]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/regulator/core.c
Merge tag 'for-5.11-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-hirsute-kernel.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68 };
69
70 /*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75 struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
80 };
81
82 /*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87 struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 if (rdev->constraints && rdev->constraints->name)
114 return rdev->constraints->name;
115 else if (rdev->desc->name)
116 return rdev->desc->name;
117 else
118 return "";
119 }
120
121 static bool have_full_constraints(void)
122 {
123 return has_full_constraints || of_have_populated_dt();
124 }
125
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 if (!rdev->constraints) {
129 rdev_err(rdev, "no constraints\n");
130 return false;
131 }
132
133 if (rdev->constraints->valid_ops_mask & ops)
134 return true;
135
136 return false;
137 }
138
139 /**
140 * regulator_lock_nested - lock a single regulator
141 * @rdev: regulator source
142 * @ww_ctx: w/w mutex acquire context
143 *
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
148 * wait on mutex.
149 */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 struct ww_acquire_ctx *ww_ctx)
152 {
153 bool lock = false;
154 int ret = 0;
155
156 mutex_lock(&regulator_nesting_mutex);
157
158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 if (rdev->mutex_owner == current)
160 rdev->ref_cnt++;
161 else
162 lock = true;
163
164 if (lock) {
165 mutex_unlock(&regulator_nesting_mutex);
166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 mutex_lock(&regulator_nesting_mutex);
168 }
169 } else {
170 lock = true;
171 }
172
173 if (lock && ret != -EDEADLK) {
174 rdev->ref_cnt++;
175 rdev->mutex_owner = current;
176 }
177
178 mutex_unlock(&regulator_nesting_mutex);
179
180 return ret;
181 }
182
183 /**
184 * regulator_lock - lock a single regulator
185 * @rdev: regulator source
186 *
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
191 * wait on mutex.
192 */
193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 regulator_lock_nested(rdev, NULL);
196 }
197
198 /**
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
201 *
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
204 */
205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 mutex_lock(&regulator_nesting_mutex);
208
209 if (--rdev->ref_cnt == 0) {
210 rdev->mutex_owner = NULL;
211 ww_mutex_unlock(&rdev->mutex);
212 }
213
214 WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216 mutex_unlock(&regulator_nesting_mutex);
217 }
218
219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220 {
221 struct regulator_dev *c_rdev;
222 int i;
223
224 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226
227 if (rdev->supply->rdev == c_rdev)
228 return true;
229 }
230
231 return false;
232 }
233
234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235 unsigned int n_coupled)
236 {
237 struct regulator_dev *c_rdev, *supply_rdev;
238 int i, supply_n_coupled;
239
240 for (i = n_coupled; i > 0; i--) {
241 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242
243 if (!c_rdev)
244 continue;
245
246 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247 supply_rdev = c_rdev->supply->rdev;
248 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
249
250 regulator_unlock_recursive(supply_rdev,
251 supply_n_coupled);
252 }
253
254 regulator_unlock(c_rdev);
255 }
256 }
257
258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259 struct regulator_dev **new_contended_rdev,
260 struct regulator_dev **old_contended_rdev,
261 struct ww_acquire_ctx *ww_ctx)
262 {
263 struct regulator_dev *c_rdev;
264 int i, err;
265
266 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268
269 if (!c_rdev)
270 continue;
271
272 if (c_rdev != *old_contended_rdev) {
273 err = regulator_lock_nested(c_rdev, ww_ctx);
274 if (err) {
275 if (err == -EDEADLK) {
276 *new_contended_rdev = c_rdev;
277 goto err_unlock;
278 }
279
280 /* shouldn't happen */
281 WARN_ON_ONCE(err != -EALREADY);
282 }
283 } else {
284 *old_contended_rdev = NULL;
285 }
286
287 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288 err = regulator_lock_recursive(c_rdev->supply->rdev,
289 new_contended_rdev,
290 old_contended_rdev,
291 ww_ctx);
292 if (err) {
293 regulator_unlock(c_rdev);
294 goto err_unlock;
295 }
296 }
297 }
298
299 return 0;
300
301 err_unlock:
302 regulator_unlock_recursive(rdev, i);
303
304 return err;
305 }
306
307 /**
308 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
309 * regulators
310 * @rdev: regulator source
311 * @ww_ctx: w/w mutex acquire context
312 *
313 * Unlock all regulators related with rdev by coupling or supplying.
314 */
315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316 struct ww_acquire_ctx *ww_ctx)
317 {
318 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319 ww_acquire_fini(ww_ctx);
320 }
321
322 /**
323 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324 * @rdev: regulator source
325 * @ww_ctx: w/w mutex acquire context
326 *
327 * This function as a wrapper on regulator_lock_recursive(), which locks
328 * all regulators related with rdev by coupling or supplying.
329 */
330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331 struct ww_acquire_ctx *ww_ctx)
332 {
333 struct regulator_dev *new_contended_rdev = NULL;
334 struct regulator_dev *old_contended_rdev = NULL;
335 int err;
336
337 mutex_lock(&regulator_list_mutex);
338
339 ww_acquire_init(ww_ctx, &regulator_ww_class);
340
341 do {
342 if (new_contended_rdev) {
343 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344 old_contended_rdev = new_contended_rdev;
345 old_contended_rdev->ref_cnt++;
346 }
347
348 err = regulator_lock_recursive(rdev,
349 &new_contended_rdev,
350 &old_contended_rdev,
351 ww_ctx);
352
353 if (old_contended_rdev)
354 regulator_unlock(old_contended_rdev);
355
356 } while (err == -EDEADLK);
357
358 ww_acquire_done(ww_ctx);
359
360 mutex_unlock(&regulator_list_mutex);
361 }
362
363 /**
364 * of_get_child_regulator - get a child regulator device node
365 * based on supply name
366 * @parent: Parent device node
367 * @prop_name: Combination regulator supply name and "-supply"
368 *
369 * Traverse all child nodes.
370 * Extract the child regulator device node corresponding to the supply name.
371 * returns the device node corresponding to the regulator if found, else
372 * returns NULL.
373 */
374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375 const char *prop_name)
376 {
377 struct device_node *regnode = NULL;
378 struct device_node *child = NULL;
379
380 for_each_child_of_node(parent, child) {
381 regnode = of_parse_phandle(child, prop_name, 0);
382
383 if (!regnode) {
384 regnode = of_get_child_regulator(child, prop_name);
385 if (regnode)
386 goto err_node_put;
387 } else {
388 goto err_node_put;
389 }
390 }
391 return NULL;
392
393 err_node_put:
394 of_node_put(child);
395 return regnode;
396 }
397
398 /**
399 * of_get_regulator - get a regulator device node based on supply name
400 * @dev: Device pointer for the consumer (of regulator) device
401 * @supply: regulator supply name
402 *
403 * Extract the regulator device node corresponding to the supply name.
404 * returns the device node corresponding to the regulator if found, else
405 * returns NULL.
406 */
407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
408 {
409 struct device_node *regnode = NULL;
410 char prop_name[64]; /* 64 is max size of property name */
411
412 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
413
414 snprintf(prop_name, 64, "%s-supply", supply);
415 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416
417 if (!regnode) {
418 regnode = of_get_child_regulator(dev->of_node, prop_name);
419 if (regnode)
420 return regnode;
421
422 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423 prop_name, dev->of_node);
424 return NULL;
425 }
426 return regnode;
427 }
428
429 /* Platform voltage constraint check */
430 int regulator_check_voltage(struct regulator_dev *rdev,
431 int *min_uV, int *max_uV)
432 {
433 BUG_ON(*min_uV > *max_uV);
434
435 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436 rdev_err(rdev, "voltage operation not allowed\n");
437 return -EPERM;
438 }
439
440 if (*max_uV > rdev->constraints->max_uV)
441 *max_uV = rdev->constraints->max_uV;
442 if (*min_uV < rdev->constraints->min_uV)
443 *min_uV = rdev->constraints->min_uV;
444
445 if (*min_uV > *max_uV) {
446 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447 *min_uV, *max_uV);
448 return -EINVAL;
449 }
450
451 return 0;
452 }
453
454 /* return 0 if the state is valid */
455 static int regulator_check_states(suspend_state_t state)
456 {
457 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 }
459
460 /* Make sure we select a voltage that suits the needs of all
461 * regulator consumers
462 */
463 int regulator_check_consumers(struct regulator_dev *rdev,
464 int *min_uV, int *max_uV,
465 suspend_state_t state)
466 {
467 struct regulator *regulator;
468 struct regulator_voltage *voltage;
469
470 list_for_each_entry(regulator, &rdev->consumer_list, list) {
471 voltage = &regulator->voltage[state];
472 /*
473 * Assume consumers that didn't say anything are OK
474 * with anything in the constraint range.
475 */
476 if (!voltage->min_uV && !voltage->max_uV)
477 continue;
478
479 if (*max_uV > voltage->max_uV)
480 *max_uV = voltage->max_uV;
481 if (*min_uV < voltage->min_uV)
482 *min_uV = voltage->min_uV;
483 }
484
485 if (*min_uV > *max_uV) {
486 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
487 *min_uV, *max_uV);
488 return -EINVAL;
489 }
490
491 return 0;
492 }
493
494 /* current constraint check */
495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496 int *min_uA, int *max_uA)
497 {
498 BUG_ON(*min_uA > *max_uA);
499
500 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501 rdev_err(rdev, "current operation not allowed\n");
502 return -EPERM;
503 }
504
505 if (*max_uA > rdev->constraints->max_uA)
506 *max_uA = rdev->constraints->max_uA;
507 if (*min_uA < rdev->constraints->min_uA)
508 *min_uA = rdev->constraints->min_uA;
509
510 if (*min_uA > *max_uA) {
511 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512 *min_uA, *max_uA);
513 return -EINVAL;
514 }
515
516 return 0;
517 }
518
519 /* operating mode constraint check */
520 static int regulator_mode_constrain(struct regulator_dev *rdev,
521 unsigned int *mode)
522 {
523 switch (*mode) {
524 case REGULATOR_MODE_FAST:
525 case REGULATOR_MODE_NORMAL:
526 case REGULATOR_MODE_IDLE:
527 case REGULATOR_MODE_STANDBY:
528 break;
529 default:
530 rdev_err(rdev, "invalid mode %x specified\n", *mode);
531 return -EINVAL;
532 }
533
534 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535 rdev_err(rdev, "mode operation not allowed\n");
536 return -EPERM;
537 }
538
539 /* The modes are bitmasks, the most power hungry modes having
540 * the lowest values. If the requested mode isn't supported
541 * try higher modes. */
542 while (*mode) {
543 if (rdev->constraints->valid_modes_mask & *mode)
544 return 0;
545 *mode /= 2;
546 }
547
548 return -EINVAL;
549 }
550
551 static inline struct regulator_state *
552 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
553 {
554 if (rdev->constraints == NULL)
555 return NULL;
556
557 switch (state) {
558 case PM_SUSPEND_STANDBY:
559 return &rdev->constraints->state_standby;
560 case PM_SUSPEND_MEM:
561 return &rdev->constraints->state_mem;
562 case PM_SUSPEND_MAX:
563 return &rdev->constraints->state_disk;
564 default:
565 return NULL;
566 }
567 }
568
569 static const struct regulator_state *
570 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
571 {
572 const struct regulator_state *rstate;
573
574 rstate = regulator_get_suspend_state(rdev, state);
575 if (rstate == NULL)
576 return NULL;
577
578 /* If we have no suspend mode configuration don't set anything;
579 * only warn if the driver implements set_suspend_voltage or
580 * set_suspend_mode callback.
581 */
582 if (rstate->enabled != ENABLE_IN_SUSPEND &&
583 rstate->enabled != DISABLE_IN_SUSPEND) {
584 if (rdev->desc->ops->set_suspend_voltage ||
585 rdev->desc->ops->set_suspend_mode)
586 rdev_warn(rdev, "No configuration\n");
587 return NULL;
588 }
589
590 return rstate;
591 }
592
593 static ssize_t regulator_uV_show(struct device *dev,
594 struct device_attribute *attr, char *buf)
595 {
596 struct regulator_dev *rdev = dev_get_drvdata(dev);
597 int uV;
598
599 regulator_lock(rdev);
600 uV = regulator_get_voltage_rdev(rdev);
601 regulator_unlock(rdev);
602
603 if (uV < 0)
604 return uV;
605 return sprintf(buf, "%d\n", uV);
606 }
607 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
608
609 static ssize_t regulator_uA_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
611 {
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
615 }
616 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
617
618 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
619 char *buf)
620 {
621 struct regulator_dev *rdev = dev_get_drvdata(dev);
622
623 return sprintf(buf, "%s\n", rdev_get_name(rdev));
624 }
625 static DEVICE_ATTR_RO(name);
626
627 static const char *regulator_opmode_to_str(int mode)
628 {
629 switch (mode) {
630 case REGULATOR_MODE_FAST:
631 return "fast";
632 case REGULATOR_MODE_NORMAL:
633 return "normal";
634 case REGULATOR_MODE_IDLE:
635 return "idle";
636 case REGULATOR_MODE_STANDBY:
637 return "standby";
638 }
639 return "unknown";
640 }
641
642 static ssize_t regulator_print_opmode(char *buf, int mode)
643 {
644 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
645 }
646
647 static ssize_t regulator_opmode_show(struct device *dev,
648 struct device_attribute *attr, char *buf)
649 {
650 struct regulator_dev *rdev = dev_get_drvdata(dev);
651
652 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
653 }
654 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
655
656 static ssize_t regulator_print_state(char *buf, int state)
657 {
658 if (state > 0)
659 return sprintf(buf, "enabled\n");
660 else if (state == 0)
661 return sprintf(buf, "disabled\n");
662 else
663 return sprintf(buf, "unknown\n");
664 }
665
666 static ssize_t regulator_state_show(struct device *dev,
667 struct device_attribute *attr, char *buf)
668 {
669 struct regulator_dev *rdev = dev_get_drvdata(dev);
670 ssize_t ret;
671
672 regulator_lock(rdev);
673 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674 regulator_unlock(rdev);
675
676 return ret;
677 }
678 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
679
680 static ssize_t regulator_status_show(struct device *dev,
681 struct device_attribute *attr, char *buf)
682 {
683 struct regulator_dev *rdev = dev_get_drvdata(dev);
684 int status;
685 char *label;
686
687 status = rdev->desc->ops->get_status(rdev);
688 if (status < 0)
689 return status;
690
691 switch (status) {
692 case REGULATOR_STATUS_OFF:
693 label = "off";
694 break;
695 case REGULATOR_STATUS_ON:
696 label = "on";
697 break;
698 case REGULATOR_STATUS_ERROR:
699 label = "error";
700 break;
701 case REGULATOR_STATUS_FAST:
702 label = "fast";
703 break;
704 case REGULATOR_STATUS_NORMAL:
705 label = "normal";
706 break;
707 case REGULATOR_STATUS_IDLE:
708 label = "idle";
709 break;
710 case REGULATOR_STATUS_STANDBY:
711 label = "standby";
712 break;
713 case REGULATOR_STATUS_BYPASS:
714 label = "bypass";
715 break;
716 case REGULATOR_STATUS_UNDEFINED:
717 label = "undefined";
718 break;
719 default:
720 return -ERANGE;
721 }
722
723 return sprintf(buf, "%s\n", label);
724 }
725 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
726
727 static ssize_t regulator_min_uA_show(struct device *dev,
728 struct device_attribute *attr, char *buf)
729 {
730 struct regulator_dev *rdev = dev_get_drvdata(dev);
731
732 if (!rdev->constraints)
733 return sprintf(buf, "constraint not defined\n");
734
735 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
736 }
737 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
738
739 static ssize_t regulator_max_uA_show(struct device *dev,
740 struct device_attribute *attr, char *buf)
741 {
742 struct regulator_dev *rdev = dev_get_drvdata(dev);
743
744 if (!rdev->constraints)
745 return sprintf(buf, "constraint not defined\n");
746
747 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
748 }
749 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
750
751 static ssize_t regulator_min_uV_show(struct device *dev,
752 struct device_attribute *attr, char *buf)
753 {
754 struct regulator_dev *rdev = dev_get_drvdata(dev);
755
756 if (!rdev->constraints)
757 return sprintf(buf, "constraint not defined\n");
758
759 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
760 }
761 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
762
763 static ssize_t regulator_max_uV_show(struct device *dev,
764 struct device_attribute *attr, char *buf)
765 {
766 struct regulator_dev *rdev = dev_get_drvdata(dev);
767
768 if (!rdev->constraints)
769 return sprintf(buf, "constraint not defined\n");
770
771 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
772 }
773 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
774
775 static ssize_t regulator_total_uA_show(struct device *dev,
776 struct device_attribute *attr, char *buf)
777 {
778 struct regulator_dev *rdev = dev_get_drvdata(dev);
779 struct regulator *regulator;
780 int uA = 0;
781
782 regulator_lock(rdev);
783 list_for_each_entry(regulator, &rdev->consumer_list, list) {
784 if (regulator->enable_count)
785 uA += regulator->uA_load;
786 }
787 regulator_unlock(rdev);
788 return sprintf(buf, "%d\n", uA);
789 }
790 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
791
792 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
793 char *buf)
794 {
795 struct regulator_dev *rdev = dev_get_drvdata(dev);
796 return sprintf(buf, "%d\n", rdev->use_count);
797 }
798 static DEVICE_ATTR_RO(num_users);
799
800 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
801 char *buf)
802 {
803 struct regulator_dev *rdev = dev_get_drvdata(dev);
804
805 switch (rdev->desc->type) {
806 case REGULATOR_VOLTAGE:
807 return sprintf(buf, "voltage\n");
808 case REGULATOR_CURRENT:
809 return sprintf(buf, "current\n");
810 }
811 return sprintf(buf, "unknown\n");
812 }
813 static DEVICE_ATTR_RO(type);
814
815 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
816 struct device_attribute *attr, char *buf)
817 {
818 struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
821 }
822 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
823 regulator_suspend_mem_uV_show, NULL);
824
825 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
826 struct device_attribute *attr, char *buf)
827 {
828 struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
831 }
832 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
833 regulator_suspend_disk_uV_show, NULL);
834
835 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
837 {
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
839
840 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
841 }
842 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
843 regulator_suspend_standby_uV_show, NULL);
844
845 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
846 struct device_attribute *attr, char *buf)
847 {
848 struct regulator_dev *rdev = dev_get_drvdata(dev);
849
850 return regulator_print_opmode(buf,
851 rdev->constraints->state_mem.mode);
852 }
853 static DEVICE_ATTR(suspend_mem_mode, 0444,
854 regulator_suspend_mem_mode_show, NULL);
855
856 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
857 struct device_attribute *attr, char *buf)
858 {
859 struct regulator_dev *rdev = dev_get_drvdata(dev);
860
861 return regulator_print_opmode(buf,
862 rdev->constraints->state_disk.mode);
863 }
864 static DEVICE_ATTR(suspend_disk_mode, 0444,
865 regulator_suspend_disk_mode_show, NULL);
866
867 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
868 struct device_attribute *attr, char *buf)
869 {
870 struct regulator_dev *rdev = dev_get_drvdata(dev);
871
872 return regulator_print_opmode(buf,
873 rdev->constraints->state_standby.mode);
874 }
875 static DEVICE_ATTR(suspend_standby_mode, 0444,
876 regulator_suspend_standby_mode_show, NULL);
877
878 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
880 {
881 struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883 return regulator_print_state(buf,
884 rdev->constraints->state_mem.enabled);
885 }
886 static DEVICE_ATTR(suspend_mem_state, 0444,
887 regulator_suspend_mem_state_show, NULL);
888
889 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
891 {
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
893
894 return regulator_print_state(buf,
895 rdev->constraints->state_disk.enabled);
896 }
897 static DEVICE_ATTR(suspend_disk_state, 0444,
898 regulator_suspend_disk_state_show, NULL);
899
900 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
901 struct device_attribute *attr, char *buf)
902 {
903 struct regulator_dev *rdev = dev_get_drvdata(dev);
904
905 return regulator_print_state(buf,
906 rdev->constraints->state_standby.enabled);
907 }
908 static DEVICE_ATTR(suspend_standby_state, 0444,
909 regulator_suspend_standby_state_show, NULL);
910
911 static ssize_t regulator_bypass_show(struct device *dev,
912 struct device_attribute *attr, char *buf)
913 {
914 struct regulator_dev *rdev = dev_get_drvdata(dev);
915 const char *report;
916 bool bypass;
917 int ret;
918
919 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
920
921 if (ret != 0)
922 report = "unknown";
923 else if (bypass)
924 report = "enabled";
925 else
926 report = "disabled";
927
928 return sprintf(buf, "%s\n", report);
929 }
930 static DEVICE_ATTR(bypass, 0444,
931 regulator_bypass_show, NULL);
932
933 /* Calculate the new optimum regulator operating mode based on the new total
934 * consumer load. All locks held by caller */
935 static int drms_uA_update(struct regulator_dev *rdev)
936 {
937 struct regulator *sibling;
938 int current_uA = 0, output_uV, input_uV, err;
939 unsigned int mode;
940
941 /*
942 * first check to see if we can set modes at all, otherwise just
943 * tell the consumer everything is OK.
944 */
945 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
946 rdev_dbg(rdev, "DRMS operation not allowed\n");
947 return 0;
948 }
949
950 if (!rdev->desc->ops->get_optimum_mode &&
951 !rdev->desc->ops->set_load)
952 return 0;
953
954 if (!rdev->desc->ops->set_mode &&
955 !rdev->desc->ops->set_load)
956 return -EINVAL;
957
958 /* calc total requested load */
959 list_for_each_entry(sibling, &rdev->consumer_list, list) {
960 if (sibling->enable_count)
961 current_uA += sibling->uA_load;
962 }
963
964 current_uA += rdev->constraints->system_load;
965
966 if (rdev->desc->ops->set_load) {
967 /* set the optimum mode for our new total regulator load */
968 err = rdev->desc->ops->set_load(rdev, current_uA);
969 if (err < 0)
970 rdev_err(rdev, "failed to set load %d: %pe\n",
971 current_uA, ERR_PTR(err));
972 } else {
973 /* get output voltage */
974 output_uV = regulator_get_voltage_rdev(rdev);
975 if (output_uV <= 0) {
976 rdev_err(rdev, "invalid output voltage found\n");
977 return -EINVAL;
978 }
979
980 /* get input voltage */
981 input_uV = 0;
982 if (rdev->supply)
983 input_uV = regulator_get_voltage(rdev->supply);
984 if (input_uV <= 0)
985 input_uV = rdev->constraints->input_uV;
986 if (input_uV <= 0) {
987 rdev_err(rdev, "invalid input voltage found\n");
988 return -EINVAL;
989 }
990
991 /* now get the optimum mode for our new total regulator load */
992 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
993 output_uV, current_uA);
994
995 /* check the new mode is allowed */
996 err = regulator_mode_constrain(rdev, &mode);
997 if (err < 0) {
998 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
999 current_uA, input_uV, output_uV, ERR_PTR(err));
1000 return err;
1001 }
1002
1003 err = rdev->desc->ops->set_mode(rdev, mode);
1004 if (err < 0)
1005 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1006 mode, ERR_PTR(err));
1007 }
1008
1009 return err;
1010 }
1011
1012 static int __suspend_set_state(struct regulator_dev *rdev,
1013 const struct regulator_state *rstate)
1014 {
1015 int ret = 0;
1016
1017 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1018 rdev->desc->ops->set_suspend_enable)
1019 ret = rdev->desc->ops->set_suspend_enable(rdev);
1020 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1021 rdev->desc->ops->set_suspend_disable)
1022 ret = rdev->desc->ops->set_suspend_disable(rdev);
1023 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1024 ret = 0;
1025
1026 if (ret < 0) {
1027 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028 return ret;
1029 }
1030
1031 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1032 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1033 if (ret < 0) {
1034 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035 return ret;
1036 }
1037 }
1038
1039 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1040 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1041 if (ret < 0) {
1042 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043 return ret;
1044 }
1045 }
1046
1047 return ret;
1048 }
1049
1050 static int suspend_set_initial_state(struct regulator_dev *rdev)
1051 {
1052 const struct regulator_state *rstate;
1053
1054 rstate = regulator_get_suspend_state_check(rdev,
1055 rdev->constraints->initial_state);
1056 if (!rstate)
1057 return 0;
1058
1059 return __suspend_set_state(rdev, rstate);
1060 }
1061
1062 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1063 static void print_constraints_debug(struct regulator_dev *rdev)
1064 {
1065 struct regulation_constraints *constraints = rdev->constraints;
1066 char buf[160] = "";
1067 size_t len = sizeof(buf) - 1;
1068 int count = 0;
1069 int ret;
1070
1071 if (constraints->min_uV && constraints->max_uV) {
1072 if (constraints->min_uV == constraints->max_uV)
1073 count += scnprintf(buf + count, len - count, "%d mV ",
1074 constraints->min_uV / 1000);
1075 else
1076 count += scnprintf(buf + count, len - count,
1077 "%d <--> %d mV ",
1078 constraints->min_uV / 1000,
1079 constraints->max_uV / 1000);
1080 }
1081
1082 if (!constraints->min_uV ||
1083 constraints->min_uV != constraints->max_uV) {
1084 ret = regulator_get_voltage_rdev(rdev);
1085 if (ret > 0)
1086 count += scnprintf(buf + count, len - count,
1087 "at %d mV ", ret / 1000);
1088 }
1089
1090 if (constraints->uV_offset)
1091 count += scnprintf(buf + count, len - count, "%dmV offset ",
1092 constraints->uV_offset / 1000);
1093
1094 if (constraints->min_uA && constraints->max_uA) {
1095 if (constraints->min_uA == constraints->max_uA)
1096 count += scnprintf(buf + count, len - count, "%d mA ",
1097 constraints->min_uA / 1000);
1098 else
1099 count += scnprintf(buf + count, len - count,
1100 "%d <--> %d mA ",
1101 constraints->min_uA / 1000,
1102 constraints->max_uA / 1000);
1103 }
1104
1105 if (!constraints->min_uA ||
1106 constraints->min_uA != constraints->max_uA) {
1107 ret = _regulator_get_current_limit(rdev);
1108 if (ret > 0)
1109 count += scnprintf(buf + count, len - count,
1110 "at %d mA ", ret / 1000);
1111 }
1112
1113 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114 count += scnprintf(buf + count, len - count, "fast ");
1115 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116 count += scnprintf(buf + count, len - count, "normal ");
1117 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118 count += scnprintf(buf + count, len - count, "idle ");
1119 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120 count += scnprintf(buf + count, len - count, "standby ");
1121
1122 if (!count)
1123 count = scnprintf(buf, len, "no parameters");
1124 else
1125 --count;
1126
1127 count += scnprintf(buf + count, len - count, ", %s",
1128 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129
1130 rdev_dbg(rdev, "%s\n", buf);
1131 }
1132 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1133 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1134 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135
1136 static void print_constraints(struct regulator_dev *rdev)
1137 {
1138 struct regulation_constraints *constraints = rdev->constraints;
1139
1140 print_constraints_debug(rdev);
1141
1142 if ((constraints->min_uV != constraints->max_uV) &&
1143 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144 rdev_warn(rdev,
1145 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146 }
1147
1148 static int machine_constraints_voltage(struct regulator_dev *rdev,
1149 struct regulation_constraints *constraints)
1150 {
1151 const struct regulator_ops *ops = rdev->desc->ops;
1152 int ret;
1153
1154 /* do we need to apply the constraint voltage */
1155 if (rdev->constraints->apply_uV &&
1156 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1157 int target_min, target_max;
1158 int current_uV = regulator_get_voltage_rdev(rdev);
1159
1160 if (current_uV == -ENOTRECOVERABLE) {
1161 /* This regulator can't be read and must be initialized */
1162 rdev_info(rdev, "Setting %d-%duV\n",
1163 rdev->constraints->min_uV,
1164 rdev->constraints->max_uV);
1165 _regulator_do_set_voltage(rdev,
1166 rdev->constraints->min_uV,
1167 rdev->constraints->max_uV);
1168 current_uV = regulator_get_voltage_rdev(rdev);
1169 }
1170
1171 if (current_uV < 0) {
1172 rdev_err(rdev,
1173 "failed to get the current voltage: %pe\n",
1174 ERR_PTR(current_uV));
1175 return current_uV;
1176 }
1177
1178 /*
1179 * If we're below the minimum voltage move up to the
1180 * minimum voltage, if we're above the maximum voltage
1181 * then move down to the maximum.
1182 */
1183 target_min = current_uV;
1184 target_max = current_uV;
1185
1186 if (current_uV < rdev->constraints->min_uV) {
1187 target_min = rdev->constraints->min_uV;
1188 target_max = rdev->constraints->min_uV;
1189 }
1190
1191 if (current_uV > rdev->constraints->max_uV) {
1192 target_min = rdev->constraints->max_uV;
1193 target_max = rdev->constraints->max_uV;
1194 }
1195
1196 if (target_min != current_uV || target_max != current_uV) {
1197 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1198 current_uV, target_min, target_max);
1199 ret = _regulator_do_set_voltage(
1200 rdev, target_min, target_max);
1201 if (ret < 0) {
1202 rdev_err(rdev,
1203 "failed to apply %d-%duV constraint: %pe\n",
1204 target_min, target_max, ERR_PTR(ret));
1205 return ret;
1206 }
1207 }
1208 }
1209
1210 /* constrain machine-level voltage specs to fit
1211 * the actual range supported by this regulator.
1212 */
1213 if (ops->list_voltage && rdev->desc->n_voltages) {
1214 int count = rdev->desc->n_voltages;
1215 int i;
1216 int min_uV = INT_MAX;
1217 int max_uV = INT_MIN;
1218 int cmin = constraints->min_uV;
1219 int cmax = constraints->max_uV;
1220
1221 /* it's safe to autoconfigure fixed-voltage supplies
1222 and the constraints are used by list_voltage. */
1223 if (count == 1 && !cmin) {
1224 cmin = 1;
1225 cmax = INT_MAX;
1226 constraints->min_uV = cmin;
1227 constraints->max_uV = cmax;
1228 }
1229
1230 /* voltage constraints are optional */
1231 if ((cmin == 0) && (cmax == 0))
1232 return 0;
1233
1234 /* else require explicit machine-level constraints */
1235 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236 rdev_err(rdev, "invalid voltage constraints\n");
1237 return -EINVAL;
1238 }
1239
1240 /* no need to loop voltages if range is continuous */
1241 if (rdev->desc->continuous_voltage_range)
1242 return 0;
1243
1244 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1245 for (i = 0; i < count; i++) {
1246 int value;
1247
1248 value = ops->list_voltage(rdev, i);
1249 if (value <= 0)
1250 continue;
1251
1252 /* maybe adjust [min_uV..max_uV] */
1253 if (value >= cmin && value < min_uV)
1254 min_uV = value;
1255 if (value <= cmax && value > max_uV)
1256 max_uV = value;
1257 }
1258
1259 /* final: [min_uV..max_uV] valid iff constraints valid */
1260 if (max_uV < min_uV) {
1261 rdev_err(rdev,
1262 "unsupportable voltage constraints %u-%uuV\n",
1263 min_uV, max_uV);
1264 return -EINVAL;
1265 }
1266
1267 /* use regulator's subset of machine constraints */
1268 if (constraints->min_uV < min_uV) {
1269 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1270 constraints->min_uV, min_uV);
1271 constraints->min_uV = min_uV;
1272 }
1273 if (constraints->max_uV > max_uV) {
1274 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1275 constraints->max_uV, max_uV);
1276 constraints->max_uV = max_uV;
1277 }
1278 }
1279
1280 return 0;
1281 }
1282
1283 static int machine_constraints_current(struct regulator_dev *rdev,
1284 struct regulation_constraints *constraints)
1285 {
1286 const struct regulator_ops *ops = rdev->desc->ops;
1287 int ret;
1288
1289 if (!constraints->min_uA && !constraints->max_uA)
1290 return 0;
1291
1292 if (constraints->min_uA > constraints->max_uA) {
1293 rdev_err(rdev, "Invalid current constraints\n");
1294 return -EINVAL;
1295 }
1296
1297 if (!ops->set_current_limit || !ops->get_current_limit) {
1298 rdev_warn(rdev, "Operation of current configuration missing\n");
1299 return 0;
1300 }
1301
1302 /* Set regulator current in constraints range */
1303 ret = ops->set_current_limit(rdev, constraints->min_uA,
1304 constraints->max_uA);
1305 if (ret < 0) {
1306 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1307 return ret;
1308 }
1309
1310 return 0;
1311 }
1312
1313 static int _regulator_do_enable(struct regulator_dev *rdev);
1314
1315 /**
1316 * set_machine_constraints - sets regulator constraints
1317 * @rdev: regulator source
1318 *
1319 * Allows platform initialisation code to define and constrain
1320 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1321 * Constraints *must* be set by platform code in order for some
1322 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1323 * set_mode.
1324 */
1325 static int set_machine_constraints(struct regulator_dev *rdev)
1326 {
1327 int ret = 0;
1328 const struct regulator_ops *ops = rdev->desc->ops;
1329
1330 ret = machine_constraints_voltage(rdev, rdev->constraints);
1331 if (ret != 0)
1332 return ret;
1333
1334 ret = machine_constraints_current(rdev, rdev->constraints);
1335 if (ret != 0)
1336 return ret;
1337
1338 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1339 ret = ops->set_input_current_limit(rdev,
1340 rdev->constraints->ilim_uA);
1341 if (ret < 0) {
1342 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1343 return ret;
1344 }
1345 }
1346
1347 /* do we need to setup our suspend state */
1348 if (rdev->constraints->initial_state) {
1349 ret = suspend_set_initial_state(rdev);
1350 if (ret < 0) {
1351 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1352 return ret;
1353 }
1354 }
1355
1356 if (rdev->constraints->initial_mode) {
1357 if (!ops->set_mode) {
1358 rdev_err(rdev, "no set_mode operation\n");
1359 return -EINVAL;
1360 }
1361
1362 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1363 if (ret < 0) {
1364 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1365 return ret;
1366 }
1367 } else if (rdev->constraints->system_load) {
1368 /*
1369 * We'll only apply the initial system load if an
1370 * initial mode wasn't specified.
1371 */
1372 drms_uA_update(rdev);
1373 }
1374
1375 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1376 && ops->set_ramp_delay) {
1377 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1378 if (ret < 0) {
1379 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1380 return ret;
1381 }
1382 }
1383
1384 if (rdev->constraints->pull_down && ops->set_pull_down) {
1385 ret = ops->set_pull_down(rdev);
1386 if (ret < 0) {
1387 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1388 return ret;
1389 }
1390 }
1391
1392 if (rdev->constraints->soft_start && ops->set_soft_start) {
1393 ret = ops->set_soft_start(rdev);
1394 if (ret < 0) {
1395 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1396 return ret;
1397 }
1398 }
1399
1400 if (rdev->constraints->over_current_protection
1401 && ops->set_over_current_protection) {
1402 ret = ops->set_over_current_protection(rdev);
1403 if (ret < 0) {
1404 rdev_err(rdev, "failed to set over current protection: %pe\n",
1405 ERR_PTR(ret));
1406 return ret;
1407 }
1408 }
1409
1410 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1411 bool ad_state = (rdev->constraints->active_discharge ==
1412 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1413
1414 ret = ops->set_active_discharge(rdev, ad_state);
1415 if (ret < 0) {
1416 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1417 return ret;
1418 }
1419 }
1420
1421 /* If the constraints say the regulator should be on at this point
1422 * and we have control then make sure it is enabled.
1423 */
1424 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1425 if (rdev->supply) {
1426 ret = regulator_enable(rdev->supply);
1427 if (ret < 0) {
1428 _regulator_put(rdev->supply);
1429 rdev->supply = NULL;
1430 return ret;
1431 }
1432 }
1433
1434 ret = _regulator_do_enable(rdev);
1435 if (ret < 0 && ret != -EINVAL) {
1436 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1437 return ret;
1438 }
1439
1440 if (rdev->constraints->always_on)
1441 rdev->use_count++;
1442 }
1443
1444 print_constraints(rdev);
1445 return 0;
1446 }
1447
1448 /**
1449 * set_supply - set regulator supply regulator
1450 * @rdev: regulator name
1451 * @supply_rdev: supply regulator name
1452 *
1453 * Called by platform initialisation code to set the supply regulator for this
1454 * regulator. This ensures that a regulators supply will also be enabled by the
1455 * core if it's child is enabled.
1456 */
1457 static int set_supply(struct regulator_dev *rdev,
1458 struct regulator_dev *supply_rdev)
1459 {
1460 int err;
1461
1462 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1463
1464 if (!try_module_get(supply_rdev->owner))
1465 return -ENODEV;
1466
1467 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1468 if (rdev->supply == NULL) {
1469 err = -ENOMEM;
1470 return err;
1471 }
1472 supply_rdev->open_count++;
1473
1474 return 0;
1475 }
1476
1477 /**
1478 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1479 * @rdev: regulator source
1480 * @consumer_dev_name: dev_name() string for device supply applies to
1481 * @supply: symbolic name for supply
1482 *
1483 * Allows platform initialisation code to map physical regulator
1484 * sources to symbolic names for supplies for use by devices. Devices
1485 * should use these symbolic names to request regulators, avoiding the
1486 * need to provide board-specific regulator names as platform data.
1487 */
1488 static int set_consumer_device_supply(struct regulator_dev *rdev,
1489 const char *consumer_dev_name,
1490 const char *supply)
1491 {
1492 struct regulator_map *node, *new_node;
1493 int has_dev;
1494
1495 if (supply == NULL)
1496 return -EINVAL;
1497
1498 if (consumer_dev_name != NULL)
1499 has_dev = 1;
1500 else
1501 has_dev = 0;
1502
1503 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1504 if (new_node == NULL)
1505 return -ENOMEM;
1506
1507 new_node->regulator = rdev;
1508 new_node->supply = supply;
1509
1510 if (has_dev) {
1511 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1512 if (new_node->dev_name == NULL) {
1513 kfree(new_node);
1514 return -ENOMEM;
1515 }
1516 }
1517
1518 mutex_lock(&regulator_list_mutex);
1519 list_for_each_entry(node, &regulator_map_list, list) {
1520 if (node->dev_name && consumer_dev_name) {
1521 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1522 continue;
1523 } else if (node->dev_name || consumer_dev_name) {
1524 continue;
1525 }
1526
1527 if (strcmp(node->supply, supply) != 0)
1528 continue;
1529
1530 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1531 consumer_dev_name,
1532 dev_name(&node->regulator->dev),
1533 node->regulator->desc->name,
1534 supply,
1535 dev_name(&rdev->dev), rdev_get_name(rdev));
1536 goto fail;
1537 }
1538
1539 list_add(&new_node->list, &regulator_map_list);
1540 mutex_unlock(&regulator_list_mutex);
1541
1542 return 0;
1543
1544 fail:
1545 mutex_unlock(&regulator_list_mutex);
1546 kfree(new_node->dev_name);
1547 kfree(new_node);
1548 return -EBUSY;
1549 }
1550
1551 static void unset_regulator_supplies(struct regulator_dev *rdev)
1552 {
1553 struct regulator_map *node, *n;
1554
1555 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1556 if (rdev == node->regulator) {
1557 list_del(&node->list);
1558 kfree(node->dev_name);
1559 kfree(node);
1560 }
1561 }
1562 }
1563
1564 #ifdef CONFIG_DEBUG_FS
1565 static ssize_t constraint_flags_read_file(struct file *file,
1566 char __user *user_buf,
1567 size_t count, loff_t *ppos)
1568 {
1569 const struct regulator *regulator = file->private_data;
1570 const struct regulation_constraints *c = regulator->rdev->constraints;
1571 char *buf;
1572 ssize_t ret;
1573
1574 if (!c)
1575 return 0;
1576
1577 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1578 if (!buf)
1579 return -ENOMEM;
1580
1581 ret = snprintf(buf, PAGE_SIZE,
1582 "always_on: %u\n"
1583 "boot_on: %u\n"
1584 "apply_uV: %u\n"
1585 "ramp_disable: %u\n"
1586 "soft_start: %u\n"
1587 "pull_down: %u\n"
1588 "over_current_protection: %u\n",
1589 c->always_on,
1590 c->boot_on,
1591 c->apply_uV,
1592 c->ramp_disable,
1593 c->soft_start,
1594 c->pull_down,
1595 c->over_current_protection);
1596
1597 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1598 kfree(buf);
1599
1600 return ret;
1601 }
1602
1603 #endif
1604
1605 static const struct file_operations constraint_flags_fops = {
1606 #ifdef CONFIG_DEBUG_FS
1607 .open = simple_open,
1608 .read = constraint_flags_read_file,
1609 .llseek = default_llseek,
1610 #endif
1611 };
1612
1613 #define REG_STR_SIZE 64
1614
1615 static struct regulator *create_regulator(struct regulator_dev *rdev,
1616 struct device *dev,
1617 const char *supply_name)
1618 {
1619 struct regulator *regulator;
1620 int err;
1621
1622 if (dev) {
1623 char buf[REG_STR_SIZE];
1624 int size;
1625
1626 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1627 dev->kobj.name, supply_name);
1628 if (size >= REG_STR_SIZE)
1629 return NULL;
1630
1631 supply_name = kstrdup(buf, GFP_KERNEL);
1632 if (supply_name == NULL)
1633 return NULL;
1634 } else {
1635 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1636 if (supply_name == NULL)
1637 return NULL;
1638 }
1639
1640 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1641 if (regulator == NULL) {
1642 kfree(supply_name);
1643 return NULL;
1644 }
1645
1646 regulator->rdev = rdev;
1647 regulator->supply_name = supply_name;
1648
1649 regulator_lock(rdev);
1650 list_add(&regulator->list, &rdev->consumer_list);
1651 regulator_unlock(rdev);
1652
1653 if (dev) {
1654 regulator->dev = dev;
1655
1656 /* Add a link to the device sysfs entry */
1657 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1658 supply_name);
1659 if (err) {
1660 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1661 dev->kobj.name, ERR_PTR(err));
1662 /* non-fatal */
1663 }
1664 }
1665
1666 regulator->debugfs = debugfs_create_dir(supply_name,
1667 rdev->debugfs);
1668 if (!regulator->debugfs) {
1669 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1670 } else {
1671 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1672 &regulator->uA_load);
1673 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1674 &regulator->voltage[PM_SUSPEND_ON].min_uV);
1675 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1676 &regulator->voltage[PM_SUSPEND_ON].max_uV);
1677 debugfs_create_file("constraint_flags", 0444,
1678 regulator->debugfs, regulator,
1679 &constraint_flags_fops);
1680 }
1681
1682 /*
1683 * Check now if the regulator is an always on regulator - if
1684 * it is then we don't need to do nearly so much work for
1685 * enable/disable calls.
1686 */
1687 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1688 _regulator_is_enabled(rdev))
1689 regulator->always_on = true;
1690
1691 return regulator;
1692 }
1693
1694 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1695 {
1696 if (rdev->constraints && rdev->constraints->enable_time)
1697 return rdev->constraints->enable_time;
1698 if (rdev->desc->ops->enable_time)
1699 return rdev->desc->ops->enable_time(rdev);
1700 return rdev->desc->enable_time;
1701 }
1702
1703 static struct regulator_supply_alias *regulator_find_supply_alias(
1704 struct device *dev, const char *supply)
1705 {
1706 struct regulator_supply_alias *map;
1707
1708 list_for_each_entry(map, &regulator_supply_alias_list, list)
1709 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1710 return map;
1711
1712 return NULL;
1713 }
1714
1715 static void regulator_supply_alias(struct device **dev, const char **supply)
1716 {
1717 struct regulator_supply_alias *map;
1718
1719 map = regulator_find_supply_alias(*dev, *supply);
1720 if (map) {
1721 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1722 *supply, map->alias_supply,
1723 dev_name(map->alias_dev));
1724 *dev = map->alias_dev;
1725 *supply = map->alias_supply;
1726 }
1727 }
1728
1729 static int regulator_match(struct device *dev, const void *data)
1730 {
1731 struct regulator_dev *r = dev_to_rdev(dev);
1732
1733 return strcmp(rdev_get_name(r), data) == 0;
1734 }
1735
1736 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1737 {
1738 struct device *dev;
1739
1740 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1741
1742 return dev ? dev_to_rdev(dev) : NULL;
1743 }
1744
1745 /**
1746 * regulator_dev_lookup - lookup a regulator device.
1747 * @dev: device for regulator "consumer".
1748 * @supply: Supply name or regulator ID.
1749 *
1750 * If successful, returns a struct regulator_dev that corresponds to the name
1751 * @supply and with the embedded struct device refcount incremented by one.
1752 * The refcount must be dropped by calling put_device().
1753 * On failure one of the following ERR-PTR-encoded values is returned:
1754 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1755 * in the future.
1756 */
1757 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1758 const char *supply)
1759 {
1760 struct regulator_dev *r = NULL;
1761 struct device_node *node;
1762 struct regulator_map *map;
1763 const char *devname = NULL;
1764
1765 regulator_supply_alias(&dev, &supply);
1766
1767 /* first do a dt based lookup */
1768 if (dev && dev->of_node) {
1769 node = of_get_regulator(dev, supply);
1770 if (node) {
1771 r = of_find_regulator_by_node(node);
1772 if (r)
1773 return r;
1774
1775 /*
1776 * We have a node, but there is no device.
1777 * assume it has not registered yet.
1778 */
1779 return ERR_PTR(-EPROBE_DEFER);
1780 }
1781 }
1782
1783 /* if not found, try doing it non-dt way */
1784 if (dev)
1785 devname = dev_name(dev);
1786
1787 mutex_lock(&regulator_list_mutex);
1788 list_for_each_entry(map, &regulator_map_list, list) {
1789 /* If the mapping has a device set up it must match */
1790 if (map->dev_name &&
1791 (!devname || strcmp(map->dev_name, devname)))
1792 continue;
1793
1794 if (strcmp(map->supply, supply) == 0 &&
1795 get_device(&map->regulator->dev)) {
1796 r = map->regulator;
1797 break;
1798 }
1799 }
1800 mutex_unlock(&regulator_list_mutex);
1801
1802 if (r)
1803 return r;
1804
1805 r = regulator_lookup_by_name(supply);
1806 if (r)
1807 return r;
1808
1809 return ERR_PTR(-ENODEV);
1810 }
1811
1812 static int regulator_resolve_supply(struct regulator_dev *rdev)
1813 {
1814 struct regulator_dev *r;
1815 struct device *dev = rdev->dev.parent;
1816 int ret;
1817
1818 /* No supply to resolve? */
1819 if (!rdev->supply_name)
1820 return 0;
1821
1822 /* Supply already resolved? */
1823 if (rdev->supply)
1824 return 0;
1825
1826 r = regulator_dev_lookup(dev, rdev->supply_name);
1827 if (IS_ERR(r)) {
1828 ret = PTR_ERR(r);
1829
1830 /* Did the lookup explicitly defer for us? */
1831 if (ret == -EPROBE_DEFER)
1832 return ret;
1833
1834 if (have_full_constraints()) {
1835 r = dummy_regulator_rdev;
1836 get_device(&r->dev);
1837 } else {
1838 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1839 rdev->supply_name, rdev->desc->name);
1840 return -EPROBE_DEFER;
1841 }
1842 }
1843
1844 if (r == rdev) {
1845 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1846 rdev->desc->name, rdev->supply_name);
1847 if (!have_full_constraints())
1848 return -EINVAL;
1849 r = dummy_regulator_rdev;
1850 get_device(&r->dev);
1851 }
1852
1853 /*
1854 * If the supply's parent device is not the same as the
1855 * regulator's parent device, then ensure the parent device
1856 * is bound before we resolve the supply, in case the parent
1857 * device get probe deferred and unregisters the supply.
1858 */
1859 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1860 if (!device_is_bound(r->dev.parent)) {
1861 put_device(&r->dev);
1862 return -EPROBE_DEFER;
1863 }
1864 }
1865
1866 /* Recursively resolve the supply of the supply */
1867 ret = regulator_resolve_supply(r);
1868 if (ret < 0) {
1869 put_device(&r->dev);
1870 return ret;
1871 }
1872
1873 ret = set_supply(rdev, r);
1874 if (ret < 0) {
1875 put_device(&r->dev);
1876 return ret;
1877 }
1878
1879 /*
1880 * In set_machine_constraints() we may have turned this regulator on
1881 * but we couldn't propagate to the supply if it hadn't been resolved
1882 * yet. Do it now.
1883 */
1884 if (rdev->use_count) {
1885 ret = regulator_enable(rdev->supply);
1886 if (ret < 0) {
1887 _regulator_put(rdev->supply);
1888 rdev->supply = NULL;
1889 return ret;
1890 }
1891 }
1892
1893 return 0;
1894 }
1895
1896 /* Internal regulator request function */
1897 struct regulator *_regulator_get(struct device *dev, const char *id,
1898 enum regulator_get_type get_type)
1899 {
1900 struct regulator_dev *rdev;
1901 struct regulator *regulator;
1902 struct device_link *link;
1903 int ret;
1904
1905 if (get_type >= MAX_GET_TYPE) {
1906 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1907 return ERR_PTR(-EINVAL);
1908 }
1909
1910 if (id == NULL) {
1911 pr_err("get() with no identifier\n");
1912 return ERR_PTR(-EINVAL);
1913 }
1914
1915 rdev = regulator_dev_lookup(dev, id);
1916 if (IS_ERR(rdev)) {
1917 ret = PTR_ERR(rdev);
1918
1919 /*
1920 * If regulator_dev_lookup() fails with error other
1921 * than -ENODEV our job here is done, we simply return it.
1922 */
1923 if (ret != -ENODEV)
1924 return ERR_PTR(ret);
1925
1926 if (!have_full_constraints()) {
1927 dev_warn(dev,
1928 "incomplete constraints, dummy supplies not allowed\n");
1929 return ERR_PTR(-ENODEV);
1930 }
1931
1932 switch (get_type) {
1933 case NORMAL_GET:
1934 /*
1935 * Assume that a regulator is physically present and
1936 * enabled, even if it isn't hooked up, and just
1937 * provide a dummy.
1938 */
1939 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1940 rdev = dummy_regulator_rdev;
1941 get_device(&rdev->dev);
1942 break;
1943
1944 case EXCLUSIVE_GET:
1945 dev_warn(dev,
1946 "dummy supplies not allowed for exclusive requests\n");
1947 fallthrough;
1948
1949 default:
1950 return ERR_PTR(-ENODEV);
1951 }
1952 }
1953
1954 if (rdev->exclusive) {
1955 regulator = ERR_PTR(-EPERM);
1956 put_device(&rdev->dev);
1957 return regulator;
1958 }
1959
1960 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1961 regulator = ERR_PTR(-EBUSY);
1962 put_device(&rdev->dev);
1963 return regulator;
1964 }
1965
1966 mutex_lock(&regulator_list_mutex);
1967 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1968 mutex_unlock(&regulator_list_mutex);
1969
1970 if (ret != 0) {
1971 regulator = ERR_PTR(-EPROBE_DEFER);
1972 put_device(&rdev->dev);
1973 return regulator;
1974 }
1975
1976 ret = regulator_resolve_supply(rdev);
1977 if (ret < 0) {
1978 regulator = ERR_PTR(ret);
1979 put_device(&rdev->dev);
1980 return regulator;
1981 }
1982
1983 if (!try_module_get(rdev->owner)) {
1984 regulator = ERR_PTR(-EPROBE_DEFER);
1985 put_device(&rdev->dev);
1986 return regulator;
1987 }
1988
1989 regulator = create_regulator(rdev, dev, id);
1990 if (regulator == NULL) {
1991 regulator = ERR_PTR(-ENOMEM);
1992 module_put(rdev->owner);
1993 put_device(&rdev->dev);
1994 return regulator;
1995 }
1996
1997 rdev->open_count++;
1998 if (get_type == EXCLUSIVE_GET) {
1999 rdev->exclusive = 1;
2000
2001 ret = _regulator_is_enabled(rdev);
2002 if (ret > 0)
2003 rdev->use_count = 1;
2004 else
2005 rdev->use_count = 0;
2006 }
2007
2008 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2009 if (!IS_ERR_OR_NULL(link))
2010 regulator->device_link = true;
2011
2012 return regulator;
2013 }
2014
2015 /**
2016 * regulator_get - lookup and obtain a reference to a regulator.
2017 * @dev: device for regulator "consumer"
2018 * @id: Supply name or regulator ID.
2019 *
2020 * Returns a struct regulator corresponding to the regulator producer,
2021 * or IS_ERR() condition containing errno.
2022 *
2023 * Use of supply names configured via regulator_set_device_supply() is
2024 * strongly encouraged. It is recommended that the supply name used
2025 * should match the name used for the supply and/or the relevant
2026 * device pins in the datasheet.
2027 */
2028 struct regulator *regulator_get(struct device *dev, const char *id)
2029 {
2030 return _regulator_get(dev, id, NORMAL_GET);
2031 }
2032 EXPORT_SYMBOL_GPL(regulator_get);
2033
2034 /**
2035 * regulator_get_exclusive - obtain exclusive access to a regulator.
2036 * @dev: device for regulator "consumer"
2037 * @id: Supply name or regulator ID.
2038 *
2039 * Returns a struct regulator corresponding to the regulator producer,
2040 * or IS_ERR() condition containing errno. Other consumers will be
2041 * unable to obtain this regulator while this reference is held and the
2042 * use count for the regulator will be initialised to reflect the current
2043 * state of the regulator.
2044 *
2045 * This is intended for use by consumers which cannot tolerate shared
2046 * use of the regulator such as those which need to force the
2047 * regulator off for correct operation of the hardware they are
2048 * controlling.
2049 *
2050 * Use of supply names configured via regulator_set_device_supply() is
2051 * strongly encouraged. It is recommended that the supply name used
2052 * should match the name used for the supply and/or the relevant
2053 * device pins in the datasheet.
2054 */
2055 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2056 {
2057 return _regulator_get(dev, id, EXCLUSIVE_GET);
2058 }
2059 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2060
2061 /**
2062 * regulator_get_optional - obtain optional access to a regulator.
2063 * @dev: device for regulator "consumer"
2064 * @id: Supply name or regulator ID.
2065 *
2066 * Returns a struct regulator corresponding to the regulator producer,
2067 * or IS_ERR() condition containing errno.
2068 *
2069 * This is intended for use by consumers for devices which can have
2070 * some supplies unconnected in normal use, such as some MMC devices.
2071 * It can allow the regulator core to provide stub supplies for other
2072 * supplies requested using normal regulator_get() calls without
2073 * disrupting the operation of drivers that can handle absent
2074 * supplies.
2075 *
2076 * Use of supply names configured via regulator_set_device_supply() is
2077 * strongly encouraged. It is recommended that the supply name used
2078 * should match the name used for the supply and/or the relevant
2079 * device pins in the datasheet.
2080 */
2081 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2082 {
2083 return _regulator_get(dev, id, OPTIONAL_GET);
2084 }
2085 EXPORT_SYMBOL_GPL(regulator_get_optional);
2086
2087 static void destroy_regulator(struct regulator *regulator)
2088 {
2089 struct regulator_dev *rdev = regulator->rdev;
2090
2091 debugfs_remove_recursive(regulator->debugfs);
2092
2093 if (regulator->dev) {
2094 if (regulator->device_link)
2095 device_link_remove(regulator->dev, &rdev->dev);
2096
2097 /* remove any sysfs entries */
2098 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2099 }
2100
2101 regulator_lock(rdev);
2102 list_del(&regulator->list);
2103
2104 rdev->open_count--;
2105 rdev->exclusive = 0;
2106 regulator_unlock(rdev);
2107
2108 kfree_const(regulator->supply_name);
2109 kfree(regulator);
2110 }
2111
2112 /* regulator_list_mutex lock held by regulator_put() */
2113 static void _regulator_put(struct regulator *regulator)
2114 {
2115 struct regulator_dev *rdev;
2116
2117 if (IS_ERR_OR_NULL(regulator))
2118 return;
2119
2120 lockdep_assert_held_once(&regulator_list_mutex);
2121
2122 /* Docs say you must disable before calling regulator_put() */
2123 WARN_ON(regulator->enable_count);
2124
2125 rdev = regulator->rdev;
2126
2127 destroy_regulator(regulator);
2128
2129 module_put(rdev->owner);
2130 put_device(&rdev->dev);
2131 }
2132
2133 /**
2134 * regulator_put - "free" the regulator source
2135 * @regulator: regulator source
2136 *
2137 * Note: drivers must ensure that all regulator_enable calls made on this
2138 * regulator source are balanced by regulator_disable calls prior to calling
2139 * this function.
2140 */
2141 void regulator_put(struct regulator *regulator)
2142 {
2143 mutex_lock(&regulator_list_mutex);
2144 _regulator_put(regulator);
2145 mutex_unlock(&regulator_list_mutex);
2146 }
2147 EXPORT_SYMBOL_GPL(regulator_put);
2148
2149 /**
2150 * regulator_register_supply_alias - Provide device alias for supply lookup
2151 *
2152 * @dev: device that will be given as the regulator "consumer"
2153 * @id: Supply name or regulator ID
2154 * @alias_dev: device that should be used to lookup the supply
2155 * @alias_id: Supply name or regulator ID that should be used to lookup the
2156 * supply
2157 *
2158 * All lookups for id on dev will instead be conducted for alias_id on
2159 * alias_dev.
2160 */
2161 int regulator_register_supply_alias(struct device *dev, const char *id,
2162 struct device *alias_dev,
2163 const char *alias_id)
2164 {
2165 struct regulator_supply_alias *map;
2166
2167 map = regulator_find_supply_alias(dev, id);
2168 if (map)
2169 return -EEXIST;
2170
2171 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2172 if (!map)
2173 return -ENOMEM;
2174
2175 map->src_dev = dev;
2176 map->src_supply = id;
2177 map->alias_dev = alias_dev;
2178 map->alias_supply = alias_id;
2179
2180 list_add(&map->list, &regulator_supply_alias_list);
2181
2182 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2183 id, dev_name(dev), alias_id, dev_name(alias_dev));
2184
2185 return 0;
2186 }
2187 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2188
2189 /**
2190 * regulator_unregister_supply_alias - Remove device alias
2191 *
2192 * @dev: device that will be given as the regulator "consumer"
2193 * @id: Supply name or regulator ID
2194 *
2195 * Remove a lookup alias if one exists for id on dev.
2196 */
2197 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2198 {
2199 struct regulator_supply_alias *map;
2200
2201 map = regulator_find_supply_alias(dev, id);
2202 if (map) {
2203 list_del(&map->list);
2204 kfree(map);
2205 }
2206 }
2207 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2208
2209 /**
2210 * regulator_bulk_register_supply_alias - register multiple aliases
2211 *
2212 * @dev: device that will be given as the regulator "consumer"
2213 * @id: List of supply names or regulator IDs
2214 * @alias_dev: device that should be used to lookup the supply
2215 * @alias_id: List of supply names or regulator IDs that should be used to
2216 * lookup the supply
2217 * @num_id: Number of aliases to register
2218 *
2219 * @return 0 on success, an errno on failure.
2220 *
2221 * This helper function allows drivers to register several supply
2222 * aliases in one operation. If any of the aliases cannot be
2223 * registered any aliases that were registered will be removed
2224 * before returning to the caller.
2225 */
2226 int regulator_bulk_register_supply_alias(struct device *dev,
2227 const char *const *id,
2228 struct device *alias_dev,
2229 const char *const *alias_id,
2230 int num_id)
2231 {
2232 int i;
2233 int ret;
2234
2235 for (i = 0; i < num_id; ++i) {
2236 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2237 alias_id[i]);
2238 if (ret < 0)
2239 goto err;
2240 }
2241
2242 return 0;
2243
2244 err:
2245 dev_err(dev,
2246 "Failed to create supply alias %s,%s -> %s,%s\n",
2247 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2248
2249 while (--i >= 0)
2250 regulator_unregister_supply_alias(dev, id[i]);
2251
2252 return ret;
2253 }
2254 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2255
2256 /**
2257 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2258 *
2259 * @dev: device that will be given as the regulator "consumer"
2260 * @id: List of supply names or regulator IDs
2261 * @num_id: Number of aliases to unregister
2262 *
2263 * This helper function allows drivers to unregister several supply
2264 * aliases in one operation.
2265 */
2266 void regulator_bulk_unregister_supply_alias(struct device *dev,
2267 const char *const *id,
2268 int num_id)
2269 {
2270 int i;
2271
2272 for (i = 0; i < num_id; ++i)
2273 regulator_unregister_supply_alias(dev, id[i]);
2274 }
2275 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2276
2277
2278 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2279 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2280 const struct regulator_config *config)
2281 {
2282 struct regulator_enable_gpio *pin, *new_pin;
2283 struct gpio_desc *gpiod;
2284
2285 gpiod = config->ena_gpiod;
2286 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2287
2288 mutex_lock(&regulator_list_mutex);
2289
2290 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2291 if (pin->gpiod == gpiod) {
2292 rdev_dbg(rdev, "GPIO is already used\n");
2293 goto update_ena_gpio_to_rdev;
2294 }
2295 }
2296
2297 if (new_pin == NULL) {
2298 mutex_unlock(&regulator_list_mutex);
2299 return -ENOMEM;
2300 }
2301
2302 pin = new_pin;
2303 new_pin = NULL;
2304
2305 pin->gpiod = gpiod;
2306 list_add(&pin->list, &regulator_ena_gpio_list);
2307
2308 update_ena_gpio_to_rdev:
2309 pin->request_count++;
2310 rdev->ena_pin = pin;
2311
2312 mutex_unlock(&regulator_list_mutex);
2313 kfree(new_pin);
2314
2315 return 0;
2316 }
2317
2318 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2319 {
2320 struct regulator_enable_gpio *pin, *n;
2321
2322 if (!rdev->ena_pin)
2323 return;
2324
2325 /* Free the GPIO only in case of no use */
2326 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2327 if (pin != rdev->ena_pin)
2328 continue;
2329
2330 if (--pin->request_count)
2331 break;
2332
2333 gpiod_put(pin->gpiod);
2334 list_del(&pin->list);
2335 kfree(pin);
2336 break;
2337 }
2338
2339 rdev->ena_pin = NULL;
2340 }
2341
2342 /**
2343 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2344 * @rdev: regulator_dev structure
2345 * @enable: enable GPIO at initial use?
2346 *
2347 * GPIO is enabled in case of initial use. (enable_count is 0)
2348 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2349 */
2350 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2351 {
2352 struct regulator_enable_gpio *pin = rdev->ena_pin;
2353
2354 if (!pin)
2355 return -EINVAL;
2356
2357 if (enable) {
2358 /* Enable GPIO at initial use */
2359 if (pin->enable_count == 0)
2360 gpiod_set_value_cansleep(pin->gpiod, 1);
2361
2362 pin->enable_count++;
2363 } else {
2364 if (pin->enable_count > 1) {
2365 pin->enable_count--;
2366 return 0;
2367 }
2368
2369 /* Disable GPIO if not used */
2370 if (pin->enable_count <= 1) {
2371 gpiod_set_value_cansleep(pin->gpiod, 0);
2372 pin->enable_count = 0;
2373 }
2374 }
2375
2376 return 0;
2377 }
2378
2379 /**
2380 * _regulator_enable_delay - a delay helper function
2381 * @delay: time to delay in microseconds
2382 *
2383 * Delay for the requested amount of time as per the guidelines in:
2384 *
2385 * Documentation/timers/timers-howto.rst
2386 *
2387 * The assumption here is that regulators will never be enabled in
2388 * atomic context and therefore sleeping functions can be used.
2389 */
2390 static void _regulator_enable_delay(unsigned int delay)
2391 {
2392 unsigned int ms = delay / 1000;
2393 unsigned int us = delay % 1000;
2394
2395 if (ms > 0) {
2396 /*
2397 * For small enough values, handle super-millisecond
2398 * delays in the usleep_range() call below.
2399 */
2400 if (ms < 20)
2401 us += ms * 1000;
2402 else
2403 msleep(ms);
2404 }
2405
2406 /*
2407 * Give the scheduler some room to coalesce with any other
2408 * wakeup sources. For delays shorter than 10 us, don't even
2409 * bother setting up high-resolution timers and just busy-
2410 * loop.
2411 */
2412 if (us >= 10)
2413 usleep_range(us, us + 100);
2414 else
2415 udelay(us);
2416 }
2417
2418 /**
2419 * _regulator_check_status_enabled
2420 *
2421 * A helper function to check if the regulator status can be interpreted
2422 * as 'regulator is enabled'.
2423 * @rdev: the regulator device to check
2424 *
2425 * Return:
2426 * * 1 - if status shows regulator is in enabled state
2427 * * 0 - if not enabled state
2428 * * Error Value - as received from ops->get_status()
2429 */
2430 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2431 {
2432 int ret = rdev->desc->ops->get_status(rdev);
2433
2434 if (ret < 0) {
2435 rdev_info(rdev, "get_status returned error: %d\n", ret);
2436 return ret;
2437 }
2438
2439 switch (ret) {
2440 case REGULATOR_STATUS_OFF:
2441 case REGULATOR_STATUS_ERROR:
2442 case REGULATOR_STATUS_UNDEFINED:
2443 return 0;
2444 default:
2445 return 1;
2446 }
2447 }
2448
2449 static int _regulator_do_enable(struct regulator_dev *rdev)
2450 {
2451 int ret, delay;
2452
2453 /* Query before enabling in case configuration dependent. */
2454 ret = _regulator_get_enable_time(rdev);
2455 if (ret >= 0) {
2456 delay = ret;
2457 } else {
2458 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2459 delay = 0;
2460 }
2461
2462 trace_regulator_enable(rdev_get_name(rdev));
2463
2464 if (rdev->desc->off_on_delay) {
2465 /* if needed, keep a distance of off_on_delay from last time
2466 * this regulator was disabled.
2467 */
2468 unsigned long start_jiffy = jiffies;
2469 unsigned long intended, max_delay, remaining;
2470
2471 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2472 intended = rdev->last_off_jiffy + max_delay;
2473
2474 if (time_before(start_jiffy, intended)) {
2475 /* calc remaining jiffies to deal with one-time
2476 * timer wrapping.
2477 * in case of multiple timer wrapping, either it can be
2478 * detected by out-of-range remaining, or it cannot be
2479 * detected and we get a penalty of
2480 * _regulator_enable_delay().
2481 */
2482 remaining = intended - start_jiffy;
2483 if (remaining <= max_delay)
2484 _regulator_enable_delay(
2485 jiffies_to_usecs(remaining));
2486 }
2487 }
2488
2489 if (rdev->ena_pin) {
2490 if (!rdev->ena_gpio_state) {
2491 ret = regulator_ena_gpio_ctrl(rdev, true);
2492 if (ret < 0)
2493 return ret;
2494 rdev->ena_gpio_state = 1;
2495 }
2496 } else if (rdev->desc->ops->enable) {
2497 ret = rdev->desc->ops->enable(rdev);
2498 if (ret < 0)
2499 return ret;
2500 } else {
2501 return -EINVAL;
2502 }
2503
2504 /* Allow the regulator to ramp; it would be useful to extend
2505 * this for bulk operations so that the regulators can ramp
2506 * together. */
2507 trace_regulator_enable_delay(rdev_get_name(rdev));
2508
2509 /* If poll_enabled_time is set, poll upto the delay calculated
2510 * above, delaying poll_enabled_time uS to check if the regulator
2511 * actually got enabled.
2512 * If the regulator isn't enabled after enable_delay has
2513 * expired, return -ETIMEDOUT.
2514 */
2515 if (rdev->desc->poll_enabled_time) {
2516 unsigned int time_remaining = delay;
2517
2518 while (time_remaining > 0) {
2519 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2520
2521 if (rdev->desc->ops->get_status) {
2522 ret = _regulator_check_status_enabled(rdev);
2523 if (ret < 0)
2524 return ret;
2525 else if (ret)
2526 break;
2527 } else if (rdev->desc->ops->is_enabled(rdev))
2528 break;
2529
2530 time_remaining -= rdev->desc->poll_enabled_time;
2531 }
2532
2533 if (time_remaining <= 0) {
2534 rdev_err(rdev, "Enabled check timed out\n");
2535 return -ETIMEDOUT;
2536 }
2537 } else {
2538 _regulator_enable_delay(delay);
2539 }
2540
2541 trace_regulator_enable_complete(rdev_get_name(rdev));
2542
2543 return 0;
2544 }
2545
2546 /**
2547 * _regulator_handle_consumer_enable - handle that a consumer enabled
2548 * @regulator: regulator source
2549 *
2550 * Some things on a regulator consumer (like the contribution towards total
2551 * load on the regulator) only have an effect when the consumer wants the
2552 * regulator enabled. Explained in example with two consumers of the same
2553 * regulator:
2554 * consumer A: set_load(100); => total load = 0
2555 * consumer A: regulator_enable(); => total load = 100
2556 * consumer B: set_load(1000); => total load = 100
2557 * consumer B: regulator_enable(); => total load = 1100
2558 * consumer A: regulator_disable(); => total_load = 1000
2559 *
2560 * This function (together with _regulator_handle_consumer_disable) is
2561 * responsible for keeping track of the refcount for a given regulator consumer
2562 * and applying / unapplying these things.
2563 *
2564 * Returns 0 upon no error; -error upon error.
2565 */
2566 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2567 {
2568 struct regulator_dev *rdev = regulator->rdev;
2569
2570 lockdep_assert_held_once(&rdev->mutex.base);
2571
2572 regulator->enable_count++;
2573 if (regulator->uA_load && regulator->enable_count == 1)
2574 return drms_uA_update(rdev);
2575
2576 return 0;
2577 }
2578
2579 /**
2580 * _regulator_handle_consumer_disable - handle that a consumer disabled
2581 * @regulator: regulator source
2582 *
2583 * The opposite of _regulator_handle_consumer_enable().
2584 *
2585 * Returns 0 upon no error; -error upon error.
2586 */
2587 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2588 {
2589 struct regulator_dev *rdev = regulator->rdev;
2590
2591 lockdep_assert_held_once(&rdev->mutex.base);
2592
2593 if (!regulator->enable_count) {
2594 rdev_err(rdev, "Underflow of regulator enable count\n");
2595 return -EINVAL;
2596 }
2597
2598 regulator->enable_count--;
2599 if (regulator->uA_load && regulator->enable_count == 0)
2600 return drms_uA_update(rdev);
2601
2602 return 0;
2603 }
2604
2605 /* locks held by regulator_enable() */
2606 static int _regulator_enable(struct regulator *regulator)
2607 {
2608 struct regulator_dev *rdev = regulator->rdev;
2609 int ret;
2610
2611 lockdep_assert_held_once(&rdev->mutex.base);
2612
2613 if (rdev->use_count == 0 && rdev->supply) {
2614 ret = _regulator_enable(rdev->supply);
2615 if (ret < 0)
2616 return ret;
2617 }
2618
2619 /* balance only if there are regulators coupled */
2620 if (rdev->coupling_desc.n_coupled > 1) {
2621 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2622 if (ret < 0)
2623 goto err_disable_supply;
2624 }
2625
2626 ret = _regulator_handle_consumer_enable(regulator);
2627 if (ret < 0)
2628 goto err_disable_supply;
2629
2630 if (rdev->use_count == 0) {
2631 /* The regulator may on if it's not switchable or left on */
2632 ret = _regulator_is_enabled(rdev);
2633 if (ret == -EINVAL || ret == 0) {
2634 if (!regulator_ops_is_valid(rdev,
2635 REGULATOR_CHANGE_STATUS)) {
2636 ret = -EPERM;
2637 goto err_consumer_disable;
2638 }
2639
2640 ret = _regulator_do_enable(rdev);
2641 if (ret < 0)
2642 goto err_consumer_disable;
2643
2644 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2645 NULL);
2646 } else if (ret < 0) {
2647 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2648 goto err_consumer_disable;
2649 }
2650 /* Fallthrough on positive return values - already enabled */
2651 }
2652
2653 rdev->use_count++;
2654
2655 return 0;
2656
2657 err_consumer_disable:
2658 _regulator_handle_consumer_disable(regulator);
2659
2660 err_disable_supply:
2661 if (rdev->use_count == 0 && rdev->supply)
2662 _regulator_disable(rdev->supply);
2663
2664 return ret;
2665 }
2666
2667 /**
2668 * regulator_enable - enable regulator output
2669 * @regulator: regulator source
2670 *
2671 * Request that the regulator be enabled with the regulator output at
2672 * the predefined voltage or current value. Calls to regulator_enable()
2673 * must be balanced with calls to regulator_disable().
2674 *
2675 * NOTE: the output value can be set by other drivers, boot loader or may be
2676 * hardwired in the regulator.
2677 */
2678 int regulator_enable(struct regulator *regulator)
2679 {
2680 struct regulator_dev *rdev = regulator->rdev;
2681 struct ww_acquire_ctx ww_ctx;
2682 int ret;
2683
2684 regulator_lock_dependent(rdev, &ww_ctx);
2685 ret = _regulator_enable(regulator);
2686 regulator_unlock_dependent(rdev, &ww_ctx);
2687
2688 return ret;
2689 }
2690 EXPORT_SYMBOL_GPL(regulator_enable);
2691
2692 static int _regulator_do_disable(struct regulator_dev *rdev)
2693 {
2694 int ret;
2695
2696 trace_regulator_disable(rdev_get_name(rdev));
2697
2698 if (rdev->ena_pin) {
2699 if (rdev->ena_gpio_state) {
2700 ret = regulator_ena_gpio_ctrl(rdev, false);
2701 if (ret < 0)
2702 return ret;
2703 rdev->ena_gpio_state = 0;
2704 }
2705
2706 } else if (rdev->desc->ops->disable) {
2707 ret = rdev->desc->ops->disable(rdev);
2708 if (ret != 0)
2709 return ret;
2710 }
2711
2712 /* cares about last_off_jiffy only if off_on_delay is required by
2713 * device.
2714 */
2715 if (rdev->desc->off_on_delay)
2716 rdev->last_off_jiffy = jiffies;
2717
2718 trace_regulator_disable_complete(rdev_get_name(rdev));
2719
2720 return 0;
2721 }
2722
2723 /* locks held by regulator_disable() */
2724 static int _regulator_disable(struct regulator *regulator)
2725 {
2726 struct regulator_dev *rdev = regulator->rdev;
2727 int ret = 0;
2728
2729 lockdep_assert_held_once(&rdev->mutex.base);
2730
2731 if (WARN(rdev->use_count <= 0,
2732 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2733 return -EIO;
2734
2735 /* are we the last user and permitted to disable ? */
2736 if (rdev->use_count == 1 &&
2737 (rdev->constraints && !rdev->constraints->always_on)) {
2738
2739 /* we are last user */
2740 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2741 ret = _notifier_call_chain(rdev,
2742 REGULATOR_EVENT_PRE_DISABLE,
2743 NULL);
2744 if (ret & NOTIFY_STOP_MASK)
2745 return -EINVAL;
2746
2747 ret = _regulator_do_disable(rdev);
2748 if (ret < 0) {
2749 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2750 _notifier_call_chain(rdev,
2751 REGULATOR_EVENT_ABORT_DISABLE,
2752 NULL);
2753 return ret;
2754 }
2755 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2756 NULL);
2757 }
2758
2759 rdev->use_count = 0;
2760 } else if (rdev->use_count > 1) {
2761 rdev->use_count--;
2762 }
2763
2764 if (ret == 0)
2765 ret = _regulator_handle_consumer_disable(regulator);
2766
2767 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2768 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2769
2770 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2771 ret = _regulator_disable(rdev->supply);
2772
2773 return ret;
2774 }
2775
2776 /**
2777 * regulator_disable - disable regulator output
2778 * @regulator: regulator source
2779 *
2780 * Disable the regulator output voltage or current. Calls to
2781 * regulator_enable() must be balanced with calls to
2782 * regulator_disable().
2783 *
2784 * NOTE: this will only disable the regulator output if no other consumer
2785 * devices have it enabled, the regulator device supports disabling and
2786 * machine constraints permit this operation.
2787 */
2788 int regulator_disable(struct regulator *regulator)
2789 {
2790 struct regulator_dev *rdev = regulator->rdev;
2791 struct ww_acquire_ctx ww_ctx;
2792 int ret;
2793
2794 regulator_lock_dependent(rdev, &ww_ctx);
2795 ret = _regulator_disable(regulator);
2796 regulator_unlock_dependent(rdev, &ww_ctx);
2797
2798 return ret;
2799 }
2800 EXPORT_SYMBOL_GPL(regulator_disable);
2801
2802 /* locks held by regulator_force_disable() */
2803 static int _regulator_force_disable(struct regulator_dev *rdev)
2804 {
2805 int ret = 0;
2806
2807 lockdep_assert_held_once(&rdev->mutex.base);
2808
2809 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2810 REGULATOR_EVENT_PRE_DISABLE, NULL);
2811 if (ret & NOTIFY_STOP_MASK)
2812 return -EINVAL;
2813
2814 ret = _regulator_do_disable(rdev);
2815 if (ret < 0) {
2816 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2817 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2818 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2819 return ret;
2820 }
2821
2822 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2823 REGULATOR_EVENT_DISABLE, NULL);
2824
2825 return 0;
2826 }
2827
2828 /**
2829 * regulator_force_disable - force disable regulator output
2830 * @regulator: regulator source
2831 *
2832 * Forcibly disable the regulator output voltage or current.
2833 * NOTE: this *will* disable the regulator output even if other consumer
2834 * devices have it enabled. This should be used for situations when device
2835 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2836 */
2837 int regulator_force_disable(struct regulator *regulator)
2838 {
2839 struct regulator_dev *rdev = regulator->rdev;
2840 struct ww_acquire_ctx ww_ctx;
2841 int ret;
2842
2843 regulator_lock_dependent(rdev, &ww_ctx);
2844
2845 ret = _regulator_force_disable(regulator->rdev);
2846
2847 if (rdev->coupling_desc.n_coupled > 1)
2848 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2849
2850 if (regulator->uA_load) {
2851 regulator->uA_load = 0;
2852 ret = drms_uA_update(rdev);
2853 }
2854
2855 if (rdev->use_count != 0 && rdev->supply)
2856 _regulator_disable(rdev->supply);
2857
2858 regulator_unlock_dependent(rdev, &ww_ctx);
2859
2860 return ret;
2861 }
2862 EXPORT_SYMBOL_GPL(regulator_force_disable);
2863
2864 static void regulator_disable_work(struct work_struct *work)
2865 {
2866 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2867 disable_work.work);
2868 struct ww_acquire_ctx ww_ctx;
2869 int count, i, ret;
2870 struct regulator *regulator;
2871 int total_count = 0;
2872
2873 regulator_lock_dependent(rdev, &ww_ctx);
2874
2875 /*
2876 * Workqueue functions queue the new work instance while the previous
2877 * work instance is being processed. Cancel the queued work instance
2878 * as the work instance under processing does the job of the queued
2879 * work instance.
2880 */
2881 cancel_delayed_work(&rdev->disable_work);
2882
2883 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2884 count = regulator->deferred_disables;
2885
2886 if (!count)
2887 continue;
2888
2889 total_count += count;
2890 regulator->deferred_disables = 0;
2891
2892 for (i = 0; i < count; i++) {
2893 ret = _regulator_disable(regulator);
2894 if (ret != 0)
2895 rdev_err(rdev, "Deferred disable failed: %pe\n",
2896 ERR_PTR(ret));
2897 }
2898 }
2899 WARN_ON(!total_count);
2900
2901 if (rdev->coupling_desc.n_coupled > 1)
2902 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2903
2904 regulator_unlock_dependent(rdev, &ww_ctx);
2905 }
2906
2907 /**
2908 * regulator_disable_deferred - disable regulator output with delay
2909 * @regulator: regulator source
2910 * @ms: milliseconds until the regulator is disabled
2911 *
2912 * Execute regulator_disable() on the regulator after a delay. This
2913 * is intended for use with devices that require some time to quiesce.
2914 *
2915 * NOTE: this will only disable the regulator output if no other consumer
2916 * devices have it enabled, the regulator device supports disabling and
2917 * machine constraints permit this operation.
2918 */
2919 int regulator_disable_deferred(struct regulator *regulator, int ms)
2920 {
2921 struct regulator_dev *rdev = regulator->rdev;
2922
2923 if (!ms)
2924 return regulator_disable(regulator);
2925
2926 regulator_lock(rdev);
2927 regulator->deferred_disables++;
2928 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2929 msecs_to_jiffies(ms));
2930 regulator_unlock(rdev);
2931
2932 return 0;
2933 }
2934 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2935
2936 static int _regulator_is_enabled(struct regulator_dev *rdev)
2937 {
2938 /* A GPIO control always takes precedence */
2939 if (rdev->ena_pin)
2940 return rdev->ena_gpio_state;
2941
2942 /* If we don't know then assume that the regulator is always on */
2943 if (!rdev->desc->ops->is_enabled)
2944 return 1;
2945
2946 return rdev->desc->ops->is_enabled(rdev);
2947 }
2948
2949 static int _regulator_list_voltage(struct regulator_dev *rdev,
2950 unsigned selector, int lock)
2951 {
2952 const struct regulator_ops *ops = rdev->desc->ops;
2953 int ret;
2954
2955 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2956 return rdev->desc->fixed_uV;
2957
2958 if (ops->list_voltage) {
2959 if (selector >= rdev->desc->n_voltages)
2960 return -EINVAL;
2961 if (selector < rdev->desc->linear_min_sel)
2962 return 0;
2963 if (lock)
2964 regulator_lock(rdev);
2965 ret = ops->list_voltage(rdev, selector);
2966 if (lock)
2967 regulator_unlock(rdev);
2968 } else if (rdev->is_switch && rdev->supply) {
2969 ret = _regulator_list_voltage(rdev->supply->rdev,
2970 selector, lock);
2971 } else {
2972 return -EINVAL;
2973 }
2974
2975 if (ret > 0) {
2976 if (ret < rdev->constraints->min_uV)
2977 ret = 0;
2978 else if (ret > rdev->constraints->max_uV)
2979 ret = 0;
2980 }
2981
2982 return ret;
2983 }
2984
2985 /**
2986 * regulator_is_enabled - is the regulator output enabled
2987 * @regulator: regulator source
2988 *
2989 * Returns positive if the regulator driver backing the source/client
2990 * has requested that the device be enabled, zero if it hasn't, else a
2991 * negative errno code.
2992 *
2993 * Note that the device backing this regulator handle can have multiple
2994 * users, so it might be enabled even if regulator_enable() was never
2995 * called for this particular source.
2996 */
2997 int regulator_is_enabled(struct regulator *regulator)
2998 {
2999 int ret;
3000
3001 if (regulator->always_on)
3002 return 1;
3003
3004 regulator_lock(regulator->rdev);
3005 ret = _regulator_is_enabled(regulator->rdev);
3006 regulator_unlock(regulator->rdev);
3007
3008 return ret;
3009 }
3010 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3011
3012 /**
3013 * regulator_count_voltages - count regulator_list_voltage() selectors
3014 * @regulator: regulator source
3015 *
3016 * Returns number of selectors, or negative errno. Selectors are
3017 * numbered starting at zero, and typically correspond to bitfields
3018 * in hardware registers.
3019 */
3020 int regulator_count_voltages(struct regulator *regulator)
3021 {
3022 struct regulator_dev *rdev = regulator->rdev;
3023
3024 if (rdev->desc->n_voltages)
3025 return rdev->desc->n_voltages;
3026
3027 if (!rdev->is_switch || !rdev->supply)
3028 return -EINVAL;
3029
3030 return regulator_count_voltages(rdev->supply);
3031 }
3032 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3033
3034 /**
3035 * regulator_list_voltage - enumerate supported voltages
3036 * @regulator: regulator source
3037 * @selector: identify voltage to list
3038 * Context: can sleep
3039 *
3040 * Returns a voltage that can be passed to @regulator_set_voltage(),
3041 * zero if this selector code can't be used on this system, or a
3042 * negative errno.
3043 */
3044 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3045 {
3046 return _regulator_list_voltage(regulator->rdev, selector, 1);
3047 }
3048 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3049
3050 /**
3051 * regulator_get_regmap - get the regulator's register map
3052 * @regulator: regulator source
3053 *
3054 * Returns the register map for the given regulator, or an ERR_PTR value
3055 * if the regulator doesn't use regmap.
3056 */
3057 struct regmap *regulator_get_regmap(struct regulator *regulator)
3058 {
3059 struct regmap *map = regulator->rdev->regmap;
3060
3061 return map ? map : ERR_PTR(-EOPNOTSUPP);
3062 }
3063
3064 /**
3065 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3066 * @regulator: regulator source
3067 * @vsel_reg: voltage selector register, output parameter
3068 * @vsel_mask: mask for voltage selector bitfield, output parameter
3069 *
3070 * Returns the hardware register offset and bitmask used for setting the
3071 * regulator voltage. This might be useful when configuring voltage-scaling
3072 * hardware or firmware that can make I2C requests behind the kernel's back,
3073 * for example.
3074 *
3075 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3076 * and 0 is returned, otherwise a negative errno is returned.
3077 */
3078 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3079 unsigned *vsel_reg,
3080 unsigned *vsel_mask)
3081 {
3082 struct regulator_dev *rdev = regulator->rdev;
3083 const struct regulator_ops *ops = rdev->desc->ops;
3084
3085 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3086 return -EOPNOTSUPP;
3087
3088 *vsel_reg = rdev->desc->vsel_reg;
3089 *vsel_mask = rdev->desc->vsel_mask;
3090
3091 return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3094
3095 /**
3096 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3097 * @regulator: regulator source
3098 * @selector: identify voltage to list
3099 *
3100 * Converts the selector to a hardware-specific voltage selector that can be
3101 * directly written to the regulator registers. The address of the voltage
3102 * register can be determined by calling @regulator_get_hardware_vsel_register.
3103 *
3104 * On error a negative errno is returned.
3105 */
3106 int regulator_list_hardware_vsel(struct regulator *regulator,
3107 unsigned selector)
3108 {
3109 struct regulator_dev *rdev = regulator->rdev;
3110 const struct regulator_ops *ops = rdev->desc->ops;
3111
3112 if (selector >= rdev->desc->n_voltages)
3113 return -EINVAL;
3114 if (selector < rdev->desc->linear_min_sel)
3115 return 0;
3116 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3117 return -EOPNOTSUPP;
3118
3119 return selector;
3120 }
3121 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3122
3123 /**
3124 * regulator_get_linear_step - return the voltage step size between VSEL values
3125 * @regulator: regulator source
3126 *
3127 * Returns the voltage step size between VSEL values for linear
3128 * regulators, or return 0 if the regulator isn't a linear regulator.
3129 */
3130 unsigned int regulator_get_linear_step(struct regulator *regulator)
3131 {
3132 struct regulator_dev *rdev = regulator->rdev;
3133
3134 return rdev->desc->uV_step;
3135 }
3136 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3137
3138 /**
3139 * regulator_is_supported_voltage - check if a voltage range can be supported
3140 *
3141 * @regulator: Regulator to check.
3142 * @min_uV: Minimum required voltage in uV.
3143 * @max_uV: Maximum required voltage in uV.
3144 *
3145 * Returns a boolean.
3146 */
3147 int regulator_is_supported_voltage(struct regulator *regulator,
3148 int min_uV, int max_uV)
3149 {
3150 struct regulator_dev *rdev = regulator->rdev;
3151 int i, voltages, ret;
3152
3153 /* If we can't change voltage check the current voltage */
3154 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3155 ret = regulator_get_voltage(regulator);
3156 if (ret >= 0)
3157 return min_uV <= ret && ret <= max_uV;
3158 else
3159 return ret;
3160 }
3161
3162 /* Any voltage within constrains range is fine? */
3163 if (rdev->desc->continuous_voltage_range)
3164 return min_uV >= rdev->constraints->min_uV &&
3165 max_uV <= rdev->constraints->max_uV;
3166
3167 ret = regulator_count_voltages(regulator);
3168 if (ret < 0)
3169 return 0;
3170 voltages = ret;
3171
3172 for (i = 0; i < voltages; i++) {
3173 ret = regulator_list_voltage(regulator, i);
3174
3175 if (ret >= min_uV && ret <= max_uV)
3176 return 1;
3177 }
3178
3179 return 0;
3180 }
3181 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3182
3183 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3184 int max_uV)
3185 {
3186 const struct regulator_desc *desc = rdev->desc;
3187
3188 if (desc->ops->map_voltage)
3189 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3190
3191 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3192 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3193
3194 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3195 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3196
3197 if (desc->ops->list_voltage ==
3198 regulator_list_voltage_pickable_linear_range)
3199 return regulator_map_voltage_pickable_linear_range(rdev,
3200 min_uV, max_uV);
3201
3202 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3203 }
3204
3205 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3206 int min_uV, int max_uV,
3207 unsigned *selector)
3208 {
3209 struct pre_voltage_change_data data;
3210 int ret;
3211
3212 data.old_uV = regulator_get_voltage_rdev(rdev);
3213 data.min_uV = min_uV;
3214 data.max_uV = max_uV;
3215 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3216 &data);
3217 if (ret & NOTIFY_STOP_MASK)
3218 return -EINVAL;
3219
3220 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3221 if (ret >= 0)
3222 return ret;
3223
3224 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3225 (void *)data.old_uV);
3226
3227 return ret;
3228 }
3229
3230 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3231 int uV, unsigned selector)
3232 {
3233 struct pre_voltage_change_data data;
3234 int ret;
3235
3236 data.old_uV = regulator_get_voltage_rdev(rdev);
3237 data.min_uV = uV;
3238 data.max_uV = uV;
3239 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3240 &data);
3241 if (ret & NOTIFY_STOP_MASK)
3242 return -EINVAL;
3243
3244 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3245 if (ret >= 0)
3246 return ret;
3247
3248 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3249 (void *)data.old_uV);
3250
3251 return ret;
3252 }
3253
3254 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3255 int uV, int new_selector)
3256 {
3257 const struct regulator_ops *ops = rdev->desc->ops;
3258 int diff, old_sel, curr_sel, ret;
3259
3260 /* Stepping is only needed if the regulator is enabled. */
3261 if (!_regulator_is_enabled(rdev))
3262 goto final_set;
3263
3264 if (!ops->get_voltage_sel)
3265 return -EINVAL;
3266
3267 old_sel = ops->get_voltage_sel(rdev);
3268 if (old_sel < 0)
3269 return old_sel;
3270
3271 diff = new_selector - old_sel;
3272 if (diff == 0)
3273 return 0; /* No change needed. */
3274
3275 if (diff > 0) {
3276 /* Stepping up. */
3277 for (curr_sel = old_sel + rdev->desc->vsel_step;
3278 curr_sel < new_selector;
3279 curr_sel += rdev->desc->vsel_step) {
3280 /*
3281 * Call the callback directly instead of using
3282 * _regulator_call_set_voltage_sel() as we don't
3283 * want to notify anyone yet. Same in the branch
3284 * below.
3285 */
3286 ret = ops->set_voltage_sel(rdev, curr_sel);
3287 if (ret)
3288 goto try_revert;
3289 }
3290 } else {
3291 /* Stepping down. */
3292 for (curr_sel = old_sel - rdev->desc->vsel_step;
3293 curr_sel > new_selector;
3294 curr_sel -= rdev->desc->vsel_step) {
3295 ret = ops->set_voltage_sel(rdev, curr_sel);
3296 if (ret)
3297 goto try_revert;
3298 }
3299 }
3300
3301 final_set:
3302 /* The final selector will trigger the notifiers. */
3303 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3304
3305 try_revert:
3306 /*
3307 * At least try to return to the previous voltage if setting a new
3308 * one failed.
3309 */
3310 (void)ops->set_voltage_sel(rdev, old_sel);
3311 return ret;
3312 }
3313
3314 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3315 int old_uV, int new_uV)
3316 {
3317 unsigned int ramp_delay = 0;
3318
3319 if (rdev->constraints->ramp_delay)
3320 ramp_delay = rdev->constraints->ramp_delay;
3321 else if (rdev->desc->ramp_delay)
3322 ramp_delay = rdev->desc->ramp_delay;
3323 else if (rdev->constraints->settling_time)
3324 return rdev->constraints->settling_time;
3325 else if (rdev->constraints->settling_time_up &&
3326 (new_uV > old_uV))
3327 return rdev->constraints->settling_time_up;
3328 else if (rdev->constraints->settling_time_down &&
3329 (new_uV < old_uV))
3330 return rdev->constraints->settling_time_down;
3331
3332 if (ramp_delay == 0) {
3333 rdev_dbg(rdev, "ramp_delay not set\n");
3334 return 0;
3335 }
3336
3337 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3338 }
3339
3340 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3341 int min_uV, int max_uV)
3342 {
3343 int ret;
3344 int delay = 0;
3345 int best_val = 0;
3346 unsigned int selector;
3347 int old_selector = -1;
3348 const struct regulator_ops *ops = rdev->desc->ops;
3349 int old_uV = regulator_get_voltage_rdev(rdev);
3350
3351 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3352
3353 min_uV += rdev->constraints->uV_offset;
3354 max_uV += rdev->constraints->uV_offset;
3355
3356 /*
3357 * If we can't obtain the old selector there is not enough
3358 * info to call set_voltage_time_sel().
3359 */
3360 if (_regulator_is_enabled(rdev) &&
3361 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3362 old_selector = ops->get_voltage_sel(rdev);
3363 if (old_selector < 0)
3364 return old_selector;
3365 }
3366
3367 if (ops->set_voltage) {
3368 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3369 &selector);
3370
3371 if (ret >= 0) {
3372 if (ops->list_voltage)
3373 best_val = ops->list_voltage(rdev,
3374 selector);
3375 else
3376 best_val = regulator_get_voltage_rdev(rdev);
3377 }
3378
3379 } else if (ops->set_voltage_sel) {
3380 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3381 if (ret >= 0) {
3382 best_val = ops->list_voltage(rdev, ret);
3383 if (min_uV <= best_val && max_uV >= best_val) {
3384 selector = ret;
3385 if (old_selector == selector)
3386 ret = 0;
3387 else if (rdev->desc->vsel_step)
3388 ret = _regulator_set_voltage_sel_step(
3389 rdev, best_val, selector);
3390 else
3391 ret = _regulator_call_set_voltage_sel(
3392 rdev, best_val, selector);
3393 } else {
3394 ret = -EINVAL;
3395 }
3396 }
3397 } else {
3398 ret = -EINVAL;
3399 }
3400
3401 if (ret)
3402 goto out;
3403
3404 if (ops->set_voltage_time_sel) {
3405 /*
3406 * Call set_voltage_time_sel if successfully obtained
3407 * old_selector
3408 */
3409 if (old_selector >= 0 && old_selector != selector)
3410 delay = ops->set_voltage_time_sel(rdev, old_selector,
3411 selector);
3412 } else {
3413 if (old_uV != best_val) {
3414 if (ops->set_voltage_time)
3415 delay = ops->set_voltage_time(rdev, old_uV,
3416 best_val);
3417 else
3418 delay = _regulator_set_voltage_time(rdev,
3419 old_uV,
3420 best_val);
3421 }
3422 }
3423
3424 if (delay < 0) {
3425 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3426 delay = 0;
3427 }
3428
3429 /* Insert any necessary delays */
3430 if (delay >= 1000) {
3431 mdelay(delay / 1000);
3432 udelay(delay % 1000);
3433 } else if (delay) {
3434 udelay(delay);
3435 }
3436
3437 if (best_val >= 0) {
3438 unsigned long data = best_val;
3439
3440 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3441 (void *)data);
3442 }
3443
3444 out:
3445 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3446
3447 return ret;
3448 }
3449
3450 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3451 int min_uV, int max_uV, suspend_state_t state)
3452 {
3453 struct regulator_state *rstate;
3454 int uV, sel;
3455
3456 rstate = regulator_get_suspend_state(rdev, state);
3457 if (rstate == NULL)
3458 return -EINVAL;
3459
3460 if (min_uV < rstate->min_uV)
3461 min_uV = rstate->min_uV;
3462 if (max_uV > rstate->max_uV)
3463 max_uV = rstate->max_uV;
3464
3465 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3466 if (sel < 0)
3467 return sel;
3468
3469 uV = rdev->desc->ops->list_voltage(rdev, sel);
3470 if (uV >= min_uV && uV <= max_uV)
3471 rstate->uV = uV;
3472
3473 return 0;
3474 }
3475
3476 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3477 int min_uV, int max_uV,
3478 suspend_state_t state)
3479 {
3480 struct regulator_dev *rdev = regulator->rdev;
3481 struct regulator_voltage *voltage = &regulator->voltage[state];
3482 int ret = 0;
3483 int old_min_uV, old_max_uV;
3484 int current_uV;
3485
3486 /* If we're setting the same range as last time the change
3487 * should be a noop (some cpufreq implementations use the same
3488 * voltage for multiple frequencies, for example).
3489 */
3490 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3491 goto out;
3492
3493 /* If we're trying to set a range that overlaps the current voltage,
3494 * return successfully even though the regulator does not support
3495 * changing the voltage.
3496 */
3497 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3498 current_uV = regulator_get_voltage_rdev(rdev);
3499 if (min_uV <= current_uV && current_uV <= max_uV) {
3500 voltage->min_uV = min_uV;
3501 voltage->max_uV = max_uV;
3502 goto out;
3503 }
3504 }
3505
3506 /* sanity check */
3507 if (!rdev->desc->ops->set_voltage &&
3508 !rdev->desc->ops->set_voltage_sel) {
3509 ret = -EINVAL;
3510 goto out;
3511 }
3512
3513 /* constraints check */
3514 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3515 if (ret < 0)
3516 goto out;
3517
3518 /* restore original values in case of error */
3519 old_min_uV = voltage->min_uV;
3520 old_max_uV = voltage->max_uV;
3521 voltage->min_uV = min_uV;
3522 voltage->max_uV = max_uV;
3523
3524 /* for not coupled regulators this will just set the voltage */
3525 ret = regulator_balance_voltage(rdev, state);
3526 if (ret < 0) {
3527 voltage->min_uV = old_min_uV;
3528 voltage->max_uV = old_max_uV;
3529 }
3530
3531 out:
3532 return ret;
3533 }
3534
3535 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3536 int max_uV, suspend_state_t state)
3537 {
3538 int best_supply_uV = 0;
3539 int supply_change_uV = 0;
3540 int ret;
3541
3542 if (rdev->supply &&
3543 regulator_ops_is_valid(rdev->supply->rdev,
3544 REGULATOR_CHANGE_VOLTAGE) &&
3545 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3546 rdev->desc->ops->get_voltage_sel))) {
3547 int current_supply_uV;
3548 int selector;
3549
3550 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3551 if (selector < 0) {
3552 ret = selector;
3553 goto out;
3554 }
3555
3556 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3557 if (best_supply_uV < 0) {
3558 ret = best_supply_uV;
3559 goto out;
3560 }
3561
3562 best_supply_uV += rdev->desc->min_dropout_uV;
3563
3564 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3565 if (current_supply_uV < 0) {
3566 ret = current_supply_uV;
3567 goto out;
3568 }
3569
3570 supply_change_uV = best_supply_uV - current_supply_uV;
3571 }
3572
3573 if (supply_change_uV > 0) {
3574 ret = regulator_set_voltage_unlocked(rdev->supply,
3575 best_supply_uV, INT_MAX, state);
3576 if (ret) {
3577 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3578 ERR_PTR(ret));
3579 goto out;
3580 }
3581 }
3582
3583 if (state == PM_SUSPEND_ON)
3584 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3585 else
3586 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3587 max_uV, state);
3588 if (ret < 0)
3589 goto out;
3590
3591 if (supply_change_uV < 0) {
3592 ret = regulator_set_voltage_unlocked(rdev->supply,
3593 best_supply_uV, INT_MAX, state);
3594 if (ret)
3595 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3596 ERR_PTR(ret));
3597 /* No need to fail here */
3598 ret = 0;
3599 }
3600
3601 out:
3602 return ret;
3603 }
3604 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3605
3606 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3607 int *current_uV, int *min_uV)
3608 {
3609 struct regulation_constraints *constraints = rdev->constraints;
3610
3611 /* Limit voltage change only if necessary */
3612 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3613 return 1;
3614
3615 if (*current_uV < 0) {
3616 *current_uV = regulator_get_voltage_rdev(rdev);
3617
3618 if (*current_uV < 0)
3619 return *current_uV;
3620 }
3621
3622 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3623 return 1;
3624
3625 /* Clamp target voltage within the given step */
3626 if (*current_uV < *min_uV)
3627 *min_uV = min(*current_uV + constraints->max_uV_step,
3628 *min_uV);
3629 else
3630 *min_uV = max(*current_uV - constraints->max_uV_step,
3631 *min_uV);
3632
3633 return 0;
3634 }
3635
3636 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3637 int *current_uV,
3638 int *min_uV, int *max_uV,
3639 suspend_state_t state,
3640 int n_coupled)
3641 {
3642 struct coupling_desc *c_desc = &rdev->coupling_desc;
3643 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3644 struct regulation_constraints *constraints = rdev->constraints;
3645 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3646 int max_current_uV = 0, min_current_uV = INT_MAX;
3647 int highest_min_uV = 0, target_uV, possible_uV;
3648 int i, ret, max_spread;
3649 bool done;
3650
3651 *current_uV = -1;
3652
3653 /*
3654 * If there are no coupled regulators, simply set the voltage
3655 * demanded by consumers.
3656 */
3657 if (n_coupled == 1) {
3658 /*
3659 * If consumers don't provide any demands, set voltage
3660 * to min_uV
3661 */
3662 desired_min_uV = constraints->min_uV;
3663 desired_max_uV = constraints->max_uV;
3664
3665 ret = regulator_check_consumers(rdev,
3666 &desired_min_uV,
3667 &desired_max_uV, state);
3668 if (ret < 0)
3669 return ret;
3670
3671 possible_uV = desired_min_uV;
3672 done = true;
3673
3674 goto finish;
3675 }
3676
3677 /* Find highest min desired voltage */
3678 for (i = 0; i < n_coupled; i++) {
3679 int tmp_min = 0;
3680 int tmp_max = INT_MAX;
3681
3682 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3683
3684 ret = regulator_check_consumers(c_rdevs[i],
3685 &tmp_min,
3686 &tmp_max, state);
3687 if (ret < 0)
3688 return ret;
3689
3690 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3691 if (ret < 0)
3692 return ret;
3693
3694 highest_min_uV = max(highest_min_uV, tmp_min);
3695
3696 if (i == 0) {
3697 desired_min_uV = tmp_min;
3698 desired_max_uV = tmp_max;
3699 }
3700 }
3701
3702 max_spread = constraints->max_spread[0];
3703
3704 /*
3705 * Let target_uV be equal to the desired one if possible.
3706 * If not, set it to minimum voltage, allowed by other coupled
3707 * regulators.
3708 */
3709 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3710
3711 /*
3712 * Find min and max voltages, which currently aren't violating
3713 * max_spread.
3714 */
3715 for (i = 1; i < n_coupled; i++) {
3716 int tmp_act;
3717
3718 if (!_regulator_is_enabled(c_rdevs[i]))
3719 continue;
3720
3721 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3722 if (tmp_act < 0)
3723 return tmp_act;
3724
3725 min_current_uV = min(tmp_act, min_current_uV);
3726 max_current_uV = max(tmp_act, max_current_uV);
3727 }
3728
3729 /* There aren't any other regulators enabled */
3730 if (max_current_uV == 0) {
3731 possible_uV = target_uV;
3732 } else {
3733 /*
3734 * Correct target voltage, so as it currently isn't
3735 * violating max_spread
3736 */
3737 possible_uV = max(target_uV, max_current_uV - max_spread);
3738 possible_uV = min(possible_uV, min_current_uV + max_spread);
3739 }
3740
3741 if (possible_uV > desired_max_uV)
3742 return -EINVAL;
3743
3744 done = (possible_uV == target_uV);
3745 desired_min_uV = possible_uV;
3746
3747 finish:
3748 /* Apply max_uV_step constraint if necessary */
3749 if (state == PM_SUSPEND_ON) {
3750 ret = regulator_limit_voltage_step(rdev, current_uV,
3751 &desired_min_uV);
3752 if (ret < 0)
3753 return ret;
3754
3755 if (ret == 0)
3756 done = false;
3757 }
3758
3759 /* Set current_uV if wasn't done earlier in the code and if necessary */
3760 if (n_coupled > 1 && *current_uV == -1) {
3761
3762 if (_regulator_is_enabled(rdev)) {
3763 ret = regulator_get_voltage_rdev(rdev);
3764 if (ret < 0)
3765 return ret;
3766
3767 *current_uV = ret;
3768 } else {
3769 *current_uV = desired_min_uV;
3770 }
3771 }
3772
3773 *min_uV = desired_min_uV;
3774 *max_uV = desired_max_uV;
3775
3776 return done;
3777 }
3778
3779 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3780 suspend_state_t state, bool skip_coupled)
3781 {
3782 struct regulator_dev **c_rdevs;
3783 struct regulator_dev *best_rdev;
3784 struct coupling_desc *c_desc = &rdev->coupling_desc;
3785 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3786 unsigned int delta, best_delta;
3787 unsigned long c_rdev_done = 0;
3788 bool best_c_rdev_done;
3789
3790 c_rdevs = c_desc->coupled_rdevs;
3791 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3792
3793 /*
3794 * Find the best possible voltage change on each loop. Leave the loop
3795 * if there isn't any possible change.
3796 */
3797 do {
3798 best_c_rdev_done = false;
3799 best_delta = 0;
3800 best_min_uV = 0;
3801 best_max_uV = 0;
3802 best_c_rdev = 0;
3803 best_rdev = NULL;
3804
3805 /*
3806 * Find highest difference between optimal voltage
3807 * and current voltage.
3808 */
3809 for (i = 0; i < n_coupled; i++) {
3810 /*
3811 * optimal_uV is the best voltage that can be set for
3812 * i-th regulator at the moment without violating
3813 * max_spread constraint in order to balance
3814 * the coupled voltages.
3815 */
3816 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3817
3818 if (test_bit(i, &c_rdev_done))
3819 continue;
3820
3821 ret = regulator_get_optimal_voltage(c_rdevs[i],
3822 &current_uV,
3823 &optimal_uV,
3824 &optimal_max_uV,
3825 state, n_coupled);
3826 if (ret < 0)
3827 goto out;
3828
3829 delta = abs(optimal_uV - current_uV);
3830
3831 if (delta && best_delta <= delta) {
3832 best_c_rdev_done = ret;
3833 best_delta = delta;
3834 best_rdev = c_rdevs[i];
3835 best_min_uV = optimal_uV;
3836 best_max_uV = optimal_max_uV;
3837 best_c_rdev = i;
3838 }
3839 }
3840
3841 /* Nothing to change, return successfully */
3842 if (!best_rdev) {
3843 ret = 0;
3844 goto out;
3845 }
3846
3847 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3848 best_max_uV, state);
3849
3850 if (ret < 0)
3851 goto out;
3852
3853 if (best_c_rdev_done)
3854 set_bit(best_c_rdev, &c_rdev_done);
3855
3856 } while (n_coupled > 1);
3857
3858 out:
3859 return ret;
3860 }
3861
3862 static int regulator_balance_voltage(struct regulator_dev *rdev,
3863 suspend_state_t state)
3864 {
3865 struct coupling_desc *c_desc = &rdev->coupling_desc;
3866 struct regulator_coupler *coupler = c_desc->coupler;
3867 bool skip_coupled = false;
3868
3869 /*
3870 * If system is in a state other than PM_SUSPEND_ON, don't check
3871 * other coupled regulators.
3872 */
3873 if (state != PM_SUSPEND_ON)
3874 skip_coupled = true;
3875
3876 if (c_desc->n_resolved < c_desc->n_coupled) {
3877 rdev_err(rdev, "Not all coupled regulators registered\n");
3878 return -EPERM;
3879 }
3880
3881 /* Invoke custom balancer for customized couplers */
3882 if (coupler && coupler->balance_voltage)
3883 return coupler->balance_voltage(coupler, rdev, state);
3884
3885 return regulator_do_balance_voltage(rdev, state, skip_coupled);
3886 }
3887
3888 /**
3889 * regulator_set_voltage - set regulator output voltage
3890 * @regulator: regulator source
3891 * @min_uV: Minimum required voltage in uV
3892 * @max_uV: Maximum acceptable voltage in uV
3893 *
3894 * Sets a voltage regulator to the desired output voltage. This can be set
3895 * during any regulator state. IOW, regulator can be disabled or enabled.
3896 *
3897 * If the regulator is enabled then the voltage will change to the new value
3898 * immediately otherwise if the regulator is disabled the regulator will
3899 * output at the new voltage when enabled.
3900 *
3901 * NOTE: If the regulator is shared between several devices then the lowest
3902 * request voltage that meets the system constraints will be used.
3903 * Regulator system constraints must be set for this regulator before
3904 * calling this function otherwise this call will fail.
3905 */
3906 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3907 {
3908 struct ww_acquire_ctx ww_ctx;
3909 int ret;
3910
3911 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3912
3913 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3914 PM_SUSPEND_ON);
3915
3916 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3917
3918 return ret;
3919 }
3920 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3921
3922 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3923 suspend_state_t state, bool en)
3924 {
3925 struct regulator_state *rstate;
3926
3927 rstate = regulator_get_suspend_state(rdev, state);
3928 if (rstate == NULL)
3929 return -EINVAL;
3930
3931 if (!rstate->changeable)
3932 return -EPERM;
3933
3934 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3935
3936 return 0;
3937 }
3938
3939 int regulator_suspend_enable(struct regulator_dev *rdev,
3940 suspend_state_t state)
3941 {
3942 return regulator_suspend_toggle(rdev, state, true);
3943 }
3944 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3945
3946 int regulator_suspend_disable(struct regulator_dev *rdev,
3947 suspend_state_t state)
3948 {
3949 struct regulator *regulator;
3950 struct regulator_voltage *voltage;
3951
3952 /*
3953 * if any consumer wants this regulator device keeping on in
3954 * suspend states, don't set it as disabled.
3955 */
3956 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3957 voltage = &regulator->voltage[state];
3958 if (voltage->min_uV || voltage->max_uV)
3959 return 0;
3960 }
3961
3962 return regulator_suspend_toggle(rdev, state, false);
3963 }
3964 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3965
3966 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3967 int min_uV, int max_uV,
3968 suspend_state_t state)
3969 {
3970 struct regulator_dev *rdev = regulator->rdev;
3971 struct regulator_state *rstate;
3972
3973 rstate = regulator_get_suspend_state(rdev, state);
3974 if (rstate == NULL)
3975 return -EINVAL;
3976
3977 if (rstate->min_uV == rstate->max_uV) {
3978 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3979 return -EPERM;
3980 }
3981
3982 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3983 }
3984
3985 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3986 int max_uV, suspend_state_t state)
3987 {
3988 struct ww_acquire_ctx ww_ctx;
3989 int ret;
3990
3991 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3992 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3993 return -EINVAL;
3994
3995 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3996
3997 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3998 max_uV, state);
3999
4000 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4001
4002 return ret;
4003 }
4004 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4005
4006 /**
4007 * regulator_set_voltage_time - get raise/fall time
4008 * @regulator: regulator source
4009 * @old_uV: starting voltage in microvolts
4010 * @new_uV: target voltage in microvolts
4011 *
4012 * Provided with the starting and ending voltage, this function attempts to
4013 * calculate the time in microseconds required to rise or fall to this new
4014 * voltage.
4015 */
4016 int regulator_set_voltage_time(struct regulator *regulator,
4017 int old_uV, int new_uV)
4018 {
4019 struct regulator_dev *rdev = regulator->rdev;
4020 const struct regulator_ops *ops = rdev->desc->ops;
4021 int old_sel = -1;
4022 int new_sel = -1;
4023 int voltage;
4024 int i;
4025
4026 if (ops->set_voltage_time)
4027 return ops->set_voltage_time(rdev, old_uV, new_uV);
4028 else if (!ops->set_voltage_time_sel)
4029 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4030
4031 /* Currently requires operations to do this */
4032 if (!ops->list_voltage || !rdev->desc->n_voltages)
4033 return -EINVAL;
4034
4035 for (i = 0; i < rdev->desc->n_voltages; i++) {
4036 /* We only look for exact voltage matches here */
4037 if (i < rdev->desc->linear_min_sel)
4038 continue;
4039
4040 if (old_sel >= 0 && new_sel >= 0)
4041 break;
4042
4043 voltage = regulator_list_voltage(regulator, i);
4044 if (voltage < 0)
4045 return -EINVAL;
4046 if (voltage == 0)
4047 continue;
4048 if (voltage == old_uV)
4049 old_sel = i;
4050 if (voltage == new_uV)
4051 new_sel = i;
4052 }
4053
4054 if (old_sel < 0 || new_sel < 0)
4055 return -EINVAL;
4056
4057 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4058 }
4059 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4060
4061 /**
4062 * regulator_set_voltage_time_sel - get raise/fall time
4063 * @rdev: regulator source device
4064 * @old_selector: selector for starting voltage
4065 * @new_selector: selector for target voltage
4066 *
4067 * Provided with the starting and target voltage selectors, this function
4068 * returns time in microseconds required to rise or fall to this new voltage
4069 *
4070 * Drivers providing ramp_delay in regulation_constraints can use this as their
4071 * set_voltage_time_sel() operation.
4072 */
4073 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4074 unsigned int old_selector,
4075 unsigned int new_selector)
4076 {
4077 int old_volt, new_volt;
4078
4079 /* sanity check */
4080 if (!rdev->desc->ops->list_voltage)
4081 return -EINVAL;
4082
4083 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4084 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4085
4086 if (rdev->desc->ops->set_voltage_time)
4087 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4088 new_volt);
4089 else
4090 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4091 }
4092 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4093
4094 /**
4095 * regulator_sync_voltage - re-apply last regulator output voltage
4096 * @regulator: regulator source
4097 *
4098 * Re-apply the last configured voltage. This is intended to be used
4099 * where some external control source the consumer is cooperating with
4100 * has caused the configured voltage to change.
4101 */
4102 int regulator_sync_voltage(struct regulator *regulator)
4103 {
4104 struct regulator_dev *rdev = regulator->rdev;
4105 struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4106 int ret, min_uV, max_uV;
4107
4108 regulator_lock(rdev);
4109
4110 if (!rdev->desc->ops->set_voltage &&
4111 !rdev->desc->ops->set_voltage_sel) {
4112 ret = -EINVAL;
4113 goto out;
4114 }
4115
4116 /* This is only going to work if we've had a voltage configured. */
4117 if (!voltage->min_uV && !voltage->max_uV) {
4118 ret = -EINVAL;
4119 goto out;
4120 }
4121
4122 min_uV = voltage->min_uV;
4123 max_uV = voltage->max_uV;
4124
4125 /* This should be a paranoia check... */
4126 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4127 if (ret < 0)
4128 goto out;
4129
4130 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4131 if (ret < 0)
4132 goto out;
4133
4134 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4135
4136 out:
4137 regulator_unlock(rdev);
4138 return ret;
4139 }
4140 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4141
4142 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4143 {
4144 int sel, ret;
4145 bool bypassed;
4146
4147 if (rdev->desc->ops->get_bypass) {
4148 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4149 if (ret < 0)
4150 return ret;
4151 if (bypassed) {
4152 /* if bypassed the regulator must have a supply */
4153 if (!rdev->supply) {
4154 rdev_err(rdev,
4155 "bypassed regulator has no supply!\n");
4156 return -EPROBE_DEFER;
4157 }
4158
4159 return regulator_get_voltage_rdev(rdev->supply->rdev);
4160 }
4161 }
4162
4163 if (rdev->desc->ops->get_voltage_sel) {
4164 sel = rdev->desc->ops->get_voltage_sel(rdev);
4165 if (sel < 0)
4166 return sel;
4167 ret = rdev->desc->ops->list_voltage(rdev, sel);
4168 } else if (rdev->desc->ops->get_voltage) {
4169 ret = rdev->desc->ops->get_voltage(rdev);
4170 } else if (rdev->desc->ops->list_voltage) {
4171 ret = rdev->desc->ops->list_voltage(rdev, 0);
4172 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4173 ret = rdev->desc->fixed_uV;
4174 } else if (rdev->supply) {
4175 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4176 } else if (rdev->supply_name) {
4177 return -EPROBE_DEFER;
4178 } else {
4179 return -EINVAL;
4180 }
4181
4182 if (ret < 0)
4183 return ret;
4184 return ret - rdev->constraints->uV_offset;
4185 }
4186 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4187
4188 /**
4189 * regulator_get_voltage - get regulator output voltage
4190 * @regulator: regulator source
4191 *
4192 * This returns the current regulator voltage in uV.
4193 *
4194 * NOTE: If the regulator is disabled it will return the voltage value. This
4195 * function should not be used to determine regulator state.
4196 */
4197 int regulator_get_voltage(struct regulator *regulator)
4198 {
4199 struct ww_acquire_ctx ww_ctx;
4200 int ret;
4201
4202 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4203 ret = regulator_get_voltage_rdev(regulator->rdev);
4204 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4205
4206 return ret;
4207 }
4208 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4209
4210 /**
4211 * regulator_set_current_limit - set regulator output current limit
4212 * @regulator: regulator source
4213 * @min_uA: Minimum supported current in uA
4214 * @max_uA: Maximum supported current in uA
4215 *
4216 * Sets current sink to the desired output current. This can be set during
4217 * any regulator state. IOW, regulator can be disabled or enabled.
4218 *
4219 * If the regulator is enabled then the current will change to the new value
4220 * immediately otherwise if the regulator is disabled the regulator will
4221 * output at the new current when enabled.
4222 *
4223 * NOTE: Regulator system constraints must be set for this regulator before
4224 * calling this function otherwise this call will fail.
4225 */
4226 int regulator_set_current_limit(struct regulator *regulator,
4227 int min_uA, int max_uA)
4228 {
4229 struct regulator_dev *rdev = regulator->rdev;
4230 int ret;
4231
4232 regulator_lock(rdev);
4233
4234 /* sanity check */
4235 if (!rdev->desc->ops->set_current_limit) {
4236 ret = -EINVAL;
4237 goto out;
4238 }
4239
4240 /* constraints check */
4241 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4242 if (ret < 0)
4243 goto out;
4244
4245 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4246 out:
4247 regulator_unlock(rdev);
4248 return ret;
4249 }
4250 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4251
4252 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4253 {
4254 /* sanity check */
4255 if (!rdev->desc->ops->get_current_limit)
4256 return -EINVAL;
4257
4258 return rdev->desc->ops->get_current_limit(rdev);
4259 }
4260
4261 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4262 {
4263 int ret;
4264
4265 regulator_lock(rdev);
4266 ret = _regulator_get_current_limit_unlocked(rdev);
4267 regulator_unlock(rdev);
4268
4269 return ret;
4270 }
4271
4272 /**
4273 * regulator_get_current_limit - get regulator output current
4274 * @regulator: regulator source
4275 *
4276 * This returns the current supplied by the specified current sink in uA.
4277 *
4278 * NOTE: If the regulator is disabled it will return the current value. This
4279 * function should not be used to determine regulator state.
4280 */
4281 int regulator_get_current_limit(struct regulator *regulator)
4282 {
4283 return _regulator_get_current_limit(regulator->rdev);
4284 }
4285 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4286
4287 /**
4288 * regulator_set_mode - set regulator operating mode
4289 * @regulator: regulator source
4290 * @mode: operating mode - one of the REGULATOR_MODE constants
4291 *
4292 * Set regulator operating mode to increase regulator efficiency or improve
4293 * regulation performance.
4294 *
4295 * NOTE: Regulator system constraints must be set for this regulator before
4296 * calling this function otherwise this call will fail.
4297 */
4298 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4299 {
4300 struct regulator_dev *rdev = regulator->rdev;
4301 int ret;
4302 int regulator_curr_mode;
4303
4304 regulator_lock(rdev);
4305
4306 /* sanity check */
4307 if (!rdev->desc->ops->set_mode) {
4308 ret = -EINVAL;
4309 goto out;
4310 }
4311
4312 /* return if the same mode is requested */
4313 if (rdev->desc->ops->get_mode) {
4314 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4315 if (regulator_curr_mode == mode) {
4316 ret = 0;
4317 goto out;
4318 }
4319 }
4320
4321 /* constraints check */
4322 ret = regulator_mode_constrain(rdev, &mode);
4323 if (ret < 0)
4324 goto out;
4325
4326 ret = rdev->desc->ops->set_mode(rdev, mode);
4327 out:
4328 regulator_unlock(rdev);
4329 return ret;
4330 }
4331 EXPORT_SYMBOL_GPL(regulator_set_mode);
4332
4333 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4334 {
4335 /* sanity check */
4336 if (!rdev->desc->ops->get_mode)
4337 return -EINVAL;
4338
4339 return rdev->desc->ops->get_mode(rdev);
4340 }
4341
4342 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4343 {
4344 int ret;
4345
4346 regulator_lock(rdev);
4347 ret = _regulator_get_mode_unlocked(rdev);
4348 regulator_unlock(rdev);
4349
4350 return ret;
4351 }
4352
4353 /**
4354 * regulator_get_mode - get regulator operating mode
4355 * @regulator: regulator source
4356 *
4357 * Get the current regulator operating mode.
4358 */
4359 unsigned int regulator_get_mode(struct regulator *regulator)
4360 {
4361 return _regulator_get_mode(regulator->rdev);
4362 }
4363 EXPORT_SYMBOL_GPL(regulator_get_mode);
4364
4365 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4366 unsigned int *flags)
4367 {
4368 int ret;
4369
4370 regulator_lock(rdev);
4371
4372 /* sanity check */
4373 if (!rdev->desc->ops->get_error_flags) {
4374 ret = -EINVAL;
4375 goto out;
4376 }
4377
4378 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4379 out:
4380 regulator_unlock(rdev);
4381 return ret;
4382 }
4383
4384 /**
4385 * regulator_get_error_flags - get regulator error information
4386 * @regulator: regulator source
4387 * @flags: pointer to store error flags
4388 *
4389 * Get the current regulator error information.
4390 */
4391 int regulator_get_error_flags(struct regulator *regulator,
4392 unsigned int *flags)
4393 {
4394 return _regulator_get_error_flags(regulator->rdev, flags);
4395 }
4396 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4397
4398 /**
4399 * regulator_set_load - set regulator load
4400 * @regulator: regulator source
4401 * @uA_load: load current
4402 *
4403 * Notifies the regulator core of a new device load. This is then used by
4404 * DRMS (if enabled by constraints) to set the most efficient regulator
4405 * operating mode for the new regulator loading.
4406 *
4407 * Consumer devices notify their supply regulator of the maximum power
4408 * they will require (can be taken from device datasheet in the power
4409 * consumption tables) when they change operational status and hence power
4410 * state. Examples of operational state changes that can affect power
4411 * consumption are :-
4412 *
4413 * o Device is opened / closed.
4414 * o Device I/O is about to begin or has just finished.
4415 * o Device is idling in between work.
4416 *
4417 * This information is also exported via sysfs to userspace.
4418 *
4419 * DRMS will sum the total requested load on the regulator and change
4420 * to the most efficient operating mode if platform constraints allow.
4421 *
4422 * NOTE: when a regulator consumer requests to have a regulator
4423 * disabled then any load that consumer requested no longer counts
4424 * toward the total requested load. If the regulator is re-enabled
4425 * then the previously requested load will start counting again.
4426 *
4427 * If a regulator is an always-on regulator then an individual consumer's
4428 * load will still be removed if that consumer is fully disabled.
4429 *
4430 * On error a negative errno is returned.
4431 */
4432 int regulator_set_load(struct regulator *regulator, int uA_load)
4433 {
4434 struct regulator_dev *rdev = regulator->rdev;
4435 int old_uA_load;
4436 int ret = 0;
4437
4438 regulator_lock(rdev);
4439 old_uA_load = regulator->uA_load;
4440 regulator->uA_load = uA_load;
4441 if (regulator->enable_count && old_uA_load != uA_load) {
4442 ret = drms_uA_update(rdev);
4443 if (ret < 0)
4444 regulator->uA_load = old_uA_load;
4445 }
4446 regulator_unlock(rdev);
4447
4448 return ret;
4449 }
4450 EXPORT_SYMBOL_GPL(regulator_set_load);
4451
4452 /**
4453 * regulator_allow_bypass - allow the regulator to go into bypass mode
4454 *
4455 * @regulator: Regulator to configure
4456 * @enable: enable or disable bypass mode
4457 *
4458 * Allow the regulator to go into bypass mode if all other consumers
4459 * for the regulator also enable bypass mode and the machine
4460 * constraints allow this. Bypass mode means that the regulator is
4461 * simply passing the input directly to the output with no regulation.
4462 */
4463 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4464 {
4465 struct regulator_dev *rdev = regulator->rdev;
4466 const char *name = rdev_get_name(rdev);
4467 int ret = 0;
4468
4469 if (!rdev->desc->ops->set_bypass)
4470 return 0;
4471
4472 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4473 return 0;
4474
4475 regulator_lock(rdev);
4476
4477 if (enable && !regulator->bypass) {
4478 rdev->bypass_count++;
4479
4480 if (rdev->bypass_count == rdev->open_count) {
4481 trace_regulator_bypass_enable(name);
4482
4483 ret = rdev->desc->ops->set_bypass(rdev, enable);
4484 if (ret != 0)
4485 rdev->bypass_count--;
4486 else
4487 trace_regulator_bypass_enable_complete(name);
4488 }
4489
4490 } else if (!enable && regulator->bypass) {
4491 rdev->bypass_count--;
4492
4493 if (rdev->bypass_count != rdev->open_count) {
4494 trace_regulator_bypass_disable(name);
4495
4496 ret = rdev->desc->ops->set_bypass(rdev, enable);
4497 if (ret != 0)
4498 rdev->bypass_count++;
4499 else
4500 trace_regulator_bypass_disable_complete(name);
4501 }
4502 }
4503
4504 if (ret == 0)
4505 regulator->bypass = enable;
4506
4507 regulator_unlock(rdev);
4508
4509 return ret;
4510 }
4511 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4512
4513 /**
4514 * regulator_register_notifier - register regulator event notifier
4515 * @regulator: regulator source
4516 * @nb: notifier block
4517 *
4518 * Register notifier block to receive regulator events.
4519 */
4520 int regulator_register_notifier(struct regulator *regulator,
4521 struct notifier_block *nb)
4522 {
4523 return blocking_notifier_chain_register(&regulator->rdev->notifier,
4524 nb);
4525 }
4526 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4527
4528 /**
4529 * regulator_unregister_notifier - unregister regulator event notifier
4530 * @regulator: regulator source
4531 * @nb: notifier block
4532 *
4533 * Unregister regulator event notifier block.
4534 */
4535 int regulator_unregister_notifier(struct regulator *regulator,
4536 struct notifier_block *nb)
4537 {
4538 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4539 nb);
4540 }
4541 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4542
4543 /* notify regulator consumers and downstream regulator consumers.
4544 * Note mutex must be held by caller.
4545 */
4546 static int _notifier_call_chain(struct regulator_dev *rdev,
4547 unsigned long event, void *data)
4548 {
4549 /* call rdev chain first */
4550 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4551 }
4552
4553 /**
4554 * regulator_bulk_get - get multiple regulator consumers
4555 *
4556 * @dev: Device to supply
4557 * @num_consumers: Number of consumers to register
4558 * @consumers: Configuration of consumers; clients are stored here.
4559 *
4560 * @return 0 on success, an errno on failure.
4561 *
4562 * This helper function allows drivers to get several regulator
4563 * consumers in one operation. If any of the regulators cannot be
4564 * acquired then any regulators that were allocated will be freed
4565 * before returning to the caller.
4566 */
4567 int regulator_bulk_get(struct device *dev, int num_consumers,
4568 struct regulator_bulk_data *consumers)
4569 {
4570 int i;
4571 int ret;
4572
4573 for (i = 0; i < num_consumers; i++)
4574 consumers[i].consumer = NULL;
4575
4576 for (i = 0; i < num_consumers; i++) {
4577 consumers[i].consumer = regulator_get(dev,
4578 consumers[i].supply);
4579 if (IS_ERR(consumers[i].consumer)) {
4580 ret = PTR_ERR(consumers[i].consumer);
4581 consumers[i].consumer = NULL;
4582 goto err;
4583 }
4584 }
4585
4586 return 0;
4587
4588 err:
4589 if (ret != -EPROBE_DEFER)
4590 dev_err(dev, "Failed to get supply '%s': %pe\n",
4591 consumers[i].supply, ERR_PTR(ret));
4592 else
4593 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4594 consumers[i].supply);
4595
4596 while (--i >= 0)
4597 regulator_put(consumers[i].consumer);
4598
4599 return ret;
4600 }
4601 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4602
4603 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4604 {
4605 struct regulator_bulk_data *bulk = data;
4606
4607 bulk->ret = regulator_enable(bulk->consumer);
4608 }
4609
4610 /**
4611 * regulator_bulk_enable - enable multiple regulator consumers
4612 *
4613 * @num_consumers: Number of consumers
4614 * @consumers: Consumer data; clients are stored here.
4615 * @return 0 on success, an errno on failure
4616 *
4617 * This convenience API allows consumers to enable multiple regulator
4618 * clients in a single API call. If any consumers cannot be enabled
4619 * then any others that were enabled will be disabled again prior to
4620 * return.
4621 */
4622 int regulator_bulk_enable(int num_consumers,
4623 struct regulator_bulk_data *consumers)
4624 {
4625 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4626 int i;
4627 int ret = 0;
4628
4629 for (i = 0; i < num_consumers; i++) {
4630 async_schedule_domain(regulator_bulk_enable_async,
4631 &consumers[i], &async_domain);
4632 }
4633
4634 async_synchronize_full_domain(&async_domain);
4635
4636 /* If any consumer failed we need to unwind any that succeeded */
4637 for (i = 0; i < num_consumers; i++) {
4638 if (consumers[i].ret != 0) {
4639 ret = consumers[i].ret;
4640 goto err;
4641 }
4642 }
4643
4644 return 0;
4645
4646 err:
4647 for (i = 0; i < num_consumers; i++) {
4648 if (consumers[i].ret < 0)
4649 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4650 ERR_PTR(consumers[i].ret));
4651 else
4652 regulator_disable(consumers[i].consumer);
4653 }
4654
4655 return ret;
4656 }
4657 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4658
4659 /**
4660 * regulator_bulk_disable - disable multiple regulator consumers
4661 *
4662 * @num_consumers: Number of consumers
4663 * @consumers: Consumer data; clients are stored here.
4664 * @return 0 on success, an errno on failure
4665 *
4666 * This convenience API allows consumers to disable multiple regulator
4667 * clients in a single API call. If any consumers cannot be disabled
4668 * then any others that were disabled will be enabled again prior to
4669 * return.
4670 */
4671 int regulator_bulk_disable(int num_consumers,
4672 struct regulator_bulk_data *consumers)
4673 {
4674 int i;
4675 int ret, r;
4676
4677 for (i = num_consumers - 1; i >= 0; --i) {
4678 ret = regulator_disable(consumers[i].consumer);
4679 if (ret != 0)
4680 goto err;
4681 }
4682
4683 return 0;
4684
4685 err:
4686 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4687 for (++i; i < num_consumers; ++i) {
4688 r = regulator_enable(consumers[i].consumer);
4689 if (r != 0)
4690 pr_err("Failed to re-enable %s: %pe\n",
4691 consumers[i].supply, ERR_PTR(r));
4692 }
4693
4694 return ret;
4695 }
4696 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4697
4698 /**
4699 * regulator_bulk_force_disable - force disable multiple regulator consumers
4700 *
4701 * @num_consumers: Number of consumers
4702 * @consumers: Consumer data; clients are stored here.
4703 * @return 0 on success, an errno on failure
4704 *
4705 * This convenience API allows consumers to forcibly disable multiple regulator
4706 * clients in a single API call.
4707 * NOTE: This should be used for situations when device damage will
4708 * likely occur if the regulators are not disabled (e.g. over temp).
4709 * Although regulator_force_disable function call for some consumers can
4710 * return error numbers, the function is called for all consumers.
4711 */
4712 int regulator_bulk_force_disable(int num_consumers,
4713 struct regulator_bulk_data *consumers)
4714 {
4715 int i;
4716 int ret = 0;
4717
4718 for (i = 0; i < num_consumers; i++) {
4719 consumers[i].ret =
4720 regulator_force_disable(consumers[i].consumer);
4721
4722 /* Store first error for reporting */
4723 if (consumers[i].ret && !ret)
4724 ret = consumers[i].ret;
4725 }
4726
4727 return ret;
4728 }
4729 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4730
4731 /**
4732 * regulator_bulk_free - free multiple regulator consumers
4733 *
4734 * @num_consumers: Number of consumers
4735 * @consumers: Consumer data; clients are stored here.
4736 *
4737 * This convenience API allows consumers to free multiple regulator
4738 * clients in a single API call.
4739 */
4740 void regulator_bulk_free(int num_consumers,
4741 struct regulator_bulk_data *consumers)
4742 {
4743 int i;
4744
4745 for (i = 0; i < num_consumers; i++) {
4746 regulator_put(consumers[i].consumer);
4747 consumers[i].consumer = NULL;
4748 }
4749 }
4750 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4751
4752 /**
4753 * regulator_notifier_call_chain - call regulator event notifier
4754 * @rdev: regulator source
4755 * @event: notifier block
4756 * @data: callback-specific data.
4757 *
4758 * Called by regulator drivers to notify clients a regulator event has
4759 * occurred.
4760 */
4761 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4762 unsigned long event, void *data)
4763 {
4764 _notifier_call_chain(rdev, event, data);
4765 return NOTIFY_DONE;
4766
4767 }
4768 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4769
4770 /**
4771 * regulator_mode_to_status - convert a regulator mode into a status
4772 *
4773 * @mode: Mode to convert
4774 *
4775 * Convert a regulator mode into a status.
4776 */
4777 int regulator_mode_to_status(unsigned int mode)
4778 {
4779 switch (mode) {
4780 case REGULATOR_MODE_FAST:
4781 return REGULATOR_STATUS_FAST;
4782 case REGULATOR_MODE_NORMAL:
4783 return REGULATOR_STATUS_NORMAL;
4784 case REGULATOR_MODE_IDLE:
4785 return REGULATOR_STATUS_IDLE;
4786 case REGULATOR_MODE_STANDBY:
4787 return REGULATOR_STATUS_STANDBY;
4788 default:
4789 return REGULATOR_STATUS_UNDEFINED;
4790 }
4791 }
4792 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4793
4794 static struct attribute *regulator_dev_attrs[] = {
4795 &dev_attr_name.attr,
4796 &dev_attr_num_users.attr,
4797 &dev_attr_type.attr,
4798 &dev_attr_microvolts.attr,
4799 &dev_attr_microamps.attr,
4800 &dev_attr_opmode.attr,
4801 &dev_attr_state.attr,
4802 &dev_attr_status.attr,
4803 &dev_attr_bypass.attr,
4804 &dev_attr_requested_microamps.attr,
4805 &dev_attr_min_microvolts.attr,
4806 &dev_attr_max_microvolts.attr,
4807 &dev_attr_min_microamps.attr,
4808 &dev_attr_max_microamps.attr,
4809 &dev_attr_suspend_standby_state.attr,
4810 &dev_attr_suspend_mem_state.attr,
4811 &dev_attr_suspend_disk_state.attr,
4812 &dev_attr_suspend_standby_microvolts.attr,
4813 &dev_attr_suspend_mem_microvolts.attr,
4814 &dev_attr_suspend_disk_microvolts.attr,
4815 &dev_attr_suspend_standby_mode.attr,
4816 &dev_attr_suspend_mem_mode.attr,
4817 &dev_attr_suspend_disk_mode.attr,
4818 NULL
4819 };
4820
4821 /*
4822 * To avoid cluttering sysfs (and memory) with useless state, only
4823 * create attributes that can be meaningfully displayed.
4824 */
4825 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4826 struct attribute *attr, int idx)
4827 {
4828 struct device *dev = kobj_to_dev(kobj);
4829 struct regulator_dev *rdev = dev_to_rdev(dev);
4830 const struct regulator_ops *ops = rdev->desc->ops;
4831 umode_t mode = attr->mode;
4832
4833 /* these three are always present */
4834 if (attr == &dev_attr_name.attr ||
4835 attr == &dev_attr_num_users.attr ||
4836 attr == &dev_attr_type.attr)
4837 return mode;
4838
4839 /* some attributes need specific methods to be displayed */
4840 if (attr == &dev_attr_microvolts.attr) {
4841 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4842 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4843 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4844 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4845 return mode;
4846 return 0;
4847 }
4848
4849 if (attr == &dev_attr_microamps.attr)
4850 return ops->get_current_limit ? mode : 0;
4851
4852 if (attr == &dev_attr_opmode.attr)
4853 return ops->get_mode ? mode : 0;
4854
4855 if (attr == &dev_attr_state.attr)
4856 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4857
4858 if (attr == &dev_attr_status.attr)
4859 return ops->get_status ? mode : 0;
4860
4861 if (attr == &dev_attr_bypass.attr)
4862 return ops->get_bypass ? mode : 0;
4863
4864 /* constraints need specific supporting methods */
4865 if (attr == &dev_attr_min_microvolts.attr ||
4866 attr == &dev_attr_max_microvolts.attr)
4867 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4868
4869 if (attr == &dev_attr_min_microamps.attr ||
4870 attr == &dev_attr_max_microamps.attr)
4871 return ops->set_current_limit ? mode : 0;
4872
4873 if (attr == &dev_attr_suspend_standby_state.attr ||
4874 attr == &dev_attr_suspend_mem_state.attr ||
4875 attr == &dev_attr_suspend_disk_state.attr)
4876 return mode;
4877
4878 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4879 attr == &dev_attr_suspend_mem_microvolts.attr ||
4880 attr == &dev_attr_suspend_disk_microvolts.attr)
4881 return ops->set_suspend_voltage ? mode : 0;
4882
4883 if (attr == &dev_attr_suspend_standby_mode.attr ||
4884 attr == &dev_attr_suspend_mem_mode.attr ||
4885 attr == &dev_attr_suspend_disk_mode.attr)
4886 return ops->set_suspend_mode ? mode : 0;
4887
4888 return mode;
4889 }
4890
4891 static const struct attribute_group regulator_dev_group = {
4892 .attrs = regulator_dev_attrs,
4893 .is_visible = regulator_attr_is_visible,
4894 };
4895
4896 static const struct attribute_group *regulator_dev_groups[] = {
4897 &regulator_dev_group,
4898 NULL
4899 };
4900
4901 static void regulator_dev_release(struct device *dev)
4902 {
4903 struct regulator_dev *rdev = dev_get_drvdata(dev);
4904
4905 kfree(rdev->constraints);
4906 of_node_put(rdev->dev.of_node);
4907 kfree(rdev);
4908 }
4909
4910 static void rdev_init_debugfs(struct regulator_dev *rdev)
4911 {
4912 struct device *parent = rdev->dev.parent;
4913 const char *rname = rdev_get_name(rdev);
4914 char name[NAME_MAX];
4915
4916 /* Avoid duplicate debugfs directory names */
4917 if (parent && rname == rdev->desc->name) {
4918 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4919 rname);
4920 rname = name;
4921 }
4922
4923 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4924 if (!rdev->debugfs) {
4925 rdev_warn(rdev, "Failed to create debugfs directory\n");
4926 return;
4927 }
4928
4929 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4930 &rdev->use_count);
4931 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4932 &rdev->open_count);
4933 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4934 &rdev->bypass_count);
4935 }
4936
4937 static int regulator_register_resolve_supply(struct device *dev, void *data)
4938 {
4939 struct regulator_dev *rdev = dev_to_rdev(dev);
4940
4941 if (regulator_resolve_supply(rdev))
4942 rdev_dbg(rdev, "unable to resolve supply\n");
4943
4944 return 0;
4945 }
4946
4947 int regulator_coupler_register(struct regulator_coupler *coupler)
4948 {
4949 mutex_lock(&regulator_list_mutex);
4950 list_add_tail(&coupler->list, &regulator_coupler_list);
4951 mutex_unlock(&regulator_list_mutex);
4952
4953 return 0;
4954 }
4955
4956 static struct regulator_coupler *
4957 regulator_find_coupler(struct regulator_dev *rdev)
4958 {
4959 struct regulator_coupler *coupler;
4960 int err;
4961
4962 /*
4963 * Note that regulators are appended to the list and the generic
4964 * coupler is registered first, hence it will be attached at last
4965 * if nobody cared.
4966 */
4967 list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4968 err = coupler->attach_regulator(coupler, rdev);
4969 if (!err) {
4970 if (!coupler->balance_voltage &&
4971 rdev->coupling_desc.n_coupled > 2)
4972 goto err_unsupported;
4973
4974 return coupler;
4975 }
4976
4977 if (err < 0)
4978 return ERR_PTR(err);
4979
4980 if (err == 1)
4981 continue;
4982
4983 break;
4984 }
4985
4986 return ERR_PTR(-EINVAL);
4987
4988 err_unsupported:
4989 if (coupler->detach_regulator)
4990 coupler->detach_regulator(coupler, rdev);
4991
4992 rdev_err(rdev,
4993 "Voltage balancing for multiple regulator couples is unimplemented\n");
4994
4995 return ERR_PTR(-EPERM);
4996 }
4997
4998 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4999 {
5000 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5001 struct coupling_desc *c_desc = &rdev->coupling_desc;
5002 int n_coupled = c_desc->n_coupled;
5003 struct regulator_dev *c_rdev;
5004 int i;
5005
5006 for (i = 1; i < n_coupled; i++) {
5007 /* already resolved */
5008 if (c_desc->coupled_rdevs[i])
5009 continue;
5010
5011 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5012
5013 if (!c_rdev)
5014 continue;
5015
5016 if (c_rdev->coupling_desc.coupler != coupler) {
5017 rdev_err(rdev, "coupler mismatch with %s\n",
5018 rdev_get_name(c_rdev));
5019 return;
5020 }
5021
5022 c_desc->coupled_rdevs[i] = c_rdev;
5023 c_desc->n_resolved++;
5024
5025 regulator_resolve_coupling(c_rdev);
5026 }
5027 }
5028
5029 static void regulator_remove_coupling(struct regulator_dev *rdev)
5030 {
5031 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5032 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5033 struct regulator_dev *__c_rdev, *c_rdev;
5034 unsigned int __n_coupled, n_coupled;
5035 int i, k;
5036 int err;
5037
5038 n_coupled = c_desc->n_coupled;
5039
5040 for (i = 1; i < n_coupled; i++) {
5041 c_rdev = c_desc->coupled_rdevs[i];
5042
5043 if (!c_rdev)
5044 continue;
5045
5046 regulator_lock(c_rdev);
5047
5048 __c_desc = &c_rdev->coupling_desc;
5049 __n_coupled = __c_desc->n_coupled;
5050
5051 for (k = 1; k < __n_coupled; k++) {
5052 __c_rdev = __c_desc->coupled_rdevs[k];
5053
5054 if (__c_rdev == rdev) {
5055 __c_desc->coupled_rdevs[k] = NULL;
5056 __c_desc->n_resolved--;
5057 break;
5058 }
5059 }
5060
5061 regulator_unlock(c_rdev);
5062
5063 c_desc->coupled_rdevs[i] = NULL;
5064 c_desc->n_resolved--;
5065 }
5066
5067 if (coupler && coupler->detach_regulator) {
5068 err = coupler->detach_regulator(coupler, rdev);
5069 if (err)
5070 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5071 ERR_PTR(err));
5072 }
5073
5074 kfree(rdev->coupling_desc.coupled_rdevs);
5075 rdev->coupling_desc.coupled_rdevs = NULL;
5076 }
5077
5078 static int regulator_init_coupling(struct regulator_dev *rdev)
5079 {
5080 struct regulator_dev **coupled;
5081 int err, n_phandles;
5082
5083 if (!IS_ENABLED(CONFIG_OF))
5084 n_phandles = 0;
5085 else
5086 n_phandles = of_get_n_coupled(rdev);
5087
5088 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5089 if (!coupled)
5090 return -ENOMEM;
5091
5092 rdev->coupling_desc.coupled_rdevs = coupled;
5093
5094 /*
5095 * Every regulator should always have coupling descriptor filled with
5096 * at least pointer to itself.
5097 */
5098 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5099 rdev->coupling_desc.n_coupled = n_phandles + 1;
5100 rdev->coupling_desc.n_resolved++;
5101
5102 /* regulator isn't coupled */
5103 if (n_phandles == 0)
5104 return 0;
5105
5106 if (!of_check_coupling_data(rdev))
5107 return -EPERM;
5108
5109 mutex_lock(&regulator_list_mutex);
5110 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5111 mutex_unlock(&regulator_list_mutex);
5112
5113 if (IS_ERR(rdev->coupling_desc.coupler)) {
5114 err = PTR_ERR(rdev->coupling_desc.coupler);
5115 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5116 return err;
5117 }
5118
5119 return 0;
5120 }
5121
5122 static int generic_coupler_attach(struct regulator_coupler *coupler,
5123 struct regulator_dev *rdev)
5124 {
5125 if (rdev->coupling_desc.n_coupled > 2) {
5126 rdev_err(rdev,
5127 "Voltage balancing for multiple regulator couples is unimplemented\n");
5128 return -EPERM;
5129 }
5130
5131 if (!rdev->constraints->always_on) {
5132 rdev_err(rdev,
5133 "Coupling of a non always-on regulator is unimplemented\n");
5134 return -ENOTSUPP;
5135 }
5136
5137 return 0;
5138 }
5139
5140 static struct regulator_coupler generic_regulator_coupler = {
5141 .attach_regulator = generic_coupler_attach,
5142 };
5143
5144 /**
5145 * regulator_register - register regulator
5146 * @regulator_desc: regulator to register
5147 * @cfg: runtime configuration for regulator
5148 *
5149 * Called by regulator drivers to register a regulator.
5150 * Returns a valid pointer to struct regulator_dev on success
5151 * or an ERR_PTR() on error.
5152 */
5153 struct regulator_dev *
5154 regulator_register(const struct regulator_desc *regulator_desc,
5155 const struct regulator_config *cfg)
5156 {
5157 const struct regulator_init_data *init_data;
5158 struct regulator_config *config = NULL;
5159 static atomic_t regulator_no = ATOMIC_INIT(-1);
5160 struct regulator_dev *rdev;
5161 bool dangling_cfg_gpiod = false;
5162 bool dangling_of_gpiod = false;
5163 struct device *dev;
5164 int ret, i;
5165
5166 if (cfg == NULL)
5167 return ERR_PTR(-EINVAL);
5168 if (cfg->ena_gpiod)
5169 dangling_cfg_gpiod = true;
5170 if (regulator_desc == NULL) {
5171 ret = -EINVAL;
5172 goto rinse;
5173 }
5174
5175 dev = cfg->dev;
5176 WARN_ON(!dev);
5177
5178 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5179 ret = -EINVAL;
5180 goto rinse;
5181 }
5182
5183 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5184 regulator_desc->type != REGULATOR_CURRENT) {
5185 ret = -EINVAL;
5186 goto rinse;
5187 }
5188
5189 /* Only one of each should be implemented */
5190 WARN_ON(regulator_desc->ops->get_voltage &&
5191 regulator_desc->ops->get_voltage_sel);
5192 WARN_ON(regulator_desc->ops->set_voltage &&
5193 regulator_desc->ops->set_voltage_sel);
5194
5195 /* If we're using selectors we must implement list_voltage. */
5196 if (regulator_desc->ops->get_voltage_sel &&
5197 !regulator_desc->ops->list_voltage) {
5198 ret = -EINVAL;
5199 goto rinse;
5200 }
5201 if (regulator_desc->ops->set_voltage_sel &&
5202 !regulator_desc->ops->list_voltage) {
5203 ret = -EINVAL;
5204 goto rinse;
5205 }
5206
5207 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5208 if (rdev == NULL) {
5209 ret = -ENOMEM;
5210 goto rinse;
5211 }
5212 device_initialize(&rdev->dev);
5213
5214 /*
5215 * Duplicate the config so the driver could override it after
5216 * parsing init data.
5217 */
5218 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5219 if (config == NULL) {
5220 ret = -ENOMEM;
5221 goto clean;
5222 }
5223
5224 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5225 &rdev->dev.of_node);
5226
5227 /*
5228 * Sometimes not all resources are probed already so we need to take
5229 * that into account. This happens most the time if the ena_gpiod comes
5230 * from a gpio extender or something else.
5231 */
5232 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5233 ret = -EPROBE_DEFER;
5234 goto clean;
5235 }
5236
5237 /*
5238 * We need to keep track of any GPIO descriptor coming from the
5239 * device tree until we have handled it over to the core. If the
5240 * config that was passed in to this function DOES NOT contain
5241 * a descriptor, and the config after this call DOES contain
5242 * a descriptor, we definitely got one from parsing the device
5243 * tree.
5244 */
5245 if (!cfg->ena_gpiod && config->ena_gpiod)
5246 dangling_of_gpiod = true;
5247 if (!init_data) {
5248 init_data = config->init_data;
5249 rdev->dev.of_node = of_node_get(config->of_node);
5250 }
5251
5252 ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5253 rdev->reg_data = config->driver_data;
5254 rdev->owner = regulator_desc->owner;
5255 rdev->desc = regulator_desc;
5256 if (config->regmap)
5257 rdev->regmap = config->regmap;
5258 else if (dev_get_regmap(dev, NULL))
5259 rdev->regmap = dev_get_regmap(dev, NULL);
5260 else if (dev->parent)
5261 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5262 INIT_LIST_HEAD(&rdev->consumer_list);
5263 INIT_LIST_HEAD(&rdev->list);
5264 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5265 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5266
5267 /* preform any regulator specific init */
5268 if (init_data && init_data->regulator_init) {
5269 ret = init_data->regulator_init(rdev->reg_data);
5270 if (ret < 0)
5271 goto clean;
5272 }
5273
5274 if (config->ena_gpiod) {
5275 ret = regulator_ena_gpio_request(rdev, config);
5276 if (ret != 0) {
5277 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5278 ERR_PTR(ret));
5279 goto clean;
5280 }
5281 /* The regulator core took over the GPIO descriptor */
5282 dangling_cfg_gpiod = false;
5283 dangling_of_gpiod = false;
5284 }
5285
5286 /* register with sysfs */
5287 rdev->dev.class = &regulator_class;
5288 rdev->dev.parent = dev;
5289 dev_set_name(&rdev->dev, "regulator.%lu",
5290 (unsigned long) atomic_inc_return(&regulator_no));
5291 dev_set_drvdata(&rdev->dev, rdev);
5292
5293 /* set regulator constraints */
5294 if (init_data)
5295 rdev->constraints = kmemdup(&init_data->constraints,
5296 sizeof(*rdev->constraints),
5297 GFP_KERNEL);
5298 else
5299 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5300 GFP_KERNEL);
5301 if (!rdev->constraints) {
5302 ret = -ENOMEM;
5303 goto wash;
5304 }
5305
5306 if (init_data && init_data->supply_regulator)
5307 rdev->supply_name = init_data->supply_regulator;
5308 else if (regulator_desc->supply_name)
5309 rdev->supply_name = regulator_desc->supply_name;
5310
5311 ret = set_machine_constraints(rdev);
5312 if (ret == -EPROBE_DEFER) {
5313 /* Regulator might be in bypass mode and so needs its supply
5314 * to set the constraints */
5315 /* FIXME: this currently triggers a chicken-and-egg problem
5316 * when creating -SUPPLY symlink in sysfs to a regulator
5317 * that is just being created */
5318 rdev_dbg(rdev, "will resolve supply early: %s\n",
5319 rdev->supply_name);
5320 ret = regulator_resolve_supply(rdev);
5321 if (!ret)
5322 ret = set_machine_constraints(rdev);
5323 else
5324 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5325 ERR_PTR(ret));
5326 }
5327 if (ret < 0)
5328 goto wash;
5329
5330 ret = regulator_init_coupling(rdev);
5331 if (ret < 0)
5332 goto wash;
5333
5334 /* add consumers devices */
5335 if (init_data) {
5336 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5337 ret = set_consumer_device_supply(rdev,
5338 init_data->consumer_supplies[i].dev_name,
5339 init_data->consumer_supplies[i].supply);
5340 if (ret < 0) {
5341 dev_err(dev, "Failed to set supply %s\n",
5342 init_data->consumer_supplies[i].supply);
5343 goto unset_supplies;
5344 }
5345 }
5346 }
5347
5348 if (!rdev->desc->ops->get_voltage &&
5349 !rdev->desc->ops->list_voltage &&
5350 !rdev->desc->fixed_uV)
5351 rdev->is_switch = true;
5352
5353 ret = device_add(&rdev->dev);
5354 if (ret != 0)
5355 goto unset_supplies;
5356
5357 rdev_init_debugfs(rdev);
5358
5359 /* try to resolve regulators coupling since a new one was registered */
5360 mutex_lock(&regulator_list_mutex);
5361 regulator_resolve_coupling(rdev);
5362 mutex_unlock(&regulator_list_mutex);
5363
5364 /* try to resolve regulators supply since a new one was registered */
5365 class_for_each_device(&regulator_class, NULL, NULL,
5366 regulator_register_resolve_supply);
5367 kfree(config);
5368 return rdev;
5369
5370 unset_supplies:
5371 mutex_lock(&regulator_list_mutex);
5372 unset_regulator_supplies(rdev);
5373 regulator_remove_coupling(rdev);
5374 mutex_unlock(&regulator_list_mutex);
5375 wash:
5376 kfree(rdev->coupling_desc.coupled_rdevs);
5377 mutex_lock(&regulator_list_mutex);
5378 regulator_ena_gpio_free(rdev);
5379 mutex_unlock(&regulator_list_mutex);
5380 clean:
5381 if (dangling_of_gpiod)
5382 gpiod_put(config->ena_gpiod);
5383 kfree(config);
5384 put_device(&rdev->dev);
5385 rinse:
5386 if (dangling_cfg_gpiod)
5387 gpiod_put(cfg->ena_gpiod);
5388 return ERR_PTR(ret);
5389 }
5390 EXPORT_SYMBOL_GPL(regulator_register);
5391
5392 /**
5393 * regulator_unregister - unregister regulator
5394 * @rdev: regulator to unregister
5395 *
5396 * Called by regulator drivers to unregister a regulator.
5397 */
5398 void regulator_unregister(struct regulator_dev *rdev)
5399 {
5400 if (rdev == NULL)
5401 return;
5402
5403 if (rdev->supply) {
5404 while (rdev->use_count--)
5405 regulator_disable(rdev->supply);
5406 regulator_put(rdev->supply);
5407 }
5408
5409 flush_work(&rdev->disable_work.work);
5410
5411 mutex_lock(&regulator_list_mutex);
5412
5413 debugfs_remove_recursive(rdev->debugfs);
5414 WARN_ON(rdev->open_count);
5415 regulator_remove_coupling(rdev);
5416 unset_regulator_supplies(rdev);
5417 list_del(&rdev->list);
5418 regulator_ena_gpio_free(rdev);
5419 device_unregister(&rdev->dev);
5420
5421 mutex_unlock(&regulator_list_mutex);
5422 }
5423 EXPORT_SYMBOL_GPL(regulator_unregister);
5424
5425 #ifdef CONFIG_SUSPEND
5426 /**
5427 * regulator_suspend - prepare regulators for system wide suspend
5428 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5429 *
5430 * Configure each regulator with it's suspend operating parameters for state.
5431 */
5432 static int regulator_suspend(struct device *dev)
5433 {
5434 struct regulator_dev *rdev = dev_to_rdev(dev);
5435 suspend_state_t state = pm_suspend_target_state;
5436 int ret;
5437 const struct regulator_state *rstate;
5438
5439 rstate = regulator_get_suspend_state_check(rdev, state);
5440 if (!rstate)
5441 return 0;
5442
5443 regulator_lock(rdev);
5444 ret = __suspend_set_state(rdev, rstate);
5445 regulator_unlock(rdev);
5446
5447 return ret;
5448 }
5449
5450 static int regulator_resume(struct device *dev)
5451 {
5452 suspend_state_t state = pm_suspend_target_state;
5453 struct regulator_dev *rdev = dev_to_rdev(dev);
5454 struct regulator_state *rstate;
5455 int ret = 0;
5456
5457 rstate = regulator_get_suspend_state(rdev, state);
5458 if (rstate == NULL)
5459 return 0;
5460
5461 /* Avoid grabbing the lock if we don't need to */
5462 if (!rdev->desc->ops->resume)
5463 return 0;
5464
5465 regulator_lock(rdev);
5466
5467 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5468 rstate->enabled == DISABLE_IN_SUSPEND)
5469 ret = rdev->desc->ops->resume(rdev);
5470
5471 regulator_unlock(rdev);
5472
5473 return ret;
5474 }
5475 #else /* !CONFIG_SUSPEND */
5476
5477 #define regulator_suspend NULL
5478 #define regulator_resume NULL
5479
5480 #endif /* !CONFIG_SUSPEND */
5481
5482 #ifdef CONFIG_PM
5483 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5484 .suspend = regulator_suspend,
5485 .resume = regulator_resume,
5486 };
5487 #endif
5488
5489 struct class regulator_class = {
5490 .name = "regulator",
5491 .dev_release = regulator_dev_release,
5492 .dev_groups = regulator_dev_groups,
5493 #ifdef CONFIG_PM
5494 .pm = &regulator_pm_ops,
5495 #endif
5496 };
5497 /**
5498 * regulator_has_full_constraints - the system has fully specified constraints
5499 *
5500 * Calling this function will cause the regulator API to disable all
5501 * regulators which have a zero use count and don't have an always_on
5502 * constraint in a late_initcall.
5503 *
5504 * The intention is that this will become the default behaviour in a
5505 * future kernel release so users are encouraged to use this facility
5506 * now.
5507 */
5508 void regulator_has_full_constraints(void)
5509 {
5510 has_full_constraints = 1;
5511 }
5512 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5513
5514 /**
5515 * rdev_get_drvdata - get rdev regulator driver data
5516 * @rdev: regulator
5517 *
5518 * Get rdev regulator driver private data. This call can be used in the
5519 * regulator driver context.
5520 */
5521 void *rdev_get_drvdata(struct regulator_dev *rdev)
5522 {
5523 return rdev->reg_data;
5524 }
5525 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5526
5527 /**
5528 * regulator_get_drvdata - get regulator driver data
5529 * @regulator: regulator
5530 *
5531 * Get regulator driver private data. This call can be used in the consumer
5532 * driver context when non API regulator specific functions need to be called.
5533 */
5534 void *regulator_get_drvdata(struct regulator *regulator)
5535 {
5536 return regulator->rdev->reg_data;
5537 }
5538 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5539
5540 /**
5541 * regulator_set_drvdata - set regulator driver data
5542 * @regulator: regulator
5543 * @data: data
5544 */
5545 void regulator_set_drvdata(struct regulator *regulator, void *data)
5546 {
5547 regulator->rdev->reg_data = data;
5548 }
5549 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5550
5551 /**
5552 * rdev_get_id - get regulator ID
5553 * @rdev: regulator
5554 */
5555 int rdev_get_id(struct regulator_dev *rdev)
5556 {
5557 return rdev->desc->id;
5558 }
5559 EXPORT_SYMBOL_GPL(rdev_get_id);
5560
5561 struct device *rdev_get_dev(struct regulator_dev *rdev)
5562 {
5563 return &rdev->dev;
5564 }
5565 EXPORT_SYMBOL_GPL(rdev_get_dev);
5566
5567 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5568 {
5569 return rdev->regmap;
5570 }
5571 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5572
5573 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5574 {
5575 return reg_init_data->driver_data;
5576 }
5577 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5578
5579 #ifdef CONFIG_DEBUG_FS
5580 static int supply_map_show(struct seq_file *sf, void *data)
5581 {
5582 struct regulator_map *map;
5583
5584 list_for_each_entry(map, &regulator_map_list, list) {
5585 seq_printf(sf, "%s -> %s.%s\n",
5586 rdev_get_name(map->regulator), map->dev_name,
5587 map->supply);
5588 }
5589
5590 return 0;
5591 }
5592 DEFINE_SHOW_ATTRIBUTE(supply_map);
5593
5594 struct summary_data {
5595 struct seq_file *s;
5596 struct regulator_dev *parent;
5597 int level;
5598 };
5599
5600 static void regulator_summary_show_subtree(struct seq_file *s,
5601 struct regulator_dev *rdev,
5602 int level);
5603
5604 static int regulator_summary_show_children(struct device *dev, void *data)
5605 {
5606 struct regulator_dev *rdev = dev_to_rdev(dev);
5607 struct summary_data *summary_data = data;
5608
5609 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5610 regulator_summary_show_subtree(summary_data->s, rdev,
5611 summary_data->level + 1);
5612
5613 return 0;
5614 }
5615
5616 static void regulator_summary_show_subtree(struct seq_file *s,
5617 struct regulator_dev *rdev,
5618 int level)
5619 {
5620 struct regulation_constraints *c;
5621 struct regulator *consumer;
5622 struct summary_data summary_data;
5623 unsigned int opmode;
5624
5625 if (!rdev)
5626 return;
5627
5628 opmode = _regulator_get_mode_unlocked(rdev);
5629 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5630 level * 3 + 1, "",
5631 30 - level * 3, rdev_get_name(rdev),
5632 rdev->use_count, rdev->open_count, rdev->bypass_count,
5633 regulator_opmode_to_str(opmode));
5634
5635 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5636 seq_printf(s, "%5dmA ",
5637 _regulator_get_current_limit_unlocked(rdev) / 1000);
5638
5639 c = rdev->constraints;
5640 if (c) {
5641 switch (rdev->desc->type) {
5642 case REGULATOR_VOLTAGE:
5643 seq_printf(s, "%5dmV %5dmV ",
5644 c->min_uV / 1000, c->max_uV / 1000);
5645 break;
5646 case REGULATOR_CURRENT:
5647 seq_printf(s, "%5dmA %5dmA ",
5648 c->min_uA / 1000, c->max_uA / 1000);
5649 break;
5650 }
5651 }
5652
5653 seq_puts(s, "\n");
5654
5655 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5656 if (consumer->dev && consumer->dev->class == &regulator_class)
5657 continue;
5658
5659 seq_printf(s, "%*s%-*s ",
5660 (level + 1) * 3 + 1, "",
5661 30 - (level + 1) * 3,
5662 consumer->supply_name ? consumer->supply_name :
5663 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5664
5665 switch (rdev->desc->type) {
5666 case REGULATOR_VOLTAGE:
5667 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5668 consumer->enable_count,
5669 consumer->uA_load / 1000,
5670 consumer->uA_load && !consumer->enable_count ?
5671 '*' : ' ',
5672 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5673 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5674 break;
5675 case REGULATOR_CURRENT:
5676 break;
5677 }
5678
5679 seq_puts(s, "\n");
5680 }
5681
5682 summary_data.s = s;
5683 summary_data.level = level;
5684 summary_data.parent = rdev;
5685
5686 class_for_each_device(&regulator_class, NULL, &summary_data,
5687 regulator_summary_show_children);
5688 }
5689
5690 struct summary_lock_data {
5691 struct ww_acquire_ctx *ww_ctx;
5692 struct regulator_dev **new_contended_rdev;
5693 struct regulator_dev **old_contended_rdev;
5694 };
5695
5696 static int regulator_summary_lock_one(struct device *dev, void *data)
5697 {
5698 struct regulator_dev *rdev = dev_to_rdev(dev);
5699 struct summary_lock_data *lock_data = data;
5700 int ret = 0;
5701
5702 if (rdev != *lock_data->old_contended_rdev) {
5703 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5704
5705 if (ret == -EDEADLK)
5706 *lock_data->new_contended_rdev = rdev;
5707 else
5708 WARN_ON_ONCE(ret);
5709 } else {
5710 *lock_data->old_contended_rdev = NULL;
5711 }
5712
5713 return ret;
5714 }
5715
5716 static int regulator_summary_unlock_one(struct device *dev, void *data)
5717 {
5718 struct regulator_dev *rdev = dev_to_rdev(dev);
5719 struct summary_lock_data *lock_data = data;
5720
5721 if (lock_data) {
5722 if (rdev == *lock_data->new_contended_rdev)
5723 return -EDEADLK;
5724 }
5725
5726 regulator_unlock(rdev);
5727
5728 return 0;
5729 }
5730
5731 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5732 struct regulator_dev **new_contended_rdev,
5733 struct regulator_dev **old_contended_rdev)
5734 {
5735 struct summary_lock_data lock_data;
5736 int ret;
5737
5738 lock_data.ww_ctx = ww_ctx;
5739 lock_data.new_contended_rdev = new_contended_rdev;
5740 lock_data.old_contended_rdev = old_contended_rdev;
5741
5742 ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5743 regulator_summary_lock_one);
5744 if (ret)
5745 class_for_each_device(&regulator_class, NULL, &lock_data,
5746 regulator_summary_unlock_one);
5747
5748 return ret;
5749 }
5750
5751 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5752 {
5753 struct regulator_dev *new_contended_rdev = NULL;
5754 struct regulator_dev *old_contended_rdev = NULL;
5755 int err;
5756
5757 mutex_lock(&regulator_list_mutex);
5758
5759 ww_acquire_init(ww_ctx, &regulator_ww_class);
5760
5761 do {
5762 if (new_contended_rdev) {
5763 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5764 old_contended_rdev = new_contended_rdev;
5765 old_contended_rdev->ref_cnt++;
5766 }
5767
5768 err = regulator_summary_lock_all(ww_ctx,
5769 &new_contended_rdev,
5770 &old_contended_rdev);
5771
5772 if (old_contended_rdev)
5773 regulator_unlock(old_contended_rdev);
5774
5775 } while (err == -EDEADLK);
5776
5777 ww_acquire_done(ww_ctx);
5778 }
5779
5780 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5781 {
5782 class_for_each_device(&regulator_class, NULL, NULL,
5783 regulator_summary_unlock_one);
5784 ww_acquire_fini(ww_ctx);
5785
5786 mutex_unlock(&regulator_list_mutex);
5787 }
5788
5789 static int regulator_summary_show_roots(struct device *dev, void *data)
5790 {
5791 struct regulator_dev *rdev = dev_to_rdev(dev);
5792 struct seq_file *s = data;
5793
5794 if (!rdev->supply)
5795 regulator_summary_show_subtree(s, rdev, 0);
5796
5797 return 0;
5798 }
5799
5800 static int regulator_summary_show(struct seq_file *s, void *data)
5801 {
5802 struct ww_acquire_ctx ww_ctx;
5803
5804 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5805 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5806
5807 regulator_summary_lock(&ww_ctx);
5808
5809 class_for_each_device(&regulator_class, NULL, s,
5810 regulator_summary_show_roots);
5811
5812 regulator_summary_unlock(&ww_ctx);
5813
5814 return 0;
5815 }
5816 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5817 #endif /* CONFIG_DEBUG_FS */
5818
5819 static int __init regulator_init(void)
5820 {
5821 int ret;
5822
5823 ret = class_register(&regulator_class);
5824
5825 debugfs_root = debugfs_create_dir("regulator", NULL);
5826 if (!debugfs_root)
5827 pr_warn("regulator: Failed to create debugfs directory\n");
5828
5829 #ifdef CONFIG_DEBUG_FS
5830 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5831 &supply_map_fops);
5832
5833 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5834 NULL, &regulator_summary_fops);
5835 #endif
5836 regulator_dummy_init();
5837
5838 regulator_coupler_register(&generic_regulator_coupler);
5839
5840 return ret;
5841 }
5842
5843 /* init early to allow our consumers to complete system booting */
5844 core_initcall(regulator_init);
5845
5846 static int regulator_late_cleanup(struct device *dev, void *data)
5847 {
5848 struct regulator_dev *rdev = dev_to_rdev(dev);
5849 const struct regulator_ops *ops = rdev->desc->ops;
5850 struct regulation_constraints *c = rdev->constraints;
5851 int enabled, ret;
5852
5853 if (c && c->always_on)
5854 return 0;
5855
5856 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5857 return 0;
5858
5859 regulator_lock(rdev);
5860
5861 if (rdev->use_count)
5862 goto unlock;
5863
5864 /* If we can't read the status assume it's always on. */
5865 if (ops->is_enabled)
5866 enabled = ops->is_enabled(rdev);
5867 else
5868 enabled = 1;
5869
5870 /* But if reading the status failed, assume that it's off. */
5871 if (enabled <= 0)
5872 goto unlock;
5873
5874 if (have_full_constraints()) {
5875 /* We log since this may kill the system if it goes
5876 * wrong. */
5877 rdev_info(rdev, "disabling\n");
5878 ret = _regulator_do_disable(rdev);
5879 if (ret != 0)
5880 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5881 } else {
5882 /* The intention is that in future we will
5883 * assume that full constraints are provided
5884 * so warn even if we aren't going to do
5885 * anything here.
5886 */
5887 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5888 }
5889
5890 unlock:
5891 regulator_unlock(rdev);
5892
5893 return 0;
5894 }
5895
5896 static void regulator_init_complete_work_function(struct work_struct *work)
5897 {
5898 /*
5899 * Regulators may had failed to resolve their input supplies
5900 * when were registered, either because the input supply was
5901 * not registered yet or because its parent device was not
5902 * bound yet. So attempt to resolve the input supplies for
5903 * pending regulators before trying to disable unused ones.
5904 */
5905 class_for_each_device(&regulator_class, NULL, NULL,
5906 regulator_register_resolve_supply);
5907
5908 /* If we have a full configuration then disable any regulators
5909 * we have permission to change the status for and which are
5910 * not in use or always_on. This is effectively the default
5911 * for DT and ACPI as they have full constraints.
5912 */
5913 class_for_each_device(&regulator_class, NULL, NULL,
5914 regulator_late_cleanup);
5915 }
5916
5917 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5918 regulator_init_complete_work_function);
5919
5920 static int __init regulator_init_complete(void)
5921 {
5922 /*
5923 * Since DT doesn't provide an idiomatic mechanism for
5924 * enabling full constraints and since it's much more natural
5925 * with DT to provide them just assume that a DT enabled
5926 * system has full constraints.
5927 */
5928 if (of_have_populated_dt())
5929 has_full_constraints = true;
5930
5931 /*
5932 * We punt completion for an arbitrary amount of time since
5933 * systems like distros will load many drivers from userspace
5934 * so consumers might not always be ready yet, this is
5935 * particularly an issue with laptops where this might bounce
5936 * the display off then on. Ideally we'd get a notification
5937 * from userspace when this happens but we don't so just wait
5938 * a bit and hope we waited long enough. It'd be better if
5939 * we'd only do this on systems that need it, and a kernel
5940 * command line option might be useful.
5941 */
5942 schedule_delayed_work(&regulator_init_complete_work,
5943 msecs_to_jiffies(30000));
5944
5945 return 0;
5946 }
5947 late_initcall_sync(regulator_init_complete);