if (rdev->use_count == 0) {
2063 /* The regulator may on if it's not switchable or left on */
2064 ret = _regulator_is_enabled(rdev);
2065 if (ret == -EINVAL || ret == 0) {
2066 if (!_regulator_can_change_status(rdev))
2067 return -EPERM;
2068
2069 ret = _regulator_do_enable(rdev);
2070 if (ret < 0)
2071 return ret;
2072
2073 } else if (ret < 0) {
2074 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2075 return ret;
2076 }
2077 /* Fallthrough on positive return values - already enabled */
2078 }
2079
2080 rdev->use_count++;
2081
2082 return 0;
2083 }
2084
2085 /**
2086 * regulator_enable - enable regulator output
2087 * @regulator: regulator source
2088 *
2089 * Request that the regulator be enabled with the regulator output at
2090 * the predefined voltage or current value. Calls to regulator_enable()
2091 * must be balanced with calls to regulator_disable().
2092 *
2093 * NOTE: the output value can be set by other drivers, boot loader or may be
2094 * hardwired in the regulator.
2095 */
2096 int regulator_enable(struct regulator *regulator)
2097 {
2098 struct regulator_dev *rdev = regulator->rdev;
2099 int ret = 0;
2100
2101 if (regulator->always_on)
2102 return 0;
2103
2104 if (rdev->supply) {
2105 ret = regulator_enable(rdev->supply);
2106 if (ret != 0)
2107 return ret;
2108 }
2109
2110 mutex_lock(&rdev->mutex);
2111 ret = _regulator_enable(rdev);
2112 mutex_unlock(&rdev->mutex);
2113
2114 if (ret != 0 && rdev->supply)
2115 regulator_disable(rdev->supply);
2116
2117 return ret;
2118 }
2119 EXPORT_SYMBOL_GPL(regulator_enable);
2120
2121 static int _regulator_do_disable(struct regulator_dev *rdev)
2122 {
2123 int ret;
2124
2125 trace_regulator_disable(rdev_get_name(rdev));
2126
2127 if (rdev->ena_pin) {
2128 if (rdev->ena_gpio_state) {
2129 ret = regulator_ena_gpio_ctrl(rdev, false);
2130 if (ret < 0)
2131 return ret;
2132 rdev->ena_gpio_state = 0;
2133 }
2134
2135 } else if (rdev->desc->ops->disable) {
2136 ret = rdev->desc->ops->disable(rdev);
2137 if (ret != 0)
2138 return ret;
2139 }
2140
2141 /* cares about last_off_jiffy only if off_on_delay is required by
2142 * device.
2143 */
2144 if (rdev->desc->off_on_delay)
2145 rdev->last_off_jiffy = jiffies;
2146
2147 trace_regulator_disable_complete(rdev_get_name(rdev));
2148
2149 return 0;
2150 }
2151
2152 /* locks held by regulator_disable() */
2153 static int _regulator_disable(struct regulator_dev *rdev)
2154 {
2155 int ret = 0;
2156
2157 lockdep_assert_held_once(&rdev->mutex);
2158
2159 if (WARN(rdev->use_count <= 0,
2160 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2161 return -EIO;
2162
2163 /* are we the last user and permitted to disable ? */
2164 if (rdev->use_count == 1 &&
2165 (rdev->constraints && !rdev->constraints->always_on)) {
2166
2167 /* we are last user */
2168 if (_regulator_can_change_status(rdev)) {
2169 ret = _notifier_call_chain(rdev,
2170 REGULATOR_EVENT_PRE_DISABLE,
2171 NULL);
2172 if (ret & NOTIFY_STOP_MASK)
2173 return -EINVAL;
2174
2175 ret = _regulator_do_disable(rdev);
2176 if (ret < 0) {
2177 rdev_err(rdev, "failed to disable\n");
2178 _notifier_call_chain(rdev,
2179 REGULATOR_EVENT_ABORT_DISABLE,
2180 NULL);
2181 return ret;
2182 }
2183 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2184 NULL);
2185 }
2186
2187 rdev->use_count = 0;
2188 } else if (rdev->use_count > 1) {
2189
2190 if (rdev->constraints &&
2191 (rdev->constraints->valid_ops_mask &
2192 REGULATOR_CHANGE_DRMS))
2193 drms_uA_update(rdev);
2194
2195 rdev->use_count--;
2196 }
2197
2198 return ret;
2199 }
2200
2201 /**
2202 * regulator_disable - disable regulator output
2203 * @regulator: regulator source
2204 *
2205 * Disable the regulator output voltage or current. Calls to
2206 * regulator_enable() must be balanced with calls to
2207 * regulator_disable().
2208 *
2209 * NOTE: this will only disable the regulator output if no other consumer
2210 * devices have it enabled, the regulator device supports disabling and
2211 * machine constraints permit this operation.
2212 */
2213 int regulator_disable(struct regulator *regulator)
2214 {
2215 struct regulator_dev *rdev = regulator->rdev;
2216 int ret = 0;
2217
2218 if (regulator->always_on)
2219 return 0;
2220
2221 mutex_lock(&rdev->mutex);
2222 ret = _regulator_disable(rdev);
2223 mutex_unlock(&rdev->mutex);
2224
2225 if (ret == 0 && rdev->supply)
2226 regulator_disable(rdev->supply);
2227
2228 return ret;
2229 }
2230 EXPORT_SYMBOL_GPL(regulator_disable);
2231
2232 /* locks held by regulator_force_disable() */
2233 static int _regulator_force_disable(struct regulator_dev *rdev)
2234 {
2235 int ret = 0;
2236
2237 lockdep_assert_held_once(&rdev->mutex);
2238
2239 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2240 REGULATOR_EVENT_PRE_DISABLE, NULL);
2241 if (ret & NOTIFY_STOP_MASK)
2242 return -EINVAL;
2243
2244 ret = _regulator_do_disable(rdev);
2245 if (ret < 0) {
2246 rdev_err(rdev, "failed to force disable\n");
2247 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2248 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2249 return ret;
2250 }
2251
2252 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2253 REGULATOR_EVENT_DISABLE, NULL);
2254
2255 return 0;
2256 }
2257
2258 /**
2259 * regulator_force_disable - force disable regulator output
2260 * @regulator: regulator source
2261 *
2262 * Forcibly disable the regulator output voltage or current.
2263 * NOTE: this *will* disable the regulator output even if other consumer
2264 * devices have it enabled. This should be used for situations when device
2265 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2266 */
2267 int regulator_force_disable(struct regulator *regulator)
2268 {
2269 struct regulator_dev *rdev = regulator->rdev;
2270 int ret;
2271
2272 mutex_lock(&rdev->mutex);
2273 regulator->uA_load = 0;
2274 ret = _regulator_force_disable(regulator->rdev);
2275 mutex_unlock(&rdev->mutex);
2276
2277 if (rdev->supply)
2278 while (rdev->open_count--)
2279 regulator_disable(rdev->supply);
2280
2281 return ret;
2282 }
2283 EXPORT_SYMBOL_GPL(regulator_force_disable);
2284
2285 static void regulator_disable_work(struct work_struct *work)
2286 {
2287 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2288 disable_work.work);
2289 int count, i, ret;
2290
2291 mutex_lock(&rdev->mutex);
2292
2293 BUG_ON(!rdev->deferred_disables);
2294
2295 count = rdev->deferred_disables;
2296 rdev->deferred_disables = 0;
2297
2298 for (i = 0; i < count; i++) {
2299 ret = _regulator_disable(rdev);
2300 if (ret != 0)
2301 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2302 }
2303
2304 mutex_unlock(&rdev->mutex);
2305
2306 if (rdev->supply) {
2307 for (i = 0; i < count; i++) {
2308 ret = regulator_disable(rdev->supply);
2309 if (ret != 0) {
2310 rdev_err(rdev,
2311 "Supply disable failed: %d\n", ret);
2312 }
2313 }
2314 }
2315 }
2316
2317 /**
2318 * regulator_disable_deferred - disable regulator output with delay
2319 * @regulator: regulator source
2320 * @ms: miliseconds until the regulator is disabled
2321 *
2322 * Execute regulator_disable() on the regulator after a delay. This
2323 * is intended for use with devices that require some time to quiesce.
2324 *
2325 * NOTE: this will only disable the regulator output if no other consumer
2326 * devices have it enabled, the regulator device supports disabling and
2327 * machine constraints permit this operation.
2328 */
2329 int regulator_disable_deferred(struct regulator *regulator, int ms)
2330 {
2331 struct regulator_dev *rdev = regulator->rdev;
2332 int ret;
2333
2334 if (regulator->always_on)
2335 return 0;
2336
2337 if (!ms)
2338 return regulator_disable(regulator);
2339
2340 mutex_lock(&rdev->mutex);
2341 rdev->deferred_disables++;
2342 mutex_unlock(&rdev->mutex);
2343
2344 ret = queue_delayed_work(system_power_efficient_wq,
2345 &rdev->disable_work,
2346 msecs_to_jiffies(ms));
2347 if (ret < 0)
2348 return ret;
2349 else
2350 return 0;
2351 }
2352 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2353
2354 static int _regulator_is_enabled(struct regulator_dev *rdev)
2355 {
2356 /* A GPIO control always takes precedence */
2357 if (rdev->ena_pin)
2358 return rdev->ena_gpio_state;
2359
2360 /* If we don't know then assume that the regulator is always on */
2361 if (!rdev->desc->ops->is_enabled)
2362 return 1;
2363
2364 return rdev->desc->ops->is_enabled(rdev);
2365 }
2366
2367 /**
2368 * regulator_is_enabled - is the regulator output enabled
2369 * @regulator: regulator source
2370 *
2371 * Returns positive if the regulator driver backing the source/client
2372 * has requested that the device be enabled, zero if it hasn't, else a
2373 * negative errno code.
2374 *
2375 * Note that the device backing this regulator handle can have multiple
2376 * users, so it might be enabled even if regulator_enable() was never
2377 * called for this particular source.
2378 */
2379 int regulator_is_enabled(struct regulator *regulator)
2380 {
2381 int ret;
2382
2383 if (regulator->always_on)
2384 return 1;
2385
2386 mutex_lock(&regulator->rdev->mutex);
2387 ret = _regulator_is_enabled(regulator->rdev);
2388 mutex_unlock(&regulator->rdev->mutex);
2389
2390 return ret;
2391 }
2392 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2393
2394 /**
2395 * regulator_can_change_voltage - check if regulator can change voltage
2396 * @regulator: regulator source
2397 *
2398 * Returns positive if the regulator driver backing the source/client
2399 * can change its voltage, false otherwise. Useful for detecting fixed
2400 * or dummy regulators and disabling voltage change logic in the client
2401 * driver.
2402 */
2403 int regulator_can_change_voltage(struct regulator *regulator)
2404 {
2405 struct regulator_dev *rdev = regulator->rdev;
2406
2407 if (rdev->constraints &&
2408 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2409 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2410 return 1;
2411
2412 if (rdev->desc->continuous_voltage_range &&
2413 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2414 rdev->constraints->min_uV != rdev->constraints->max_uV)
2415 return 1;
2416 }
2417
2418 return 0;
2419 }
2420 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2421
2422 /**
2423 * regulator_count_voltages - count regulator_list_voltage() selectors
2424 * @regulator: regulator source
2425 *
2426 * Returns number of selectors, or negative errno. Selectors are
2427 * numbered starting at zero, and typically correspond to bitfields
2428 * in hardware registers.
2429 */
2430 int regulator_count_voltages(struct regulator *regulator)
2431 {
2432 struct regulator_dev *rdev = regulator->rdev;
2433
2434 if (rdev->desc->n_voltages)
2435 return rdev->desc->n_voltages;
2436
2437 if (!rdev->supply)
2438 return -EINVAL;
2439
2440 return regulator_count_voltages(rdev->supply);
2441 }
2442 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2443
2444 /**
2445 * regulator_list_voltage - enumerate supported voltages
2446 * @regulator: regulator source
2447 * @selector: identify voltage to list
2448 * Context: can sleep
2449 *
2450 * Returns a voltage that can be passed to @regulator_set_voltage(),
2451 * zero if this selector code can't be used on this system, or a
2452 * negative errno.
2453 */
2454 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2455 {
2456 struct regulator_dev *rdev = regulator->rdev;
2457 const struct regulator_ops *ops = rdev->desc->ops;
2458 int ret;
2459
2460 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2461 return rdev->desc->fixed_uV;
2462
2463 if (ops->list_voltage) {
2464 if (selector >= rdev->desc->n_voltages)
2465 return -EINVAL;
2466 mutex_lock(&rdev->mutex);
2467 ret = ops->list_voltage(rdev, selector);
2468 mutex_unlock(&rdev->mutex);
2469 } else if (rdev->supply) {
2470 ret = regulator_list_voltage(rdev->supply, selector);
2471 } else {
2472 return -EINVAL;
2473 }
2474
2475 if (ret > 0) {
2476 if (ret < rdev->constraints->min_uV)
2477 ret = 0;
2478 else if (ret > rdev->constraints->max_uV)
2479 ret = 0;
2480 }
2481
2482 return ret;
2483 }
2484 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2485
2486 /**
2487 * regulator_get_regmap - get the regulator's register map
2488 * @regulator: regulator source
2489 *
2490 * Returns the register map for the given regulator, or an ERR_PTR value
2491 * if the regulator doesn't use regmap.
2492 */
2493 struct regmap *regulator_get_regmap(struct regulator *regulator)
2494 {
2495 struct regmap *map = regulator->rdev->regmap;
2496
2497 return map ? map : ERR_PTR(-EOPNOTSUPP);
2498 }
2499
2500 /**
2501 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2502 * @regulator: regulator source
2503 * @vsel_reg: voltage selector register, output parameter
2504 * @vsel_mask: mask for voltage selector bitfield, output parameter
2505 *
2506 * Returns the hardware register offset and bitmask used for setting the
2507 * regulator voltage. This might be useful when configuring voltage-scaling
2508 * hardware or firmware that can make I2C requests behind the kernel's back,
2509 * for example.
2510 *
2511 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2512 * and 0 is returned, otherwise a negative errno is returned.
2513 */
2514 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2515 unsigned *vsel_reg,
2516 unsigned *vsel_mask)
2517 {
2518 struct regulator_dev *rdev = regulator->rdev;
2519 const struct regulator_ops *ops = rdev->desc->ops;
2520
2521 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2522 return -EOPNOTSUPP;
2523
2524 *vsel_reg = rdev->desc->vsel_reg;
2525 *vsel_mask = rdev->desc->vsel_mask;
2526
2527 return 0;
2528 }
2529 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2530
2531 /**
2532 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2533 * @regulator: regulator source
2534 * @selector: identify voltage to list
2535 *
2536 * Converts the selector to a hardware-specific voltage selector that can be
2537 * directly written to the regulator registers. The address of the voltage
2538 * register can be determined by calling @regulator_get_hardware_vsel_register.
2539 *
2540 * On error a negative errno is returned.
2541 */
2542 int regulator_list_hardware_vsel(struct regulator *regulator,
2543 unsigned selector)
2544 {
2545 struct regulator_dev *rdev = regulator->rdev;
2546 const struct regulator_ops *ops = rdev->desc->ops;
2547
2548 if (selector >= rdev->desc->n_voltages)
2549 return -EINVAL;
2550 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2551 return -EOPNOTSUPP;
2552
2553 return selector;
2554 }
2555 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2556
2557 /**
2558 * regulator_get_linear_step - return the voltage step size between VSEL values
2559 * @regulator: regulator source
2560 *
2561 * Returns the voltage step size between VSEL values for linear
2562 * regulators, or return 0 if the regulator isn't a linear regulator.
2563 */
2564 unsigned int regulator_get_linear_step(struct regulator *regulator)
2565 {
2566 struct regulator_dev *rdev = regulator->rdev;
2567
2568 return rdev->desc->uV_step;
2569 }
2570 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2571
2572 /**
2573 * regulator_is_supported_voltage - check if a voltage range can be supported
2574 *
2575 * @regulator: Regulator to check.
2576 * @min_uV: Minimum required voltage in uV.
2577 * @max_uV: Maximum required voltage in uV.
2578 *
2579 * Returns a boolean or a negative error code.
2580 */
2581 int regulator_is_supported_voltage(struct regulator *regulator,
2582 int min_uV, int max_uV)
2583 {
2584 struct regulator_dev *rdev = regulator->rdev;
2585 int i, voltages, ret;
2586
2587 /* If we can't change voltage check the current voltage */
2588 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2589 ret = regulator_get_voltage(regulator);
2590 if (ret >= 0)
2591 return min_uV <= ret && ret <= max_uV;
2592 else
2593 return ret;
2594 }
2595
2596 /* Any voltage within constrains range is fine? */
2597 if (rdev->desc->continuous_voltage_range)
2598 return min_uV >= rdev->constraints->min_uV &&
2599 max_uV <= rdev->constraints->max_uV;
2600
2601 ret = regulator_count_voltages(regulator);
2602 if (ret < 0)
2603 return ret;
2604 voltages = ret;
2605
2606 for (i = 0; i < voltages; i++) {
2607 ret = regulator_list_voltage(regulator, i);
2608
2609 if (ret >= min_uV && ret <= max_uV)
2610 return 1;
2611 }
2612
2613 return 0;
2614 }
2615 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2616
2617 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2618 int min_uV, int max_uV,
2619 unsigned *selector)
2620 {
2621 struct pre_voltage_change_data data;
2622 int ret;
2623
2624 data.old_uV = _regulator_get_voltage(rdev);
2625 data.min_uV = min_uV;
2626 data.max_uV = max_uV;
2627 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2628 &data);
2629 if (ret & NOTIFY_STOP_MASK)
2630 return -EINVAL;
2631
2632 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2633 if (ret >= 0)
2634 return ret;
2635
2636 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2637 (void *)data.old_uV);
2638
2639 return ret;
2640 }
2641
2642 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2643 int uV, unsigned selector)
2644 {
2645 struct pre_voltage_change_data data;
2646 int ret;
2647
2648 data.old_uV = _regulator_get_voltage(rdev);
2649 data.min_uV = uV;
2650 data.max_uV = uV;
2651 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2652 &data);
2653 if (ret & NOTIFY_STOP_MASK)
2654 return -EINVAL;
2655
2656 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2657 if (ret >= 0)
2658 return ret;
2659
2660 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2661 (void *)data.old_uV);
2662
2663 return ret;
2664 }
2665
2666 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2667 int min_uV, int max_uV)
2668 {
2669 int ret;
2670 int delay = 0;
2671 int best_val = 0;
2672 unsigned int selector;
2673 int old_selector = -1;
2674
2675 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2676
2677 min_uV += rdev->constraints->uV_offset;
2678 max_uV += rdev->constraints->uV_offset;
2679
2680 /*
2681 * If we can't obtain the old selector there is not enough
2682 * info to call set_voltage_time_sel().
2683 */
2684 if (_regulator_is_enabled(rdev) &&
2685 rdev->desc->ops->set_voltage_time_sel &&
2686 rdev->desc->ops->get_voltage_sel) {
2687 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2688 if (old_selector < 0)
2689 return old_selector;
2690 }
2691
2692 if (rdev->desc->ops->set_voltage) {
2693 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2694 &selector);
2695
2696 if (ret >= 0) {
2697 if (rdev->desc->ops->list_voltage)
2698 best_val = rdev->desc->ops->list_voltage(rdev,
2699 selector);
2700 else
2701 best_val = _regulator_get_voltage(rdev);
2702 }
2703
2704 } else if (rdev->desc->ops->set_voltage_sel) {
2705 if (rdev->desc->ops->map_voltage) {
2706 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2707 max_uV);
2708 } else {
2709 if (rdev->desc->ops->list_voltage ==
2710 regulator_list_voltage_linear)
2711 ret = regulator_map_voltage_linear(rdev,
2712 min_uV, max_uV);
2713 else if (rdev->desc->ops->list_voltage ==
2714 regulator_list_voltage_linear_range)
2715 ret = regulator_map_voltage_linear_range(rdev,
2716 min_uV, max_uV);
2717 else
2718 ret = regulator_map_voltage_iterate(rdev,
2719 min_uV, max_uV);
2720 }
2721
2722 if (ret >= 0) {
2723 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2724 if (min_uV <= best_val && max_uV >= best_val) {
2725 selector = ret;
2726 if (old_selector == selector)
2727 ret = 0;
2728 else
2729 ret = _regulator_call_set_voltage_sel(
2730 rdev, best_val, selector);
2731 } else {
2732 ret = -EINVAL;
2733 }
2734 }
2735 } else {
2736 ret = -EINVAL;
2737 }
2738
2739 /* Call set_voltage_time_sel if successfully obtained old_selector */
2740 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2741 && old_selector != selector) {
2742
2743 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2744 old_selector, selector);
2745 if (delay < 0) {
2746 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2747 delay);
2748 delay = 0;
2749 }
2750
2751 /* Insert any necessary delays */
2752 if (delay >= 1000) {
2753 mdelay(delay / 1000);
2754 udelay(delay % 1000);
2755 } else if (delay) {
2756 udelay(delay);
2757 }
2758 }
2759
2760 if (ret == 0 && best_val >= 0) {
2761 unsigned long data = best_val;
2762
2763 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2764 (void *)data);
2765 }
2766
2767 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2768
2769 return ret;
2770 }
2771
2772 /**
2773 * regulator_set_voltage - set regulator output voltage
2774 * @regulator: regulator source
2775 * @min_uV: Minimum required voltage in uV
2776 * @max_uV: Maximum acceptable voltage in uV
2777 *
2778 * Sets a voltage regulator to the desired output voltage. This can be set
2779 * during any regulator state. IOW, regulator can be disabled or enabled.
2780 *
2781 * If the regulator is enabled then the voltage will change to the new value
2782 * immediately otherwise if the regulator is disabled the regulator will
2783 * output at the new voltage when enabled.
2784 *
2785 * NOTE: If the regulator is shared between several devices then the lowest
2786 * request voltage that meets the system constraints will be used.
2787 * Regulator system constraints must be set for this regulator before
2788 * calling this function otherwise this call will fail.
2789 */
2790 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2791 {
2792 struct regulator_dev *rdev = regulator->rdev;
2793 int ret = 0;
2794 int old_min_uV, old_max_uV;
2795 int current_uV;
2796
2797 mutex_lock(&rdev->mutex);
2798
2799 /* If we're setting the same range as last time the change
2800 * should be a noop (some cpufreq implementations use the same
2801 * voltage for multiple frequencies, for example).
2802 */
2803 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2804 goto out;
2805
2806 /* If we're trying to set a range that overlaps the current voltage,
2807 * return successfully even though the regulator does not support
2808 * changing the voltage.
2809 */
2810 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2811 current_uV = _regulator_get_voltage(rdev);
2812 if (min_uV <= current_uV && current_uV <= max_uV) {
2813 regulator->min_uV = min_uV;
2814 regulator->max_uV = max_uV;
2815 goto out;
2816 }
2817 }
2818
2819 /* sanity check */
2820 if (!rdev->desc->ops->set_voltage &&
2821 !rdev->desc->ops->set_voltage_sel) {
2822 ret = -EINVAL;
2823 goto out;
2824 }
2825
2826 /* constraints check */
2827 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2828 if (ret < 0)
2829 goto out;
2830
2831 /* restore original values in case of error */
2832 old_min_uV = regulator->min_uV;
2833 old_max_uV = regulator->max_uV;
2834 regulator->min_uV = min_uV;
2835 regulator->max_uV = max_uV;
2836
2837 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2838 if (ret < 0)
2839 goto out2;
2840
2841 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2842 if (ret < 0)
2843 goto out2;
2844
2845 out:
2846 mutex_unlock(&rdev->mutex);
2847 return ret;
2848 out2:
2849 regulator->min_uV = old_min_uV;
2850 regulator->max_uV = old_max_uV;
2851 mutex_unlock(&rdev->mutex);
2852 return ret;
2853 }
2854 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2855
2856 /**
2857 * regulator_set_voltage_time - get raise/fall time
2858 * @regulator: regulator source
2859 * @old_uV: starting voltage in microvolts
2860 * @new_uV: target voltage in microvolts
2861 *
2862 * Provided with the starting and ending voltage, this function attempts to
2863 * calculate the time in microseconds required to rise or fall to this new
2864 * voltage.
2865 */
2866 int regulator_set_voltage_time(struct regulator *regulator,
2867 int old_uV, int new_uV)
2868 {
2869 struct regulator_dev *rdev = regulator->rdev;
2870 const struct regulator_ops *ops = rdev->desc->ops;
2871 int old_sel = -1;
2872 int new_sel = -1;
2873 int voltage;
2874 int i;
2875
2876 /* Currently requires operations to do this */
2877 if (!ops->list_voltage || !ops->set_voltage_time_sel
2878 || !rdev->desc->n_voltages)
2879 return -EINVAL;
2880
2881 for (i = 0; i < rdev->desc->n_voltages; i++) {
2882 /* We only look for exact voltage matches here */
2883 voltage = regulator_list_voltage(regulator, i);
2884 if (voltage < 0)
2885 return -EINVAL;
2886 if (voltage == 0)
2887 continue;
2888 if (voltage == old_uV)
2889 old_sel = i;
2890 if (voltage == new_uV)
2891 new_sel = i;
2892 }
2893
2894 if (old_sel < 0 || new_sel < 0)
2895 return -EINVAL;
2896
2897 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2898 }
2899 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2900
2901 /**
2902 * regulator_set_voltage_time_sel - get raise/fall time
2903 * @rdev: regulator source device
2904 * @old_selector: selector for starting voltage
2905 * @new_selector: selector for target voltage
2906 *
2907 * Provided with the starting and target voltage selectors, this function
2908 * returns time in microseconds required to rise or fall to this new voltage
2909 *
2910 * Drivers providing ramp_delay in regulation_constraints can use this as their
2911 * set_voltage_time_sel() operation.
2912 */
2913 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2914 unsigned int old_selector,
2915 unsigned int new_selector)
2916 {
2917 unsigned int ramp_delay = 0;
2918 int old_volt, new_volt;
2919
2920 if (rdev->constraints->ramp_delay)
2921 ramp_delay = rdev->constraints->ramp_delay;
2922 else if (rdev->desc->ramp_delay)
2923 ramp_delay = rdev->desc->ramp_delay;
2924
2925 if (ramp_delay == 0) {
2926 rdev_warn(rdev, "ramp_delay not set\n");
2927 return 0;
2928 }
2929
2930 /* sanity check */
2931 if (!rdev->desc->ops->list_voltage)
2932 return -EINVAL;
2933
2934 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2935 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2936
2937 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2938 }
2939 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2940
2941 /**
2942 * regulator_sync_voltage - re-apply last regulator output voltage
2943 * @regulator: regulator source
2944 *
2945 * Re-apply the last configured voltage. This is intended to be used
2946 * where some external control source the consumer is cooperating with
2947 * has caused the configured voltage to change.
2948 */
2949 int regulator_sync_voltage(struct regulator *regulator)
2950 {
2951 struct regulator_dev *rdev = regulator->rdev;
2952 int ret, min_uV, max_uV;
2953
2954 mutex_lock(&rdev->mutex);
2955
2956 if (!rdev->desc->ops->set_voltage &&
2957 !rdev->desc->ops->set_voltage_sel) {
2958 ret = -EINVAL;
2959 goto out;
2960 }
2961
2962 /* This is only going to work if we've had a voltage configured. */
2963 if (!regulator->min_uV && !regulator->max_uV) {
2964 ret = -EINVAL;
2965 goto out;
2966 }
2967
2968 min_uV = regulator->min_uV;
2969 max_uV = regulator->max_uV;
2970
2971 /* This should be a paranoia check... */
2972 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2973 if (ret < 0)
2974 goto out;
2975
2976 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2977 if (ret < 0)
2978 goto out;
2979
2980 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2981
2982 out:
2983 mutex_unlock(&rdev->mutex);
2984 return ret;
2985 }
2986 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2987
2988 static int _regulator_get_voltage(struct regulator_dev *rdev)
2989 {
2990 int sel, ret;
2991
2992 if (rdev->desc->ops->get_voltage_sel) {
2993 sel = rdev->desc->ops->get_voltage_sel(rdev);
2994 if (sel < 0)
2995 return sel;
2996 ret = rdev->desc->ops->list_voltage(rdev, sel);
2997 } else if (rdev->desc->ops->get_voltage) {
2998 ret = rdev->desc->ops->get_voltage(rdev);
2999 } else if (rdev->desc->ops->list_voltage) {
3000 ret = rdev->desc->ops->list_voltage(rdev, 0);
3001 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3002 ret = rdev->desc->fixed_uV;
3003 } else if (rdev->supply) {
3004 ret = regulator_get_voltage(rdev->supply);
3005 } else {
3006 return -EINVAL;
3007 }
3008
3009 if (ret < 0)
3010 return ret;
3011 return ret - rdev->constraints->uV_offset;
3012 }
3013
3014 /**
3015 * regulator_get_voltage - get regulator output voltage
3016 * @regulator: regulator source
3017 *
3018 * This returns the current regulator voltage in uV.
3019 *
3020 * NOTE: If the regulator is disabled it will return the voltage value. This
3021 * function should not be used to determine regulator state.
3022 */
3023 int regulator_get_voltage(struct regulator *regulator)
3024 {
3025 int ret;
3026
3027 mutex_lock(&regulator->rdev->mutex);
3028
3029 ret = _regulator_get_voltage(regulator->rdev);
3030
3031 mutex_unlock(&regulator->rdev->mutex);
3032
3033 return ret;
3034 }
3035 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3036
3037 /**
3038 * regulator_set_current_limit - set regulator output current limit
3039 * @regulator: regulator source
3040 * @min_uA: Minimum supported current in uA
3041 * @max_uA: Maximum supported current in uA
3042 *
3043 * Sets current sink to the desired output current. This can be set during
3044 * any regulator state. IOW, regulator can be disabled or enabled.
3045 *
3046 * If the regulator is enabled then the current will change to the new value
3047 * immediately otherwise if the regulator is disabled the regulator will
3048 * output at the new current when enabled.
3049 *
3050 * NOTE: Regulator system constraints must be set for this regulator before
3051 * calling this function otherwise this call will fail.
3052 */
3053 int regulator_set_current_limit(struct regulator *regulator,
3054 int min_uA, int max_uA)
3055 {
3056 struct regulator_dev *rdev = regulator->rdev;
3057 int ret;
3058
3059 mutex_lock(&rdev->mutex);
3060
3061 /* sanity check */
3062 if (!rdev->desc->ops->set_current_limit) {
3063 ret = -EINVAL;
3064 goto out;
3065 }
3066
3067 /* constraints check */
3068 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3069 if (ret < 0)
3070 goto out;
3071
3072 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3073 out:
3074 mutex_unlock(&rdev->mutex);
3075 return ret;
3076 }
3077 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3078
3079 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3080 {
3081 int ret;
3082
3083 mutex_lock(&rdev->mutex);
3084
3085 /* sanity check */
3086 if (!rdev->desc->ops->get_current_limit) {
3087 ret = -EINVAL;
3088 goto out;
3089 }
3090
3091 ret = rdev->desc->ops->get_current_limit(rdev);
3092 out:
3093 mutex_unlock(&rdev->mutex);
3094 return ret;
3095 }
3096
3097 /**
3098 * regulator_get_current_limit - get regulator output current
3099 * @regulator: regulator source
3100 *
3101 * This returns the current supplied by the specified current sink in uA.
3102 *
3103 * NOTE: If the regulator is disabled it will return the current value. This
3104 * function should not be used to determine regulator state.
3105 */
3106 int regulator_get_current_limit(struct regulator *regulator)
3107 {
3108 return _regulator_get_current_limit(regulator->rdev);
3109 }
3110 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3111
3112 /**
3113 * regulator_set_mode - set regulator operating mode
3114 * @regulator: regulator source
3115 * @mode: operating mode - one of the REGULATOR_MODE constants
3116 *
3117 * Set regulator operating mode to increase regulator efficiency or improve
3118 * regulation performance.
3119 *
3120 * NOTE: Regulator system constraints must be set for this regulator before
3121 * calling this function otherwise this call will fail.
3122 */
3123 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3124 {
3125 struct regulator_dev *rdev = regulator->rdev;
3126 int ret;
3127 int regulator_curr_mode;
3128
3129 mutex_lock(&rdev->mutex);
3130
3131 /* sanity check */
3132 if (!rdev->desc->ops->set_mode) {
3133 ret = -EINVAL;
3134 goto out;
3135 }
3136
3137 /* return if the same mode is requested */
3138 if (rdev->desc->ops->get_mode) {
3139 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3140 if (regulator_curr_mode == mode) {
3141 ret = 0;
3142 goto out;
3143 }
3144 }
3145
3146 /* constraints check */
3147 ret = regulator_mode_constrain(rdev, &mode);
3148 if (ret < 0)
3149 goto out;
3150
3151 ret = rdev->desc->ops->set_mode(rdev, mode);
3152 out:
3153 mutex_unlock(&rdev->mutex);
3154 return ret;
3155 }
3156 EXPORT_SYMBOL_GPL(regulator_set_mode);
3157
3158 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3159 {
3160 int ret;
3161
3162 mutex_lock(&rdev->mutex);
3163
3164 /* sanity check */
3165 if (!rdev->desc->ops->get_mode) {
3166 ret = -EINVAL;
3167 goto out;
3168 }
3169
3170 ret = rdev->desc->ops->get_mode(rdev);
3171 out:
3172 mutex_unlock(&rdev->mutex);
3173 return ret;
3174 }
3175
3176 /**
3177 * regulator_get_mode - get regulator operating mode
3178 * @regulator: regulator source
3179 *
3180 * Get the current regulator operating mode.
3181 */
3182 unsigned int regulator_get_mode(struct regulator *regulator)
3183 {
3184 return _regulator_get_mode(regulator->rdev);
3185 }
3186 EXPORT_SYMBOL_GPL(regulator_get_mode);
3187
3188 /**
3189 * regulator_set_load - set regulator load
3190 * @regulator: regulator source
3191 * @uA_load: load current
3192 *
3193 * Notifies the regulator core of a new device load. This is then used by
3194 * DRMS (if enabled by constraints) to set the most efficient regulator
3195 * operating mode for the new regulator loading.
3196 *
3197 * Consumer devices notify their supply regulator of the maximum power
3198 * they will require (can be taken from device datasheet in the power
3199 * consumption tables) when they change operational status and hence power
3200 * state. Examples of operational state changes that can affect power
3201 * consumption are :-
3202 *
3203 * o Device is opened / closed.
3204 * o Device I/O is about to begin or has just finished.
3205 * o Device is idling in between work.
3206 *
3207 * This information is also exported via sysfs to userspace.
3208 *
3209 * DRMS will sum the total requested load on the regulator and change
3210 * to the most efficient operating mode if platform constraints allow.
3211 *
3212 * On error a negative errno is returned.
3213 */
3214 int regulator_set_load(struct regulator *regulator, int uA_load)
3215 {
3216 struct regulator_dev *rdev = regulator->rdev;
3217 int ret;
3218
3219 mutex_lock(&rdev->mutex);
3220 regulator->uA_load = uA_load;
3221 ret = drms_uA_update(rdev);
3222 mutex_unlock(&rdev->mutex);
3223
3224 return ret;
3225 }
3226 EXPORT_SYMBOL_GPL(regulator_set_load);
3227
3228 /**
3229 * regulator_allow_bypass - allow the regulator to go into bypass mode
3230 *
3231 * @regulator: Regulator to configure
3232 * @enable: enable or disable bypass mode
3233 *
3234 * Allow the regulator to go into bypass mode if all other consumers
3235 * for the regulator also enable bypass mode and the machine
3236 * constraints allow this. Bypass mode means that the regulator is
3237 * simply passing the input directly to the output with no regulation.
3238 */
3239 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3240 {
3241 struct regulator_dev *rdev = regulator->rdev;
3242 int ret = 0;
3243
3244 if (!rdev->desc->ops->set_bypass)
3245 return 0;
3246
3247 if (rdev->constraints &&
3248 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3249 return 0;
3250
3251 mutex_lock(&rdev->mutex);
3252
3253 if (enable && !regulator->bypass) {
3254 rdev->bypass_count++;
3255
3256 if (rdev->bypass_count == rdev->open_count) {
3257 ret = rdev->desc->ops->set_bypass(rdev, enable);
3258 if (ret != 0)
3259 rdev->bypass_count--;
3260 }
3261
3262 } else if (!enable && regulator->bypass) {
3263 rdev->bypass_count--;
3264
3265 if (rdev->bypass_count != rdev->open_count) {
3266 ret = rdev->desc->ops->set_bypass(rdev, enable);
3267 if (ret != 0)
3268 rdev->bypass_count++;
3269 }
3270 }
3271
3272 if (ret == 0)
3273 regulator->bypass = enable;
3274
3275 mutex_unlock(&rdev->mutex);
3276
3277 return ret;
3278 }
3279 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3280
3281 /**
3282 * regulator_register_notifier - register regulator event notifier
3283 * @regulator: regulator source
3284 * @nb: notifier block
3285 *
3286 * Register notifier block to receive regulator events.
3287 */
3288 int regulator_register_notifier(struct regulator *regulator,
3289 struct notifier_block *nb)
3290 {
3291 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3292 nb);
3293 }
3294 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3295
3296 /**
3297 * regulator_unregister_notifier - unregister regulator event notifier
3298 * @regulator: regulator source
3299 * @nb: notifier block
3300 *
3301 * Unregister regulator event notifier block.
3302 */
3303 int regulator_unregister_notifier(struct regulator *regulator,
3304 struct notifier_block *nb)
3305 {
3306 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3307 nb);
3308 }
3309 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3310
3311 /* notify regulator consumers and downstream regulator consumers.
3312 * Note mutex must be held by caller.
3313 */
3314 static int _notifier_call_chain(struct regulator_dev *rdev,
3315 unsigned long event, void *data)
3316 {
3317 /* call rdev chain first */
3318 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3319 }
3320
3321 /**
3322 * regulator_bulk_get - get multiple regulator consumers
3323 *
3324 * @dev: Device to supply
3325 * @num_consumers: Number of consumers to register
3326 * @consumers: Configuration of consumers; clients are stored here.
3327 *
3328 * @return 0 on success, an errno on failure.
3329 *
3330 * This helper function allows drivers to get several regulator
3331 * consumers in one operation. If any of the regulators cannot be
3332 * acquired then any regulators that were allocated will be freed
3333 * before returning to the caller.
3334 */
3335 int regulator_bulk_get(struct device *dev, int num_consumers,
3336 struct regulator_bulk_data *consumers)
3337 {
3338 int i;
3339 int ret;
3340
3341 for (i = 0; i < num_consumers; i++)
3342 consumers[i].consumer = NULL;
3343
3344 for (i = 0; i < num_consumers; i++) {
3345 consumers[i].consumer = regulator_get(dev,
3346 consumers[i].supply);
3347 if (IS_ERR(consumers[i].consumer)) {
3348 ret = PTR_ERR(consumers[i].consumer);
3349 dev_err(dev, "Failed to get supply '%s': %d\n",
3350 consumers[i].supply, ret);
3351 consumers[i].consumer = NULL;
3352 goto err;
3353 }
3354 }
3355
3356 return 0;
3357
3358 err:
3359 while (--i >= 0)
3360 regulator_put(consumers[i].consumer);
3361
3362 return ret;
3363 }
3364 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3365
3366 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3367 {
3368 struct regulator_bulk_data *bulk = data;
3369
3370 bulk->ret = regulator_enable(bulk->consumer);
3371 }
3372
3373 /**
3374 * regulator_bulk_enable - enable multiple regulator consumers
3375 *
3376 * @num_consumers: Number of consumers
3377 * @consumers: Consumer data; clients are stored here.
3378 * @return 0 on success, an errno on failure
3379 *
3380 * This convenience API allows consumers to enable multiple regulator
3381 * clients in a single API call. If any consumers cannot be enabled
3382 * then any others that were enabled will be disabled again prior to
3383 * return.
3384 */
3385 int regulator_bulk_enable(int num_consumers,
3386 struct regulator_bulk_data *consumers)
3387 {
3388 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3389 int i;
3390 int ret = 0;
3391
3392 for (i = 0; i < num_consumers; i++) {
3393 if (consumers[i].consumer->always_on)
3394 consumers[i].ret = 0;
3395 else
3396 async_schedule_domain(regulator_bulk_enable_async,
3397 &consumers[i], &async_domain);
3398 }
3399
3400 async_synchronize_full_domain(&async_domain);
3401
3402 /* If any consumer failed we need to unwind any that succeeded */
3403 for (i = 0; i < num_consumers; i++) {
3404 if (consumers[i].ret != 0) {
3405 ret = consumers[i].ret;
3406 goto err;
3407 }
3408 }
3409
3410 return 0;
3411
3412 err:
3413 for (i = 0; i < num_consumers; i++) {
3414 if (consumers[i].ret < 0)
3415 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3416 consumers[i].ret);
3417 else
3418 regulator_disable(consumers[i].consumer);
3419 }
3420
3421 return ret;
3422 }
3423 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3424
3425 /**
3426 * regulator_bulk_disable - disable multiple regulator consumers
3427 *
3428 * @num_consumers: Number of consumers
3429 * @consumers: Consumer data; clients are stored here.
3430 * @return 0 on success, an errno on failure
3431 *
3432 * This convenience API allows consumers to disable multiple regulator
3433 * clients in a single API call. If any consumers cannot be disabled
3434 * then any others that were disabled will be enabled again prior to
3435 * return.
3436 */
3437 int regulator_bulk_disable(int num_consumers,
3438 struct regulator_bulk_data *consumers)
3439 {
3440 int i;
3441 int ret, r;
3442
3443 for (i = num_consumers - 1; i >= 0; --i) {
3444 ret = regulator_disable(consumers[i].consumer);
3445 if (ret != 0)
3446 goto err;
3447 }
3448
3449 return 0;
3450
3451 err:
3452 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3453 for (++i; i < num_consumers; ++i) {
3454 r = regulator_enable(consumers[i].consumer);
3455 if (r != 0)
3456 pr_err("Failed to reename %s: %d\n",
3457 consumers[i].supply, r);
3458 }
3459
3460 return ret;
3461 }
3462 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3463
3464 /**
3465 * regulator_bulk_force_disable - force disable multiple regulator consumers
3466 *
3467 * @num_consumers: Number of consumers
3468 * @consumers: Consumer data; clients are stored here.
3469 * @return 0 on success, an errno on failure
3470 *
3471 * This convenience API allows consumers to forcibly disable multiple regulator
3472 * clients in a single API call.
3473 * NOTE: This should be used for situations when device damage will
3474 * likely occur if the regulators are not disabled (e.g. over temp).
3475 * Although regulator_force_disable function call for some consumers can
3476 * return error numbers, the function is called for all consumers.
3477 */
3478 int regulator_bulk_force_disable(int num_consumers,
3479 struct regulator_bulk_data *consumers)
3480 {
3481 int i;
3482 int ret;
3483
3484 for (i = 0; i < num_consumers; i++)
3485 consumers[i].ret =
3486 regulator_force_disable(consumers[i].consumer);
3487
3488 for (i = 0; i < num_consumers; i++) {
3489 if (consumers[i].ret != 0) {
3490 ret = consumers[i].ret;
3491 goto out;
3492 }
3493 }
3494
3495 return 0;
3496 out:
3497 return ret;
3498 }
3499 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3500
3501 /**
3502 * regulator_bulk_free - free multiple regulator consumers
3503 *
3504 * @num_consumers: Number of consumers
3505 * @consumers: Consumer data; clients are stored here.
3506 *
3507 * This convenience API allows consumers to free multiple regulator
3508 * clients in a single API call.
3509 */
3510 void regulator_bulk_free(int num_consumers,
3511 struct regulator_bulk_data *consumers)
3512 {
3513 int i;
3514
3515 for (i = 0; i < num_consumers; i++) {
3516 regulator_put(consumers[i].consumer);
3517 consumers[i].consumer = NULL;
3518 }
3519 }
3520 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3521
3522 /**
3523 * regulator_notifier_call_chain - call regulator event notifier
3524 * @rdev: regulator source
3525 * @event: notifier block
3526 * @data: callback-specific data.
3527 *
3528 * Called by regulator drivers to notify clients a regulator event has
3529 * occurred. We also notify regulator clients downstream.
3530 * Note lock must be held by caller.
3531 */
3532 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3533 unsigned long event, void *data)
3534 {
3535 lockdep_assert_held_once(&rdev->mutex);
3536
3537 _notifier_call_chain(rdev, event, data);
3538 return NOTIFY_DONE;
3539
3540 }
3541 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3542
3543 /**
3544 * regulator_mode_to_status - convert a regulator mode into a status
3545 *
3546 * @mode: Mode to convert
3547 *
3548 * Convert a regulator mode into a status.
3549 */
3550 int regulator_mode_to_status(unsigned int mode)
3551 {
3552 switch (mode) {
3553 case REGULATOR_MODE_FAST:
3554 return REGULATOR_STATUS_FAST;
3555 case REGULATOR_MODE_NORMAL:
3556 return REGULATOR_STATUS_NORMAL;
3557 case REGULATOR_MODE_IDLE:
3558 return REGULATOR_STATUS_IDLE;
3559 case REGULATOR_MODE_STANDBY:
3560 return REGULATOR_STATUS_STANDBY;
3561 default:
3562 return REGULATOR_STATUS_UNDEFINED;
3563 }
3564 }
3565 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3566
3567 static struct attribute *regulator_dev_attrs[] = {
3568 &dev_attr_name.attr,
3569 &dev_attr_num_users.attr,
3570 &dev_attr_type.attr,
3571 &dev_attr_microvolts.attr,
3572 &dev_attr_microamps.attr,
3573 &dev_attr_opmode.attr,
3574 &dev_attr_state.attr,
3575 &dev_attr_status.attr,
3576 &dev_attr_bypass.attr,
3577 &dev_attr_requested_microamps.attr,
3578 &dev_attr_min_microvolts.attr,
3579 &dev_attr_max_microvolts.attr,
3580 &dev_attr_min_microamps.attr,
3581 &dev_attr_max_microamps.attr,
3582 &dev_attr_suspend_standby_state.attr,
3583 &dev_attr_suspend_mem_state.attr,
3584 &dev_attr_suspend_disk_state.attr,
3585 &dev_attr_suspend_standby_microvolts.attr,
3586 &dev_attr_suspend_mem_microvolts.attr,
3587 &dev_attr_suspend_disk_microvolts.attr,
3588 &dev_attr_suspend_standby_mode.attr,
3589 &dev_attr_suspend_mem_mode.attr,
3590 &dev_attr_suspend_disk_mode.attr,
3591 NULL
3592 };
3593
3594 /*
3595 * To avoid cluttering sysfs (and memory) with useless state, only
3596 * create attributes that can be meaningfully displayed.
3597 */
3598 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3599 struct attribute *attr, int idx)
3600 {
3601 struct device *dev = kobj_to_dev(kobj);
3602 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3603 const struct regulator_ops *ops = rdev->desc->ops;
3604 umode_t mode = attr->mode;
3605
3606 /* these three are always present */
3607 if (attr == &dev_attr_name.attr ||
3608 attr == &dev_attr_num_users.attr ||
3609 attr == &dev_attr_type.attr)
3610 return mode;
3611
3612 /* some attributes need specific methods to be displayed */
3613 if (attr == &dev_attr_microvolts.attr) {
3614 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3615 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3616 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3617 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3618 return mode;
3619 return 0;
3620 }
3621
3622 if (attr == &dev_attr_microamps.attr)
3623 return ops->get_current_limit ? mode : 0;
3624
3625 if (attr == &dev_attr_opmode.attr)
3626 return ops->get_mode ? mode : 0;
3627
3628 if (attr == &dev_attr_state.attr)
3629 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3630
3631 if (attr == &dev_attr_status.attr)
3632 return ops->get_status ? mode : 0;
3633
3634 if (attr == &dev_attr_bypass.attr)
3635 return ops->get_bypass ? mode : 0;
3636
3637 /* some attributes are type-specific */
3638 if (attr == &dev_attr_requested_microamps.attr)
3639 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3640
3641 /* constraints need specific supporting methods */
3642 if (attr == &dev_attr_min_microvolts.attr ||
3643 attr == &dev_attr_max_microvolts.attr)
3644 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3645
3646 if (attr == &dev_attr_min_microamps.attr ||
3647 attr == &dev_attr_max_microamps.attr)
3648 return ops->set_current_limit ? mode : 0;
3649
3650 if (attr == &dev_attr_suspend_standby_state.attr ||
3651 attr == &dev_attr_suspend_mem_state.attr ||
3652 attr == &dev_attr_suspend_disk_state.attr)
3653 return mode;
3654
3655 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3656 attr == &dev_attr_suspend_mem_microvolts.attr ||
3657 attr == &dev_attr_suspend_disk_microvolts.attr)
3658 return ops->set_suspend_voltage ? mode : 0;
3659
3660 if (attr == &dev_attr_suspend_standby_mode.attr ||
3661 attr == &dev_attr_suspend_mem_mode.attr ||
3662 attr == &dev_attr_suspend_disk_mode.attr)
3663 return ops->set_suspend_mode ? mode : 0;
3664
3665 return mode;
3666 }
3667
3668 static const struct attribute_group regulator_dev_group = {
3669 .attrs = regulator_dev_attrs,
3670 .is_visible = regulator_attr_is_visible,
3671 };
3672
3673 static const struct attribute_group *regulator_dev_groups[] = {
3674 &regulator_dev_group,
3675 NULL
3676 };
3677
3678 static void regulator_dev_release(struct device *dev)
3679 {
3680 struct regulator_dev *rdev = dev_get_drvdata(dev);
3681
3682 kfree(rdev->constraints);
3683 of_node_put(rdev->dev.of_node);
3684 kfree(rdev);
3685 }
3686
3687 static struct class regulator_class = {
3688 .name = "regulator",
3689 .dev_release = regulator_dev_release,
3690 .dev_groups = regulator_dev_groups,
3691 };
3692
3693 static void rdev_init_debugfs(struct regulator_dev *rdev)
3694 {
3695 struct device *parent = rdev->dev.parent;
3696 const char *rname = rdev_get_name(rdev);
3697 char name[NAME_MAX];
3698
3699 /* Avoid duplicate debugfs directory names */
3700 if (parent && rname == rdev->desc->name) {
3701 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3702 rname);
3703 rname = name;
3704 }
3705
3706 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3707 if (!rdev->debugfs) {
3708 rdev_warn(rdev, "Failed to create debugfs directory\n");
3709 return;
3710 }
3711
3712 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3713 &rdev->use_count);
3714 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3715 &rdev->open_count);
3716 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3717 &rdev->bypass_count);
3718 }
3719
3720 /**
3721 * regulator_register - register regulator
3722 * @regulator_desc: regulator to register
3723 * @cfg: runtime configuration for regulator
3724 *
3725 * Called by regulator drivers to register a regulator.
3726 * Returns a valid pointer to struct regulator_dev on success
3727 * or an ERR_PTR() on error.
3728 */
3729 struct regulator_dev *
3730 regulator_register(const struct regulator_desc *regulator_desc,
3731 const struct regulator_config *cfg)
3732 {
3733 const struct regulation_constraints *constraints = NULL;
3734 const struct regulator_init_data *init_data;
3735 struct regulator_config *config = NULL;
3736 static atomic_t regulator_no = ATOMIC_INIT(-1);
3737 struct regulator_dev *rdev;
3738 struct device *dev;
3739 int ret, i;
3740
3741 if (regulator_desc == NULL || cfg == NULL)
3742 return ERR_PTR(-EINVAL);
3743
3744 dev = cfg->dev;
3745 WARN_ON(!dev);
3746
3747 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3748 return ERR_PTR(-EINVAL);
3749
3750 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3751 regulator_desc->type != REGULATOR_CURRENT)
3752 return ERR_PTR(-EINVAL);
3753
3754 /* Only one of each should be implemented */
3755 WARN_ON(regulator_desc->ops->get_voltage &&
3756 regulator_desc->ops->get_voltage_sel);
3757 WARN_ON(regulator_desc->ops->set_voltage &&
3758 regulator_desc->ops->set_voltage_sel);
3759
3760 /* If we're using selectors we must implement list_voltage. */
3761 if (regulator_desc->ops->get_voltage_sel &&
3762 !regulator_desc->ops->list_voltage) {
3763 return ERR_PTR(-EINVAL);
3764 }
3765 if (regulator_desc->ops->set_voltage_sel &&
3766 !regulator_desc->ops->list_voltage) {
3767 return ERR_PTR(-EINVAL);
3768 }
3769
3770 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3771 if (rdev == NULL)
3772 return ERR_PTR(-ENOMEM);
3773
3774 /*
3775 * Duplicate the config so the driver could override it after
3776 * parsing init data.
3777 */
3778 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3779 if (config == NULL) {
3780 kfree(rdev);
3781 return ERR_PTR(-ENOMEM);
3782 }
3783
3784 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3785 &rdev->dev.of_node);
3786 if (!init_data) {
3787 init_data = config->init_data;
3788 rdev->dev.of_node = of_node_get(config->of_node);
3789 }
3790
3791 mutex_lock(&regulator_list_mutex);
3792
3793 mutex_init(&rdev->mutex);
3794 rdev->reg_data = config->driver_data;
3795 rdev->owner = regulator_desc->owner;
3796 rdev->desc = regulator_desc;
3797 if (config->regmap)
3798 rdev->regmap = config->regmap;
3799 else if (dev_get_regmap(dev, NULL))
3800 rdev->regmap = dev_get_regmap(dev, NULL);
3801 else if (dev->parent)
3802 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3803 INIT_LIST_HEAD(&rdev->consumer_list);
3804 INIT_LIST_HEAD(&rdev->list);
3805 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3806 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3807
3808 /* preform any regulator specific init */
3809 if (init_data && init_data->regulator_init) {
3810 ret = init_data->regulator_init(rdev->reg_data);
3811 if (ret < 0)
3812 goto clean;
3813 }
3814
3815 /* register with sysfs */
3816 rdev->dev.class = &regulator_class;
3817 rdev->dev.parent = dev;
3818 dev_set_name(&rdev->dev, "regulator.%lu",
3819 (unsigned long) atomic_inc_return(&regulator_no));
3820 ret = device_register(&rdev->dev);
3821 if (ret != 0) {
3822 put_device(&rdev->dev);
3823 goto clean;
3824 }
3825
3826 dev_set_drvdata(&rdev->dev, rdev);
3827
3828 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3829 gpio_is_valid(config->ena_gpio)) {
3830 ret = regulator_ena_gpio_request(rdev, config);
3831 if (ret != 0) {
3832 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3833 config->ena_gpio, ret);
3834 goto wash;
3835 }
3836 }
3837
3838 /* set regulator constraints */
3839 if (init_data)
3840 constraints = &init_data->constraints;
3841
3842 ret = set_machine_constraints(rdev, constraints);
3843 if (ret < 0)
3844 goto scrub;
3845
3846 if (init_data && init_data->supply_regulator)
3847 rdev->supply_name = init_data->supply_regulator;
3848 else if (regulator_desc->supply_name)
3849 rdev->supply_name = regulator_desc->supply_name;
3850
3851 /* add consumers devices */
3852 if (init_data) {
3853 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3854 ret = set_consumer_device_supply(rdev,
3855 init_data->consumer_supplies[i].dev_name,
3856 init_data->consumer_supplies[i].supply);
3857 if (ret < 0) {
3858 dev_err(dev, "Failed to set supply %s\n",
3859 init_data->consumer_supplies[i].supply);
3860 goto unset_supplies;
3861 }
3862 }
3863 }
3864
3865 rdev_init_debugfs(rdev);
3866 out:
3867 mutex_unlock(&regulator_list_mutex);
3868 kfree(config);
3869 return rdev;
3870
3871 unset_supplies:
3872 unset_regulator_supplies(rdev);
3873
3874 scrub:
3875 regulator_ena_gpio_free(rdev);
3876 kfree(rdev->constraints);
3877 wash:
3878 device_unregister(&rdev->dev);
3879 /* device core frees rdev */
3880 rdev = ERR_PTR(ret);
3881 goto out;
3882
3883 clean:
3884 kfree(rdev);
3885 rdev = ERR_PTR(ret);
3886 goto out;
3887 }
3888 EXPORT_SYMBOL_GPL(regulator_register);
3889
3890 /**
3891 * regulator_unregister - unregister regulator
3892 * @rdev: regulator to unregister
3893 *
3894 * Called by regulator drivers to unregister a regulator.
3895 */
3896 void regulator_unregister(struct regulator_dev *rdev)
3897 {
3898 if (rdev == NULL)
3899 return;
3900
3901 if (rdev->supply) {
3902 while (rdev->use_count--)
3903 regulator_disable(rdev->supply);
3904 regulator_put(rdev->supply);
3905 }
3906 mutex_lock(&regulator_list_mutex);
3907 debugfs_remove_recursive(rdev->debugfs);
3908 flush_work(&rdev->disable_work.work);
3909 WARN_ON(rdev->open_count);
3910 unset_regulator_supplies(rdev);
3911 list_del(&rdev->list);
3912 mutex_unlock(&regulator_list_mutex);
3913 regulator_ena_gpio_free(rdev);
3914 device_unregister(&rdev->dev);
3915 }
3916 EXPORT_SYMBOL_GPL(regulator_unregister);
3917
3918 static int _regulator_suspend_prepare(struct device *dev, void *data)
3919 {
3920 struct regulator_dev *rdev = dev_to_rdev(dev);
3921 const suspend_state_t *state = data;
3922 int ret;
3923
3924 mutex_lock(&rdev->mutex);
3925 ret = suspend_prepare(rdev, *state);
3926 mutex_unlock(&rdev->mutex);
3927
3928 return ret;
3929 }
3930
3931 /**
3932 * regulator_suspend_prepare - prepare regulators for system wide suspend
3933 * @state: system suspend state
3934 *
3935 * Configure each regulator with it's suspend operating parameters for state.
3936 * This will usually be called by machine suspend code prior to supending.
3937 */
3938 int regulator_suspend_prepare(suspend_state_t state)
3939 {
3940 /* ON is handled by regulator active state */
3941 if (state == PM_SUSPEND_ON)
3942 return -EINVAL;
3943
3944 return class_for_each_device(&regulator_class, NULL, &state,
3945 _regulator_suspend_prepare);
3946 }
3947 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3948
3949 static int _regulator_suspend_finish(struct device *dev, void *data)
3950 {
3951 struct regulator_dev *rdev = dev_to_rdev(dev);
3952 int ret;
3953
3954 mutex_lock(&rdev->mutex);
3955 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3956 if (!_regulator_is_enabled(rdev)) {
3957 ret = _regulator_do_enable(rdev);
3958 if (ret)
3959 dev_err(dev,
3960 "Failed to resume regulator %d\n",
3961 ret);
3962 }
3963 } else {
3964 if (!have_full_constraints())
3965 goto unlock;
3966 if (!_regulator_is_enabled(rdev))
3967 goto unlock;
3968
3969 ret = _regulator_do_disable(rdev);
3970 if (ret)
3971 dev_err(dev, "Failed to suspend regulator %d\n", ret);
3972 }
3973 unlock:
3974 mutex_unlock(&rdev->mutex);
3975
3976 /* Keep processing regulators in spite of any errors */
3977 return 0;
3978 }
3979
3980 /**
3981 * regulator_suspend_finish - resume regulators from system wide suspend
3982 *
3983 * Turn on regulators that might be turned off by regulator_suspend_prepare
3984 * and that should be turned on according to the regulators properties.
3985 */
3986 int regulator_suspend_finish(void)
3987 {
3988 return class_for_each_device(&regulator_class, NULL, NULL,
3989 _regulator_suspend_finish);
3990 }
3991 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3992
3993 /**
3994 * regulator_has_full_constraints - the system has fully specified constraints
3995 *
3996 * Calling this function will cause the regulator API to disable all
3997 * regulators which have a zero use count and don't have an always_on
3998 * constraint in a late_initcall.
3999 *
4000 * The intention is that this will become the default behaviour in a
4001 * future kernel release so users are encouraged to use this facility
4002 * now.
4003 */
4004 void regulator_has_full_constraints(void)
4005 {
4006 has_full_constraints = 1;
4007 }
4008 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4009
4010 /**
4011 * rdev_get_drvdata - get rdev regulator driver data
4012 * @rdev: regulator
4013 *
4014 * Get rdev regulator driver private data. This call can be used in the
4015 * regulator driver context.
4016 */
4017 void *rdev_get_drvdata(struct regulator_dev *rdev)
4018 {
4019 return rdev->reg_data;
4020 }
4021 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4022
4023 /**
4024 * regulator_get_drvdata - get regulator driver data
4025 * @regulator: regulator
4026 *
4027 * Get regulator driver private data. This call can be used in the consumer
4028 * driver context when non API regulator specific functions need to be called.
4029 */
4030 void *regulator_get_drvdata(struct regulator *regulator)
4031 {
4032 return regulator->rdev->reg_data;
4033 }
4034 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4035
4036 /**
4037 * regulator_set_drvdata - set regulator driver data
4038 * @regulator: regulator
4039 * @data: data
4040 */
4041 void regulator_set_drvdata(struct regulator *regulator, void *data)
4042 {
4043 regulator->rdev->reg_data = data;
4044 }
4045 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4046
4047 /**
4048 * regulator_get_id - get regulator ID
4049 * @rdev: regulator
4050 */
4051 int rdev_get_id(struct regulator_dev *rdev)
4052 {
4053 return rdev->desc->id;
4054 }
4055 EXPORT_SYMBOL_GPL(rdev_get_id);
4056
4057 struct device *rdev_get_dev(struct regulator_dev *rdev)
4058 {
4059 return &rdev->dev;
4060 }
4061 EXPORT_SYMBOL_GPL(rdev_get_dev);
4062
4063 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4064 {
4065 return reg_init_data->driver_data;
4066 }
4067 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4068
4069 #ifdef CONFIG_DEBUG_FS
4070 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4071 size_t count, loff_t *ppos)
4072 {
4073 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4074 ssize_t len, ret = 0;
4075 struct regulator_map *map;
4076
4077 if (!buf)
4078 return -ENOMEM;
4079
4080 list_for_each_entry(map, &regulator_map_list, list) {
4081 len = snprintf(buf + ret, PAGE_SIZE - ret,
4082 "%s -> %s.%s\n",
4083 rdev_get_name(map->regulator), map->dev_name,
4084 map->supply);
4085 if (len >= 0)
4086 ret += len;
4087 if (ret > PAGE_SIZE) {
4088 ret = PAGE_SIZE;
4089 break;
4090 }
4091 }
4092
4093 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4094
4095 kfree(buf);
4096
4097 return ret;
4098 }
4099 #endif
4100
4101 static const struct file_operations supply_map_fops = {
4102 #ifdef CONFIG_DEBUG_FS
4103 .read = supply_map_read_file,
4104 .llseek = default_llseek,
4105 #endif
4106 };
4107
4108 #ifdef CONFIG_DEBUG_FS
4109 struct summary_data {
4110 struct seq_file *s;
4111 struct regulator_dev *parent;
4112 int level;
4113 };
4114
4115 static void regulator_summary_show_subtree(struct seq_file *s,
4116 struct regulator_dev *rdev,
4117 int level);
4118
4119 static int regulator_summary_show_children(struct device *dev, void *data)
4120 {
4121 struct regulator_dev *rdev = dev_to_rdev(dev);
4122 struct summary_data *summary_data = data;
4123
4124 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4125 regulator_summary_show_subtree(summary_data->s, rdev,
4126 summary_data->level + 1);
4127
4128 return 0;
4129 }
4130
4131 static void regulator_summary_show_subtree(struct seq_file *s,
4132 struct regulator_dev *rdev,
4133 int level)
4134 {
4135 struct regulation_constraints *c;
4136 struct regulator *consumer;
4137 struct summary_data summary_data;
4138
4139 if (!rdev)
4140 return;
4141
4142 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4143 level * 3 + 1, "",
4144 30 - level * 3, rdev_get_name(rdev),
4145 rdev->use_count, rdev->open_count, rdev->bypass_count);
4146
4147 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4148 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4149
4150 c = rdev->constraints;
4151 if (c) {
4152 switch (rdev->desc->type) {
4153 case REGULATOR_VOLTAGE:
4154 seq_printf(s, "%5dmV %5dmV ",
4155 c->min_uV / 1000, c->max_uV / 1000);
4156 break;
4157 case REGULATOR_CURRENT:
4158 seq_printf(s, "%5dmA %5dmA ",
4159 c->min_uA / 1000, c->max_uA / 1000);
4160 break;
4161 }
4162 }
4163
4164 seq_puts(s, "\n");
4165
4166 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4167 if (consumer->dev->class == &regulator_class)
4168 continue;
4169
4170 seq_printf(s, "%*s%-*s ",
4171 (level + 1) * 3 + 1, "",
4172 30 - (level + 1) * 3, dev_name(consumer->dev));
4173
4174 switch (rdev->desc->type) {
4175 case REGULATOR_VOLTAGE:
4176 seq_printf(s, "%37dmV %5dmV",
4177 consumer->min_uV / 1000,
4178 consumer->max_uV / 1000);
4179 break;
4180 case REGULATOR_CURRENT:
4181 break;
4182 }
4183
4184 seq_puts(s, "\n");
4185 }
4186
4187 summary_data.s = s;
4188 summary_data.level = level;
4189 summary_data.parent = rdev;
4190
4191 class_for_each_device(&regulator_class, NULL, &summary_data,
4192 regulator_summary_show_children);
4193 }
4194
4195 static int regulator_summary_show_roots(struct device *dev, void *data)
4196 {
4197 struct regulator_dev *rdev = dev_to_rdev(dev);
4198 struct seq_file *s = data;
4199
4200 if (!rdev->supply)
4201 regulator_summary_show_subtree(s, rdev, 0);
4202
4203 return 0;
4204 }
4205
4206 static int regulator_summary_show(struct seq_file *s, void *data)
4207 {
4208 seq_puts(s, " regulator use open bypass voltage current min max\n");
4209 seq_puts(s, "-------------------------------------------------------------------------------\n");
4210
4211 class_for_each_device(&regulator_class, NULL, s,
4212 regulator_summary_show_roots);
4213
4214 return 0;
4215 }
4216
4217 static int regulator_summary_open(struct inode *inode, struct file *file)
4218 {
4219 return single_open(file, regulator_summary_show, inode->i_private);
4220 }
4221 #endif
4222
4223 static const struct file_operations regulator_summary_fops = {
4224 #ifdef CONFIG_DEBUG_FS
4225 .open = regulator_summary_open,
4226 .read = seq_read,
4227 .llseek = seq_lseek,
4228 .release = single_release,
4229 #endif
4230 };
4231
4232 static int __init regulator_init(void)
4233 {
4234 int ret;
4235
4236 ret = class_register(&regulator_class);
4237
4238 debugfs_root = debugfs_create_dir("regulator", NULL);
4239 if (!debugfs_root)
4240 pr_warn("regulator: Failed to create debugfs directory\n");
4241
4242 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4243 &supply_map_fops);
4244
4245 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4246 NULL, &regulator_summary_fops);
4247
4248 regulator_dummy_init();
4249
4250 return ret;
4251 }
4252
4253 /* init early to allow our consumers to complete system booting */
4254 core_initcall(regulator_init);
4255
4256 static int __init regulator_late_cleanup(struct device *dev, void *data)
4257 {
4258 struct regulator_dev *rdev = dev_to_rdev(dev);
4259 const struct regulator_ops *ops = rdev->desc->ops;
4260 struct regulation_constraints *c = rdev->constraints;
4261 int enabled, ret;
4262
4263 if (c && c->always_on)
4264 return 0;
4265
4266 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4267 return 0;
4268
4269 mutex_lock(&rdev->mutex);
4270
4271 if (rdev->use_count)
4272 goto unlock;
4273
4274 /* If we can't read the status assume it's on. */
4275 if (ops->is_enabled)
4276 enabled = ops->is_enabled(rdev);
4277 else
4278 enabled = 1;
4279
4280 if (!enabled)
4281 goto unlock;
4282
4283 if (have_full_constraints()) {
4284 /* We log since this may kill the system if it goes
4285 * wrong. */
4286 rdev_info(rdev, "disabling\n");
4287 ret = _regulator_do_disable(rdev);
4288 if (ret != 0)
4289 rdev_err(rdev, "couldn't disable: %d\n", ret);
4290 } else {
4291 /* The intention is that in future we will
4292 * assume that full constraints are provided
4293 * so warn even if we aren't going to do
4294 * anything here.
4295 */
4296 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4297 }
4298
4299 unlock:
4300 mutex_unlock(&rdev->mutex);
4301
4302 return 0;
4303 }
4304
4305 static int __init regulator_init_complete(void)
4306 {
4307 /*
4308 * Since DT doesn't provide an idiomatic mechanism for
4309 * enabling full constraints and since it's much more natural
4310 * with DT to provide them just assume that a DT enabled
4311 * system has full constraints.
4312 */
4313 if (of_have_populated_dt())
4314 has_full_constraints = true;
4315
4316 /* If we have a full configuration then disable any regulators
4317 * we have permission to change the status for and which are
4318 * not in use or always_on. This is effectively the default
4319 * for DT and ACPI as they have full constraints.
4320 */
4321 class_for_each_device(&regulator_class, NULL, NULL,
4322 regulator_late_cleanup);
4323
4324 return 0;
4325 }
4326 late_initcall_sync(regulator_init_complete);