]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/regulator/core.c
Merge remote-tracking branch 'regulator/topic/bypass' into regulator-next
[mirror_ubuntu-artful-kernel.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64 * struct regulator_map
65 *
66 * Used to provide symbolic supply names to devices.
67 */
68 struct regulator_map {
69 struct list_head list;
70 const char *dev_name; /* The dev_name() for the consumer */
71 const char *supply;
72 struct regulator_dev *regulator;
73 };
74
75 /*
76 * struct regulator_enable_gpio
77 *
78 * Management for shared enable GPIO pin
79 */
80 struct regulator_enable_gpio {
81 struct list_head list;
82 struct gpio_desc *gpiod;
83 u32 enable_count; /* a number of enabled shared GPIO */
84 u32 request_count; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89 * struct regulator_supply_alias
90 *
91 * Used to map lookups for a supply onto an alternative device.
92 */
93 struct regulator_supply_alias {
94 struct list_head list;
95 struct device *src_dev;
96 const char *src_supply;
97 struct device *alias_dev;
98 const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 struct device *dev,
112 const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 if (rdev->constraints && rdev->constraints->name)
123 return rdev->constraints->name;
124 else if (rdev->desc->name)
125 return rdev->desc->name;
126 else
127 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132 return has_full_constraints || of_have_populated_dt();
133 }
134
135 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
136 {
137 if (rdev && rdev->supply)
138 return rdev->supply->rdev;
139
140 return NULL;
141 }
142
143 /**
144 * regulator_lock_supply - lock a regulator and its supplies
145 * @rdev: regulator source
146 */
147 static void regulator_lock_supply(struct regulator_dev *rdev)
148 {
149 int i;
150
151 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
152 mutex_lock_nested(&rdev->mutex, i);
153 }
154
155 /**
156 * regulator_unlock_supply - unlock a regulator and its supplies
157 * @rdev: regulator source
158 */
159 static void regulator_unlock_supply(struct regulator_dev *rdev)
160 {
161 struct regulator *supply;
162
163 while (1) {
164 mutex_unlock(&rdev->mutex);
165 supply = rdev->supply;
166
167 if (!rdev->supply)
168 return;
169
170 rdev = supply->rdev;
171 }
172 }
173
174 /**
175 * of_get_regulator - get a regulator device node based on supply name
176 * @dev: Device pointer for the consumer (of regulator) device
177 * @supply: regulator supply name
178 *
179 * Extract the regulator device node corresponding to the supply name.
180 * returns the device node corresponding to the regulator if found, else
181 * returns NULL.
182 */
183 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184 {
185 struct device_node *regnode = NULL;
186 char prop_name[32]; /* 32 is max size of property name */
187
188 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189
190 snprintf(prop_name, 32, "%s-supply", supply);
191 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192
193 if (!regnode) {
194 dev_dbg(dev, "Looking up %s property in node %s failed",
195 prop_name, dev->of_node->full_name);
196 return NULL;
197 }
198 return regnode;
199 }
200
201 static int _regulator_can_change_status(struct regulator_dev *rdev)
202 {
203 if (!rdev->constraints)
204 return 0;
205
206 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207 return 1;
208 else
209 return 0;
210 }
211
212 /* Platform voltage constraint check */
213 static int regulator_check_voltage(struct regulator_dev *rdev,
214 int *min_uV, int *max_uV)
215 {
216 BUG_ON(*min_uV > *max_uV);
217
218 if (!rdev->constraints) {
219 rdev_err(rdev, "no constraints\n");
220 return -ENODEV;
221 }
222 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223 rdev_err(rdev, "voltage operation not allowed\n");
224 return -EPERM;
225 }
226
227 if (*max_uV > rdev->constraints->max_uV)
228 *max_uV = rdev->constraints->max_uV;
229 if (*min_uV < rdev->constraints->min_uV)
230 *min_uV = rdev->constraints->min_uV;
231
232 if (*min_uV > *max_uV) {
233 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234 *min_uV, *max_uV);
235 return -EINVAL;
236 }
237
238 return 0;
239 }
240
241 /* Make sure we select a voltage that suits the needs of all
242 * regulator consumers
243 */
244 static int regulator_check_consumers(struct regulator_dev *rdev,
245 int *min_uV, int *max_uV)
246 {
247 struct regulator *regulator;
248
249 list_for_each_entry(regulator, &rdev->consumer_list, list) {
250 /*
251 * Assume consumers that didn't say anything are OK
252 * with anything in the constraint range.
253 */
254 if (!regulator->min_uV && !regulator->max_uV)
255 continue;
256
257 if (*max_uV > regulator->max_uV)
258 *max_uV = regulator->max_uV;
259 if (*min_uV < regulator->min_uV)
260 *min_uV = regulator->min_uV;
261 }
262
263 if (*min_uV > *max_uV) {
264 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265 *min_uV, *max_uV);
266 return -EINVAL;
267 }
268
269 return 0;
270 }
271
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274 int *min_uA, int *max_uA)
275 {
276 BUG_ON(*min_uA > *max_uA);
277
278 if (!rdev->constraints) {
279 rdev_err(rdev, "no constraints\n");
280 return -ENODEV;
281 }
282 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283 rdev_err(rdev, "current operation not allowed\n");
284 return -EPERM;
285 }
286
287 if (*max_uA > rdev->constraints->max_uA)
288 *max_uA = rdev->constraints->max_uA;
289 if (*min_uA < rdev->constraints->min_uA)
290 *min_uA = rdev->constraints->min_uA;
291
292 if (*min_uA > *max_uA) {
293 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294 *min_uA, *max_uA);
295 return -EINVAL;
296 }
297
298 return 0;
299 }
300
301 /* operating mode constraint check */
302 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303 {
304 switch (*mode) {
305 case REGULATOR_MODE_FAST:
306 case REGULATOR_MODE_NORMAL:
307 case REGULATOR_MODE_IDLE:
308 case REGULATOR_MODE_STANDBY:
309 break;
310 default:
311 rdev_err(rdev, "invalid mode %x specified\n", *mode);
312 return -EINVAL;
313 }
314
315 if (!rdev->constraints) {
316 rdev_err(rdev, "no constraints\n");
317 return -ENODEV;
318 }
319 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320 rdev_err(rdev, "mode operation not allowed\n");
321 return -EPERM;
322 }
323
324 /* The modes are bitmasks, the most power hungry modes having
325 * the lowest values. If the requested mode isn't supported
326 * try higher modes. */
327 while (*mode) {
328 if (rdev->constraints->valid_modes_mask & *mode)
329 return 0;
330 *mode /= 2;
331 }
332
333 return -EINVAL;
334 }
335
336 /* dynamic regulator mode switching constraint check */
337 static int regulator_check_drms(struct regulator_dev *rdev)
338 {
339 if (!rdev->constraints) {
340 rdev_err(rdev, "no constraints\n");
341 return -ENODEV;
342 }
343 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344 rdev_dbg(rdev, "drms operation not allowed\n");
345 return -EPERM;
346 }
347 return 0;
348 }
349
350 static ssize_t regulator_uV_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
352 {
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354 ssize_t ret;
355
356 mutex_lock(&rdev->mutex);
357 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358 mutex_unlock(&rdev->mutex);
359
360 return ret;
361 }
362 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363
364 static ssize_t regulator_uA_show(struct device *dev,
365 struct device_attribute *attr, char *buf)
366 {
367 struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370 }
371 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372
373 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374 char *buf)
375 {
376 struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378 return sprintf(buf, "%s\n", rdev_get_name(rdev));
379 }
380 static DEVICE_ATTR_RO(name);
381
382 static ssize_t regulator_print_opmode(char *buf, int mode)
383 {
384 switch (mode) {
385 case REGULATOR_MODE_FAST:
386 return sprintf(buf, "fast\n");
387 case REGULATOR_MODE_NORMAL:
388 return sprintf(buf, "normal\n");
389 case REGULATOR_MODE_IDLE:
390 return sprintf(buf, "idle\n");
391 case REGULATOR_MODE_STANDBY:
392 return sprintf(buf, "standby\n");
393 }
394 return sprintf(buf, "unknown\n");
395 }
396
397 static ssize_t regulator_opmode_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399 {
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403 }
404 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405
406 static ssize_t regulator_print_state(char *buf, int state)
407 {
408 if (state > 0)
409 return sprintf(buf, "enabled\n");
410 else if (state == 0)
411 return sprintf(buf, "disabled\n");
412 else
413 return sprintf(buf, "unknown\n");
414 }
415
416 static ssize_t regulator_state_show(struct device *dev,
417 struct device_attribute *attr, char *buf)
418 {
419 struct regulator_dev *rdev = dev_get_drvdata(dev);
420 ssize_t ret;
421
422 mutex_lock(&rdev->mutex);
423 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424 mutex_unlock(&rdev->mutex);
425
426 return ret;
427 }
428 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429
430 static ssize_t regulator_status_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
432 {
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
434 int status;
435 char *label;
436
437 status = rdev->desc->ops->get_status(rdev);
438 if (status < 0)
439 return status;
440
441 switch (status) {
442 case REGULATOR_STATUS_OFF:
443 label = "off";
444 break;
445 case REGULATOR_STATUS_ON:
446 label = "on";
447 break;
448 case REGULATOR_STATUS_ERROR:
449 label = "error";
450 break;
451 case REGULATOR_STATUS_FAST:
452 label = "fast";
453 break;
454 case REGULATOR_STATUS_NORMAL:
455 label = "normal";
456 break;
457 case REGULATOR_STATUS_IDLE:
458 label = "idle";
459 break;
460 case REGULATOR_STATUS_STANDBY:
461 label = "standby";
462 break;
463 case REGULATOR_STATUS_BYPASS:
464 label = "bypass";
465 break;
466 case REGULATOR_STATUS_UNDEFINED:
467 label = "undefined";
468 break;
469 default:
470 return -ERANGE;
471 }
472
473 return sprintf(buf, "%s\n", label);
474 }
475 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476
477 static ssize_t regulator_min_uA_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
479 {
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482 if (!rdev->constraints)
483 return sprintf(buf, "constraint not defined\n");
484
485 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486 }
487 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488
489 static ssize_t regulator_max_uA_show(struct device *dev,
490 struct device_attribute *attr, char *buf)
491 {
492 struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494 if (!rdev->constraints)
495 return sprintf(buf, "constraint not defined\n");
496
497 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498 }
499 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500
501 static ssize_t regulator_min_uV_show(struct device *dev,
502 struct device_attribute *attr, char *buf)
503 {
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506 if (!rdev->constraints)
507 return sprintf(buf, "constraint not defined\n");
508
509 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510 }
511 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512
513 static ssize_t regulator_max_uV_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
515 {
516 struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518 if (!rdev->constraints)
519 return sprintf(buf, "constraint not defined\n");
520
521 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522 }
523 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524
525 static ssize_t regulator_total_uA_show(struct device *dev,
526 struct device_attribute *attr, char *buf)
527 {
528 struct regulator_dev *rdev = dev_get_drvdata(dev);
529 struct regulator *regulator;
530 int uA = 0;
531
532 mutex_lock(&rdev->mutex);
533 list_for_each_entry(regulator, &rdev->consumer_list, list)
534 uA += regulator->uA_load;
535 mutex_unlock(&rdev->mutex);
536 return sprintf(buf, "%d\n", uA);
537 }
538 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539
540 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541 char *buf)
542 {
543 struct regulator_dev *rdev = dev_get_drvdata(dev);
544 return sprintf(buf, "%d\n", rdev->use_count);
545 }
546 static DEVICE_ATTR_RO(num_users);
547
548 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549 char *buf)
550 {
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553 switch (rdev->desc->type) {
554 case REGULATOR_VOLTAGE:
555 return sprintf(buf, "voltage\n");
556 case REGULATOR_CURRENT:
557 return sprintf(buf, "current\n");
558 }
559 return sprintf(buf, "unknown\n");
560 }
561 static DEVICE_ATTR_RO(type);
562
563 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564 struct device_attribute *attr, char *buf)
565 {
566 struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569 }
570 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571 regulator_suspend_mem_uV_show, NULL);
572
573 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574 struct device_attribute *attr, char *buf)
575 {
576 struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579 }
580 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581 regulator_suspend_disk_uV_show, NULL);
582
583 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584 struct device_attribute *attr, char *buf)
585 {
586 struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589 }
590 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591 regulator_suspend_standby_uV_show, NULL);
592
593 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594 struct device_attribute *attr, char *buf)
595 {
596 struct regulator_dev *rdev = dev_get_drvdata(dev);
597
598 return regulator_print_opmode(buf,
599 rdev->constraints->state_mem.mode);
600 }
601 static DEVICE_ATTR(suspend_mem_mode, 0444,
602 regulator_suspend_mem_mode_show, NULL);
603
604 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605 struct device_attribute *attr, char *buf)
606 {
607 struct regulator_dev *rdev = dev_get_drvdata(dev);
608
609 return regulator_print_opmode(buf,
610 rdev->constraints->state_disk.mode);
611 }
612 static DEVICE_ATTR(suspend_disk_mode, 0444,
613 regulator_suspend_disk_mode_show, NULL);
614
615 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616 struct device_attribute *attr, char *buf)
617 {
618 struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620 return regulator_print_opmode(buf,
621 rdev->constraints->state_standby.mode);
622 }
623 static DEVICE_ATTR(suspend_standby_mode, 0444,
624 regulator_suspend_standby_mode_show, NULL);
625
626 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627 struct device_attribute *attr, char *buf)
628 {
629 struct regulator_dev *rdev = dev_get_drvdata(dev);
630
631 return regulator_print_state(buf,
632 rdev->constraints->state_mem.enabled);
633 }
634 static DEVICE_ATTR(suspend_mem_state, 0444,
635 regulator_suspend_mem_state_show, NULL);
636
637 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638 struct device_attribute *attr, char *buf)
639 {
640 struct regulator_dev *rdev = dev_get_drvdata(dev);
641
642 return regulator_print_state(buf,
643 rdev->constraints->state_disk.enabled);
644 }
645 static DEVICE_ATTR(suspend_disk_state, 0444,
646 regulator_suspend_disk_state_show, NULL);
647
648 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649 struct device_attribute *attr, char *buf)
650 {
651 struct regulator_dev *rdev = dev_get_drvdata(dev);
652
653 return regulator_print_state(buf,
654 rdev->constraints->state_standby.enabled);
655 }
656 static DEVICE_ATTR(suspend_standby_state, 0444,
657 regulator_suspend_standby_state_show, NULL);
658
659 static ssize_t regulator_bypass_show(struct device *dev,
660 struct device_attribute *attr, char *buf)
661 {
662 struct regulator_dev *rdev = dev_get_drvdata(dev);
663 const char *report;
664 bool bypass;
665 int ret;
666
667 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668
669 if (ret != 0)
670 report = "unknown";
671 else if (bypass)
672 report = "enabled";
673 else
674 report = "disabled";
675
676 return sprintf(buf, "%s\n", report);
677 }
678 static DEVICE_ATTR(bypass, 0444,
679 regulator_bypass_show, NULL);
680
681 /* Calculate the new optimum regulator operating mode based on the new total
682 * consumer load. All locks held by caller */
683 static int drms_uA_update(struct regulator_dev *rdev)
684 {
685 struct regulator *sibling;
686 int current_uA = 0, output_uV, input_uV, err;
687 unsigned int mode;
688
689 lockdep_assert_held_once(&rdev->mutex);
690
691 /*
692 * first check to see if we can set modes at all, otherwise just
693 * tell the consumer everything is OK.
694 */
695 err = regulator_check_drms(rdev);
696 if (err < 0)
697 return 0;
698
699 if (!rdev->desc->ops->get_optimum_mode &&
700 !rdev->desc->ops->set_load)
701 return 0;
702
703 if (!rdev->desc->ops->set_mode &&
704 !rdev->desc->ops->set_load)
705 return -EINVAL;
706
707 /* get output voltage */
708 output_uV = _regulator_get_voltage(rdev);
709 if (output_uV <= 0) {
710 rdev_err(rdev, "invalid output voltage found\n");
711 return -EINVAL;
712 }
713
714 /* get input voltage */
715 input_uV = 0;
716 if (rdev->supply)
717 input_uV = regulator_get_voltage(rdev->supply);
718 if (input_uV <= 0)
719 input_uV = rdev->constraints->input_uV;
720 if (input_uV <= 0) {
721 rdev_err(rdev, "invalid input voltage found\n");
722 return -EINVAL;
723 }
724
725 /* calc total requested load */
726 list_for_each_entry(sibling, &rdev->consumer_list, list)
727 current_uA += sibling->uA_load;
728
729 current_uA += rdev->constraints->system_load;
730
731 if (rdev->desc->ops->set_load) {
732 /* set the optimum mode for our new total regulator load */
733 err = rdev->desc->ops->set_load(rdev, current_uA);
734 if (err < 0)
735 rdev_err(rdev, "failed to set load %d\n", current_uA);
736 } else {
737 /* now get the optimum mode for our new total regulator load */
738 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739 output_uV, current_uA);
740
741 /* check the new mode is allowed */
742 err = regulator_mode_constrain(rdev, &mode);
743 if (err < 0) {
744 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745 current_uA, input_uV, output_uV);
746 return err;
747 }
748
749 err = rdev->desc->ops->set_mode(rdev, mode);
750 if (err < 0)
751 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752 }
753
754 return err;
755 }
756
757 static int suspend_set_state(struct regulator_dev *rdev,
758 struct regulator_state *rstate)
759 {
760 int ret = 0;
761
762 /* If we have no suspend mode configration don't set anything;
763 * only warn if the driver implements set_suspend_voltage or
764 * set_suspend_mode callback.
765 */
766 if (!rstate->enabled && !rstate->disabled) {
767 if (rdev->desc->ops->set_suspend_voltage ||
768 rdev->desc->ops->set_suspend_mode)
769 rdev_warn(rdev, "No configuration\n");
770 return 0;
771 }
772
773 if (rstate->enabled && rstate->disabled) {
774 rdev_err(rdev, "invalid configuration\n");
775 return -EINVAL;
776 }
777
778 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779 ret = rdev->desc->ops->set_suspend_enable(rdev);
780 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781 ret = rdev->desc->ops->set_suspend_disable(rdev);
782 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783 ret = 0;
784
785 if (ret < 0) {
786 rdev_err(rdev, "failed to enabled/disable\n");
787 return ret;
788 }
789
790 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792 if (ret < 0) {
793 rdev_err(rdev, "failed to set voltage\n");
794 return ret;
795 }
796 }
797
798 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800 if (ret < 0) {
801 rdev_err(rdev, "failed to set mode\n");
802 return ret;
803 }
804 }
805 return ret;
806 }
807
808 /* locks held by caller */
809 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810 {
811 lockdep_assert_held_once(&rdev->mutex);
812
813 if (!rdev->constraints)
814 return -EINVAL;
815
816 switch (state) {
817 case PM_SUSPEND_STANDBY:
818 return suspend_set_state(rdev,
819 &rdev->constraints->state_standby);
820 case PM_SUSPEND_MEM:
821 return suspend_set_state(rdev,
822 &rdev->constraints->state_mem);
823 case PM_SUSPEND_MAX:
824 return suspend_set_state(rdev,
825 &rdev->constraints->state_disk);
826 default:
827 return -EINVAL;
828 }
829 }
830
831 static void print_constraints(struct regulator_dev *rdev)
832 {
833 struct regulation_constraints *constraints = rdev->constraints;
834 char buf[160] = "";
835 size_t len = sizeof(buf) - 1;
836 int count = 0;
837 int ret;
838
839 if (constraints->min_uV && constraints->max_uV) {
840 if (constraints->min_uV == constraints->max_uV)
841 count += scnprintf(buf + count, len - count, "%d mV ",
842 constraints->min_uV / 1000);
843 else
844 count += scnprintf(buf + count, len - count,
845 "%d <--> %d mV ",
846 constraints->min_uV / 1000,
847 constraints->max_uV / 1000);
848 }
849
850 if (!constraints->min_uV ||
851 constraints->min_uV != constraints->max_uV) {
852 ret = _regulator_get_voltage(rdev);
853 if (ret > 0)
854 count += scnprintf(buf + count, len - count,
855 "at %d mV ", ret / 1000);
856 }
857
858 if (constraints->uV_offset)
859 count += scnprintf(buf + count, len - count, "%dmV offset ",
860 constraints->uV_offset / 1000);
861
862 if (constraints->min_uA && constraints->max_uA) {
863 if (constraints->min_uA == constraints->max_uA)
864 count += scnprintf(buf + count, len - count, "%d mA ",
865 constraints->min_uA / 1000);
866 else
867 count += scnprintf(buf + count, len - count,
868 "%d <--> %d mA ",
869 constraints->min_uA / 1000,
870 constraints->max_uA / 1000);
871 }
872
873 if (!constraints->min_uA ||
874 constraints->min_uA != constraints->max_uA) {
875 ret = _regulator_get_current_limit(rdev);
876 if (ret > 0)
877 count += scnprintf(buf + count, len - count,
878 "at %d mA ", ret / 1000);
879 }
880
881 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882 count += scnprintf(buf + count, len - count, "fast ");
883 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884 count += scnprintf(buf + count, len - count, "normal ");
885 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886 count += scnprintf(buf + count, len - count, "idle ");
887 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888 count += scnprintf(buf + count, len - count, "standby");
889
890 if (!count)
891 scnprintf(buf, len, "no parameters");
892
893 rdev_dbg(rdev, "%s\n", buf);
894
895 if ((constraints->min_uV != constraints->max_uV) &&
896 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897 rdev_warn(rdev,
898 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899 }
900
901 static int machine_constraints_voltage(struct regulator_dev *rdev,
902 struct regulation_constraints *constraints)
903 {
904 const struct regulator_ops *ops = rdev->desc->ops;
905 int ret;
906
907 /* do we need to apply the constraint voltage */
908 if (rdev->constraints->apply_uV &&
909 rdev->constraints->min_uV && rdev->constraints->max_uV) {
910 int target_min, target_max;
911 int current_uV = _regulator_get_voltage(rdev);
912 if (current_uV < 0) {
913 rdev_err(rdev,
914 "failed to get the current voltage(%d)\n",
915 current_uV);
916 return current_uV;
917 }
918
919 /*
920 * If we're below the minimum voltage move up to the
921 * minimum voltage, if we're above the maximum voltage
922 * then move down to the maximum.
923 */
924 target_min = current_uV;
925 target_max = current_uV;
926
927 if (current_uV < rdev->constraints->min_uV) {
928 target_min = rdev->constraints->min_uV;
929 target_max = rdev->constraints->min_uV;
930 }
931
932 if (current_uV > rdev->constraints->max_uV) {
933 target_min = rdev->constraints->max_uV;
934 target_max = rdev->constraints->max_uV;
935 }
936
937 if (target_min != current_uV || target_max != current_uV) {
938 ret = _regulator_do_set_voltage(
939 rdev, target_min, target_max);
940 if (ret < 0) {
941 rdev_err(rdev,
942 "failed to apply %d-%duV constraint(%d)\n",
943 target_min, target_max, ret);
944 return ret;
945 }
946 }
947 }
948
949 /* constrain machine-level voltage specs to fit
950 * the actual range supported by this regulator.
951 */
952 if (ops->list_voltage && rdev->desc->n_voltages) {
953 int count = rdev->desc->n_voltages;
954 int i;
955 int min_uV = INT_MAX;
956 int max_uV = INT_MIN;
957 int cmin = constraints->min_uV;
958 int cmax = constraints->max_uV;
959
960 /* it's safe to autoconfigure fixed-voltage supplies
961 and the constraints are used by list_voltage. */
962 if (count == 1 && !cmin) {
963 cmin = 1;
964 cmax = INT_MAX;
965 constraints->min_uV = cmin;
966 constraints->max_uV = cmax;
967 }
968
969 /* voltage constraints are optional */
970 if ((cmin == 0) && (cmax == 0))
971 return 0;
972
973 /* else require explicit machine-level constraints */
974 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
975 rdev_err(rdev, "invalid voltage constraints\n");
976 return -EINVAL;
977 }
978
979 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
980 for (i = 0; i < count; i++) {
981 int value;
982
983 value = ops->list_voltage(rdev, i);
984 if (value <= 0)
985 continue;
986
987 /* maybe adjust [min_uV..max_uV] */
988 if (value >= cmin && value < min_uV)
989 min_uV = value;
990 if (value <= cmax && value > max_uV)
991 max_uV = value;
992 }
993
994 /* final: [min_uV..max_uV] valid iff constraints valid */
995 if (max_uV < min_uV) {
996 rdev_err(rdev,
997 "unsupportable voltage constraints %u-%uuV\n",
998 min_uV, max_uV);
999 return -EINVAL;
1000 }
1001
1002 /* use regulator's subset of machine constraints */
1003 if (constraints->min_uV < min_uV) {
1004 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1005 constraints->min_uV, min_uV);
1006 constraints->min_uV = min_uV;
1007 }
1008 if (constraints->max_uV > max_uV) {
1009 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1010 constraints->max_uV, max_uV);
1011 constraints->max_uV = max_uV;
1012 }
1013 }
1014
1015 return 0;
1016 }
1017
1018 static int machine_constraints_current(struct regulator_dev *rdev,
1019 struct regulation_constraints *constraints)
1020 {
1021 const struct regulator_ops *ops = rdev->desc->ops;
1022 int ret;
1023
1024 if (!constraints->min_uA && !constraints->max_uA)
1025 return 0;
1026
1027 if (constraints->min_uA > constraints->max_uA) {
1028 rdev_err(rdev, "Invalid current constraints\n");
1029 return -EINVAL;
1030 }
1031
1032 if (!ops->set_current_limit || !ops->get_current_limit) {
1033 rdev_warn(rdev, "Operation of current configuration missing\n");
1034 return 0;
1035 }
1036
1037 /* Set regulator current in constraints range */
1038 ret = ops->set_current_limit(rdev, constraints->min_uA,
1039 constraints->max_uA);
1040 if (ret < 0) {
1041 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1042 return ret;
1043 }
1044
1045 return 0;
1046 }
1047
1048 static int _regulator_do_enable(struct regulator_dev *rdev);
1049
1050 /**
1051 * set_machine_constraints - sets regulator constraints
1052 * @rdev: regulator source
1053 * @constraints: constraints to apply
1054 *
1055 * Allows platform initialisation code to define and constrain
1056 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1057 * Constraints *must* be set by platform code in order for some
1058 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1059 * set_mode.
1060 */
1061 static int set_machine_constraints(struct regulator_dev *rdev,
1062 const struct regulation_constraints *constraints)
1063 {
1064 int ret = 0;
1065 const struct regulator_ops *ops = rdev->desc->ops;
1066
1067 if (constraints)
1068 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1069 GFP_KERNEL);
1070 else
1071 rdev->constraints = kzalloc(sizeof(*constraints),
1072 GFP_KERNEL);
1073 if (!rdev->constraints)
1074 return -ENOMEM;
1075
1076 ret = machine_constraints_voltage(rdev, rdev->constraints);
1077 if (ret != 0)
1078 return ret;
1079
1080 ret = machine_constraints_current(rdev, rdev->constraints);
1081 if (ret != 0)
1082 return ret;
1083
1084 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1085 ret = ops->set_input_current_limit(rdev,
1086 rdev->constraints->ilim_uA);
1087 if (ret < 0) {
1088 rdev_err(rdev, "failed to set input limit\n");
1089 return ret;
1090 }
1091 }
1092
1093 /* do we need to setup our suspend state */
1094 if (rdev->constraints->initial_state) {
1095 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1096 if (ret < 0) {
1097 rdev_err(rdev, "failed to set suspend state\n");
1098 return ret;
1099 }
1100 }
1101
1102 if (rdev->constraints->initial_mode) {
1103 if (!ops->set_mode) {
1104 rdev_err(rdev, "no set_mode operation\n");
1105 return -EINVAL;
1106 }
1107
1108 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1109 if (ret < 0) {
1110 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1111 return ret;
1112 }
1113 }
1114
1115 /* If the constraints say the regulator should be on at this point
1116 * and we have control then make sure it is enabled.
1117 */
1118 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1119 ret = _regulator_do_enable(rdev);
1120 if (ret < 0 && ret != -EINVAL) {
1121 rdev_err(rdev, "failed to enable\n");
1122 return ret;
1123 }
1124 }
1125
1126 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1127 && ops->set_ramp_delay) {
1128 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1129 if (ret < 0) {
1130 rdev_err(rdev, "failed to set ramp_delay\n");
1131 return ret;
1132 }
1133 }
1134
1135 if (rdev->constraints->pull_down && ops->set_pull_down) {
1136 ret = ops->set_pull_down(rdev);
1137 if (ret < 0) {
1138 rdev_err(rdev, "failed to set pull down\n");
1139 return ret;
1140 }
1141 }
1142
1143 if (rdev->constraints->soft_start && ops->set_soft_start) {
1144 ret = ops->set_soft_start(rdev);
1145 if (ret < 0) {
1146 rdev_err(rdev, "failed to set soft start\n");
1147 return ret;
1148 }
1149 }
1150
1151 if (rdev->constraints->over_current_protection
1152 && ops->set_over_current_protection) {
1153 ret = ops->set_over_current_protection(rdev);
1154 if (ret < 0) {
1155 rdev_err(rdev, "failed to set over current protection\n");
1156 return ret;
1157 }
1158 }
1159
1160 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1161 bool ad_state = (rdev->constraints->active_discharge ==
1162 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1163
1164 ret = ops->set_active_discharge(rdev, ad_state);
1165 if (ret < 0) {
1166 rdev_err(rdev, "failed to set active discharge\n");
1167 return ret;
1168 }
1169 }
1170
1171 print_constraints(rdev);
1172 return 0;
1173 }
1174
1175 /**
1176 * set_supply - set regulator supply regulator
1177 * @rdev: regulator name
1178 * @supply_rdev: supply regulator name
1179 *
1180 * Called by platform initialisation code to set the supply regulator for this
1181 * regulator. This ensures that a regulators supply will also be enabled by the
1182 * core if it's child is enabled.
1183 */
1184 static int set_supply(struct regulator_dev *rdev,
1185 struct regulator_dev *supply_rdev)
1186 {
1187 int err;
1188
1189 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1190
1191 if (!try_module_get(supply_rdev->owner))
1192 return -ENODEV;
1193
1194 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1195 if (rdev->supply == NULL) {
1196 err = -ENOMEM;
1197 return err;
1198 }
1199 supply_rdev->open_count++;
1200
1201 return 0;
1202 }
1203
1204 /**
1205 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1206 * @rdev: regulator source
1207 * @consumer_dev_name: dev_name() string for device supply applies to
1208 * @supply: symbolic name for supply
1209 *
1210 * Allows platform initialisation code to map physical regulator
1211 * sources to symbolic names for supplies for use by devices. Devices
1212 * should use these symbolic names to request regulators, avoiding the
1213 * need to provide board-specific regulator names as platform data.
1214 */
1215 static int set_consumer_device_supply(struct regulator_dev *rdev,
1216 const char *consumer_dev_name,
1217 const char *supply)
1218 {
1219 struct regulator_map *node;
1220 int has_dev;
1221
1222 if (supply == NULL)
1223 return -EINVAL;
1224
1225 if (consumer_dev_name != NULL)
1226 has_dev = 1;
1227 else
1228 has_dev = 0;
1229
1230 list_for_each_entry(node, &regulator_map_list, list) {
1231 if (node->dev_name && consumer_dev_name) {
1232 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1233 continue;
1234 } else if (node->dev_name || consumer_dev_name) {
1235 continue;
1236 }
1237
1238 if (strcmp(node->supply, supply) != 0)
1239 continue;
1240
1241 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1242 consumer_dev_name,
1243 dev_name(&node->regulator->dev),
1244 node->regulator->desc->name,
1245 supply,
1246 dev_name(&rdev->dev), rdev_get_name(rdev));
1247 return -EBUSY;
1248 }
1249
1250 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1251 if (node == NULL)
1252 return -ENOMEM;
1253
1254 node->regulator = rdev;
1255 node->supply = supply;
1256
1257 if (has_dev) {
1258 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1259 if (node->dev_name == NULL) {
1260 kfree(node);
1261 return -ENOMEM;
1262 }
1263 }
1264
1265 list_add(&node->list, &regulator_map_list);
1266 return 0;
1267 }
1268
1269 static void unset_regulator_supplies(struct regulator_dev *rdev)
1270 {
1271 struct regulator_map *node, *n;
1272
1273 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1274 if (rdev == node->regulator) {
1275 list_del(&node->list);
1276 kfree(node->dev_name);
1277 kfree(node);
1278 }
1279 }
1280 }
1281
1282 #define REG_STR_SIZE 64
1283
1284 static struct regulator *create_regulator(struct regulator_dev *rdev,
1285 struct device *dev,
1286 const char *supply_name)
1287 {
1288 struct regulator *regulator;
1289 char buf[REG_STR_SIZE];
1290 int err, size;
1291
1292 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1293 if (regulator == NULL)
1294 return NULL;
1295
1296 mutex_lock(&rdev->mutex);
1297 regulator->rdev = rdev;
1298 list_add(&regulator->list, &rdev->consumer_list);
1299
1300 if (dev) {
1301 regulator->dev = dev;
1302
1303 /* Add a link to the device sysfs entry */
1304 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1305 dev->kobj.name, supply_name);
1306 if (size >= REG_STR_SIZE)
1307 goto overflow_err;
1308
1309 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1310 if (regulator->supply_name == NULL)
1311 goto overflow_err;
1312
1313 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1314 buf);
1315 if (err) {
1316 rdev_dbg(rdev, "could not add device link %s err %d\n",
1317 dev->kobj.name, err);
1318 /* non-fatal */
1319 }
1320 } else {
1321 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1322 if (regulator->supply_name == NULL)
1323 goto overflow_err;
1324 }
1325
1326 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1327 rdev->debugfs);
1328 if (!regulator->debugfs) {
1329 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1330 } else {
1331 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1332 &regulator->uA_load);
1333 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1334 &regulator->min_uV);
1335 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1336 &regulator->max_uV);
1337 }
1338
1339 /*
1340 * Check now if the regulator is an always on regulator - if
1341 * it is then we don't need to do nearly so much work for
1342 * enable/disable calls.
1343 */
1344 if (!_regulator_can_change_status(rdev) &&
1345 _regulator_is_enabled(rdev))
1346 regulator->always_on = true;
1347
1348 mutex_unlock(&rdev->mutex);
1349 return regulator;
1350 overflow_err:
1351 list_del(&regulator->list);
1352 kfree(regulator);
1353 mutex_unlock(&rdev->mutex);
1354 return NULL;
1355 }
1356
1357 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1358 {
1359 if (rdev->constraints && rdev->constraints->enable_time)
1360 return rdev->constraints->enable_time;
1361 if (!rdev->desc->ops->enable_time)
1362 return rdev->desc->enable_time;
1363 return rdev->desc->ops->enable_time(rdev);
1364 }
1365
1366 static struct regulator_supply_alias *regulator_find_supply_alias(
1367 struct device *dev, const char *supply)
1368 {
1369 struct regulator_supply_alias *map;
1370
1371 list_for_each_entry(map, &regulator_supply_alias_list, list)
1372 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1373 return map;
1374
1375 return NULL;
1376 }
1377
1378 static void regulator_supply_alias(struct device **dev, const char **supply)
1379 {
1380 struct regulator_supply_alias *map;
1381
1382 map = regulator_find_supply_alias(*dev, *supply);
1383 if (map) {
1384 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1385 *supply, map->alias_supply,
1386 dev_name(map->alias_dev));
1387 *dev = map->alias_dev;
1388 *supply = map->alias_supply;
1389 }
1390 }
1391
1392 static int of_node_match(struct device *dev, const void *data)
1393 {
1394 return dev->of_node == data;
1395 }
1396
1397 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1398 {
1399 struct device *dev;
1400
1401 dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1402
1403 return dev ? dev_to_rdev(dev) : NULL;
1404 }
1405
1406 static int regulator_match(struct device *dev, const void *data)
1407 {
1408 struct regulator_dev *r = dev_to_rdev(dev);
1409
1410 return strcmp(rdev_get_name(r), data) == 0;
1411 }
1412
1413 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1414 {
1415 struct device *dev;
1416
1417 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1418
1419 return dev ? dev_to_rdev(dev) : NULL;
1420 }
1421
1422 /**
1423 * regulator_dev_lookup - lookup a regulator device.
1424 * @dev: device for regulator "consumer".
1425 * @supply: Supply name or regulator ID.
1426 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1427 * lookup could succeed in the future.
1428 *
1429 * If successful, returns a struct regulator_dev that corresponds to the name
1430 * @supply and with the embedded struct device refcount incremented by one,
1431 * or NULL on failure. The refcount must be dropped by calling put_device().
1432 */
1433 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1434 const char *supply,
1435 int *ret)
1436 {
1437 struct regulator_dev *r;
1438 struct device_node *node;
1439 struct regulator_map *map;
1440 const char *devname = NULL;
1441
1442 regulator_supply_alias(&dev, &supply);
1443
1444 /* first do a dt based lookup */
1445 if (dev && dev->of_node) {
1446 node = of_get_regulator(dev, supply);
1447 if (node) {
1448 r = of_find_regulator_by_node(node);
1449 if (r)
1450 return r;
1451 *ret = -EPROBE_DEFER;
1452 return NULL;
1453 } else {
1454 /*
1455 * If we couldn't even get the node then it's
1456 * not just that the device didn't register
1457 * yet, there's no node and we'll never
1458 * succeed.
1459 */
1460 *ret = -ENODEV;
1461 }
1462 }
1463
1464 /* if not found, try doing it non-dt way */
1465 if (dev)
1466 devname = dev_name(dev);
1467
1468 r = regulator_lookup_by_name(supply);
1469 if (r)
1470 return r;
1471
1472 mutex_lock(&regulator_list_mutex);
1473 list_for_each_entry(map, &regulator_map_list, list) {
1474 /* If the mapping has a device set up it must match */
1475 if (map->dev_name &&
1476 (!devname || strcmp(map->dev_name, devname)))
1477 continue;
1478
1479 if (strcmp(map->supply, supply) == 0 &&
1480 get_device(&map->regulator->dev)) {
1481 mutex_unlock(&regulator_list_mutex);
1482 return map->regulator;
1483 }
1484 }
1485 mutex_unlock(&regulator_list_mutex);
1486
1487 return NULL;
1488 }
1489
1490 static int regulator_resolve_supply(struct regulator_dev *rdev)
1491 {
1492 struct regulator_dev *r;
1493 struct device *dev = rdev->dev.parent;
1494 int ret;
1495
1496 /* No supply to resovle? */
1497 if (!rdev->supply_name)
1498 return 0;
1499
1500 /* Supply already resolved? */
1501 if (rdev->supply)
1502 return 0;
1503
1504 r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1505 if (!r) {
1506 if (ret == -ENODEV) {
1507 /*
1508 * No supply was specified for this regulator and
1509 * there will never be one.
1510 */
1511 return 0;
1512 }
1513
1514 /* Did the lookup explicitly defer for us? */
1515 if (ret == -EPROBE_DEFER)
1516 return ret;
1517
1518 if (have_full_constraints()) {
1519 r = dummy_regulator_rdev;
1520 get_device(&r->dev);
1521 } else {
1522 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1523 rdev->supply_name, rdev->desc->name);
1524 return -EPROBE_DEFER;
1525 }
1526 }
1527
1528 /* Recursively resolve the supply of the supply */
1529 ret = regulator_resolve_supply(r);
1530 if (ret < 0) {
1531 put_device(&r->dev);
1532 return ret;
1533 }
1534
1535 ret = set_supply(rdev, r);
1536 if (ret < 0) {
1537 put_device(&r->dev);
1538 return ret;
1539 }
1540
1541 /* Cascade always-on state to supply */
1542 if (_regulator_is_enabled(rdev) && rdev->supply) {
1543 ret = regulator_enable(rdev->supply);
1544 if (ret < 0) {
1545 _regulator_put(rdev->supply);
1546 return ret;
1547 }
1548 }
1549
1550 return 0;
1551 }
1552
1553 /* Internal regulator request function */
1554 static struct regulator *_regulator_get(struct device *dev, const char *id,
1555 bool exclusive, bool allow_dummy)
1556 {
1557 struct regulator_dev *rdev;
1558 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1559 const char *devname = NULL;
1560 int ret;
1561
1562 if (id == NULL) {
1563 pr_err("get() with no identifier\n");
1564 return ERR_PTR(-EINVAL);
1565 }
1566
1567 if (dev)
1568 devname = dev_name(dev);
1569
1570 if (have_full_constraints())
1571 ret = -ENODEV;
1572 else
1573 ret = -EPROBE_DEFER;
1574
1575 rdev = regulator_dev_lookup(dev, id, &ret);
1576 if (rdev)
1577 goto found;
1578
1579 regulator = ERR_PTR(ret);
1580
1581 /*
1582 * If we have return value from dev_lookup fail, we do not expect to
1583 * succeed, so, quit with appropriate error value
1584 */
1585 if (ret && ret != -ENODEV)
1586 return regulator;
1587
1588 if (!devname)
1589 devname = "deviceless";
1590
1591 /*
1592 * Assume that a regulator is physically present and enabled
1593 * even if it isn't hooked up and just provide a dummy.
1594 */
1595 if (have_full_constraints() && allow_dummy) {
1596 pr_warn("%s supply %s not found, using dummy regulator\n",
1597 devname, id);
1598
1599 rdev = dummy_regulator_rdev;
1600 get_device(&rdev->dev);
1601 goto found;
1602 /* Don't log an error when called from regulator_get_optional() */
1603 } else if (!have_full_constraints() || exclusive) {
1604 dev_warn(dev, "dummy supplies not allowed\n");
1605 }
1606
1607 return regulator;
1608
1609 found:
1610 if (rdev->exclusive) {
1611 regulator = ERR_PTR(-EPERM);
1612 put_device(&rdev->dev);
1613 return regulator;
1614 }
1615
1616 if (exclusive && rdev->open_count) {
1617 regulator = ERR_PTR(-EBUSY);
1618 put_device(&rdev->dev);
1619 return regulator;
1620 }
1621
1622 ret = regulator_resolve_supply(rdev);
1623 if (ret < 0) {
1624 regulator = ERR_PTR(ret);
1625 put_device(&rdev->dev);
1626 return regulator;
1627 }
1628
1629 if (!try_module_get(rdev->owner)) {
1630 put_device(&rdev->dev);
1631 return regulator;
1632 }
1633
1634 regulator = create_regulator(rdev, dev, id);
1635 if (regulator == NULL) {
1636 regulator = ERR_PTR(-ENOMEM);
1637 put_device(&rdev->dev);
1638 module_put(rdev->owner);
1639 return regulator;
1640 }
1641
1642 rdev->open_count++;
1643 if (exclusive) {
1644 rdev->exclusive = 1;
1645
1646 ret = _regulator_is_enabled(rdev);
1647 if (ret > 0)
1648 rdev->use_count = 1;
1649 else
1650 rdev->use_count = 0;
1651 }
1652
1653 return regulator;
1654 }
1655
1656 /**
1657 * regulator_get - lookup and obtain a reference to a regulator.
1658 * @dev: device for regulator "consumer"
1659 * @id: Supply name or regulator ID.
1660 *
1661 * Returns a struct regulator corresponding to the regulator producer,
1662 * or IS_ERR() condition containing errno.
1663 *
1664 * Use of supply names configured via regulator_set_device_supply() is
1665 * strongly encouraged. It is recommended that the supply name used
1666 * should match the name used for the supply and/or the relevant
1667 * device pins in the datasheet.
1668 */
1669 struct regulator *regulator_get(struct device *dev, const char *id)
1670 {
1671 return _regulator_get(dev, id, false, true);
1672 }
1673 EXPORT_SYMBOL_GPL(regulator_get);
1674
1675 /**
1676 * regulator_get_exclusive - obtain exclusive access to a regulator.
1677 * @dev: device for regulator "consumer"
1678 * @id: Supply name or regulator ID.
1679 *
1680 * Returns a struct regulator corresponding to the regulator producer,
1681 * or IS_ERR() condition containing errno. Other consumers will be
1682 * unable to obtain this regulator while this reference is held and the
1683 * use count for the regulator will be initialised to reflect the current
1684 * state of the regulator.
1685 *
1686 * This is intended for use by consumers which cannot tolerate shared
1687 * use of the regulator such as those which need to force the
1688 * regulator off for correct operation of the hardware they are
1689 * controlling.
1690 *
1691 * Use of supply names configured via regulator_set_device_supply() is
1692 * strongly encouraged. It is recommended that the supply name used
1693 * should match the name used for the supply and/or the relevant
1694 * device pins in the datasheet.
1695 */
1696 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1697 {
1698 return _regulator_get(dev, id, true, false);
1699 }
1700 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1701
1702 /**
1703 * regulator_get_optional - obtain optional access to a regulator.
1704 * @dev: device for regulator "consumer"
1705 * @id: Supply name or regulator ID.
1706 *
1707 * Returns a struct regulator corresponding to the regulator producer,
1708 * or IS_ERR() condition containing errno.
1709 *
1710 * This is intended for use by consumers for devices which can have
1711 * some supplies unconnected in normal use, such as some MMC devices.
1712 * It can allow the regulator core to provide stub supplies for other
1713 * supplies requested using normal regulator_get() calls without
1714 * disrupting the operation of drivers that can handle absent
1715 * supplies.
1716 *
1717 * Use of supply names configured via regulator_set_device_supply() is
1718 * strongly encouraged. It is recommended that the supply name used
1719 * should match the name used for the supply and/or the relevant
1720 * device pins in the datasheet.
1721 */
1722 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1723 {
1724 return _regulator_get(dev, id, false, false);
1725 }
1726 EXPORT_SYMBOL_GPL(regulator_get_optional);
1727
1728 /* regulator_list_mutex lock held by regulator_put() */
1729 static void _regulator_put(struct regulator *regulator)
1730 {
1731 struct regulator_dev *rdev;
1732
1733 if (IS_ERR_OR_NULL(regulator))
1734 return;
1735
1736 lockdep_assert_held_once(&regulator_list_mutex);
1737
1738 rdev = regulator->rdev;
1739
1740 debugfs_remove_recursive(regulator->debugfs);
1741
1742 /* remove any sysfs entries */
1743 if (regulator->dev)
1744 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1745 mutex_lock(&rdev->mutex);
1746 list_del(&regulator->list);
1747
1748 rdev->open_count--;
1749 rdev->exclusive = 0;
1750 put_device(&rdev->dev);
1751 mutex_unlock(&rdev->mutex);
1752
1753 kfree(regulator->supply_name);
1754 kfree(regulator);
1755
1756 module_put(rdev->owner);
1757 }
1758
1759 /**
1760 * regulator_put - "free" the regulator source
1761 * @regulator: regulator source
1762 *
1763 * Note: drivers must ensure that all regulator_enable calls made on this
1764 * regulator source are balanced by regulator_disable calls prior to calling
1765 * this function.
1766 */
1767 void regulator_put(struct regulator *regulator)
1768 {
1769 mutex_lock(&regulator_list_mutex);
1770 _regulator_put(regulator);
1771 mutex_unlock(&regulator_list_mutex);
1772 }
1773 EXPORT_SYMBOL_GPL(regulator_put);
1774
1775 /**
1776 * regulator_register_supply_alias - Provide device alias for supply lookup
1777 *
1778 * @dev: device that will be given as the regulator "consumer"
1779 * @id: Supply name or regulator ID
1780 * @alias_dev: device that should be used to lookup the supply
1781 * @alias_id: Supply name or regulator ID that should be used to lookup the
1782 * supply
1783 *
1784 * All lookups for id on dev will instead be conducted for alias_id on
1785 * alias_dev.
1786 */
1787 int regulator_register_supply_alias(struct device *dev, const char *id,
1788 struct device *alias_dev,
1789 const char *alias_id)
1790 {
1791 struct regulator_supply_alias *map;
1792
1793 map = regulator_find_supply_alias(dev, id);
1794 if (map)
1795 return -EEXIST;
1796
1797 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1798 if (!map)
1799 return -ENOMEM;
1800
1801 map->src_dev = dev;
1802 map->src_supply = id;
1803 map->alias_dev = alias_dev;
1804 map->alias_supply = alias_id;
1805
1806 list_add(&map->list, &regulator_supply_alias_list);
1807
1808 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1809 id, dev_name(dev), alias_id, dev_name(alias_dev));
1810
1811 return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1814
1815 /**
1816 * regulator_unregister_supply_alias - Remove device alias
1817 *
1818 * @dev: device that will be given as the regulator "consumer"
1819 * @id: Supply name or regulator ID
1820 *
1821 * Remove a lookup alias if one exists for id on dev.
1822 */
1823 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1824 {
1825 struct regulator_supply_alias *map;
1826
1827 map = regulator_find_supply_alias(dev, id);
1828 if (map) {
1829 list_del(&map->list);
1830 kfree(map);
1831 }
1832 }
1833 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1834
1835 /**
1836 * regulator_bulk_register_supply_alias - register multiple aliases
1837 *
1838 * @dev: device that will be given as the regulator "consumer"
1839 * @id: List of supply names or regulator IDs
1840 * @alias_dev: device that should be used to lookup the supply
1841 * @alias_id: List of supply names or regulator IDs that should be used to
1842 * lookup the supply
1843 * @num_id: Number of aliases to register
1844 *
1845 * @return 0 on success, an errno on failure.
1846 *
1847 * This helper function allows drivers to register several supply
1848 * aliases in one operation. If any of the aliases cannot be
1849 * registered any aliases that were registered will be removed
1850 * before returning to the caller.
1851 */
1852 int regulator_bulk_register_supply_alias(struct device *dev,
1853 const char *const *id,
1854 struct device *alias_dev,
1855 const char *const *alias_id,
1856 int num_id)
1857 {
1858 int i;
1859 int ret;
1860
1861 for (i = 0; i < num_id; ++i) {
1862 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1863 alias_id[i]);
1864 if (ret < 0)
1865 goto err;
1866 }
1867
1868 return 0;
1869
1870 err:
1871 dev_err(dev,
1872 "Failed to create supply alias %s,%s -> %s,%s\n",
1873 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1874
1875 while (--i >= 0)
1876 regulator_unregister_supply_alias(dev, id[i]);
1877
1878 return ret;
1879 }
1880 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1881
1882 /**
1883 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1884 *
1885 * @dev: device that will be given as the regulator "consumer"
1886 * @id: List of supply names or regulator IDs
1887 * @num_id: Number of aliases to unregister
1888 *
1889 * This helper function allows drivers to unregister several supply
1890 * aliases in one operation.
1891 */
1892 void regulator_bulk_unregister_supply_alias(struct device *dev,
1893 const char *const *id,
1894 int num_id)
1895 {
1896 int i;
1897
1898 for (i = 0; i < num_id; ++i)
1899 regulator_unregister_supply_alias(dev, id[i]);
1900 }
1901 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1902
1903
1904 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1905 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1906 const struct regulator_config *config)
1907 {
1908 struct regulator_enable_gpio *pin;
1909 struct gpio_desc *gpiod;
1910 int ret;
1911
1912 gpiod = gpio_to_desc(config->ena_gpio);
1913
1914 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1915 if (pin->gpiod == gpiod) {
1916 rdev_dbg(rdev, "GPIO %d is already used\n",
1917 config->ena_gpio);
1918 goto update_ena_gpio_to_rdev;
1919 }
1920 }
1921
1922 ret = gpio_request_one(config->ena_gpio,
1923 GPIOF_DIR_OUT | config->ena_gpio_flags,
1924 rdev_get_name(rdev));
1925 if (ret)
1926 return ret;
1927
1928 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1929 if (pin == NULL) {
1930 gpio_free(config->ena_gpio);
1931 return -ENOMEM;
1932 }
1933
1934 pin->gpiod = gpiod;
1935 pin->ena_gpio_invert = config->ena_gpio_invert;
1936 list_add(&pin->list, &regulator_ena_gpio_list);
1937
1938 update_ena_gpio_to_rdev:
1939 pin->request_count++;
1940 rdev->ena_pin = pin;
1941 return 0;
1942 }
1943
1944 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1945 {
1946 struct regulator_enable_gpio *pin, *n;
1947
1948 if (!rdev->ena_pin)
1949 return;
1950
1951 /* Free the GPIO only in case of no use */
1952 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1953 if (pin->gpiod == rdev->ena_pin->gpiod) {
1954 if (pin->request_count <= 1) {
1955 pin->request_count = 0;
1956 gpiod_put(pin->gpiod);
1957 list_del(&pin->list);
1958 kfree(pin);
1959 rdev->ena_pin = NULL;
1960 return;
1961 } else {
1962 pin->request_count--;
1963 }
1964 }
1965 }
1966 }
1967
1968 /**
1969 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1970 * @rdev: regulator_dev structure
1971 * @enable: enable GPIO at initial use?
1972 *
1973 * GPIO is enabled in case of initial use. (enable_count is 0)
1974 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1975 */
1976 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1977 {
1978 struct regulator_enable_gpio *pin = rdev->ena_pin;
1979
1980 if (!pin)
1981 return -EINVAL;
1982
1983 if (enable) {
1984 /* Enable GPIO at initial use */
1985 if (pin->enable_count == 0)
1986 gpiod_set_value_cansleep(pin->gpiod,
1987 !pin->ena_gpio_invert);
1988
1989 pin->enable_count++;
1990 } else {
1991 if (pin->enable_count > 1) {
1992 pin->enable_count--;
1993 return 0;
1994 }
1995
1996 /* Disable GPIO if not used */
1997 if (pin->enable_count <= 1) {
1998 gpiod_set_value_cansleep(pin->gpiod,
1999 pin->ena_gpio_invert);
2000 pin->enable_count = 0;
2001 }
2002 }
2003
2004 return 0;
2005 }
2006
2007 /**
2008 * _regulator_enable_delay - a delay helper function
2009 * @delay: time to delay in microseconds
2010 *
2011 * Delay for the requested amount of time as per the guidelines in:
2012 *
2013 * Documentation/timers/timers-howto.txt
2014 *
2015 * The assumption here is that regulators will never be enabled in
2016 * atomic context and therefore sleeping functions can be used.
2017 */
2018 static void _regulator_enable_delay(unsigned int delay)
2019 {
2020 unsigned int ms = delay / 1000;
2021 unsigned int us = delay % 1000;
2022
2023 if (ms > 0) {
2024 /*
2025 * For small enough values, handle super-millisecond
2026 * delays in the usleep_range() call below.
2027 */
2028 if (ms < 20)
2029 us += ms * 1000;
2030 else
2031 msleep(ms);
2032 }
2033
2034 /*
2035 * Give the scheduler some room to coalesce with any other
2036 * wakeup sources. For delays shorter than 10 us, don't even
2037 * bother setting up high-resolution timers and just busy-
2038 * loop.
2039 */
2040 if (us >= 10)
2041 usleep_range(us, us + 100);
2042 else
2043 udelay(us);
2044 }
2045
2046 static int _regulator_do_enable(struct regulator_dev *rdev)
2047 {
2048 int ret, delay;
2049
2050 /* Query before enabling in case configuration dependent. */
2051 ret = _regulator_get_enable_time(rdev);
2052 if (ret >= 0) {
2053 delay = ret;
2054 } else {
2055 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2056 delay = 0;
2057 }
2058
2059 trace_regulator_enable(rdev_get_name(rdev));
2060
2061 if (rdev->desc->off_on_delay) {
2062 /* if needed, keep a distance of off_on_delay from last time
2063 * this regulator was disabled.
2064 */
2065 unsigned long start_jiffy = jiffies;
2066 unsigned long intended, max_delay, remaining;
2067
2068 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2069 intended = rdev->last_off_jiffy + max_delay;
2070
2071 if (time_before(start_jiffy, intended)) {
2072 /* calc remaining jiffies to deal with one-time
2073 * timer wrapping.
2074 * in case of multiple timer wrapping, either it can be
2075 * detected by out-of-range remaining, or it cannot be
2076 * detected and we gets a panelty of
2077 * _regulator_enable_delay().
2078 */
2079 remaining = intended - start_jiffy;
2080 if (remaining <= max_delay)
2081 _regulator_enable_delay(
2082 jiffies_to_usecs(remaining));
2083 }
2084 }
2085
2086 if (rdev->ena_pin) {
2087 if (!rdev->ena_gpio_state) {
2088 ret = regulator_ena_gpio_ctrl(rdev, true);
2089 if (ret < 0)
2090 return ret;
2091 rdev->ena_gpio_state = 1;
2092 }
2093 } else if (rdev->desc->ops->enable) {
2094 ret = rdev->desc->ops->enable(rdev);
2095 if (ret < 0)
2096 return ret;
2097 } else {
2098 return -EINVAL;
2099 }
2100
2101 /* Allow the regulator to ramp; it would be useful to extend
2102 * this for bulk operations so that the regulators can ramp
2103 * together. */
2104 trace_regulator_enable_delay(rdev_get_name(rdev));
2105
2106 _regulator_enable_delay(delay);
2107
2108 trace_regulator_enable_complete(rdev_get_name(rdev));
2109
2110 return 0;
2111 }
2112
2113 /* locks held by regulator_enable() */
2114 static int _regulator_enable(struct regulator_dev *rdev)
2115 {
2116 int ret;
2117
2118 lockdep_assert_held_once(&rdev->mutex);
2119
2120 /* check voltage and requested load before enabling */
2121 if (rdev->constraints &&
2122 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2123 drms_uA_update(rdev);
2124
2125 if (rdev->use_count == 0) {
2126 /* The regulator may on if it's not switchable or left on */
2127 ret = _regulator_is_enabled(rdev);
2128 if (ret == -EINVAL || ret == 0) {
2129 if (!_regulator_can_change_status(rdev))
2130 return -EPERM;
2131
2132 ret = _regulator_do_enable(rdev);
2133 if (ret < 0)
2134 return ret;
2135
2136 } else if (ret < 0) {
2137 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2138 return ret;
2139 }
2140 /* Fallthrough on positive return values - already enabled */
2141 }
2142
2143 rdev->use_count++;
2144
2145 return 0;
2146 }
2147
2148 /**
2149 * regulator_enable - enable regulator output
2150 * @regulator: regulator source
2151 *
2152 * Request that the regulator be enabled with the regulator output at
2153 * the predefined voltage or current value. Calls to regulator_enable()
2154 * must be balanced with calls to regulator_disable().
2155 *
2156 * NOTE: the output value can be set by other drivers, boot loader or may be
2157 * hardwired in the regulator.
2158 */
2159 int regulator_enable(struct regulator *regulator)
2160 {
2161 struct regulator_dev *rdev = regulator->rdev;
2162 int ret = 0;
2163
2164 if (regulator->always_on)
2165 return 0;
2166
2167 if (rdev->supply) {
2168 ret = regulator_enable(rdev->supply);
2169 if (ret != 0)
2170 return ret;
2171 }
2172
2173 mutex_lock(&rdev->mutex);
2174 ret = _regulator_enable(rdev);
2175 mutex_unlock(&rdev->mutex);
2176
2177 if (ret != 0 && rdev->supply)
2178 regulator_disable(rdev->supply);
2179
2180 return ret;
2181 }
2182 EXPORT_SYMBOL_GPL(regulator_enable);
2183
2184 static int _regulator_do_disable(struct regulator_dev *rdev)
2185 {
2186 int ret;
2187
2188 trace_regulator_disable(rdev_get_name(rdev));
2189
2190 if (rdev->ena_pin) {
2191 if (rdev->ena_gpio_state) {
2192 ret = regulator_ena_gpio_ctrl(rdev, false);
2193 if (ret < 0)
2194 return ret;
2195 rdev->ena_gpio_state = 0;
2196 }
2197
2198 } else if (rdev->desc->ops->disable) {
2199 ret = rdev->desc->ops->disable(rdev);
2200 if (ret != 0)
2201 return ret;
2202 }
2203
2204 /* cares about last_off_jiffy only if off_on_delay is required by
2205 * device.
2206 */
2207 if (rdev->desc->off_on_delay)
2208 rdev->last_off_jiffy = jiffies;
2209
2210 trace_regulator_disable_complete(rdev_get_name(rdev));
2211
2212 return 0;
2213 }
2214
2215 /* locks held by regulator_disable() */
2216 static int _regulator_disable(struct regulator_dev *rdev)
2217 {
2218 int ret = 0;
2219
2220 lockdep_assert_held_once(&rdev->mutex);
2221
2222 if (WARN(rdev->use_count <= 0,
2223 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2224 return -EIO;
2225
2226 /* are we the last user and permitted to disable ? */
2227 if (rdev->use_count == 1 &&
2228 (rdev->constraints && !rdev->constraints->always_on)) {
2229
2230 /* we are last user */
2231 if (_regulator_can_change_status(rdev)) {
2232 ret = _notifier_call_chain(rdev,
2233 REGULATOR_EVENT_PRE_DISABLE,
2234 NULL);
2235 if (ret & NOTIFY_STOP_MASK)
2236 return -EINVAL;
2237
2238 ret = _regulator_do_disable(rdev);
2239 if (ret < 0) {
2240 rdev_err(rdev, "failed to disable\n");
2241 _notifier_call_chain(rdev,
2242 REGULATOR_EVENT_ABORT_DISABLE,
2243 NULL);
2244 return ret;
2245 }
2246 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2247 NULL);
2248 }
2249
2250 rdev->use_count = 0;
2251 } else if (rdev->use_count > 1) {
2252
2253 if (rdev->constraints &&
2254 (rdev->constraints->valid_ops_mask &
2255 REGULATOR_CHANGE_DRMS))
2256 drms_uA_update(rdev);
2257
2258 rdev->use_count--;
2259 }
2260
2261 return ret;
2262 }
2263
2264 /**
2265 * regulator_disable - disable regulator output
2266 * @regulator: regulator source
2267 *
2268 * Disable the regulator output voltage or current. Calls to
2269 * regulator_enable() must be balanced with calls to
2270 * regulator_disable().
2271 *
2272 * NOTE: this will only disable the regulator output if no other consumer
2273 * devices have it enabled, the regulator device supports disabling and
2274 * machine constraints permit this operation.
2275 */
2276 int regulator_disable(struct regulator *regulator)
2277 {
2278 struct regulator_dev *rdev = regulator->rdev;
2279 int ret = 0;
2280
2281 if (regulator->always_on)
2282 return 0;
2283
2284 mutex_lock(&rdev->mutex);
2285 ret = _regulator_disable(rdev);
2286 mutex_unlock(&rdev->mutex);
2287
2288 if (ret == 0 && rdev->supply)
2289 regulator_disable(rdev->supply);
2290
2291 return ret;
2292 }
2293 EXPORT_SYMBOL_GPL(regulator_disable);
2294
2295 /* locks held by regulator_force_disable() */
2296 static int _regulator_force_disable(struct regulator_dev *rdev)
2297 {
2298 int ret = 0;
2299
2300 lockdep_assert_held_once(&rdev->mutex);
2301
2302 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2303 REGULATOR_EVENT_PRE_DISABLE, NULL);
2304 if (ret & NOTIFY_STOP_MASK)
2305 return -EINVAL;
2306
2307 ret = _regulator_do_disable(rdev);
2308 if (ret < 0) {
2309 rdev_err(rdev, "failed to force disable\n");
2310 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2311 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2312 return ret;
2313 }
2314
2315 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2316 REGULATOR_EVENT_DISABLE, NULL);
2317
2318 return 0;
2319 }
2320
2321 /**
2322 * regulator_force_disable - force disable regulator output
2323 * @regulator: regulator source
2324 *
2325 * Forcibly disable the regulator output voltage or current.
2326 * NOTE: this *will* disable the regulator output even if other consumer
2327 * devices have it enabled. This should be used for situations when device
2328 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2329 */
2330 int regulator_force_disable(struct regulator *regulator)
2331 {
2332 struct regulator_dev *rdev = regulator->rdev;
2333 int ret;
2334
2335 mutex_lock(&rdev->mutex);
2336 regulator->uA_load = 0;
2337 ret = _regulator_force_disable(regulator->rdev);
2338 mutex_unlock(&rdev->mutex);
2339
2340 if (rdev->supply)
2341 while (rdev->open_count--)
2342 regulator_disable(rdev->supply);
2343
2344 return ret;
2345 }
2346 EXPORT_SYMBOL_GPL(regulator_force_disable);
2347
2348 static void regulator_disable_work(struct work_struct *work)
2349 {
2350 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2351 disable_work.work);
2352 int count, i, ret;
2353
2354 mutex_lock(&rdev->mutex);
2355
2356 BUG_ON(!rdev->deferred_disables);
2357
2358 count = rdev->deferred_disables;
2359 rdev->deferred_disables = 0;
2360
2361 for (i = 0; i < count; i++) {
2362 ret = _regulator_disable(rdev);
2363 if (ret != 0)
2364 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2365 }
2366
2367 mutex_unlock(&rdev->mutex);
2368
2369 if (rdev->supply) {
2370 for (i = 0; i < count; i++) {
2371 ret = regulator_disable(rdev->supply);
2372 if (ret != 0) {
2373 rdev_err(rdev,
2374 "Supply disable failed: %d\n", ret);
2375 }
2376 }
2377 }
2378 }
2379
2380 /**
2381 * regulator_disable_deferred - disable regulator output with delay
2382 * @regulator: regulator source
2383 * @ms: miliseconds until the regulator is disabled
2384 *
2385 * Execute regulator_disable() on the regulator after a delay. This
2386 * is intended for use with devices that require some time to quiesce.
2387 *
2388 * NOTE: this will only disable the regulator output if no other consumer
2389 * devices have it enabled, the regulator device supports disabling and
2390 * machine constraints permit this operation.
2391 */
2392 int regulator_disable_deferred(struct regulator *regulator, int ms)
2393 {
2394 struct regulator_dev *rdev = regulator->rdev;
2395
2396 if (regulator->always_on)
2397 return 0;
2398
2399 if (!ms)
2400 return regulator_disable(regulator);
2401
2402 mutex_lock(&rdev->mutex);
2403 rdev->deferred_disables++;
2404 mutex_unlock(&rdev->mutex);
2405
2406 queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2407 msecs_to_jiffies(ms));
2408 return 0;
2409 }
2410 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2411
2412 static int _regulator_is_enabled(struct regulator_dev *rdev)
2413 {
2414 /* A GPIO control always takes precedence */
2415 if (rdev->ena_pin)
2416 return rdev->ena_gpio_state;
2417
2418 /* If we don't know then assume that the regulator is always on */
2419 if (!rdev->desc->ops->is_enabled)
2420 return 1;
2421
2422 return rdev->desc->ops->is_enabled(rdev);
2423 }
2424
2425 static int _regulator_list_voltage(struct regulator *regulator,
2426 unsigned selector, int lock)
2427 {
2428 struct regulator_dev *rdev = regulator->rdev;
2429 const struct regulator_ops *ops = rdev->desc->ops;
2430 int ret;
2431
2432 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2433 return rdev->desc->fixed_uV;
2434
2435 if (ops->list_voltage) {
2436 if (selector >= rdev->desc->n_voltages)
2437 return -EINVAL;
2438 if (lock)
2439 mutex_lock(&rdev->mutex);
2440 ret = ops->list_voltage(rdev, selector);
2441 if (lock)
2442 mutex_unlock(&rdev->mutex);
2443 } else if (rdev->supply) {
2444 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2445 } else {
2446 return -EINVAL;
2447 }
2448
2449 if (ret > 0) {
2450 if (ret < rdev->constraints->min_uV)
2451 ret = 0;
2452 else if (ret > rdev->constraints->max_uV)
2453 ret = 0;
2454 }
2455
2456 return ret;
2457 }
2458
2459 /**
2460 * regulator_is_enabled - is the regulator output enabled
2461 * @regulator: regulator source
2462 *
2463 * Returns positive if the regulator driver backing the source/client
2464 * has requested that the device be enabled, zero if it hasn't, else a
2465 * negative errno code.
2466 *
2467 * Note that the device backing this regulator handle can have multiple
2468 * users, so it might be enabled even if regulator_enable() was never
2469 * called for this particular source.
2470 */
2471 int regulator_is_enabled(struct regulator *regulator)
2472 {
2473 int ret;
2474
2475 if (regulator->always_on)
2476 return 1;
2477
2478 mutex_lock(&regulator->rdev->mutex);
2479 ret = _regulator_is_enabled(regulator->rdev);
2480 mutex_unlock(&regulator->rdev->mutex);
2481
2482 return ret;
2483 }
2484 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2485
2486 /**
2487 * regulator_can_change_voltage - check if regulator can change voltage
2488 * @regulator: regulator source
2489 *
2490 * Returns positive if the regulator driver backing the source/client
2491 * can change its voltage, false otherwise. Useful for detecting fixed
2492 * or dummy regulators and disabling voltage change logic in the client
2493 * driver.
2494 */
2495 int regulator_can_change_voltage(struct regulator *regulator)
2496 {
2497 struct regulator_dev *rdev = regulator->rdev;
2498
2499 if (rdev->constraints &&
2500 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2501 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2502 return 1;
2503
2504 if (rdev->desc->continuous_voltage_range &&
2505 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2506 rdev->constraints->min_uV != rdev->constraints->max_uV)
2507 return 1;
2508 }
2509
2510 return 0;
2511 }
2512 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2513
2514 /**
2515 * regulator_count_voltages - count regulator_list_voltage() selectors
2516 * @regulator: regulator source
2517 *
2518 * Returns number of selectors, or negative errno. Selectors are
2519 * numbered starting at zero, and typically correspond to bitfields
2520 * in hardware registers.
2521 */
2522 int regulator_count_voltages(struct regulator *regulator)
2523 {
2524 struct regulator_dev *rdev = regulator->rdev;
2525
2526 if (rdev->desc->n_voltages)
2527 return rdev->desc->n_voltages;
2528
2529 if (!rdev->supply)
2530 return -EINVAL;
2531
2532 return regulator_count_voltages(rdev->supply);
2533 }
2534 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2535
2536 /**
2537 * regulator_list_voltage - enumerate supported voltages
2538 * @regulator: regulator source
2539 * @selector: identify voltage to list
2540 * Context: can sleep
2541 *
2542 * Returns a voltage that can be passed to @regulator_set_voltage(),
2543 * zero if this selector code can't be used on this system, or a
2544 * negative errno.
2545 */
2546 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2547 {
2548 return _regulator_list_voltage(regulator, selector, 1);
2549 }
2550 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2551
2552 /**
2553 * regulator_get_regmap - get the regulator's register map
2554 * @regulator: regulator source
2555 *
2556 * Returns the register map for the given regulator, or an ERR_PTR value
2557 * if the regulator doesn't use regmap.
2558 */
2559 struct regmap *regulator_get_regmap(struct regulator *regulator)
2560 {
2561 struct regmap *map = regulator->rdev->regmap;
2562
2563 return map ? map : ERR_PTR(-EOPNOTSUPP);
2564 }
2565
2566 /**
2567 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2568 * @regulator: regulator source
2569 * @vsel_reg: voltage selector register, output parameter
2570 * @vsel_mask: mask for voltage selector bitfield, output parameter
2571 *
2572 * Returns the hardware register offset and bitmask used for setting the
2573 * regulator voltage. This might be useful when configuring voltage-scaling
2574 * hardware or firmware that can make I2C requests behind the kernel's back,
2575 * for example.
2576 *
2577 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2578 * and 0 is returned, otherwise a negative errno is returned.
2579 */
2580 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2581 unsigned *vsel_reg,
2582 unsigned *vsel_mask)
2583 {
2584 struct regulator_dev *rdev = regulator->rdev;
2585 const struct regulator_ops *ops = rdev->desc->ops;
2586
2587 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2588 return -EOPNOTSUPP;
2589
2590 *vsel_reg = rdev->desc->vsel_reg;
2591 *vsel_mask = rdev->desc->vsel_mask;
2592
2593 return 0;
2594 }
2595 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2596
2597 /**
2598 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2599 * @regulator: regulator source
2600 * @selector: identify voltage to list
2601 *
2602 * Converts the selector to a hardware-specific voltage selector that can be
2603 * directly written to the regulator registers. The address of the voltage
2604 * register can be determined by calling @regulator_get_hardware_vsel_register.
2605 *
2606 * On error a negative errno is returned.
2607 */
2608 int regulator_list_hardware_vsel(struct regulator *regulator,
2609 unsigned selector)
2610 {
2611 struct regulator_dev *rdev = regulator->rdev;
2612 const struct regulator_ops *ops = rdev->desc->ops;
2613
2614 if (selector >= rdev->desc->n_voltages)
2615 return -EINVAL;
2616 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2617 return -EOPNOTSUPP;
2618
2619 return selector;
2620 }
2621 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2622
2623 /**
2624 * regulator_get_linear_step - return the voltage step size between VSEL values
2625 * @regulator: regulator source
2626 *
2627 * Returns the voltage step size between VSEL values for linear
2628 * regulators, or return 0 if the regulator isn't a linear regulator.
2629 */
2630 unsigned int regulator_get_linear_step(struct regulator *regulator)
2631 {
2632 struct regulator_dev *rdev = regulator->rdev;
2633
2634 return rdev->desc->uV_step;
2635 }
2636 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2637
2638 /**
2639 * regulator_is_supported_voltage - check if a voltage range can be supported
2640 *
2641 * @regulator: Regulator to check.
2642 * @min_uV: Minimum required voltage in uV.
2643 * @max_uV: Maximum required voltage in uV.
2644 *
2645 * Returns a boolean or a negative error code.
2646 */
2647 int regulator_is_supported_voltage(struct regulator *regulator,
2648 int min_uV, int max_uV)
2649 {
2650 struct regulator_dev *rdev = regulator->rdev;
2651 int i, voltages, ret;
2652
2653 /* If we can't change voltage check the current voltage */
2654 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2655 ret = regulator_get_voltage(regulator);
2656 if (ret >= 0)
2657 return min_uV <= ret && ret <= max_uV;
2658 else
2659 return ret;
2660 }
2661
2662 /* Any voltage within constrains range is fine? */
2663 if (rdev->desc->continuous_voltage_range)
2664 return min_uV >= rdev->constraints->min_uV &&
2665 max_uV <= rdev->constraints->max_uV;
2666
2667 ret = regulator_count_voltages(regulator);
2668 if (ret < 0)
2669 return ret;
2670 voltages = ret;
2671
2672 for (i = 0; i < voltages; i++) {
2673 ret = regulator_list_voltage(regulator, i);
2674
2675 if (ret >= min_uV && ret <= max_uV)
2676 return 1;
2677 }
2678
2679 return 0;
2680 }
2681 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2682
2683 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2684 int max_uV)
2685 {
2686 const struct regulator_desc *desc = rdev->desc;
2687
2688 if (desc->ops->map_voltage)
2689 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2690
2691 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2692 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2693
2694 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2695 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2696
2697 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2698 }
2699
2700 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2701 int min_uV, int max_uV,
2702 unsigned *selector)
2703 {
2704 struct pre_voltage_change_data data;
2705 int ret;
2706
2707 data.old_uV = _regulator_get_voltage(rdev);
2708 data.min_uV = min_uV;
2709 data.max_uV = max_uV;
2710 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2711 &data);
2712 if (ret & NOTIFY_STOP_MASK)
2713 return -EINVAL;
2714
2715 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2716 if (ret >= 0)
2717 return ret;
2718
2719 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2720 (void *)data.old_uV);
2721
2722 return ret;
2723 }
2724
2725 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2726 int uV, unsigned selector)
2727 {
2728 struct pre_voltage_change_data data;
2729 int ret;
2730
2731 data.old_uV = _regulator_get_voltage(rdev);
2732 data.min_uV = uV;
2733 data.max_uV = uV;
2734 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2735 &data);
2736 if (ret & NOTIFY_STOP_MASK)
2737 return -EINVAL;
2738
2739 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2740 if (ret >= 0)
2741 return ret;
2742
2743 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2744 (void *)data.old_uV);
2745
2746 return ret;
2747 }
2748
2749 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2750 int min_uV, int max_uV)
2751 {
2752 int ret;
2753 int delay = 0;
2754 int best_val = 0;
2755 unsigned int selector;
2756 int old_selector = -1;
2757
2758 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2759
2760 min_uV += rdev->constraints->uV_offset;
2761 max_uV += rdev->constraints->uV_offset;
2762
2763 /*
2764 * If we can't obtain the old selector there is not enough
2765 * info to call set_voltage_time_sel().
2766 */
2767 if (_regulator_is_enabled(rdev) &&
2768 rdev->desc->ops->set_voltage_time_sel &&
2769 rdev->desc->ops->get_voltage_sel) {
2770 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2771 if (old_selector < 0)
2772 return old_selector;
2773 }
2774
2775 if (rdev->desc->ops->set_voltage) {
2776 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2777 &selector);
2778
2779 if (ret >= 0) {
2780 if (rdev->desc->ops->list_voltage)
2781 best_val = rdev->desc->ops->list_voltage(rdev,
2782 selector);
2783 else
2784 best_val = _regulator_get_voltage(rdev);
2785 }
2786
2787 } else if (rdev->desc->ops->set_voltage_sel) {
2788 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2789 if (ret >= 0) {
2790 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2791 if (min_uV <= best_val && max_uV >= best_val) {
2792 selector = ret;
2793 if (old_selector == selector)
2794 ret = 0;
2795 else
2796 ret = _regulator_call_set_voltage_sel(
2797 rdev, best_val, selector);
2798 } else {
2799 ret = -EINVAL;
2800 }
2801 }
2802 } else {
2803 ret = -EINVAL;
2804 }
2805
2806 /* Call set_voltage_time_sel if successfully obtained old_selector */
2807 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2808 && old_selector != selector) {
2809
2810 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2811 old_selector, selector);
2812 if (delay < 0) {
2813 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2814 delay);
2815 delay = 0;
2816 }
2817
2818 /* Insert any necessary delays */
2819 if (delay >= 1000) {
2820 mdelay(delay / 1000);
2821 udelay(delay % 1000);
2822 } else if (delay) {
2823 udelay(delay);
2824 }
2825 }
2826
2827 if (ret == 0 && best_val >= 0) {
2828 unsigned long data = best_val;
2829
2830 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2831 (void *)data);
2832 }
2833
2834 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2835
2836 return ret;
2837 }
2838
2839 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2840 int min_uV, int max_uV)
2841 {
2842 struct regulator_dev *rdev = regulator->rdev;
2843 int ret = 0;
2844 int old_min_uV, old_max_uV;
2845 int current_uV;
2846 int best_supply_uV = 0;
2847 int supply_change_uV = 0;
2848
2849 /* If we're setting the same range as last time the change
2850 * should be a noop (some cpufreq implementations use the same
2851 * voltage for multiple frequencies, for example).
2852 */
2853 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2854 goto out;
2855
2856 /* If we're trying to set a range that overlaps the current voltage,
2857 * return successfully even though the regulator does not support
2858 * changing the voltage.
2859 */
2860 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2861 current_uV = _regulator_get_voltage(rdev);
2862 if (min_uV <= current_uV && current_uV <= max_uV) {
2863 regulator->min_uV = min_uV;
2864 regulator->max_uV = max_uV;
2865 goto out;
2866 }
2867 }
2868
2869 /* sanity check */
2870 if (!rdev->desc->ops->set_voltage &&
2871 !rdev->desc->ops->set_voltage_sel) {
2872 ret = -EINVAL;
2873 goto out;
2874 }
2875
2876 /* constraints check */
2877 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2878 if (ret < 0)
2879 goto out;
2880
2881 /* restore original values in case of error */
2882 old_min_uV = regulator->min_uV;
2883 old_max_uV = regulator->max_uV;
2884 regulator->min_uV = min_uV;
2885 regulator->max_uV = max_uV;
2886
2887 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2888 if (ret < 0)
2889 goto out2;
2890
2891 if (rdev->supply && (rdev->desc->min_dropout_uV ||
2892 !rdev->desc->ops->get_voltage)) {
2893 int current_supply_uV;
2894 int selector;
2895
2896 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2897 if (selector < 0) {
2898 ret = selector;
2899 goto out2;
2900 }
2901
2902 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2903 if (best_supply_uV < 0) {
2904 ret = best_supply_uV;
2905 goto out2;
2906 }
2907
2908 best_supply_uV += rdev->desc->min_dropout_uV;
2909
2910 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2911 if (current_supply_uV < 0) {
2912 ret = current_supply_uV;
2913 goto out2;
2914 }
2915
2916 supply_change_uV = best_supply_uV - current_supply_uV;
2917 }
2918
2919 if (supply_change_uV > 0) {
2920 ret = regulator_set_voltage_unlocked(rdev->supply,
2921 best_supply_uV, INT_MAX);
2922 if (ret) {
2923 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2924 ret);
2925 goto out2;
2926 }
2927 }
2928
2929 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2930 if (ret < 0)
2931 goto out2;
2932
2933 if (supply_change_uV < 0) {
2934 ret = regulator_set_voltage_unlocked(rdev->supply,
2935 best_supply_uV, INT_MAX);
2936 if (ret)
2937 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2938 ret);
2939 /* No need to fail here */
2940 ret = 0;
2941 }
2942
2943 out:
2944 return ret;
2945 out2:
2946 regulator->min_uV = old_min_uV;
2947 regulator->max_uV = old_max_uV;
2948
2949 return ret;
2950 }
2951
2952 /**
2953 * regulator_set_voltage - set regulator output voltage
2954 * @regulator: regulator source
2955 * @min_uV: Minimum required voltage in uV
2956 * @max_uV: Maximum acceptable voltage in uV
2957 *
2958 * Sets a voltage regulator to the desired output voltage. This can be set
2959 * during any regulator state. IOW, regulator can be disabled or enabled.
2960 *
2961 * If the regulator is enabled then the voltage will change to the new value
2962 * immediately otherwise if the regulator is disabled the regulator will
2963 * output at the new voltage when enabled.
2964 *
2965 * NOTE: If the regulator is shared between several devices then the lowest
2966 * request voltage that meets the system constraints will be used.
2967 * Regulator system constraints must be set for this regulator before
2968 * calling this function otherwise this call will fail.
2969 */
2970 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2971 {
2972 int ret = 0;
2973
2974 regulator_lock_supply(regulator->rdev);
2975
2976 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2977
2978 regulator_unlock_supply(regulator->rdev);
2979
2980 return ret;
2981 }
2982 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2983
2984 /**
2985 * regulator_set_voltage_time - get raise/fall time
2986 * @regulator: regulator source
2987 * @old_uV: starting voltage in microvolts
2988 * @new_uV: target voltage in microvolts
2989 *
2990 * Provided with the starting and ending voltage, this function attempts to
2991 * calculate the time in microseconds required to rise or fall to this new
2992 * voltage.
2993 */
2994 int regulator_set_voltage_time(struct regulator *regulator,
2995 int old_uV, int new_uV)
2996 {
2997 struct regulator_dev *rdev = regulator->rdev;
2998 const struct regulator_ops *ops = rdev->desc->ops;
2999 int old_sel = -1;
3000 int new_sel = -1;
3001 int voltage;
3002 int i;
3003
3004 /* Currently requires operations to do this */
3005 if (!ops->list_voltage || !ops->set_voltage_time_sel
3006 || !rdev->desc->n_voltages)
3007 return -EINVAL;
3008
3009 for (i = 0; i < rdev->desc->n_voltages; i++) {
3010 /* We only look for exact voltage matches here */
3011 voltage = regulator_list_voltage(regulator, i);
3012 if (voltage < 0)
3013 return -EINVAL;
3014 if (voltage == 0)
3015 continue;
3016 if (voltage == old_uV)
3017 old_sel = i;
3018 if (voltage == new_uV)
3019 new_sel = i;
3020 }
3021
3022 if (old_sel < 0 || new_sel < 0)
3023 return -EINVAL;
3024
3025 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3026 }
3027 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3028
3029 /**
3030 * regulator_set_voltage_time_sel - get raise/fall time
3031 * @rdev: regulator source device
3032 * @old_selector: selector for starting voltage
3033 * @new_selector: selector for target voltage
3034 *
3035 * Provided with the starting and target voltage selectors, this function
3036 * returns time in microseconds required to rise or fall to this new voltage
3037 *
3038 * Drivers providing ramp_delay in regulation_constraints can use this as their
3039 * set_voltage_time_sel() operation.
3040 */
3041 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3042 unsigned int old_selector,
3043 unsigned int new_selector)
3044 {
3045 unsigned int ramp_delay = 0;
3046 int old_volt, new_volt;
3047
3048 if (rdev->constraints->ramp_delay)
3049 ramp_delay = rdev->constraints->ramp_delay;
3050 else if (rdev->desc->ramp_delay)
3051 ramp_delay = rdev->desc->ramp_delay;
3052
3053 if (ramp_delay == 0) {
3054 rdev_warn(rdev, "ramp_delay not set\n");
3055 return 0;
3056 }
3057
3058 /* sanity check */
3059 if (!rdev->desc->ops->list_voltage)
3060 return -EINVAL;
3061
3062 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3063 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3064
3065 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3066 }
3067 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3068
3069 /**
3070 * regulator_sync_voltage - re-apply last regulator output voltage
3071 * @regulator: regulator source
3072 *
3073 * Re-apply the last configured voltage. This is intended to be used
3074 * where some external control source the consumer is cooperating with
3075 * has caused the configured voltage to change.
3076 */
3077 int regulator_sync_voltage(struct regulator *regulator)
3078 {
3079 struct regulator_dev *rdev = regulator->rdev;
3080 int ret, min_uV, max_uV;
3081
3082 mutex_lock(&rdev->mutex);
3083
3084 if (!rdev->desc->ops->set_voltage &&
3085 !rdev->desc->ops->set_voltage_sel) {
3086 ret = -EINVAL;
3087 goto out;
3088 }
3089
3090 /* This is only going to work if we've had a voltage configured. */
3091 if (!regulator->min_uV && !regulator->max_uV) {
3092 ret = -EINVAL;
3093 goto out;
3094 }
3095
3096 min_uV = regulator->min_uV;
3097 max_uV = regulator->max_uV;
3098
3099 /* This should be a paranoia check... */
3100 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3101 if (ret < 0)
3102 goto out;
3103
3104 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3105 if (ret < 0)
3106 goto out;
3107
3108 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3109
3110 out:
3111 mutex_unlock(&rdev->mutex);
3112 return ret;
3113 }
3114 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3115
3116 static int _regulator_get_voltage(struct regulator_dev *rdev)
3117 {
3118 int sel, ret;
3119 bool bypassed;
3120
3121 if (rdev->desc->ops->get_bypass) {
3122 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3123 if (ret < 0)
3124 return ret;
3125 if (bypassed) {
3126 /* if bypassed the regulator must have a supply */
3127 if (!rdev->supply)
3128 return -EINVAL;
3129
3130 return _regulator_get_voltage(rdev->supply->rdev);
3131 }
3132 }
3133
3134 if (rdev->desc->ops->get_voltage_sel) {
3135 sel = rdev->desc->ops->get_voltage_sel(rdev);
3136 if (sel < 0)
3137 return sel;
3138 ret = rdev->desc->ops->list_voltage(rdev, sel);
3139 } else if (rdev->desc->ops->get_voltage) {
3140 ret = rdev->desc->ops->get_voltage(rdev);
3141 } else if (rdev->desc->ops->list_voltage) {
3142 ret = rdev->desc->ops->list_voltage(rdev, 0);
3143 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3144 ret = rdev->desc->fixed_uV;
3145 } else if (rdev->supply) {
3146 ret = _regulator_get_voltage(rdev->supply->rdev);
3147 } else {
3148 return -EINVAL;
3149 }
3150
3151 if (ret < 0)
3152 return ret;
3153 return ret - rdev->constraints->uV_offset;
3154 }
3155
3156 /**
3157 * regulator_get_voltage - get regulator output voltage
3158 * @regulator: regulator source
3159 *
3160 * This returns the current regulator voltage in uV.
3161 *
3162 * NOTE: If the regulator is disabled it will return the voltage value. This
3163 * function should not be used to determine regulator state.
3164 */
3165 int regulator_get_voltage(struct regulator *regulator)
3166 {
3167 int ret;
3168
3169 regulator_lock_supply(regulator->rdev);
3170
3171 ret = _regulator_get_voltage(regulator->rdev);
3172
3173 regulator_unlock_supply(regulator->rdev);
3174
3175 return ret;
3176 }
3177 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3178
3179 /**
3180 * regulator_set_current_limit - set regulator output current limit
3181 * @regulator: regulator source
3182 * @min_uA: Minimum supported current in uA
3183 * @max_uA: Maximum supported current in uA
3184 *
3185 * Sets current sink to the desired output current. This can be set during
3186 * any regulator state. IOW, regulator can be disabled or enabled.
3187 *
3188 * If the regulator is enabled then the current will change to the new value
3189 * immediately otherwise if the regulator is disabled the regulator will
3190 * output at the new current when enabled.
3191 *
3192 * NOTE: Regulator system constraints must be set for this regulator before
3193 * calling this function otherwise this call will fail.
3194 */
3195 int regulator_set_current_limit(struct regulator *regulator,
3196 int min_uA, int max_uA)
3197 {
3198 struct regulator_dev *rdev = regulator->rdev;
3199 int ret;
3200
3201 mutex_lock(&rdev->mutex);
3202
3203 /* sanity check */
3204 if (!rdev->desc->ops->set_current_limit) {
3205 ret = -EINVAL;
3206 goto out;
3207 }
3208
3209 /* constraints check */
3210 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3211 if (ret < 0)
3212 goto out;
3213
3214 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3215 out:
3216 mutex_unlock(&rdev->mutex);
3217 return ret;
3218 }
3219 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3220
3221 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3222 {
3223 int ret;
3224
3225 mutex_lock(&rdev->mutex);
3226
3227 /* sanity check */
3228 if (!rdev->desc->ops->get_current_limit) {
3229 ret = -EINVAL;
3230 goto out;
3231 }
3232
3233 ret = rdev->desc->ops->get_current_limit(rdev);
3234 out:
3235 mutex_unlock(&rdev->mutex);
3236 return ret;
3237 }
3238
3239 /**
3240 * regulator_get_current_limit - get regulator output current
3241 * @regulator: regulator source
3242 *
3243 * This returns the current supplied by the specified current sink in uA.
3244 *
3245 * NOTE: If the regulator is disabled it will return the current value. This
3246 * function should not be used to determine regulator state.
3247 */
3248 int regulator_get_current_limit(struct regulator *regulator)
3249 {
3250 return _regulator_get_current_limit(regulator->rdev);
3251 }
3252 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3253
3254 /**
3255 * regulator_set_mode - set regulator operating mode
3256 * @regulator: regulator source
3257 * @mode: operating mode - one of the REGULATOR_MODE constants
3258 *
3259 * Set regulator operating mode to increase regulator efficiency or improve
3260 * regulation performance.
3261 *
3262 * NOTE: Regulator system constraints must be set for this regulator before
3263 * calling this function otherwise this call will fail.
3264 */
3265 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3266 {
3267 struct regulator_dev *rdev = regulator->rdev;
3268 int ret;
3269 int regulator_curr_mode;
3270
3271 mutex_lock(&rdev->mutex);
3272
3273 /* sanity check */
3274 if (!rdev->desc->ops->set_mode) {
3275 ret = -EINVAL;
3276 goto out;
3277 }
3278
3279 /* return if the same mode is requested */
3280 if (rdev->desc->ops->get_mode) {
3281 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3282 if (regulator_curr_mode == mode) {
3283 ret = 0;
3284 goto out;
3285 }
3286 }
3287
3288 /* constraints check */
3289 ret = regulator_mode_constrain(rdev, &mode);
3290 if (ret < 0)
3291 goto out;
3292
3293 ret = rdev->desc->ops->set_mode(rdev, mode);
3294 out:
3295 mutex_unlock(&rdev->mutex);
3296 return ret;
3297 }
3298 EXPORT_SYMBOL_GPL(regulator_set_mode);
3299
3300 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3301 {
3302 int ret;
3303
3304 mutex_lock(&rdev->mutex);
3305
3306 /* sanity check */
3307 if (!rdev->desc->ops->get_mode) {
3308 ret = -EINVAL;
3309 goto out;
3310 }
3311
3312 ret = rdev->desc->ops->get_mode(rdev);
3313 out:
3314 mutex_unlock(&rdev->mutex);
3315 return ret;
3316 }
3317
3318 /**
3319 * regulator_get_mode - get regulator operating mode
3320 * @regulator: regulator source
3321 *
3322 * Get the current regulator operating mode.
3323 */
3324 unsigned int regulator_get_mode(struct regulator *regulator)
3325 {
3326 return _regulator_get_mode(regulator->rdev);
3327 }
3328 EXPORT_SYMBOL_GPL(regulator_get_mode);
3329
3330 /**
3331 * regulator_set_load - set regulator load
3332 * @regulator: regulator source
3333 * @uA_load: load current
3334 *
3335 * Notifies the regulator core of a new device load. This is then used by
3336 * DRMS (if enabled by constraints) to set the most efficient regulator
3337 * operating mode for the new regulator loading.
3338 *
3339 * Consumer devices notify their supply regulator of the maximum power
3340 * they will require (can be taken from device datasheet in the power
3341 * consumption tables) when they change operational status and hence power
3342 * state. Examples of operational state changes that can affect power
3343 * consumption are :-
3344 *
3345 * o Device is opened / closed.
3346 * o Device I/O is about to begin or has just finished.
3347 * o Device is idling in between work.
3348 *
3349 * This information is also exported via sysfs to userspace.
3350 *
3351 * DRMS will sum the total requested load on the regulator and change
3352 * to the most efficient operating mode if platform constraints allow.
3353 *
3354 * On error a negative errno is returned.
3355 */
3356 int regulator_set_load(struct regulator *regulator, int uA_load)
3357 {
3358 struct regulator_dev *rdev = regulator->rdev;
3359 int ret;
3360
3361 mutex_lock(&rdev->mutex);
3362 regulator->uA_load = uA_load;
3363 ret = drms_uA_update(rdev);
3364 mutex_unlock(&rdev->mutex);
3365
3366 return ret;
3367 }
3368 EXPORT_SYMBOL_GPL(regulator_set_load);
3369
3370 /**
3371 * regulator_allow_bypass - allow the regulator to go into bypass mode
3372 *
3373 * @regulator: Regulator to configure
3374 * @enable: enable or disable bypass mode
3375 *
3376 * Allow the regulator to go into bypass mode if all other consumers
3377 * for the regulator also enable bypass mode and the machine
3378 * constraints allow this. Bypass mode means that the regulator is
3379 * simply passing the input directly to the output with no regulation.
3380 */
3381 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3382 {
3383 struct regulator_dev *rdev = regulator->rdev;
3384 int ret = 0;
3385
3386 if (!rdev->desc->ops->set_bypass)
3387 return 0;
3388
3389 if (rdev->constraints &&
3390 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3391 return 0;
3392
3393 mutex_lock(&rdev->mutex);
3394
3395 if (enable && !regulator->bypass) {
3396 rdev->bypass_count++;
3397
3398 if (rdev->bypass_count == rdev->open_count) {
3399 ret = rdev->desc->ops->set_bypass(rdev, enable);
3400 if (ret != 0)
3401 rdev->bypass_count--;
3402 }
3403
3404 } else if (!enable && regulator->bypass) {
3405 rdev->bypass_count--;
3406
3407 if (rdev->bypass_count != rdev->open_count) {
3408 ret = rdev->desc->ops->set_bypass(rdev, enable);
3409 if (ret != 0)
3410 rdev->bypass_count++;
3411 }
3412 }
3413
3414 if (ret == 0)
3415 regulator->bypass = enable;
3416
3417 mutex_unlock(&rdev->mutex);
3418
3419 return ret;
3420 }
3421 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3422
3423 /**
3424 * regulator_register_notifier - register regulator event notifier
3425 * @regulator: regulator source
3426 * @nb: notifier block
3427 *
3428 * Register notifier block to receive regulator events.
3429 */
3430 int regulator_register_notifier(struct regulator *regulator,
3431 struct notifier_block *nb)
3432 {
3433 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3434 nb);
3435 }
3436 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3437
3438 /**
3439 * regulator_unregister_notifier - unregister regulator event notifier
3440 * @regulator: regulator source
3441 * @nb: notifier block
3442 *
3443 * Unregister regulator event notifier block.
3444 */
3445 int regulator_unregister_notifier(struct regulator *regulator,
3446 struct notifier_block *nb)
3447 {
3448 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3449 nb);
3450 }
3451 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3452
3453 /* notify regulator consumers and downstream regulator consumers.
3454 * Note mutex must be held by caller.
3455 */
3456 static int _notifier_call_chain(struct regulator_dev *rdev,
3457 unsigned long event, void *data)
3458 {
3459 /* call rdev chain first */
3460 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3461 }
3462
3463 /**
3464 * regulator_bulk_get - get multiple regulator consumers
3465 *
3466 * @dev: Device to supply
3467 * @num_consumers: Number of consumers to register
3468 * @consumers: Configuration of consumers; clients are stored here.
3469 *
3470 * @return 0 on success, an errno on failure.
3471 *
3472 * This helper function allows drivers to get several regulator
3473 * consumers in one operation. If any of the regulators cannot be
3474 * acquired then any regulators that were allocated will be freed
3475 * before returning to the caller.
3476 */
3477 int regulator_bulk_get(struct device *dev, int num_consumers,
3478 struct regulator_bulk_data *consumers)
3479 {
3480 int i;
3481 int ret;
3482
3483 for (i = 0; i < num_consumers; i++)
3484 consumers[i].consumer = NULL;
3485
3486 for (i = 0; i < num_consumers; i++) {
3487 consumers[i].consumer = _regulator_get(dev,
3488 consumers[i].supply,
3489 false,
3490 !consumers[i].optional);
3491 if (IS_ERR(consumers[i].consumer)) {
3492 ret = PTR_ERR(consumers[i].consumer);
3493 dev_err(dev, "Failed to get supply '%s': %d\n",
3494 consumers[i].supply, ret);
3495 consumers[i].consumer = NULL;
3496 goto err;
3497 }
3498 }
3499
3500 return 0;
3501
3502 err:
3503 while (--i >= 0)
3504 regulator_put(consumers[i].consumer);
3505
3506 return ret;
3507 }
3508 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3509
3510 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3511 {
3512 struct regulator_bulk_data *bulk = data;
3513
3514 bulk->ret = regulator_enable(bulk->consumer);
3515 }
3516
3517 /**
3518 * regulator_bulk_enable - enable multiple regulator consumers
3519 *
3520 * @num_consumers: Number of consumers
3521 * @consumers: Consumer data; clients are stored here.
3522 * @return 0 on success, an errno on failure
3523 *
3524 * This convenience API allows consumers to enable multiple regulator
3525 * clients in a single API call. If any consumers cannot be enabled
3526 * then any others that were enabled will be disabled again prior to
3527 * return.
3528 */
3529 int regulator_bulk_enable(int num_consumers,
3530 struct regulator_bulk_data *consumers)
3531 {
3532 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3533 int i;
3534 int ret = 0;
3535
3536 for (i = 0; i < num_consumers; i++) {
3537 if (consumers[i].consumer->always_on)
3538 consumers[i].ret = 0;
3539 else
3540 async_schedule_domain(regulator_bulk_enable_async,
3541 &consumers[i], &async_domain);
3542 }
3543
3544 async_synchronize_full_domain(&async_domain);
3545
3546 /* If any consumer failed we need to unwind any that succeeded */
3547 for (i = 0; i < num_consumers; i++) {
3548 if (consumers[i].ret != 0) {
3549 ret = consumers[i].ret;
3550 goto err;
3551 }
3552 }
3553
3554 return 0;
3555
3556 err:
3557 for (i = 0; i < num_consumers; i++) {
3558 if (consumers[i].ret < 0)
3559 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3560 consumers[i].ret);
3561 else
3562 regulator_disable(consumers[i].consumer);
3563 }
3564
3565 return ret;
3566 }
3567 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3568
3569 /**
3570 * regulator_bulk_disable - disable multiple regulator consumers
3571 *
3572 * @num_consumers: Number of consumers
3573 * @consumers: Consumer data; clients are stored here.
3574 * @return 0 on success, an errno on failure
3575 *
3576 * This convenience API allows consumers to disable multiple regulator
3577 * clients in a single API call. If any consumers cannot be disabled
3578 * then any others that were disabled will be enabled again prior to
3579 * return.
3580 */
3581 int regulator_bulk_disable(int num_consumers,
3582 struct regulator_bulk_data *consumers)
3583 {
3584 int i;
3585 int ret, r;
3586
3587 for (i = num_consumers - 1; i >= 0; --i) {
3588 ret = regulator_disable(consumers[i].consumer);
3589 if (ret != 0)
3590 goto err;
3591 }
3592
3593 return 0;
3594
3595 err:
3596 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3597 for (++i; i < num_consumers; ++i) {
3598 r = regulator_enable(consumers[i].consumer);
3599 if (r != 0)
3600 pr_err("Failed to reename %s: %d\n",
3601 consumers[i].supply, r);
3602 }
3603
3604 return ret;
3605 }
3606 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3607
3608 /**
3609 * regulator_bulk_force_disable - force disable multiple regulator consumers
3610 *
3611 * @num_consumers: Number of consumers
3612 * @consumers: Consumer data; clients are stored here.
3613 * @return 0 on success, an errno on failure
3614 *
3615 * This convenience API allows consumers to forcibly disable multiple regulator
3616 * clients in a single API call.
3617 * NOTE: This should be used for situations when device damage will
3618 * likely occur if the regulators are not disabled (e.g. over temp).
3619 * Although regulator_force_disable function call for some consumers can
3620 * return error numbers, the function is called for all consumers.
3621 */
3622 int regulator_bulk_force_disable(int num_consumers,
3623 struct regulator_bulk_data *consumers)
3624 {
3625 int i;
3626 int ret;
3627
3628 for (i = 0; i < num_consumers; i++)
3629 consumers[i].ret =
3630 regulator_force_disable(consumers[i].consumer);
3631
3632 for (i = 0; i < num_consumers; i++) {
3633 if (consumers[i].ret != 0) {
3634 ret = consumers[i].ret;
3635 goto out;
3636 }
3637 }
3638
3639 return 0;
3640 out:
3641 return ret;
3642 }
3643 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3644
3645 /**
3646 * regulator_bulk_free - free multiple regulator consumers
3647 *
3648 * @num_consumers: Number of consumers
3649 * @consumers: Consumer data; clients are stored here.
3650 *
3651 * This convenience API allows consumers to free multiple regulator
3652 * clients in a single API call.
3653 */
3654 void regulator_bulk_free(int num_consumers,
3655 struct regulator_bulk_data *consumers)
3656 {
3657 int i;
3658
3659 for (i = 0; i < num_consumers; i++) {
3660 regulator_put(consumers[i].consumer);
3661 consumers[i].consumer = NULL;
3662 }
3663 }
3664 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3665
3666 /**
3667 * regulator_notifier_call_chain - call regulator event notifier
3668 * @rdev: regulator source
3669 * @event: notifier block
3670 * @data: callback-specific data.
3671 *
3672 * Called by regulator drivers to notify clients a regulator event has
3673 * occurred. We also notify regulator clients downstream.
3674 * Note lock must be held by caller.
3675 */
3676 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3677 unsigned long event, void *data)
3678 {
3679 lockdep_assert_held_once(&rdev->mutex);
3680
3681 _notifier_call_chain(rdev, event, data);
3682 return NOTIFY_DONE;
3683
3684 }
3685 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3686
3687 /**
3688 * regulator_mode_to_status - convert a regulator mode into a status
3689 *
3690 * @mode: Mode to convert
3691 *
3692 * Convert a regulator mode into a status.
3693 */
3694 int regulator_mode_to_status(unsigned int mode)
3695 {
3696 switch (mode) {
3697 case REGULATOR_MODE_FAST:
3698 return REGULATOR_STATUS_FAST;
3699 case REGULATOR_MODE_NORMAL:
3700 return REGULATOR_STATUS_NORMAL;
3701 case REGULATOR_MODE_IDLE:
3702 return REGULATOR_STATUS_IDLE;
3703 case REGULATOR_MODE_STANDBY:
3704 return REGULATOR_STATUS_STANDBY;
3705 default:
3706 return REGULATOR_STATUS_UNDEFINED;
3707 }
3708 }
3709 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3710
3711 static struct attribute *regulator_dev_attrs[] = {
3712 &dev_attr_name.attr,
3713 &dev_attr_num_users.attr,
3714 &dev_attr_type.attr,
3715 &dev_attr_microvolts.attr,
3716 &dev_attr_microamps.attr,
3717 &dev_attr_opmode.attr,
3718 &dev_attr_state.attr,
3719 &dev_attr_status.attr,
3720 &dev_attr_bypass.attr,
3721 &dev_attr_requested_microamps.attr,
3722 &dev_attr_min_microvolts.attr,
3723 &dev_attr_max_microvolts.attr,
3724 &dev_attr_min_microamps.attr,
3725 &dev_attr_max_microamps.attr,
3726 &dev_attr_suspend_standby_state.attr,
3727 &dev_attr_suspend_mem_state.attr,
3728 &dev_attr_suspend_disk_state.attr,
3729 &dev_attr_suspend_standby_microvolts.attr,
3730 &dev_attr_suspend_mem_microvolts.attr,
3731 &dev_attr_suspend_disk_microvolts.attr,
3732 &dev_attr_suspend_standby_mode.attr,
3733 &dev_attr_suspend_mem_mode.attr,
3734 &dev_attr_suspend_disk_mode.attr,
3735 NULL
3736 };
3737
3738 /*
3739 * To avoid cluttering sysfs (and memory) with useless state, only
3740 * create attributes that can be meaningfully displayed.
3741 */
3742 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3743 struct attribute *attr, int idx)
3744 {
3745 struct device *dev = kobj_to_dev(kobj);
3746 struct regulator_dev *rdev = dev_to_rdev(dev);
3747 const struct regulator_ops *ops = rdev->desc->ops;
3748 umode_t mode = attr->mode;
3749
3750 /* these three are always present */
3751 if (attr == &dev_attr_name.attr ||
3752 attr == &dev_attr_num_users.attr ||
3753 attr == &dev_attr_type.attr)
3754 return mode;
3755
3756 /* some attributes need specific methods to be displayed */
3757 if (attr == &dev_attr_microvolts.attr) {
3758 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3759 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3760 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3761 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3762 return mode;
3763 return 0;
3764 }
3765
3766 if (attr == &dev_attr_microamps.attr)
3767 return ops->get_current_limit ? mode : 0;
3768
3769 if (attr == &dev_attr_opmode.attr)
3770 return ops->get_mode ? mode : 0;
3771
3772 if (attr == &dev_attr_state.attr)
3773 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3774
3775 if (attr == &dev_attr_status.attr)
3776 return ops->get_status ? mode : 0;
3777
3778 if (attr == &dev_attr_bypass.attr)
3779 return ops->get_bypass ? mode : 0;
3780
3781 /* some attributes are type-specific */
3782 if (attr == &dev_attr_requested_microamps.attr)
3783 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3784
3785 /* constraints need specific supporting methods */
3786 if (attr == &dev_attr_min_microvolts.attr ||
3787 attr == &dev_attr_max_microvolts.attr)
3788 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3789
3790 if (attr == &dev_attr_min_microamps.attr ||
3791 attr == &dev_attr_max_microamps.attr)
3792 return ops->set_current_limit ? mode : 0;
3793
3794 if (attr == &dev_attr_suspend_standby_state.attr ||
3795 attr == &dev_attr_suspend_mem_state.attr ||
3796 attr == &dev_attr_suspend_disk_state.attr)
3797 return mode;
3798
3799 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3800 attr == &dev_attr_suspend_mem_microvolts.attr ||
3801 attr == &dev_attr_suspend_disk_microvolts.attr)
3802 return ops->set_suspend_voltage ? mode : 0;
3803
3804 if (attr == &dev_attr_suspend_standby_mode.attr ||
3805 attr == &dev_attr_suspend_mem_mode.attr ||
3806 attr == &dev_attr_suspend_disk_mode.attr)
3807 return ops->set_suspend_mode ? mode : 0;
3808
3809 return mode;
3810 }
3811
3812 static const struct attribute_group regulator_dev_group = {
3813 .attrs = regulator_dev_attrs,
3814 .is_visible = regulator_attr_is_visible,
3815 };
3816
3817 static const struct attribute_group *regulator_dev_groups[] = {
3818 &regulator_dev_group,
3819 NULL
3820 };
3821
3822 static void regulator_dev_release(struct device *dev)
3823 {
3824 struct regulator_dev *rdev = dev_get_drvdata(dev);
3825
3826 kfree(rdev->constraints);
3827 of_node_put(rdev->dev.of_node);
3828 kfree(rdev);
3829 }
3830
3831 static struct class regulator_class = {
3832 .name = "regulator",
3833 .dev_release = regulator_dev_release,
3834 .dev_groups = regulator_dev_groups,
3835 };
3836
3837 static void rdev_init_debugfs(struct regulator_dev *rdev)
3838 {
3839 struct device *parent = rdev->dev.parent;
3840 const char *rname = rdev_get_name(rdev);
3841 char name[NAME_MAX];
3842
3843 /* Avoid duplicate debugfs directory names */
3844 if (parent && rname == rdev->desc->name) {
3845 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3846 rname);
3847 rname = name;
3848 }
3849
3850 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3851 if (!rdev->debugfs) {
3852 rdev_warn(rdev, "Failed to create debugfs directory\n");
3853 return;
3854 }
3855
3856 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3857 &rdev->use_count);
3858 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3859 &rdev->open_count);
3860 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3861 &rdev->bypass_count);
3862 }
3863
3864 static int regulator_register_resolve_supply(struct device *dev, void *data)
3865 {
3866 return regulator_resolve_supply(dev_to_rdev(dev));
3867 }
3868
3869 /**
3870 * regulator_register - register regulator
3871 * @regulator_desc: regulator to register
3872 * @cfg: runtime configuration for regulator
3873 *
3874 * Called by regulator drivers to register a regulator.
3875 * Returns a valid pointer to struct regulator_dev on success
3876 * or an ERR_PTR() on error.
3877 */
3878 struct regulator_dev *
3879 regulator_register(const struct regulator_desc *regulator_desc,
3880 const struct regulator_config *cfg)
3881 {
3882 const struct regulation_constraints *constraints = NULL;
3883 const struct regulator_init_data *init_data;
3884 struct regulator_config *config = NULL;
3885 static atomic_t regulator_no = ATOMIC_INIT(-1);
3886 struct regulator_dev *rdev;
3887 struct device *dev;
3888 int ret, i;
3889
3890 if (regulator_desc == NULL || cfg == NULL)
3891 return ERR_PTR(-EINVAL);
3892
3893 dev = cfg->dev;
3894 WARN_ON(!dev);
3895
3896 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3897 return ERR_PTR(-EINVAL);
3898
3899 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3900 regulator_desc->type != REGULATOR_CURRENT)
3901 return ERR_PTR(-EINVAL);
3902
3903 /* Only one of each should be implemented */
3904 WARN_ON(regulator_desc->ops->get_voltage &&
3905 regulator_desc->ops->get_voltage_sel);
3906 WARN_ON(regulator_desc->ops->set_voltage &&
3907 regulator_desc->ops->set_voltage_sel);
3908
3909 /* If we're using selectors we must implement list_voltage. */
3910 if (regulator_desc->ops->get_voltage_sel &&
3911 !regulator_desc->ops->list_voltage) {
3912 return ERR_PTR(-EINVAL);
3913 }
3914 if (regulator_desc->ops->set_voltage_sel &&
3915 !regulator_desc->ops->list_voltage) {
3916 return ERR_PTR(-EINVAL);
3917 }
3918
3919 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3920 if (rdev == NULL)
3921 return ERR_PTR(-ENOMEM);
3922
3923 /*
3924 * Duplicate the config so the driver could override it after
3925 * parsing init data.
3926 */
3927 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3928 if (config == NULL) {
3929 kfree(rdev);
3930 return ERR_PTR(-ENOMEM);
3931 }
3932
3933 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3934 &rdev->dev.of_node);
3935 if (!init_data) {
3936 init_data = config->init_data;
3937 rdev->dev.of_node = of_node_get(config->of_node);
3938 }
3939
3940 mutex_lock(&regulator_list_mutex);
3941
3942 mutex_init(&rdev->mutex);
3943 rdev->reg_data = config->driver_data;
3944 rdev->owner = regulator_desc->owner;
3945 rdev->desc = regulator_desc;
3946 if (config->regmap)
3947 rdev->regmap = config->regmap;
3948 else if (dev_get_regmap(dev, NULL))
3949 rdev->regmap = dev_get_regmap(dev, NULL);
3950 else if (dev->parent)
3951 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3952 INIT_LIST_HEAD(&rdev->consumer_list);
3953 INIT_LIST_HEAD(&rdev->list);
3954 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3955 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3956
3957 /* preform any regulator specific init */
3958 if (init_data && init_data->regulator_init) {
3959 ret = init_data->regulator_init(rdev->reg_data);
3960 if (ret < 0)
3961 goto clean;
3962 }
3963
3964 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3965 gpio_is_valid(config->ena_gpio)) {
3966 ret = regulator_ena_gpio_request(rdev, config);
3967 if (ret != 0) {
3968 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3969 config->ena_gpio, ret);
3970 goto clean;
3971 }
3972 }
3973
3974 /* register with sysfs */
3975 rdev->dev.class = &regulator_class;
3976 rdev->dev.parent = dev;
3977 dev_set_name(&rdev->dev, "regulator.%lu",
3978 (unsigned long) atomic_inc_return(&regulator_no));
3979 ret = device_register(&rdev->dev);
3980 if (ret != 0) {
3981 put_device(&rdev->dev);
3982 goto wash;
3983 }
3984
3985 dev_set_drvdata(&rdev->dev, rdev);
3986
3987 /* set regulator constraints */
3988 if (init_data)
3989 constraints = &init_data->constraints;
3990
3991 ret = set_machine_constraints(rdev, constraints);
3992 if (ret < 0)
3993 goto scrub;
3994
3995 if (init_data && init_data->supply_regulator)
3996 rdev->supply_name = init_data->supply_regulator;
3997 else if (regulator_desc->supply_name)
3998 rdev->supply_name = regulator_desc->supply_name;
3999
4000 /* add consumers devices */
4001 if (init_data) {
4002 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4003 ret = set_consumer_device_supply(rdev,
4004 init_data->consumer_supplies[i].dev_name,
4005 init_data->consumer_supplies[i].supply);
4006 if (ret < 0) {
4007 dev_err(dev, "Failed to set supply %s\n",
4008 init_data->consumer_supplies[i].supply);
4009 goto unset_supplies;
4010 }
4011 }
4012 }
4013
4014 rdev_init_debugfs(rdev);
4015 mutex_unlock(&regulator_list_mutex);
4016
4017 /* try to resolve regulators supply since a new one was registered */
4018 class_for_each_device(&regulator_class, NULL, NULL,
4019 regulator_register_resolve_supply);
4020 kfree(config);
4021 return rdev;
4022
4023 unset_supplies:
4024 unset_regulator_supplies(rdev);
4025
4026 scrub:
4027 regulator_ena_gpio_free(rdev);
4028 device_unregister(&rdev->dev);
4029 /* device core frees rdev */
4030 goto out;
4031
4032 wash:
4033 regulator_ena_gpio_free(rdev);
4034 clean:
4035 kfree(rdev);
4036 out:
4037 mutex_unlock(&regulator_list_mutex);
4038 kfree(config);
4039 return ERR_PTR(ret);
4040 }
4041 EXPORT_SYMBOL_GPL(regulator_register);
4042
4043 /**
4044 * regulator_unregister - unregister regulator
4045 * @rdev: regulator to unregister
4046 *
4047 * Called by regulator drivers to unregister a regulator.
4048 */
4049 void regulator_unregister(struct regulator_dev *rdev)
4050 {
4051 if (rdev == NULL)
4052 return;
4053
4054 if (rdev->supply) {
4055 while (rdev->use_count--)
4056 regulator_disable(rdev->supply);
4057 regulator_put(rdev->supply);
4058 }
4059 mutex_lock(&regulator_list_mutex);
4060 debugfs_remove_recursive(rdev->debugfs);
4061 flush_work(&rdev->disable_work.work);
4062 WARN_ON(rdev->open_count);
4063 unset_regulator_supplies(rdev);
4064 list_del(&rdev->list);
4065 regulator_ena_gpio_free(rdev);
4066 mutex_unlock(&regulator_list_mutex);
4067 device_unregister(&rdev->dev);
4068 }
4069 EXPORT_SYMBOL_GPL(regulator_unregister);
4070
4071 static int _regulator_suspend_prepare(struct device *dev, void *data)
4072 {
4073 struct regulator_dev *rdev = dev_to_rdev(dev);
4074 const suspend_state_t *state = data;
4075 int ret;
4076
4077 mutex_lock(&rdev->mutex);
4078 ret = suspend_prepare(rdev, *state);
4079 mutex_unlock(&rdev->mutex);
4080
4081 return ret;
4082 }
4083
4084 /**
4085 * regulator_suspend_prepare - prepare regulators for system wide suspend
4086 * @state: system suspend state
4087 *
4088 * Configure each regulator with it's suspend operating parameters for state.
4089 * This will usually be called by machine suspend code prior to supending.
4090 */
4091 int regulator_suspend_prepare(suspend_state_t state)
4092 {
4093 /* ON is handled by regulator active state */
4094 if (state == PM_SUSPEND_ON)
4095 return -EINVAL;
4096
4097 return class_for_each_device(&regulator_class, NULL, &state,
4098 _regulator_suspend_prepare);
4099 }
4100 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4101
4102 static int _regulator_suspend_finish(struct device *dev, void *data)
4103 {
4104 struct regulator_dev *rdev = dev_to_rdev(dev);
4105 int ret;
4106
4107 mutex_lock(&rdev->mutex);
4108 if (rdev->use_count > 0 || rdev->constraints->always_on) {
4109 if (!_regulator_is_enabled(rdev)) {
4110 ret = _regulator_do_enable(rdev);
4111 if (ret)
4112 dev_err(dev,
4113 "Failed to resume regulator %d\n",
4114 ret);
4115 }
4116 } else {
4117 if (!have_full_constraints())
4118 goto unlock;
4119 if (!_regulator_is_enabled(rdev))
4120 goto unlock;
4121
4122 ret = _regulator_do_disable(rdev);
4123 if (ret)
4124 dev_err(dev, "Failed to suspend regulator %d\n", ret);
4125 }
4126 unlock:
4127 mutex_unlock(&rdev->mutex);
4128
4129 /* Keep processing regulators in spite of any errors */
4130 return 0;
4131 }
4132
4133 /**
4134 * regulator_suspend_finish - resume regulators from system wide suspend
4135 *
4136 * Turn on regulators that might be turned off by regulator_suspend_prepare
4137 * and that should be turned on according to the regulators properties.
4138 */
4139 int regulator_suspend_finish(void)
4140 {
4141 return class_for_each_device(&regulator_class, NULL, NULL,
4142 _regulator_suspend_finish);
4143 }
4144 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4145
4146 /**
4147 * regulator_has_full_constraints - the system has fully specified constraints
4148 *
4149 * Calling this function will cause the regulator API to disable all
4150 * regulators which have a zero use count and don't have an always_on
4151 * constraint in a late_initcall.
4152 *
4153 * The intention is that this will become the default behaviour in a
4154 * future kernel release so users are encouraged to use this facility
4155 * now.
4156 */
4157 void regulator_has_full_constraints(void)
4158 {
4159 has_full_constraints = 1;
4160 }
4161 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4162
4163 /**
4164 * rdev_get_drvdata - get rdev regulator driver data
4165 * @rdev: regulator
4166 *
4167 * Get rdev regulator driver private data. This call can be used in the
4168 * regulator driver context.
4169 */
4170 void *rdev_get_drvdata(struct regulator_dev *rdev)
4171 {
4172 return rdev->reg_data;
4173 }
4174 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4175
4176 /**
4177 * regulator_get_drvdata - get regulator driver data
4178 * @regulator: regulator
4179 *
4180 * Get regulator driver private data. This call can be used in the consumer
4181 * driver context when non API regulator specific functions need to be called.
4182 */
4183 void *regulator_get_drvdata(struct regulator *regulator)
4184 {
4185 return regulator->rdev->reg_data;
4186 }
4187 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4188
4189 /**
4190 * regulator_set_drvdata - set regulator driver data
4191 * @regulator: regulator
4192 * @data: data
4193 */
4194 void regulator_set_drvdata(struct regulator *regulator, void *data)
4195 {
4196 regulator->rdev->reg_data = data;
4197 }
4198 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4199
4200 /**
4201 * regulator_get_id - get regulator ID
4202 * @rdev: regulator
4203 */
4204 int rdev_get_id(struct regulator_dev *rdev)
4205 {
4206 return rdev->desc->id;
4207 }
4208 EXPORT_SYMBOL_GPL(rdev_get_id);
4209
4210 struct device *rdev_get_dev(struct regulator_dev *rdev)
4211 {
4212 return &rdev->dev;
4213 }
4214 EXPORT_SYMBOL_GPL(rdev_get_dev);
4215
4216 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4217 {
4218 return reg_init_data->driver_data;
4219 }
4220 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4221
4222 #ifdef CONFIG_DEBUG_FS
4223 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4224 size_t count, loff_t *ppos)
4225 {
4226 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4227 ssize_t len, ret = 0;
4228 struct regulator_map *map;
4229
4230 if (!buf)
4231 return -ENOMEM;
4232
4233 list_for_each_entry(map, &regulator_map_list, list) {
4234 len = snprintf(buf + ret, PAGE_SIZE - ret,
4235 "%s -> %s.%s\n",
4236 rdev_get_name(map->regulator), map->dev_name,
4237 map->supply);
4238 if (len >= 0)
4239 ret += len;
4240 if (ret > PAGE_SIZE) {
4241 ret = PAGE_SIZE;
4242 break;
4243 }
4244 }
4245
4246 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4247
4248 kfree(buf);
4249
4250 return ret;
4251 }
4252 #endif
4253
4254 static const struct file_operations supply_map_fops = {
4255 #ifdef CONFIG_DEBUG_FS
4256 .read = supply_map_read_file,
4257 .llseek = default_llseek,
4258 #endif
4259 };
4260
4261 #ifdef CONFIG_DEBUG_FS
4262 struct summary_data {
4263 struct seq_file *s;
4264 struct regulator_dev *parent;
4265 int level;
4266 };
4267
4268 static void regulator_summary_show_subtree(struct seq_file *s,
4269 struct regulator_dev *rdev,
4270 int level);
4271
4272 static int regulator_summary_show_children(struct device *dev, void *data)
4273 {
4274 struct regulator_dev *rdev = dev_to_rdev(dev);
4275 struct summary_data *summary_data = data;
4276
4277 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4278 regulator_summary_show_subtree(summary_data->s, rdev,
4279 summary_data->level + 1);
4280
4281 return 0;
4282 }
4283
4284 static void regulator_summary_show_subtree(struct seq_file *s,
4285 struct regulator_dev *rdev,
4286 int level)
4287 {
4288 struct regulation_constraints *c;
4289 struct regulator *consumer;
4290 struct summary_data summary_data;
4291
4292 if (!rdev)
4293 return;
4294
4295 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4296 level * 3 + 1, "",
4297 30 - level * 3, rdev_get_name(rdev),
4298 rdev->use_count, rdev->open_count, rdev->bypass_count);
4299
4300 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4301 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4302
4303 c = rdev->constraints;
4304 if (c) {
4305 switch (rdev->desc->type) {
4306 case REGULATOR_VOLTAGE:
4307 seq_printf(s, "%5dmV %5dmV ",
4308 c->min_uV / 1000, c->max_uV / 1000);
4309 break;
4310 case REGULATOR_CURRENT:
4311 seq_printf(s, "%5dmA %5dmA ",
4312 c->min_uA / 1000, c->max_uA / 1000);
4313 break;
4314 }
4315 }
4316
4317 seq_puts(s, "\n");
4318
4319 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4320 if (consumer->dev->class == &regulator_class)
4321 continue;
4322
4323 seq_printf(s, "%*s%-*s ",
4324 (level + 1) * 3 + 1, "",
4325 30 - (level + 1) * 3, dev_name(consumer->dev));
4326
4327 switch (rdev->desc->type) {
4328 case REGULATOR_VOLTAGE:
4329 seq_printf(s, "%37dmV %5dmV",
4330 consumer->min_uV / 1000,
4331 consumer->max_uV / 1000);
4332 break;
4333 case REGULATOR_CURRENT:
4334 break;
4335 }
4336
4337 seq_puts(s, "\n");
4338 }
4339
4340 summary_data.s = s;
4341 summary_data.level = level;
4342 summary_data.parent = rdev;
4343
4344 class_for_each_device(&regulator_class, NULL, &summary_data,
4345 regulator_summary_show_children);
4346 }
4347
4348 static int regulator_summary_show_roots(struct device *dev, void *data)
4349 {
4350 struct regulator_dev *rdev = dev_to_rdev(dev);
4351 struct seq_file *s = data;
4352
4353 if (!rdev->supply)
4354 regulator_summary_show_subtree(s, rdev, 0);
4355
4356 return 0;
4357 }
4358
4359 static int regulator_summary_show(struct seq_file *s, void *data)
4360 {
4361 seq_puts(s, " regulator use open bypass voltage current min max\n");
4362 seq_puts(s, "-------------------------------------------------------------------------------\n");
4363
4364 class_for_each_device(&regulator_class, NULL, s,
4365 regulator_summary_show_roots);
4366
4367 return 0;
4368 }
4369
4370 static int regulator_summary_open(struct inode *inode, struct file *file)
4371 {
4372 return single_open(file, regulator_summary_show, inode->i_private);
4373 }
4374 #endif
4375
4376 static const struct file_operations regulator_summary_fops = {
4377 #ifdef CONFIG_DEBUG_FS
4378 .open = regulator_summary_open,
4379 .read = seq_read,
4380 .llseek = seq_lseek,
4381 .release = single_release,
4382 #endif
4383 };
4384
4385 static int __init regulator_init(void)
4386 {
4387 int ret;
4388
4389 ret = class_register(&regulator_class);
4390
4391 debugfs_root = debugfs_create_dir("regulator", NULL);
4392 if (!debugfs_root)
4393 pr_warn("regulator: Failed to create debugfs directory\n");
4394
4395 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4396 &supply_map_fops);
4397
4398 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4399 NULL, &regulator_summary_fops);
4400
4401 regulator_dummy_init();
4402
4403 return ret;
4404 }
4405
4406 /* init early to allow our consumers to complete system booting */
4407 core_initcall(regulator_init);
4408
4409 static int __init regulator_late_cleanup(struct device *dev, void *data)
4410 {
4411 struct regulator_dev *rdev = dev_to_rdev(dev);
4412 const struct regulator_ops *ops = rdev->desc->ops;
4413 struct regulation_constraints *c = rdev->constraints;
4414 int enabled, ret;
4415
4416 if (c && c->always_on)
4417 return 0;
4418
4419 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4420 return 0;
4421
4422 mutex_lock(&rdev->mutex);
4423
4424 if (rdev->use_count)
4425 goto unlock;
4426
4427 /* If we can't read the status assume it's on. */
4428 if (ops->is_enabled)
4429 enabled = ops->is_enabled(rdev);
4430 else
4431 enabled = 1;
4432
4433 if (!enabled)
4434 goto unlock;
4435
4436 if (have_full_constraints()) {
4437 /* We log since this may kill the system if it goes
4438 * wrong. */
4439 rdev_info(rdev, "disabling\n");
4440 ret = _regulator_do_disable(rdev);
4441 if (ret != 0)
4442 rdev_err(rdev, "couldn't disable: %d\n", ret);
4443 } else {
4444 /* The intention is that in future we will
4445 * assume that full constraints are provided
4446 * so warn even if we aren't going to do
4447 * anything here.
4448 */
4449 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4450 }
4451
4452 unlock:
4453 mutex_unlock(&rdev->mutex);
4454
4455 return 0;
4456 }
4457
4458 static int __init regulator_init_complete(void)
4459 {
4460 /*
4461 * Since DT doesn't provide an idiomatic mechanism for
4462 * enabling full constraints and since it's much more natural
4463 * with DT to provide them just assume that a DT enabled
4464 * system has full constraints.
4465 */
4466 if (of_have_populated_dt())
4467 has_full_constraints = true;
4468
4469 /* If we have a full configuration then disable any regulators
4470 * we have permission to change the status for and which are
4471 * not in use or always_on. This is effectively the default
4472 * for DT and ACPI as they have full constraints.
4473 */
4474 class_for_each_device(&regulator_class, NULL, NULL,
4475 regulator_late_cleanup);
4476
4477 return 0;
4478 }
4479 late_initcall_sync(regulator_init_complete);