]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/regulator/core.c
regulator: core: Replace checks of have_full_constraints with a function
[mirror_ubuntu-artful-kernel.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39 #include "internal.h"
40
41 #define rdev_crit(rdev, fmt, ...) \
42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...) \
44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...) \
46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...) \
48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...) \
50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 /*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66 struct regulator_map {
67 struct list_head list;
68 const char *dev_name; /* The dev_name() for the consumer */
69 const char *supply;
70 struct regulator_dev *regulator;
71 };
72
73 /*
74 * struct regulator_enable_gpio
75 *
76 * Management for shared enable GPIO pin
77 */
78 struct regulator_enable_gpio {
79 struct list_head list;
80 int gpio;
81 u32 enable_count; /* a number of enabled shared GPIO */
82 u32 request_count; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert:1;
84 };
85
86 /*
87 * struct regulator_supply_alias
88 *
89 * Used to map lookups for a supply onto an alternative device.
90 */
91 struct regulator_supply_alias {
92 struct list_head list;
93 struct device *src_dev;
94 const char *src_supply;
95 struct device *alias_dev;
96 const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105 unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 struct device *dev,
110 const char *supply_name);
111
112 static const char *rdev_get_name(struct regulator_dev *rdev)
113 {
114 if (rdev->constraints && rdev->constraints->name)
115 return rdev->constraints->name;
116 else if (rdev->desc->name)
117 return rdev->desc->name;
118 else
119 return "";
120 }
121
122 static bool have_full_constraints(void)
123 {
124 return has_full_constraints;
125 }
126
127 /**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138 struct device_node *regnode = NULL;
139 char prop_name[32]; /* 32 is max size of property name */
140
141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143 snprintf(prop_name, 32, "%s-supply", supply);
144 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146 if (!regnode) {
147 dev_dbg(dev, "Looking up %s property in node %s failed",
148 prop_name, dev->of_node->full_name);
149 return NULL;
150 }
151 return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156 if (!rdev->constraints)
157 return 0;
158
159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 return 1;
161 else
162 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
168 {
169 BUG_ON(*min_uV > *max_uV);
170
171 if (!rdev->constraints) {
172 rdev_err(rdev, "no constraints\n");
173 return -ENODEV;
174 }
175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 rdev_err(rdev, "operation not allowed\n");
177 return -EPERM;
178 }
179
180 if (*max_uV > rdev->constraints->max_uV)
181 *max_uV = rdev->constraints->max_uV;
182 if (*min_uV < rdev->constraints->min_uV)
183 *min_uV = rdev->constraints->min_uV;
184
185 if (*min_uV > *max_uV) {
186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 *min_uV, *max_uV);
188 return -EINVAL;
189 }
190
191 return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 int *min_uV, int *max_uV)
199 {
200 struct regulator *regulator;
201
202 list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 /*
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
206 */
207 if (!regulator->min_uV && !regulator->max_uV)
208 continue;
209
210 if (*max_uV > regulator->max_uV)
211 *max_uV = regulator->max_uV;
212 if (*min_uV < regulator->min_uV)
213 *min_uV = regulator->min_uV;
214 }
215
216 if (*min_uV > *max_uV) {
217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 *min_uV, *max_uV);
219 return -EINVAL;
220 }
221
222 return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 int *min_uA, int *max_uA)
228 {
229 BUG_ON(*min_uA > *max_uA);
230
231 if (!rdev->constraints) {
232 rdev_err(rdev, "no constraints\n");
233 return -ENODEV;
234 }
235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 rdev_err(rdev, "operation not allowed\n");
237 return -EPERM;
238 }
239
240 if (*max_uA > rdev->constraints->max_uA)
241 *max_uA = rdev->constraints->max_uA;
242 if (*min_uA < rdev->constraints->min_uA)
243 *min_uA = rdev->constraints->min_uA;
244
245 if (*min_uA > *max_uA) {
246 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 *min_uA, *max_uA);
248 return -EINVAL;
249 }
250
251 return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257 switch (*mode) {
258 case REGULATOR_MODE_FAST:
259 case REGULATOR_MODE_NORMAL:
260 case REGULATOR_MODE_IDLE:
261 case REGULATOR_MODE_STANDBY:
262 break;
263 default:
264 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 return -EINVAL;
266 }
267
268 if (!rdev->constraints) {
269 rdev_err(rdev, "no constraints\n");
270 return -ENODEV;
271 }
272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 rdev_err(rdev, "operation not allowed\n");
274 return -EPERM;
275 }
276
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
280 while (*mode) {
281 if (rdev->constraints->valid_modes_mask & *mode)
282 return 0;
283 *mode /= 2;
284 }
285
286 return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292 if (!rdev->constraints) {
293 rdev_err(rdev, "no constraints\n");
294 return -ENODEV;
295 }
296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 rdev_err(rdev, "operation not allowed\n");
298 return -EPERM;
299 }
300 return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
305 {
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
307 ssize_t ret;
308
309 mutex_lock(&rdev->mutex);
310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 mutex_unlock(&rdev->mutex);
312
313 return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
319 {
320 struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327 char *buf)
328 {
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331 return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337 switch (mode) {
338 case REGULATOR_MODE_FAST:
339 return sprintf(buf, "fast\n");
340 case REGULATOR_MODE_NORMAL:
341 return sprintf(buf, "normal\n");
342 case REGULATOR_MODE_IDLE:
343 return sprintf(buf, "idle\n");
344 case REGULATOR_MODE_STANDBY:
345 return sprintf(buf, "standby\n");
346 }
347 return sprintf(buf, "unknown\n");
348 }
349
350 static ssize_t regulator_opmode_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
352 {
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361 if (state > 0)
362 return sprintf(buf, "enabled\n");
363 else if (state == 0)
364 return sprintf(buf, "disabled\n");
365 else
366 return sprintf(buf, "unknown\n");
367 }
368
369 static ssize_t regulator_state_show(struct device *dev,
370 struct device_attribute *attr, char *buf)
371 {
372 struct regulator_dev *rdev = dev_get_drvdata(dev);
373 ssize_t ret;
374
375 mutex_lock(&rdev->mutex);
376 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377 mutex_unlock(&rdev->mutex);
378
379 return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383 static ssize_t regulator_status_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
385 {
386 struct regulator_dev *rdev = dev_get_drvdata(dev);
387 int status;
388 char *label;
389
390 status = rdev->desc->ops->get_status(rdev);
391 if (status < 0)
392 return status;
393
394 switch (status) {
395 case REGULATOR_STATUS_OFF:
396 label = "off";
397 break;
398 case REGULATOR_STATUS_ON:
399 label = "on";
400 break;
401 case REGULATOR_STATUS_ERROR:
402 label = "error";
403 break;
404 case REGULATOR_STATUS_FAST:
405 label = "fast";
406 break;
407 case REGULATOR_STATUS_NORMAL:
408 label = "normal";
409 break;
410 case REGULATOR_STATUS_IDLE:
411 label = "idle";
412 break;
413 case REGULATOR_STATUS_STANDBY:
414 label = "standby";
415 break;
416 case REGULATOR_STATUS_BYPASS:
417 label = "bypass";
418 break;
419 case REGULATOR_STATUS_UNDEFINED:
420 label = "undefined";
421 break;
422 default:
423 return -ERANGE;
424 }
425
426 return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430 static ssize_t regulator_min_uA_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
432 {
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435 if (!rdev->constraints)
436 return sprintf(buf, "constraint not defined\n");
437
438 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442 static ssize_t regulator_max_uA_show(struct device *dev,
443 struct device_attribute *attr, char *buf)
444 {
445 struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447 if (!rdev->constraints)
448 return sprintf(buf, "constraint not defined\n");
449
450 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454 static ssize_t regulator_min_uV_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
456 {
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459 if (!rdev->constraints)
460 return sprintf(buf, "constraint not defined\n");
461
462 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466 static ssize_t regulator_max_uV_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
468 {
469 struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471 if (!rdev->constraints)
472 return sprintf(buf, "constraint not defined\n");
473
474 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478 static ssize_t regulator_total_uA_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
480 {
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482 struct regulator *regulator;
483 int uA = 0;
484
485 mutex_lock(&rdev->mutex);
486 list_for_each_entry(regulator, &rdev->consumer_list, list)
487 uA += regulator->uA_load;
488 mutex_unlock(&rdev->mutex);
489 return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494 char *buf)
495 {
496 struct regulator_dev *rdev = dev_get_drvdata(dev);
497 return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502 char *buf)
503 {
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506 switch (rdev->desc->type) {
507 case REGULATOR_VOLTAGE:
508 return sprintf(buf, "voltage\n");
509 case REGULATOR_CURRENT:
510 return sprintf(buf, "current\n");
511 }
512 return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517 struct device_attribute *attr, char *buf)
518 {
519 struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524 regulator_suspend_mem_uV_show, NULL);
525
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
528 {
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534 regulator_suspend_disk_uV_show, NULL);
535
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
538 {
539 struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544 regulator_suspend_standby_uV_show, NULL);
545
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547 struct device_attribute *attr, char *buf)
548 {
549 struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551 return regulator_print_opmode(buf,
552 rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555 regulator_suspend_mem_mode_show, NULL);
556
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558 struct device_attribute *attr, char *buf)
559 {
560 struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562 return regulator_print_opmode(buf,
563 rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566 regulator_suspend_disk_mode_show, NULL);
567
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569 struct device_attribute *attr, char *buf)
570 {
571 struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573 return regulator_print_opmode(buf,
574 rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577 regulator_suspend_standby_mode_show, NULL);
578
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580 struct device_attribute *attr, char *buf)
581 {
582 struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584 return regulator_print_state(buf,
585 rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588 regulator_suspend_mem_state_show, NULL);
589
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
592 {
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595 return regulator_print_state(buf,
596 rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599 regulator_suspend_disk_state_show, NULL);
600
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
603 {
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606 return regulator_print_state(buf,
607 rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610 regulator_suspend_standby_state_show, NULL);
611
612 static ssize_t regulator_bypass_show(struct device *dev,
613 struct device_attribute *attr, char *buf)
614 {
615 struct regulator_dev *rdev = dev_get_drvdata(dev);
616 const char *report;
617 bool bypass;
618 int ret;
619
620 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622 if (ret != 0)
623 report = "unknown";
624 else if (bypass)
625 report = "enabled";
626 else
627 report = "disabled";
628
629 return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632 regulator_bypass_show, NULL);
633
634 /*
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
637 */
638 static struct attribute *regulator_dev_attrs[] = {
639 &dev_attr_name.attr,
640 &dev_attr_num_users.attr,
641 &dev_attr_type.attr,
642 NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645
646 static void regulator_dev_release(struct device *dev)
647 {
648 struct regulator_dev *rdev = dev_get_drvdata(dev);
649 kfree(rdev);
650 }
651
652 static struct class regulator_class = {
653 .name = "regulator",
654 .dev_release = regulator_dev_release,
655 .dev_groups = regulator_dev_groups,
656 };
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662 struct regulator *sibling;
663 int current_uA = 0, output_uV, input_uV, err;
664 unsigned int mode;
665
666 err = regulator_check_drms(rdev);
667 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 (!rdev->desc->ops->get_voltage &&
669 !rdev->desc->ops->get_voltage_sel) ||
670 !rdev->desc->ops->set_mode)
671 return;
672
673 /* get output voltage */
674 output_uV = _regulator_get_voltage(rdev);
675 if (output_uV <= 0)
676 return;
677
678 /* get input voltage */
679 input_uV = 0;
680 if (rdev->supply)
681 input_uV = regulator_get_voltage(rdev->supply);
682 if (input_uV <= 0)
683 input_uV = rdev->constraints->input_uV;
684 if (input_uV <= 0)
685 return;
686
687 /* calc total requested load */
688 list_for_each_entry(sibling, &rdev->consumer_list, list)
689 current_uA += sibling->uA_load;
690
691 /* now get the optimum mode for our new total regulator load */
692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 output_uV, current_uA);
694
695 /* check the new mode is allowed */
696 err = regulator_mode_constrain(rdev, &mode);
697 if (err == 0)
698 rdev->desc->ops->set_mode(rdev, mode);
699 }
700
701 static int suspend_set_state(struct regulator_dev *rdev,
702 struct regulator_state *rstate)
703 {
704 int ret = 0;
705
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
709 */
710 if (!rstate->enabled && !rstate->disabled) {
711 if (rdev->desc->ops->set_suspend_voltage ||
712 rdev->desc->ops->set_suspend_mode)
713 rdev_warn(rdev, "No configuration\n");
714 return 0;
715 }
716
717 if (rstate->enabled && rstate->disabled) {
718 rdev_err(rdev, "invalid configuration\n");
719 return -EINVAL;
720 }
721
722 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723 ret = rdev->desc->ops->set_suspend_enable(rdev);
724 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725 ret = rdev->desc->ops->set_suspend_disable(rdev);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727 ret = 0;
728
729 if (ret < 0) {
730 rdev_err(rdev, "failed to enabled/disable\n");
731 return ret;
732 }
733
734 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736 if (ret < 0) {
737 rdev_err(rdev, "failed to set voltage\n");
738 return ret;
739 }
740 }
741
742 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744 if (ret < 0) {
745 rdev_err(rdev, "failed to set mode\n");
746 return ret;
747 }
748 }
749 return ret;
750 }
751
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755 if (!rdev->constraints)
756 return -EINVAL;
757
758 switch (state) {
759 case PM_SUSPEND_STANDBY:
760 return suspend_set_state(rdev,
761 &rdev->constraints->state_standby);
762 case PM_SUSPEND_MEM:
763 return suspend_set_state(rdev,
764 &rdev->constraints->state_mem);
765 case PM_SUSPEND_MAX:
766 return suspend_set_state(rdev,
767 &rdev->constraints->state_disk);
768 default:
769 return -EINVAL;
770 }
771 }
772
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775 struct regulation_constraints *constraints = rdev->constraints;
776 char buf[80] = "";
777 int count = 0;
778 int ret;
779
780 if (constraints->min_uV && constraints->max_uV) {
781 if (constraints->min_uV == constraints->max_uV)
782 count += sprintf(buf + count, "%d mV ",
783 constraints->min_uV / 1000);
784 else
785 count += sprintf(buf + count, "%d <--> %d mV ",
786 constraints->min_uV / 1000,
787 constraints->max_uV / 1000);
788 }
789
790 if (!constraints->min_uV ||
791 constraints->min_uV != constraints->max_uV) {
792 ret = _regulator_get_voltage(rdev);
793 if (ret > 0)
794 count += sprintf(buf + count, "at %d mV ", ret / 1000);
795 }
796
797 if (constraints->uV_offset)
798 count += sprintf(buf, "%dmV offset ",
799 constraints->uV_offset / 1000);
800
801 if (constraints->min_uA && constraints->max_uA) {
802 if (constraints->min_uA == constraints->max_uA)
803 count += sprintf(buf + count, "%d mA ",
804 constraints->min_uA / 1000);
805 else
806 count += sprintf(buf + count, "%d <--> %d mA ",
807 constraints->min_uA / 1000,
808 constraints->max_uA / 1000);
809 }
810
811 if (!constraints->min_uA ||
812 constraints->min_uA != constraints->max_uA) {
813 ret = _regulator_get_current_limit(rdev);
814 if (ret > 0)
815 count += sprintf(buf + count, "at %d mA ", ret / 1000);
816 }
817
818 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819 count += sprintf(buf + count, "fast ");
820 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821 count += sprintf(buf + count, "normal ");
822 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823 count += sprintf(buf + count, "idle ");
824 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825 count += sprintf(buf + count, "standby");
826
827 if (!count)
828 sprintf(buf, "no parameters");
829
830 rdev_info(rdev, "%s\n", buf);
831
832 if ((constraints->min_uV != constraints->max_uV) &&
833 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834 rdev_warn(rdev,
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839 struct regulation_constraints *constraints)
840 {
841 struct regulator_ops *ops = rdev->desc->ops;
842 int ret;
843
844 /* do we need to apply the constraint voltage */
845 if (rdev->constraints->apply_uV &&
846 rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 ret = _regulator_do_set_voltage(rdev,
848 rdev->constraints->min_uV,
849 rdev->constraints->max_uV);
850 if (ret < 0) {
851 rdev_err(rdev, "failed to apply %duV constraint\n",
852 rdev->constraints->min_uV);
853 return ret;
854 }
855 }
856
857 /* constrain machine-level voltage specs to fit
858 * the actual range supported by this regulator.
859 */
860 if (ops->list_voltage && rdev->desc->n_voltages) {
861 int count = rdev->desc->n_voltages;
862 int i;
863 int min_uV = INT_MAX;
864 int max_uV = INT_MIN;
865 int cmin = constraints->min_uV;
866 int cmax = constraints->max_uV;
867
868 /* it's safe to autoconfigure fixed-voltage supplies
869 and the constraints are used by list_voltage. */
870 if (count == 1 && !cmin) {
871 cmin = 1;
872 cmax = INT_MAX;
873 constraints->min_uV = cmin;
874 constraints->max_uV = cmax;
875 }
876
877 /* voltage constraints are optional */
878 if ((cmin == 0) && (cmax == 0))
879 return 0;
880
881 /* else require explicit machine-level constraints */
882 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883 rdev_err(rdev, "invalid voltage constraints\n");
884 return -EINVAL;
885 }
886
887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 for (i = 0; i < count; i++) {
889 int value;
890
891 value = ops->list_voltage(rdev, i);
892 if (value <= 0)
893 continue;
894
895 /* maybe adjust [min_uV..max_uV] */
896 if (value >= cmin && value < min_uV)
897 min_uV = value;
898 if (value <= cmax && value > max_uV)
899 max_uV = value;
900 }
901
902 /* final: [min_uV..max_uV] valid iff constraints valid */
903 if (max_uV < min_uV) {
904 rdev_err(rdev,
905 "unsupportable voltage constraints %u-%uuV\n",
906 min_uV, max_uV);
907 return -EINVAL;
908 }
909
910 /* use regulator's subset of machine constraints */
911 if (constraints->min_uV < min_uV) {
912 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913 constraints->min_uV, min_uV);
914 constraints->min_uV = min_uV;
915 }
916 if (constraints->max_uV > max_uV) {
917 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918 constraints->max_uV, max_uV);
919 constraints->max_uV = max_uV;
920 }
921 }
922
923 return 0;
924 }
925
926 static int machine_constraints_current(struct regulator_dev *rdev,
927 struct regulation_constraints *constraints)
928 {
929 struct regulator_ops *ops = rdev->desc->ops;
930 int ret;
931
932 if (!constraints->min_uA && !constraints->max_uA)
933 return 0;
934
935 if (constraints->min_uA > constraints->max_uA) {
936 rdev_err(rdev, "Invalid current constraints\n");
937 return -EINVAL;
938 }
939
940 if (!ops->set_current_limit || !ops->get_current_limit) {
941 rdev_warn(rdev, "Operation of current configuration missing\n");
942 return 0;
943 }
944
945 /* Set regulator current in constraints range */
946 ret = ops->set_current_limit(rdev, constraints->min_uA,
947 constraints->max_uA);
948 if (ret < 0) {
949 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950 return ret;
951 }
952
953 return 0;
954 }
955
956 /**
957 * set_machine_constraints - sets regulator constraints
958 * @rdev: regulator source
959 * @constraints: constraints to apply
960 *
961 * Allows platform initialisation code to define and constrain
962 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
963 * Constraints *must* be set by platform code in order for some
964 * regulator operations to proceed i.e. set_voltage, set_current_limit,
965 * set_mode.
966 */
967 static int set_machine_constraints(struct regulator_dev *rdev,
968 const struct regulation_constraints *constraints)
969 {
970 int ret = 0;
971 struct regulator_ops *ops = rdev->desc->ops;
972
973 if (constraints)
974 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
975 GFP_KERNEL);
976 else
977 rdev->constraints = kzalloc(sizeof(*constraints),
978 GFP_KERNEL);
979 if (!rdev->constraints)
980 return -ENOMEM;
981
982 ret = machine_constraints_voltage(rdev, rdev->constraints);
983 if (ret != 0)
984 goto out;
985
986 ret = machine_constraints_current(rdev, rdev->constraints);
987 if (ret != 0)
988 goto out;
989
990 /* do we need to setup our suspend state */
991 if (rdev->constraints->initial_state) {
992 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
993 if (ret < 0) {
994 rdev_err(rdev, "failed to set suspend state\n");
995 goto out;
996 }
997 }
998
999 if (rdev->constraints->initial_mode) {
1000 if (!ops->set_mode) {
1001 rdev_err(rdev, "no set_mode operation\n");
1002 ret = -EINVAL;
1003 goto out;
1004 }
1005
1006 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1007 if (ret < 0) {
1008 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1009 goto out;
1010 }
1011 }
1012
1013 /* If the constraints say the regulator should be on at this point
1014 * and we have control then make sure it is enabled.
1015 */
1016 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
1017 ops->enable) {
1018 ret = ops->enable(rdev);
1019 if (ret < 0) {
1020 rdev_err(rdev, "failed to enable\n");
1021 goto out;
1022 }
1023 }
1024
1025 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1026 && ops->set_ramp_delay) {
1027 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1028 if (ret < 0) {
1029 rdev_err(rdev, "failed to set ramp_delay\n");
1030 goto out;
1031 }
1032 }
1033
1034 print_constraints(rdev);
1035 return 0;
1036 out:
1037 kfree(rdev->constraints);
1038 rdev->constraints = NULL;
1039 return ret;
1040 }
1041
1042 /**
1043 * set_supply - set regulator supply regulator
1044 * @rdev: regulator name
1045 * @supply_rdev: supply regulator name
1046 *
1047 * Called by platform initialisation code to set the supply regulator for this
1048 * regulator. This ensures that a regulators supply will also be enabled by the
1049 * core if it's child is enabled.
1050 */
1051 static int set_supply(struct regulator_dev *rdev,
1052 struct regulator_dev *supply_rdev)
1053 {
1054 int err;
1055
1056 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1057
1058 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1059 if (rdev->supply == NULL) {
1060 err = -ENOMEM;
1061 return err;
1062 }
1063 supply_rdev->open_count++;
1064
1065 return 0;
1066 }
1067
1068 /**
1069 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1070 * @rdev: regulator source
1071 * @consumer_dev_name: dev_name() string for device supply applies to
1072 * @supply: symbolic name for supply
1073 *
1074 * Allows platform initialisation code to map physical regulator
1075 * sources to symbolic names for supplies for use by devices. Devices
1076 * should use these symbolic names to request regulators, avoiding the
1077 * need to provide board-specific regulator names as platform data.
1078 */
1079 static int set_consumer_device_supply(struct regulator_dev *rdev,
1080 const char *consumer_dev_name,
1081 const char *supply)
1082 {
1083 struct regulator_map *node;
1084 int has_dev;
1085
1086 if (supply == NULL)
1087 return -EINVAL;
1088
1089 if (consumer_dev_name != NULL)
1090 has_dev = 1;
1091 else
1092 has_dev = 0;
1093
1094 list_for_each_entry(node, &regulator_map_list, list) {
1095 if (node->dev_name && consumer_dev_name) {
1096 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1097 continue;
1098 } else if (node->dev_name || consumer_dev_name) {
1099 continue;
1100 }
1101
1102 if (strcmp(node->supply, supply) != 0)
1103 continue;
1104
1105 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1106 consumer_dev_name,
1107 dev_name(&node->regulator->dev),
1108 node->regulator->desc->name,
1109 supply,
1110 dev_name(&rdev->dev), rdev_get_name(rdev));
1111 return -EBUSY;
1112 }
1113
1114 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1115 if (node == NULL)
1116 return -ENOMEM;
1117
1118 node->regulator = rdev;
1119 node->supply = supply;
1120
1121 if (has_dev) {
1122 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1123 if (node->dev_name == NULL) {
1124 kfree(node);
1125 return -ENOMEM;
1126 }
1127 }
1128
1129 list_add(&node->list, &regulator_map_list);
1130 return 0;
1131 }
1132
1133 static void unset_regulator_supplies(struct regulator_dev *rdev)
1134 {
1135 struct regulator_map *node, *n;
1136
1137 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1138 if (rdev == node->regulator) {
1139 list_del(&node->list);
1140 kfree(node->dev_name);
1141 kfree(node);
1142 }
1143 }
1144 }
1145
1146 #define REG_STR_SIZE 64
1147
1148 static struct regulator *create_regulator(struct regulator_dev *rdev,
1149 struct device *dev,
1150 const char *supply_name)
1151 {
1152 struct regulator *regulator;
1153 char buf[REG_STR_SIZE];
1154 int err, size;
1155
1156 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1157 if (regulator == NULL)
1158 return NULL;
1159
1160 mutex_lock(&rdev->mutex);
1161 regulator->rdev = rdev;
1162 list_add(&regulator->list, &rdev->consumer_list);
1163
1164 if (dev) {
1165 regulator->dev = dev;
1166
1167 /* Add a link to the device sysfs entry */
1168 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1169 dev->kobj.name, supply_name);
1170 if (size >= REG_STR_SIZE)
1171 goto overflow_err;
1172
1173 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1174 if (regulator->supply_name == NULL)
1175 goto overflow_err;
1176
1177 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1178 buf);
1179 if (err) {
1180 rdev_warn(rdev, "could not add device link %s err %d\n",
1181 dev->kobj.name, err);
1182 /* non-fatal */
1183 }
1184 } else {
1185 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1186 if (regulator->supply_name == NULL)
1187 goto overflow_err;
1188 }
1189
1190 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1191 rdev->debugfs);
1192 if (!regulator->debugfs) {
1193 rdev_warn(rdev, "Failed to create debugfs directory\n");
1194 } else {
1195 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1196 &regulator->uA_load);
1197 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1198 &regulator->min_uV);
1199 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1200 &regulator->max_uV);
1201 }
1202
1203 /*
1204 * Check now if the regulator is an always on regulator - if
1205 * it is then we don't need to do nearly so much work for
1206 * enable/disable calls.
1207 */
1208 if (!_regulator_can_change_status(rdev) &&
1209 _regulator_is_enabled(rdev))
1210 regulator->always_on = true;
1211
1212 mutex_unlock(&rdev->mutex);
1213 return regulator;
1214 overflow_err:
1215 list_del(&regulator->list);
1216 kfree(regulator);
1217 mutex_unlock(&rdev->mutex);
1218 return NULL;
1219 }
1220
1221 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1222 {
1223 if (rdev->constraints && rdev->constraints->enable_time)
1224 return rdev->constraints->enable_time;
1225 if (!rdev->desc->ops->enable_time)
1226 return rdev->desc->enable_time;
1227 return rdev->desc->ops->enable_time(rdev);
1228 }
1229
1230 static struct regulator_supply_alias *regulator_find_supply_alias(
1231 struct device *dev, const char *supply)
1232 {
1233 struct regulator_supply_alias *map;
1234
1235 list_for_each_entry(map, &regulator_supply_alias_list, list)
1236 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1237 return map;
1238
1239 return NULL;
1240 }
1241
1242 static void regulator_supply_alias(struct device **dev, const char **supply)
1243 {
1244 struct regulator_supply_alias *map;
1245
1246 map = regulator_find_supply_alias(*dev, *supply);
1247 if (map) {
1248 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1249 *supply, map->alias_supply,
1250 dev_name(map->alias_dev));
1251 *dev = map->alias_dev;
1252 *supply = map->alias_supply;
1253 }
1254 }
1255
1256 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1257 const char *supply,
1258 int *ret)
1259 {
1260 struct regulator_dev *r;
1261 struct device_node *node;
1262 struct regulator_map *map;
1263 const char *devname = NULL;
1264
1265 regulator_supply_alias(&dev, &supply);
1266
1267 /* first do a dt based lookup */
1268 if (dev && dev->of_node) {
1269 node = of_get_regulator(dev, supply);
1270 if (node) {
1271 list_for_each_entry(r, &regulator_list, list)
1272 if (r->dev.parent &&
1273 node == r->dev.of_node)
1274 return r;
1275 } else {
1276 /*
1277 * If we couldn't even get the node then it's
1278 * not just that the device didn't register
1279 * yet, there's no node and we'll never
1280 * succeed.
1281 */
1282 *ret = -ENODEV;
1283 }
1284 }
1285
1286 /* if not found, try doing it non-dt way */
1287 if (dev)
1288 devname = dev_name(dev);
1289
1290 list_for_each_entry(r, &regulator_list, list)
1291 if (strcmp(rdev_get_name(r), supply) == 0)
1292 return r;
1293
1294 list_for_each_entry(map, &regulator_map_list, list) {
1295 /* If the mapping has a device set up it must match */
1296 if (map->dev_name &&
1297 (!devname || strcmp(map->dev_name, devname)))
1298 continue;
1299
1300 if (strcmp(map->supply, supply) == 0)
1301 return map->regulator;
1302 }
1303
1304
1305 return NULL;
1306 }
1307
1308 /* Internal regulator request function */
1309 static struct regulator *_regulator_get(struct device *dev, const char *id,
1310 bool exclusive, bool allow_dummy)
1311 {
1312 struct regulator_dev *rdev;
1313 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1314 const char *devname = NULL;
1315 int ret = -EPROBE_DEFER;
1316
1317 if (id == NULL) {
1318 pr_err("get() with no identifier\n");
1319 return ERR_PTR(-EINVAL);
1320 }
1321
1322 if (dev)
1323 devname = dev_name(dev);
1324
1325 mutex_lock(&regulator_list_mutex);
1326
1327 rdev = regulator_dev_lookup(dev, id, &ret);
1328 if (rdev)
1329 goto found;
1330
1331 regulator = ERR_PTR(ret);
1332
1333 /*
1334 * If we have return value from dev_lookup fail, we do not expect to
1335 * succeed, so, quit with appropriate error value
1336 */
1337 if (ret && ret != -ENODEV) {
1338 goto out;
1339 }
1340
1341 if (!devname)
1342 devname = "deviceless";
1343
1344 /*
1345 * Assume that a regulator is physically present and enabled
1346 * even if it isn't hooked up and just provide a dummy.
1347 */
1348 if (have_full_constraints() && allow_dummy) {
1349 pr_warn("%s supply %s not found, using dummy regulator\n",
1350 devname, id);
1351
1352 rdev = dummy_regulator_rdev;
1353 goto found;
1354 } else {
1355 dev_err(dev, "dummy supplies not allowed\n");
1356 }
1357
1358 mutex_unlock(&regulator_list_mutex);
1359 return regulator;
1360
1361 found:
1362 if (rdev->exclusive) {
1363 regulator = ERR_PTR(-EPERM);
1364 goto out;
1365 }
1366
1367 if (exclusive && rdev->open_count) {
1368 regulator = ERR_PTR(-EBUSY);
1369 goto out;
1370 }
1371
1372 if (!try_module_get(rdev->owner))
1373 goto out;
1374
1375 regulator = create_regulator(rdev, dev, id);
1376 if (regulator == NULL) {
1377 regulator = ERR_PTR(-ENOMEM);
1378 module_put(rdev->owner);
1379 goto out;
1380 }
1381
1382 rdev->open_count++;
1383 if (exclusive) {
1384 rdev->exclusive = 1;
1385
1386 ret = _regulator_is_enabled(rdev);
1387 if (ret > 0)
1388 rdev->use_count = 1;
1389 else
1390 rdev->use_count = 0;
1391 }
1392
1393 out:
1394 mutex_unlock(&regulator_list_mutex);
1395
1396 return regulator;
1397 }
1398
1399 /**
1400 * regulator_get - lookup and obtain a reference to a regulator.
1401 * @dev: device for regulator "consumer"
1402 * @id: Supply name or regulator ID.
1403 *
1404 * Returns a struct regulator corresponding to the regulator producer,
1405 * or IS_ERR() condition containing errno.
1406 *
1407 * Use of supply names configured via regulator_set_device_supply() is
1408 * strongly encouraged. It is recommended that the supply name used
1409 * should match the name used for the supply and/or the relevant
1410 * device pins in the datasheet.
1411 */
1412 struct regulator *regulator_get(struct device *dev, const char *id)
1413 {
1414 return _regulator_get(dev, id, false, true);
1415 }
1416 EXPORT_SYMBOL_GPL(regulator_get);
1417
1418 /**
1419 * regulator_get_exclusive - obtain exclusive access to a regulator.
1420 * @dev: device for regulator "consumer"
1421 * @id: Supply name or regulator ID.
1422 *
1423 * Returns a struct regulator corresponding to the regulator producer,
1424 * or IS_ERR() condition containing errno. Other consumers will be
1425 * unable to obtain this reference is held and the use count for the
1426 * regulator will be initialised to reflect the current state of the
1427 * regulator.
1428 *
1429 * This is intended for use by consumers which cannot tolerate shared
1430 * use of the regulator such as those which need to force the
1431 * regulator off for correct operation of the hardware they are
1432 * controlling.
1433 *
1434 * Use of supply names configured via regulator_set_device_supply() is
1435 * strongly encouraged. It is recommended that the supply name used
1436 * should match the name used for the supply and/or the relevant
1437 * device pins in the datasheet.
1438 */
1439 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1440 {
1441 return _regulator_get(dev, id, true, false);
1442 }
1443 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1444
1445 /**
1446 * regulator_get_optional - obtain optional access to a regulator.
1447 * @dev: device for regulator "consumer"
1448 * @id: Supply name or regulator ID.
1449 *
1450 * Returns a struct regulator corresponding to the regulator producer,
1451 * or IS_ERR() condition containing errno. Other consumers will be
1452 * unable to obtain this reference is held and the use count for the
1453 * regulator will be initialised to reflect the current state of the
1454 * regulator.
1455 *
1456 * This is intended for use by consumers for devices which can have
1457 * some supplies unconnected in normal use, such as some MMC devices.
1458 * It can allow the regulator core to provide stub supplies for other
1459 * supplies requested using normal regulator_get() calls without
1460 * disrupting the operation of drivers that can handle absent
1461 * supplies.
1462 *
1463 * Use of supply names configured via regulator_set_device_supply() is
1464 * strongly encouraged. It is recommended that the supply name used
1465 * should match the name used for the supply and/or the relevant
1466 * device pins in the datasheet.
1467 */
1468 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1469 {
1470 return _regulator_get(dev, id, false, false);
1471 }
1472 EXPORT_SYMBOL_GPL(regulator_get_optional);
1473
1474 /* Locks held by regulator_put() */
1475 static void _regulator_put(struct regulator *regulator)
1476 {
1477 struct regulator_dev *rdev;
1478
1479 if (regulator == NULL || IS_ERR(regulator))
1480 return;
1481
1482 rdev = regulator->rdev;
1483
1484 debugfs_remove_recursive(regulator->debugfs);
1485
1486 /* remove any sysfs entries */
1487 if (regulator->dev)
1488 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1489 kfree(regulator->supply_name);
1490 list_del(&regulator->list);
1491 kfree(regulator);
1492
1493 rdev->open_count--;
1494 rdev->exclusive = 0;
1495
1496 module_put(rdev->owner);
1497 }
1498
1499 /**
1500 * regulator_put - "free" the regulator source
1501 * @regulator: regulator source
1502 *
1503 * Note: drivers must ensure that all regulator_enable calls made on this
1504 * regulator source are balanced by regulator_disable calls prior to calling
1505 * this function.
1506 */
1507 void regulator_put(struct regulator *regulator)
1508 {
1509 mutex_lock(&regulator_list_mutex);
1510 _regulator_put(regulator);
1511 mutex_unlock(&regulator_list_mutex);
1512 }
1513 EXPORT_SYMBOL_GPL(regulator_put);
1514
1515 /**
1516 * regulator_register_supply_alias - Provide device alias for supply lookup
1517 *
1518 * @dev: device that will be given as the regulator "consumer"
1519 * @id: Supply name or regulator ID
1520 * @alias_dev: device that should be used to lookup the supply
1521 * @alias_id: Supply name or regulator ID that should be used to lookup the
1522 * supply
1523 *
1524 * All lookups for id on dev will instead be conducted for alias_id on
1525 * alias_dev.
1526 */
1527 int regulator_register_supply_alias(struct device *dev, const char *id,
1528 struct device *alias_dev,
1529 const char *alias_id)
1530 {
1531 struct regulator_supply_alias *map;
1532
1533 map = regulator_find_supply_alias(dev, id);
1534 if (map)
1535 return -EEXIST;
1536
1537 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1538 if (!map)
1539 return -ENOMEM;
1540
1541 map->src_dev = dev;
1542 map->src_supply = id;
1543 map->alias_dev = alias_dev;
1544 map->alias_supply = alias_id;
1545
1546 list_add(&map->list, &regulator_supply_alias_list);
1547
1548 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1549 id, dev_name(dev), alias_id, dev_name(alias_dev));
1550
1551 return 0;
1552 }
1553 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1554
1555 /**
1556 * regulator_unregister_supply_alias - Remove device alias
1557 *
1558 * @dev: device that will be given as the regulator "consumer"
1559 * @id: Supply name or regulator ID
1560 *
1561 * Remove a lookup alias if one exists for id on dev.
1562 */
1563 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1564 {
1565 struct regulator_supply_alias *map;
1566
1567 map = regulator_find_supply_alias(dev, id);
1568 if (map) {
1569 list_del(&map->list);
1570 kfree(map);
1571 }
1572 }
1573 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1574
1575 /**
1576 * regulator_bulk_register_supply_alias - register multiple aliases
1577 *
1578 * @dev: device that will be given as the regulator "consumer"
1579 * @id: List of supply names or regulator IDs
1580 * @alias_dev: device that should be used to lookup the supply
1581 * @alias_id: List of supply names or regulator IDs that should be used to
1582 * lookup the supply
1583 * @num_id: Number of aliases to register
1584 *
1585 * @return 0 on success, an errno on failure.
1586 *
1587 * This helper function allows drivers to register several supply
1588 * aliases in one operation. If any of the aliases cannot be
1589 * registered any aliases that were registered will be removed
1590 * before returning to the caller.
1591 */
1592 int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1593 struct device *alias_dev,
1594 const char **alias_id,
1595 int num_id)
1596 {
1597 int i;
1598 int ret;
1599
1600 for (i = 0; i < num_id; ++i) {
1601 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1602 alias_id[i]);
1603 if (ret < 0)
1604 goto err;
1605 }
1606
1607 return 0;
1608
1609 err:
1610 dev_err(dev,
1611 "Failed to create supply alias %s,%s -> %s,%s\n",
1612 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1613
1614 while (--i >= 0)
1615 regulator_unregister_supply_alias(dev, id[i]);
1616
1617 return ret;
1618 }
1619 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1620
1621 /**
1622 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1623 *
1624 * @dev: device that will be given as the regulator "consumer"
1625 * @id: List of supply names or regulator IDs
1626 * @num_id: Number of aliases to unregister
1627 *
1628 * This helper function allows drivers to unregister several supply
1629 * aliases in one operation.
1630 */
1631 void regulator_bulk_unregister_supply_alias(struct device *dev,
1632 const char **id,
1633 int num_id)
1634 {
1635 int i;
1636
1637 for (i = 0; i < num_id; ++i)
1638 regulator_unregister_supply_alias(dev, id[i]);
1639 }
1640 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1641
1642
1643 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1644 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1645 const struct regulator_config *config)
1646 {
1647 struct regulator_enable_gpio *pin;
1648 int ret;
1649
1650 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1651 if (pin->gpio == config->ena_gpio) {
1652 rdev_dbg(rdev, "GPIO %d is already used\n",
1653 config->ena_gpio);
1654 goto update_ena_gpio_to_rdev;
1655 }
1656 }
1657
1658 ret = gpio_request_one(config->ena_gpio,
1659 GPIOF_DIR_OUT | config->ena_gpio_flags,
1660 rdev_get_name(rdev));
1661 if (ret)
1662 return ret;
1663
1664 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1665 if (pin == NULL) {
1666 gpio_free(config->ena_gpio);
1667 return -ENOMEM;
1668 }
1669
1670 pin->gpio = config->ena_gpio;
1671 pin->ena_gpio_invert = config->ena_gpio_invert;
1672 list_add(&pin->list, &regulator_ena_gpio_list);
1673
1674 update_ena_gpio_to_rdev:
1675 pin->request_count++;
1676 rdev->ena_pin = pin;
1677 return 0;
1678 }
1679
1680 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1681 {
1682 struct regulator_enable_gpio *pin, *n;
1683
1684 if (!rdev->ena_pin)
1685 return;
1686
1687 /* Free the GPIO only in case of no use */
1688 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1689 if (pin->gpio == rdev->ena_pin->gpio) {
1690 if (pin->request_count <= 1) {
1691 pin->request_count = 0;
1692 gpio_free(pin->gpio);
1693 list_del(&pin->list);
1694 kfree(pin);
1695 } else {
1696 pin->request_count--;
1697 }
1698 }
1699 }
1700 }
1701
1702 /**
1703 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1704 * @rdev: regulator_dev structure
1705 * @enable: enable GPIO at initial use?
1706 *
1707 * GPIO is enabled in case of initial use. (enable_count is 0)
1708 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1709 */
1710 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1711 {
1712 struct regulator_enable_gpio *pin = rdev->ena_pin;
1713
1714 if (!pin)
1715 return -EINVAL;
1716
1717 if (enable) {
1718 /* Enable GPIO at initial use */
1719 if (pin->enable_count == 0)
1720 gpio_set_value_cansleep(pin->gpio,
1721 !pin->ena_gpio_invert);
1722
1723 pin->enable_count++;
1724 } else {
1725 if (pin->enable_count > 1) {
1726 pin->enable_count--;
1727 return 0;
1728 }
1729
1730 /* Disable GPIO if not used */
1731 if (pin->enable_count <= 1) {
1732 gpio_set_value_cansleep(pin->gpio,
1733 pin->ena_gpio_invert);
1734 pin->enable_count = 0;
1735 }
1736 }
1737
1738 return 0;
1739 }
1740
1741 static int _regulator_do_enable(struct regulator_dev *rdev)
1742 {
1743 int ret, delay;
1744
1745 /* Query before enabling in case configuration dependent. */
1746 ret = _regulator_get_enable_time(rdev);
1747 if (ret >= 0) {
1748 delay = ret;
1749 } else {
1750 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1751 delay = 0;
1752 }
1753
1754 trace_regulator_enable(rdev_get_name(rdev));
1755
1756 if (rdev->ena_pin) {
1757 ret = regulator_ena_gpio_ctrl(rdev, true);
1758 if (ret < 0)
1759 return ret;
1760 rdev->ena_gpio_state = 1;
1761 } else if (rdev->desc->ops->enable) {
1762 ret = rdev->desc->ops->enable(rdev);
1763 if (ret < 0)
1764 return ret;
1765 } else {
1766 return -EINVAL;
1767 }
1768
1769 /* Allow the regulator to ramp; it would be useful to extend
1770 * this for bulk operations so that the regulators can ramp
1771 * together. */
1772 trace_regulator_enable_delay(rdev_get_name(rdev));
1773
1774 /*
1775 * Delay for the requested amount of time as per the guidelines in:
1776 *
1777 * Documentation/timers/timers-howto.txt
1778 *
1779 * The assumption here is that regulators will never be enabled in
1780 * atomic context and therefore sleeping functions can be used.
1781 */
1782 if (delay) {
1783 unsigned int ms = delay / 1000;
1784 unsigned int us = delay % 1000;
1785
1786 if (ms > 0) {
1787 /*
1788 * For small enough values, handle super-millisecond
1789 * delays in the usleep_range() call below.
1790 */
1791 if (ms < 20)
1792 us += ms * 1000;
1793 else
1794 msleep(ms);
1795 }
1796
1797 /*
1798 * Give the scheduler some room to coalesce with any other
1799 * wakeup sources. For delays shorter than 10 us, don't even
1800 * bother setting up high-resolution timers and just busy-
1801 * loop.
1802 */
1803 if (us >= 10)
1804 usleep_range(us, us + 100);
1805 else
1806 udelay(us);
1807 }
1808
1809 trace_regulator_enable_complete(rdev_get_name(rdev));
1810
1811 return 0;
1812 }
1813
1814 /* locks held by regulator_enable() */
1815 static int _regulator_enable(struct regulator_dev *rdev)
1816 {
1817 int ret;
1818
1819 /* check voltage and requested load before enabling */
1820 if (rdev->constraints &&
1821 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1822 drms_uA_update(rdev);
1823
1824 if (rdev->use_count == 0) {
1825 /* The regulator may on if it's not switchable or left on */
1826 ret = _regulator_is_enabled(rdev);
1827 if (ret == -EINVAL || ret == 0) {
1828 if (!_regulator_can_change_status(rdev))
1829 return -EPERM;
1830
1831 ret = _regulator_do_enable(rdev);
1832 if (ret < 0)
1833 return ret;
1834
1835 } else if (ret < 0) {
1836 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1837 return ret;
1838 }
1839 /* Fallthrough on positive return values - already enabled */
1840 }
1841
1842 rdev->use_count++;
1843
1844 return 0;
1845 }
1846
1847 /**
1848 * regulator_enable - enable regulator output
1849 * @regulator: regulator source
1850 *
1851 * Request that the regulator be enabled with the regulator output at
1852 * the predefined voltage or current value. Calls to regulator_enable()
1853 * must be balanced with calls to regulator_disable().
1854 *
1855 * NOTE: the output value can be set by other drivers, boot loader or may be
1856 * hardwired in the regulator.
1857 */
1858 int regulator_enable(struct regulator *regulator)
1859 {
1860 struct regulator_dev *rdev = regulator->rdev;
1861 int ret = 0;
1862
1863 if (regulator->always_on)
1864 return 0;
1865
1866 if (rdev->supply) {
1867 ret = regulator_enable(rdev->supply);
1868 if (ret != 0)
1869 return ret;
1870 }
1871
1872 mutex_lock(&rdev->mutex);
1873 ret = _regulator_enable(rdev);
1874 mutex_unlock(&rdev->mutex);
1875
1876 if (ret != 0 && rdev->supply)
1877 regulator_disable(rdev->supply);
1878
1879 return ret;
1880 }
1881 EXPORT_SYMBOL_GPL(regulator_enable);
1882
1883 static int _regulator_do_disable(struct regulator_dev *rdev)
1884 {
1885 int ret;
1886
1887 trace_regulator_disable(rdev_get_name(rdev));
1888
1889 if (rdev->ena_pin) {
1890 ret = regulator_ena_gpio_ctrl(rdev, false);
1891 if (ret < 0)
1892 return ret;
1893 rdev->ena_gpio_state = 0;
1894
1895 } else if (rdev->desc->ops->disable) {
1896 ret = rdev->desc->ops->disable(rdev);
1897 if (ret != 0)
1898 return ret;
1899 }
1900
1901 trace_regulator_disable_complete(rdev_get_name(rdev));
1902
1903 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1904 NULL);
1905 return 0;
1906 }
1907
1908 /* locks held by regulator_disable() */
1909 static int _regulator_disable(struct regulator_dev *rdev)
1910 {
1911 int ret = 0;
1912
1913 if (WARN(rdev->use_count <= 0,
1914 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1915 return -EIO;
1916
1917 /* are we the last user and permitted to disable ? */
1918 if (rdev->use_count == 1 &&
1919 (rdev->constraints && !rdev->constraints->always_on)) {
1920
1921 /* we are last user */
1922 if (_regulator_can_change_status(rdev)) {
1923 ret = _regulator_do_disable(rdev);
1924 if (ret < 0) {
1925 rdev_err(rdev, "failed to disable\n");
1926 return ret;
1927 }
1928 }
1929
1930 rdev->use_count = 0;
1931 } else if (rdev->use_count > 1) {
1932
1933 if (rdev->constraints &&
1934 (rdev->constraints->valid_ops_mask &
1935 REGULATOR_CHANGE_DRMS))
1936 drms_uA_update(rdev);
1937
1938 rdev->use_count--;
1939 }
1940
1941 return ret;
1942 }
1943
1944 /**
1945 * regulator_disable - disable regulator output
1946 * @regulator: regulator source
1947 *
1948 * Disable the regulator output voltage or current. Calls to
1949 * regulator_enable() must be balanced with calls to
1950 * regulator_disable().
1951 *
1952 * NOTE: this will only disable the regulator output if no other consumer
1953 * devices have it enabled, the regulator device supports disabling and
1954 * machine constraints permit this operation.
1955 */
1956 int regulator_disable(struct regulator *regulator)
1957 {
1958 struct regulator_dev *rdev = regulator->rdev;
1959 int ret = 0;
1960
1961 if (regulator->always_on)
1962 return 0;
1963
1964 mutex_lock(&rdev->mutex);
1965 ret = _regulator_disable(rdev);
1966 mutex_unlock(&rdev->mutex);
1967
1968 if (ret == 0 && rdev->supply)
1969 regulator_disable(rdev->supply);
1970
1971 return ret;
1972 }
1973 EXPORT_SYMBOL_GPL(regulator_disable);
1974
1975 /* locks held by regulator_force_disable() */
1976 static int _regulator_force_disable(struct regulator_dev *rdev)
1977 {
1978 int ret = 0;
1979
1980 /* force disable */
1981 if (rdev->desc->ops->disable) {
1982 /* ah well, who wants to live forever... */
1983 ret = rdev->desc->ops->disable(rdev);
1984 if (ret < 0) {
1985 rdev_err(rdev, "failed to force disable\n");
1986 return ret;
1987 }
1988 /* notify other consumers that power has been forced off */
1989 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1990 REGULATOR_EVENT_DISABLE, NULL);
1991 }
1992
1993 return ret;
1994 }
1995
1996 /**
1997 * regulator_force_disable - force disable regulator output
1998 * @regulator: regulator source
1999 *
2000 * Forcibly disable the regulator output voltage or current.
2001 * NOTE: this *will* disable the regulator output even if other consumer
2002 * devices have it enabled. This should be used for situations when device
2003 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2004 */
2005 int regulator_force_disable(struct regulator *regulator)
2006 {
2007 struct regulator_dev *rdev = regulator->rdev;
2008 int ret;
2009
2010 mutex_lock(&rdev->mutex);
2011 regulator->uA_load = 0;
2012 ret = _regulator_force_disable(regulator->rdev);
2013 mutex_unlock(&rdev->mutex);
2014
2015 if (rdev->supply)
2016 while (rdev->open_count--)
2017 regulator_disable(rdev->supply);
2018
2019 return ret;
2020 }
2021 EXPORT_SYMBOL_GPL(regulator_force_disable);
2022
2023 static void regulator_disable_work(struct work_struct *work)
2024 {
2025 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2026 disable_work.work);
2027 int count, i, ret;
2028
2029 mutex_lock(&rdev->mutex);
2030
2031 BUG_ON(!rdev->deferred_disables);
2032
2033 count = rdev->deferred_disables;
2034 rdev->deferred_disables = 0;
2035
2036 for (i = 0; i < count; i++) {
2037 ret = _regulator_disable(rdev);
2038 if (ret != 0)
2039 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2040 }
2041
2042 mutex_unlock(&rdev->mutex);
2043
2044 if (rdev->supply) {
2045 for (i = 0; i < count; i++) {
2046 ret = regulator_disable(rdev->supply);
2047 if (ret != 0) {
2048 rdev_err(rdev,
2049 "Supply disable failed: %d\n", ret);
2050 }
2051 }
2052 }
2053 }
2054
2055 /**
2056 * regulator_disable_deferred - disable regulator output with delay
2057 * @regulator: regulator source
2058 * @ms: miliseconds until the regulator is disabled
2059 *
2060 * Execute regulator_disable() on the regulator after a delay. This
2061 * is intended for use with devices that require some time to quiesce.
2062 *
2063 * NOTE: this will only disable the regulator output if no other consumer
2064 * devices have it enabled, the regulator device supports disabling and
2065 * machine constraints permit this operation.
2066 */
2067 int regulator_disable_deferred(struct regulator *regulator, int ms)
2068 {
2069 struct regulator_dev *rdev = regulator->rdev;
2070 int ret;
2071
2072 if (regulator->always_on)
2073 return 0;
2074
2075 if (!ms)
2076 return regulator_disable(regulator);
2077
2078 mutex_lock(&rdev->mutex);
2079 rdev->deferred_disables++;
2080 mutex_unlock(&rdev->mutex);
2081
2082 ret = queue_delayed_work(system_power_efficient_wq,
2083 &rdev->disable_work,
2084 msecs_to_jiffies(ms));
2085 if (ret < 0)
2086 return ret;
2087 else
2088 return 0;
2089 }
2090 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2091
2092 static int _regulator_is_enabled(struct regulator_dev *rdev)
2093 {
2094 /* A GPIO control always takes precedence */
2095 if (rdev->ena_pin)
2096 return rdev->ena_gpio_state;
2097
2098 /* If we don't know then assume that the regulator is always on */
2099 if (!rdev->desc->ops->is_enabled)
2100 return 1;
2101
2102 return rdev->desc->ops->is_enabled(rdev);
2103 }
2104
2105 /**
2106 * regulator_is_enabled - is the regulator output enabled
2107 * @regulator: regulator source
2108 *
2109 * Returns positive if the regulator driver backing the source/client
2110 * has requested that the device be enabled, zero if it hasn't, else a
2111 * negative errno code.
2112 *
2113 * Note that the device backing this regulator handle can have multiple
2114 * users, so it might be enabled even if regulator_enable() was never
2115 * called for this particular source.
2116 */
2117 int regulator_is_enabled(struct regulator *regulator)
2118 {
2119 int ret;
2120
2121 if (regulator->always_on)
2122 return 1;
2123
2124 mutex_lock(&regulator->rdev->mutex);
2125 ret = _regulator_is_enabled(regulator->rdev);
2126 mutex_unlock(&regulator->rdev->mutex);
2127
2128 return ret;
2129 }
2130 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2131
2132 /**
2133 * regulator_can_change_voltage - check if regulator can change voltage
2134 * @regulator: regulator source
2135 *
2136 * Returns positive if the regulator driver backing the source/client
2137 * can change its voltage, false otherwise. Usefull for detecting fixed
2138 * or dummy regulators and disabling voltage change logic in the client
2139 * driver.
2140 */
2141 int regulator_can_change_voltage(struct regulator *regulator)
2142 {
2143 struct regulator_dev *rdev = regulator->rdev;
2144
2145 if (rdev->constraints &&
2146 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2147 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2148 return 1;
2149
2150 if (rdev->desc->continuous_voltage_range &&
2151 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2152 rdev->constraints->min_uV != rdev->constraints->max_uV)
2153 return 1;
2154 }
2155
2156 return 0;
2157 }
2158 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2159
2160 /**
2161 * regulator_count_voltages - count regulator_list_voltage() selectors
2162 * @regulator: regulator source
2163 *
2164 * Returns number of selectors, or negative errno. Selectors are
2165 * numbered starting at zero, and typically correspond to bitfields
2166 * in hardware registers.
2167 */
2168 int regulator_count_voltages(struct regulator *regulator)
2169 {
2170 struct regulator_dev *rdev = regulator->rdev;
2171
2172 return rdev->desc->n_voltages ? : -EINVAL;
2173 }
2174 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2175
2176 /**
2177 * regulator_list_voltage - enumerate supported voltages
2178 * @regulator: regulator source
2179 * @selector: identify voltage to list
2180 * Context: can sleep
2181 *
2182 * Returns a voltage that can be passed to @regulator_set_voltage(),
2183 * zero if this selector code can't be used on this system, or a
2184 * negative errno.
2185 */
2186 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2187 {
2188 struct regulator_dev *rdev = regulator->rdev;
2189 struct regulator_ops *ops = rdev->desc->ops;
2190 int ret;
2191
2192 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2193 return -EINVAL;
2194
2195 mutex_lock(&rdev->mutex);
2196 ret = ops->list_voltage(rdev, selector);
2197 mutex_unlock(&rdev->mutex);
2198
2199 if (ret > 0) {
2200 if (ret < rdev->constraints->min_uV)
2201 ret = 0;
2202 else if (ret > rdev->constraints->max_uV)
2203 ret = 0;
2204 }
2205
2206 return ret;
2207 }
2208 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2209
2210 /**
2211 * regulator_get_linear_step - return the voltage step size between VSEL values
2212 * @regulator: regulator source
2213 *
2214 * Returns the voltage step size between VSEL values for linear
2215 * regulators, or return 0 if the regulator isn't a linear regulator.
2216 */
2217 unsigned int regulator_get_linear_step(struct regulator *regulator)
2218 {
2219 struct regulator_dev *rdev = regulator->rdev;
2220
2221 return rdev->desc->uV_step;
2222 }
2223 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2224
2225 /**
2226 * regulator_is_supported_voltage - check if a voltage range can be supported
2227 *
2228 * @regulator: Regulator to check.
2229 * @min_uV: Minimum required voltage in uV.
2230 * @max_uV: Maximum required voltage in uV.
2231 *
2232 * Returns a boolean or a negative error code.
2233 */
2234 int regulator_is_supported_voltage(struct regulator *regulator,
2235 int min_uV, int max_uV)
2236 {
2237 struct regulator_dev *rdev = regulator->rdev;
2238 int i, voltages, ret;
2239
2240 /* If we can't change voltage check the current voltage */
2241 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2242 ret = regulator_get_voltage(regulator);
2243 if (ret >= 0)
2244 return (min_uV <= ret && ret <= max_uV);
2245 else
2246 return ret;
2247 }
2248
2249 /* Any voltage within constrains range is fine? */
2250 if (rdev->desc->continuous_voltage_range)
2251 return min_uV >= rdev->constraints->min_uV &&
2252 max_uV <= rdev->constraints->max_uV;
2253
2254 ret = regulator_count_voltages(regulator);
2255 if (ret < 0)
2256 return ret;
2257 voltages = ret;
2258
2259 for (i = 0; i < voltages; i++) {
2260 ret = regulator_list_voltage(regulator, i);
2261
2262 if (ret >= min_uV && ret <= max_uV)
2263 return 1;
2264 }
2265
2266 return 0;
2267 }
2268 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2269
2270 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2271 int min_uV, int max_uV)
2272 {
2273 int ret;
2274 int delay = 0;
2275 int best_val = 0;
2276 unsigned int selector;
2277 int old_selector = -1;
2278
2279 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2280
2281 min_uV += rdev->constraints->uV_offset;
2282 max_uV += rdev->constraints->uV_offset;
2283
2284 /*
2285 * If we can't obtain the old selector there is not enough
2286 * info to call set_voltage_time_sel().
2287 */
2288 if (_regulator_is_enabled(rdev) &&
2289 rdev->desc->ops->set_voltage_time_sel &&
2290 rdev->desc->ops->get_voltage_sel) {
2291 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2292 if (old_selector < 0)
2293 return old_selector;
2294 }
2295
2296 if (rdev->desc->ops->set_voltage) {
2297 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2298 &selector);
2299
2300 if (ret >= 0) {
2301 if (rdev->desc->ops->list_voltage)
2302 best_val = rdev->desc->ops->list_voltage(rdev,
2303 selector);
2304 else
2305 best_val = _regulator_get_voltage(rdev);
2306 }
2307
2308 } else if (rdev->desc->ops->set_voltage_sel) {
2309 if (rdev->desc->ops->map_voltage) {
2310 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2311 max_uV);
2312 } else {
2313 if (rdev->desc->ops->list_voltage ==
2314 regulator_list_voltage_linear)
2315 ret = regulator_map_voltage_linear(rdev,
2316 min_uV, max_uV);
2317 else
2318 ret = regulator_map_voltage_iterate(rdev,
2319 min_uV, max_uV);
2320 }
2321
2322 if (ret >= 0) {
2323 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2324 if (min_uV <= best_val && max_uV >= best_val) {
2325 selector = ret;
2326 if (old_selector == selector)
2327 ret = 0;
2328 else
2329 ret = rdev->desc->ops->set_voltage_sel(
2330 rdev, ret);
2331 } else {
2332 ret = -EINVAL;
2333 }
2334 }
2335 } else {
2336 ret = -EINVAL;
2337 }
2338
2339 /* Call set_voltage_time_sel if successfully obtained old_selector */
2340 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2341 && old_selector != selector) {
2342
2343 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2344 old_selector, selector);
2345 if (delay < 0) {
2346 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2347 delay);
2348 delay = 0;
2349 }
2350
2351 /* Insert any necessary delays */
2352 if (delay >= 1000) {
2353 mdelay(delay / 1000);
2354 udelay(delay % 1000);
2355 } else if (delay) {
2356 udelay(delay);
2357 }
2358 }
2359
2360 if (ret == 0 && best_val >= 0) {
2361 unsigned long data = best_val;
2362
2363 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2364 (void *)data);
2365 }
2366
2367 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2368
2369 return ret;
2370 }
2371
2372 /**
2373 * regulator_set_voltage - set regulator output voltage
2374 * @regulator: regulator source
2375 * @min_uV: Minimum required voltage in uV
2376 * @max_uV: Maximum acceptable voltage in uV
2377 *
2378 * Sets a voltage regulator to the desired output voltage. This can be set
2379 * during any regulator state. IOW, regulator can be disabled or enabled.
2380 *
2381 * If the regulator is enabled then the voltage will change to the new value
2382 * immediately otherwise if the regulator is disabled the regulator will
2383 * output at the new voltage when enabled.
2384 *
2385 * NOTE: If the regulator is shared between several devices then the lowest
2386 * request voltage that meets the system constraints will be used.
2387 * Regulator system constraints must be set for this regulator before
2388 * calling this function otherwise this call will fail.
2389 */
2390 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2391 {
2392 struct regulator_dev *rdev = regulator->rdev;
2393 int ret = 0;
2394 int old_min_uV, old_max_uV;
2395
2396 mutex_lock(&rdev->mutex);
2397
2398 /* If we're setting the same range as last time the change
2399 * should be a noop (some cpufreq implementations use the same
2400 * voltage for multiple frequencies, for example).
2401 */
2402 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2403 goto out;
2404
2405 /* sanity check */
2406 if (!rdev->desc->ops->set_voltage &&
2407 !rdev->desc->ops->set_voltage_sel) {
2408 ret = -EINVAL;
2409 goto out;
2410 }
2411
2412 /* constraints check */
2413 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2414 if (ret < 0)
2415 goto out;
2416
2417 /* restore original values in case of error */
2418 old_min_uV = regulator->min_uV;
2419 old_max_uV = regulator->max_uV;
2420 regulator->min_uV = min_uV;
2421 regulator->max_uV = max_uV;
2422
2423 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2424 if (ret < 0)
2425 goto out2;
2426
2427 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2428 if (ret < 0)
2429 goto out2;
2430
2431 out:
2432 mutex_unlock(&rdev->mutex);
2433 return ret;
2434 out2:
2435 regulator->min_uV = old_min_uV;
2436 regulator->max_uV = old_max_uV;
2437 mutex_unlock(&rdev->mutex);
2438 return ret;
2439 }
2440 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2441
2442 /**
2443 * regulator_set_voltage_time - get raise/fall time
2444 * @regulator: regulator source
2445 * @old_uV: starting voltage in microvolts
2446 * @new_uV: target voltage in microvolts
2447 *
2448 * Provided with the starting and ending voltage, this function attempts to
2449 * calculate the time in microseconds required to rise or fall to this new
2450 * voltage.
2451 */
2452 int regulator_set_voltage_time(struct regulator *regulator,
2453 int old_uV, int new_uV)
2454 {
2455 struct regulator_dev *rdev = regulator->rdev;
2456 struct regulator_ops *ops = rdev->desc->ops;
2457 int old_sel = -1;
2458 int new_sel = -1;
2459 int voltage;
2460 int i;
2461
2462 /* Currently requires operations to do this */
2463 if (!ops->list_voltage || !ops->set_voltage_time_sel
2464 || !rdev->desc->n_voltages)
2465 return -EINVAL;
2466
2467 for (i = 0; i < rdev->desc->n_voltages; i++) {
2468 /* We only look for exact voltage matches here */
2469 voltage = regulator_list_voltage(regulator, i);
2470 if (voltage < 0)
2471 return -EINVAL;
2472 if (voltage == 0)
2473 continue;
2474 if (voltage == old_uV)
2475 old_sel = i;
2476 if (voltage == new_uV)
2477 new_sel = i;
2478 }
2479
2480 if (old_sel < 0 || new_sel < 0)
2481 return -EINVAL;
2482
2483 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2484 }
2485 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2486
2487 /**
2488 * regulator_set_voltage_time_sel - get raise/fall time
2489 * @rdev: regulator source device
2490 * @old_selector: selector for starting voltage
2491 * @new_selector: selector for target voltage
2492 *
2493 * Provided with the starting and target voltage selectors, this function
2494 * returns time in microseconds required to rise or fall to this new voltage
2495 *
2496 * Drivers providing ramp_delay in regulation_constraints can use this as their
2497 * set_voltage_time_sel() operation.
2498 */
2499 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2500 unsigned int old_selector,
2501 unsigned int new_selector)
2502 {
2503 unsigned int ramp_delay = 0;
2504 int old_volt, new_volt;
2505
2506 if (rdev->constraints->ramp_delay)
2507 ramp_delay = rdev->constraints->ramp_delay;
2508 else if (rdev->desc->ramp_delay)
2509 ramp_delay = rdev->desc->ramp_delay;
2510
2511 if (ramp_delay == 0) {
2512 rdev_warn(rdev, "ramp_delay not set\n");
2513 return 0;
2514 }
2515
2516 /* sanity check */
2517 if (!rdev->desc->ops->list_voltage)
2518 return -EINVAL;
2519
2520 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2521 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2522
2523 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2524 }
2525 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2526
2527 /**
2528 * regulator_sync_voltage - re-apply last regulator output voltage
2529 * @regulator: regulator source
2530 *
2531 * Re-apply the last configured voltage. This is intended to be used
2532 * where some external control source the consumer is cooperating with
2533 * has caused the configured voltage to change.
2534 */
2535 int regulator_sync_voltage(struct regulator *regulator)
2536 {
2537 struct regulator_dev *rdev = regulator->rdev;
2538 int ret, min_uV, max_uV;
2539
2540 mutex_lock(&rdev->mutex);
2541
2542 if (!rdev->desc->ops->set_voltage &&
2543 !rdev->desc->ops->set_voltage_sel) {
2544 ret = -EINVAL;
2545 goto out;
2546 }
2547
2548 /* This is only going to work if we've had a voltage configured. */
2549 if (!regulator->min_uV && !regulator->max_uV) {
2550 ret = -EINVAL;
2551 goto out;
2552 }
2553
2554 min_uV = regulator->min_uV;
2555 max_uV = regulator->max_uV;
2556
2557 /* This should be a paranoia check... */
2558 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2559 if (ret < 0)
2560 goto out;
2561
2562 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2563 if (ret < 0)
2564 goto out;
2565
2566 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2567
2568 out:
2569 mutex_unlock(&rdev->mutex);
2570 return ret;
2571 }
2572 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2573
2574 static int _regulator_get_voltage(struct regulator_dev *rdev)
2575 {
2576 int sel, ret;
2577
2578 if (rdev->desc->ops->get_voltage_sel) {
2579 sel = rdev->desc->ops->get_voltage_sel(rdev);
2580 if (sel < 0)
2581 return sel;
2582 ret = rdev->desc->ops->list_voltage(rdev, sel);
2583 } else if (rdev->desc->ops->get_voltage) {
2584 ret = rdev->desc->ops->get_voltage(rdev);
2585 } else if (rdev->desc->ops->list_voltage) {
2586 ret = rdev->desc->ops->list_voltage(rdev, 0);
2587 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2588 ret = rdev->desc->fixed_uV;
2589 } else {
2590 return -EINVAL;
2591 }
2592
2593 if (ret < 0)
2594 return ret;
2595 return ret - rdev->constraints->uV_offset;
2596 }
2597
2598 /**
2599 * regulator_get_voltage - get regulator output voltage
2600 * @regulator: regulator source
2601 *
2602 * This returns the current regulator voltage in uV.
2603 *
2604 * NOTE: If the regulator is disabled it will return the voltage value. This
2605 * function should not be used to determine regulator state.
2606 */
2607 int regulator_get_voltage(struct regulator *regulator)
2608 {
2609 int ret;
2610
2611 mutex_lock(&regulator->rdev->mutex);
2612
2613 ret = _regulator_get_voltage(regulator->rdev);
2614
2615 mutex_unlock(&regulator->rdev->mutex);
2616
2617 return ret;
2618 }
2619 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2620
2621 /**
2622 * regulator_set_current_limit - set regulator output current limit
2623 * @regulator: regulator source
2624 * @min_uA: Minimum supported current in uA
2625 * @max_uA: Maximum supported current in uA
2626 *
2627 * Sets current sink to the desired output current. This can be set during
2628 * any regulator state. IOW, regulator can be disabled or enabled.
2629 *
2630 * If the regulator is enabled then the current will change to the new value
2631 * immediately otherwise if the regulator is disabled the regulator will
2632 * output at the new current when enabled.
2633 *
2634 * NOTE: Regulator system constraints must be set for this regulator before
2635 * calling this function otherwise this call will fail.
2636 */
2637 int regulator_set_current_limit(struct regulator *regulator,
2638 int min_uA, int max_uA)
2639 {
2640 struct regulator_dev *rdev = regulator->rdev;
2641 int ret;
2642
2643 mutex_lock(&rdev->mutex);
2644
2645 /* sanity check */
2646 if (!rdev->desc->ops->set_current_limit) {
2647 ret = -EINVAL;
2648 goto out;
2649 }
2650
2651 /* constraints check */
2652 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2653 if (ret < 0)
2654 goto out;
2655
2656 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2657 out:
2658 mutex_unlock(&rdev->mutex);
2659 return ret;
2660 }
2661 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2662
2663 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2664 {
2665 int ret;
2666
2667 mutex_lock(&rdev->mutex);
2668
2669 /* sanity check */
2670 if (!rdev->desc->ops->get_current_limit) {
2671 ret = -EINVAL;
2672 goto out;
2673 }
2674
2675 ret = rdev->desc->ops->get_current_limit(rdev);
2676 out:
2677 mutex_unlock(&rdev->mutex);
2678 return ret;
2679 }
2680
2681 /**
2682 * regulator_get_current_limit - get regulator output current
2683 * @regulator: regulator source
2684 *
2685 * This returns the current supplied by the specified current sink in uA.
2686 *
2687 * NOTE: If the regulator is disabled it will return the current value. This
2688 * function should not be used to determine regulator state.
2689 */
2690 int regulator_get_current_limit(struct regulator *regulator)
2691 {
2692 return _regulator_get_current_limit(regulator->rdev);
2693 }
2694 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2695
2696 /**
2697 * regulator_set_mode - set regulator operating mode
2698 * @regulator: regulator source
2699 * @mode: operating mode - one of the REGULATOR_MODE constants
2700 *
2701 * Set regulator operating mode to increase regulator efficiency or improve
2702 * regulation performance.
2703 *
2704 * NOTE: Regulator system constraints must be set for this regulator before
2705 * calling this function otherwise this call will fail.
2706 */
2707 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2708 {
2709 struct regulator_dev *rdev = regulator->rdev;
2710 int ret;
2711 int regulator_curr_mode;
2712
2713 mutex_lock(&rdev->mutex);
2714
2715 /* sanity check */
2716 if (!rdev->desc->ops->set_mode) {
2717 ret = -EINVAL;
2718 goto out;
2719 }
2720
2721 /* return if the same mode is requested */
2722 if (rdev->desc->ops->get_mode) {
2723 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2724 if (regulator_curr_mode == mode) {
2725 ret = 0;
2726 goto out;
2727 }
2728 }
2729
2730 /* constraints check */
2731 ret = regulator_mode_constrain(rdev, &mode);
2732 if (ret < 0)
2733 goto out;
2734
2735 ret = rdev->desc->ops->set_mode(rdev, mode);
2736 out:
2737 mutex_unlock(&rdev->mutex);
2738 return ret;
2739 }
2740 EXPORT_SYMBOL_GPL(regulator_set_mode);
2741
2742 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2743 {
2744 int ret;
2745
2746 mutex_lock(&rdev->mutex);
2747
2748 /* sanity check */
2749 if (!rdev->desc->ops->get_mode) {
2750 ret = -EINVAL;
2751 goto out;
2752 }
2753
2754 ret = rdev->desc->ops->get_mode(rdev);
2755 out:
2756 mutex_unlock(&rdev->mutex);
2757 return ret;
2758 }
2759
2760 /**
2761 * regulator_get_mode - get regulator operating mode
2762 * @regulator: regulator source
2763 *
2764 * Get the current regulator operating mode.
2765 */
2766 unsigned int regulator_get_mode(struct regulator *regulator)
2767 {
2768 return _regulator_get_mode(regulator->rdev);
2769 }
2770 EXPORT_SYMBOL_GPL(regulator_get_mode);
2771
2772 /**
2773 * regulator_set_optimum_mode - set regulator optimum operating mode
2774 * @regulator: regulator source
2775 * @uA_load: load current
2776 *
2777 * Notifies the regulator core of a new device load. This is then used by
2778 * DRMS (if enabled by constraints) to set the most efficient regulator
2779 * operating mode for the new regulator loading.
2780 *
2781 * Consumer devices notify their supply regulator of the maximum power
2782 * they will require (can be taken from device datasheet in the power
2783 * consumption tables) when they change operational status and hence power
2784 * state. Examples of operational state changes that can affect power
2785 * consumption are :-
2786 *
2787 * o Device is opened / closed.
2788 * o Device I/O is about to begin or has just finished.
2789 * o Device is idling in between work.
2790 *
2791 * This information is also exported via sysfs to userspace.
2792 *
2793 * DRMS will sum the total requested load on the regulator and change
2794 * to the most efficient operating mode if platform constraints allow.
2795 *
2796 * Returns the new regulator mode or error.
2797 */
2798 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2799 {
2800 struct regulator_dev *rdev = regulator->rdev;
2801 struct regulator *consumer;
2802 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2803 unsigned int mode;
2804
2805 if (rdev->supply)
2806 input_uV = regulator_get_voltage(rdev->supply);
2807
2808 mutex_lock(&rdev->mutex);
2809
2810 /*
2811 * first check to see if we can set modes at all, otherwise just
2812 * tell the consumer everything is OK.
2813 */
2814 regulator->uA_load = uA_load;
2815 ret = regulator_check_drms(rdev);
2816 if (ret < 0) {
2817 ret = 0;
2818 goto out;
2819 }
2820
2821 if (!rdev->desc->ops->get_optimum_mode)
2822 goto out;
2823
2824 /*
2825 * we can actually do this so any errors are indicators of
2826 * potential real failure.
2827 */
2828 ret = -EINVAL;
2829
2830 if (!rdev->desc->ops->set_mode)
2831 goto out;
2832
2833 /* get output voltage */
2834 output_uV = _regulator_get_voltage(rdev);
2835 if (output_uV <= 0) {
2836 rdev_err(rdev, "invalid output voltage found\n");
2837 goto out;
2838 }
2839
2840 /* No supply? Use constraint voltage */
2841 if (input_uV <= 0)
2842 input_uV = rdev->constraints->input_uV;
2843 if (input_uV <= 0) {
2844 rdev_err(rdev, "invalid input voltage found\n");
2845 goto out;
2846 }
2847
2848 /* calc total requested load for this regulator */
2849 list_for_each_entry(consumer, &rdev->consumer_list, list)
2850 total_uA_load += consumer->uA_load;
2851
2852 mode = rdev->desc->ops->get_optimum_mode(rdev,
2853 input_uV, output_uV,
2854 total_uA_load);
2855 ret = regulator_mode_constrain(rdev, &mode);
2856 if (ret < 0) {
2857 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2858 total_uA_load, input_uV, output_uV);
2859 goto out;
2860 }
2861
2862 ret = rdev->desc->ops->set_mode(rdev, mode);
2863 if (ret < 0) {
2864 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2865 goto out;
2866 }
2867 ret = mode;
2868 out:
2869 mutex_unlock(&rdev->mutex);
2870 return ret;
2871 }
2872 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2873
2874 /**
2875 * regulator_allow_bypass - allow the regulator to go into bypass mode
2876 *
2877 * @regulator: Regulator to configure
2878 * @enable: enable or disable bypass mode
2879 *
2880 * Allow the regulator to go into bypass mode if all other consumers
2881 * for the regulator also enable bypass mode and the machine
2882 * constraints allow this. Bypass mode means that the regulator is
2883 * simply passing the input directly to the output with no regulation.
2884 */
2885 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2886 {
2887 struct regulator_dev *rdev = regulator->rdev;
2888 int ret = 0;
2889
2890 if (!rdev->desc->ops->set_bypass)
2891 return 0;
2892
2893 if (rdev->constraints &&
2894 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2895 return 0;
2896
2897 mutex_lock(&rdev->mutex);
2898
2899 if (enable && !regulator->bypass) {
2900 rdev->bypass_count++;
2901
2902 if (rdev->bypass_count == rdev->open_count) {
2903 ret = rdev->desc->ops->set_bypass(rdev, enable);
2904 if (ret != 0)
2905 rdev->bypass_count--;
2906 }
2907
2908 } else if (!enable && regulator->bypass) {
2909 rdev->bypass_count--;
2910
2911 if (rdev->bypass_count != rdev->open_count) {
2912 ret = rdev->desc->ops->set_bypass(rdev, enable);
2913 if (ret != 0)
2914 rdev->bypass_count++;
2915 }
2916 }
2917
2918 if (ret == 0)
2919 regulator->bypass = enable;
2920
2921 mutex_unlock(&rdev->mutex);
2922
2923 return ret;
2924 }
2925 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2926
2927 /**
2928 * regulator_register_notifier - register regulator event notifier
2929 * @regulator: regulator source
2930 * @nb: notifier block
2931 *
2932 * Register notifier block to receive regulator events.
2933 */
2934 int regulator_register_notifier(struct regulator *regulator,
2935 struct notifier_block *nb)
2936 {
2937 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2938 nb);
2939 }
2940 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2941
2942 /**
2943 * regulator_unregister_notifier - unregister regulator event notifier
2944 * @regulator: regulator source
2945 * @nb: notifier block
2946 *
2947 * Unregister regulator event notifier block.
2948 */
2949 int regulator_unregister_notifier(struct regulator *regulator,
2950 struct notifier_block *nb)
2951 {
2952 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2953 nb);
2954 }
2955 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2956
2957 /* notify regulator consumers and downstream regulator consumers.
2958 * Note mutex must be held by caller.
2959 */
2960 static void _notifier_call_chain(struct regulator_dev *rdev,
2961 unsigned long event, void *data)
2962 {
2963 /* call rdev chain first */
2964 blocking_notifier_call_chain(&rdev->notifier, event, data);
2965 }
2966
2967 /**
2968 * regulator_bulk_get - get multiple regulator consumers
2969 *
2970 * @dev: Device to supply
2971 * @num_consumers: Number of consumers to register
2972 * @consumers: Configuration of consumers; clients are stored here.
2973 *
2974 * @return 0 on success, an errno on failure.
2975 *
2976 * This helper function allows drivers to get several regulator
2977 * consumers in one operation. If any of the regulators cannot be
2978 * acquired then any regulators that were allocated will be freed
2979 * before returning to the caller.
2980 */
2981 int regulator_bulk_get(struct device *dev, int num_consumers,
2982 struct regulator_bulk_data *consumers)
2983 {
2984 int i;
2985 int ret;
2986
2987 for (i = 0; i < num_consumers; i++)
2988 consumers[i].consumer = NULL;
2989
2990 for (i = 0; i < num_consumers; i++) {
2991 consumers[i].consumer = regulator_get(dev,
2992 consumers[i].supply);
2993 if (IS_ERR(consumers[i].consumer)) {
2994 ret = PTR_ERR(consumers[i].consumer);
2995 dev_err(dev, "Failed to get supply '%s': %d\n",
2996 consumers[i].supply, ret);
2997 consumers[i].consumer = NULL;
2998 goto err;
2999 }
3000 }
3001
3002 return 0;
3003
3004 err:
3005 while (--i >= 0)
3006 regulator_put(consumers[i].consumer);
3007
3008 return ret;
3009 }
3010 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3011
3012 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3013 {
3014 struct regulator_bulk_data *bulk = data;
3015
3016 bulk->ret = regulator_enable(bulk->consumer);
3017 }
3018
3019 /**
3020 * regulator_bulk_enable - enable multiple regulator consumers
3021 *
3022 * @num_consumers: Number of consumers
3023 * @consumers: Consumer data; clients are stored here.
3024 * @return 0 on success, an errno on failure
3025 *
3026 * This convenience API allows consumers to enable multiple regulator
3027 * clients in a single API call. If any consumers cannot be enabled
3028 * then any others that were enabled will be disabled again prior to
3029 * return.
3030 */
3031 int regulator_bulk_enable(int num_consumers,
3032 struct regulator_bulk_data *consumers)
3033 {
3034 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3035 int i;
3036 int ret = 0;
3037
3038 for (i = 0; i < num_consumers; i++) {
3039 if (consumers[i].consumer->always_on)
3040 consumers[i].ret = 0;
3041 else
3042 async_schedule_domain(regulator_bulk_enable_async,
3043 &consumers[i], &async_domain);
3044 }
3045
3046 async_synchronize_full_domain(&async_domain);
3047
3048 /* If any consumer failed we need to unwind any that succeeded */
3049 for (i = 0; i < num_consumers; i++) {
3050 if (consumers[i].ret != 0) {
3051 ret = consumers[i].ret;
3052 goto err;
3053 }
3054 }
3055
3056 return 0;
3057
3058 err:
3059 for (i = 0; i < num_consumers; i++) {
3060 if (consumers[i].ret < 0)
3061 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3062 consumers[i].ret);
3063 else
3064 regulator_disable(consumers[i].consumer);
3065 }
3066
3067 return ret;
3068 }
3069 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3070
3071 /**
3072 * regulator_bulk_disable - disable multiple regulator consumers
3073 *
3074 * @num_consumers: Number of consumers
3075 * @consumers: Consumer data; clients are stored here.
3076 * @return 0 on success, an errno on failure
3077 *
3078 * This convenience API allows consumers to disable multiple regulator
3079 * clients in a single API call. If any consumers cannot be disabled
3080 * then any others that were disabled will be enabled again prior to
3081 * return.
3082 */
3083 int regulator_bulk_disable(int num_consumers,
3084 struct regulator_bulk_data *consumers)
3085 {
3086 int i;
3087 int ret, r;
3088
3089 for (i = num_consumers - 1; i >= 0; --i) {
3090 ret = regulator_disable(consumers[i].consumer);
3091 if (ret != 0)
3092 goto err;
3093 }
3094
3095 return 0;
3096
3097 err:
3098 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3099 for (++i; i < num_consumers; ++i) {
3100 r = regulator_enable(consumers[i].consumer);
3101 if (r != 0)
3102 pr_err("Failed to reename %s: %d\n",
3103 consumers[i].supply, r);
3104 }
3105
3106 return ret;
3107 }
3108 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3109
3110 /**
3111 * regulator_bulk_force_disable - force disable multiple regulator consumers
3112 *
3113 * @num_consumers: Number of consumers
3114 * @consumers: Consumer data; clients are stored here.
3115 * @return 0 on success, an errno on failure
3116 *
3117 * This convenience API allows consumers to forcibly disable multiple regulator
3118 * clients in a single API call.
3119 * NOTE: This should be used for situations when device damage will
3120 * likely occur if the regulators are not disabled (e.g. over temp).
3121 * Although regulator_force_disable function call for some consumers can
3122 * return error numbers, the function is called for all consumers.
3123 */
3124 int regulator_bulk_force_disable(int num_consumers,
3125 struct regulator_bulk_data *consumers)
3126 {
3127 int i;
3128 int ret;
3129
3130 for (i = 0; i < num_consumers; i++)
3131 consumers[i].ret =
3132 regulator_force_disable(consumers[i].consumer);
3133
3134 for (i = 0; i < num_consumers; i++) {
3135 if (consumers[i].ret != 0) {
3136 ret = consumers[i].ret;
3137 goto out;
3138 }
3139 }
3140
3141 return 0;
3142 out:
3143 return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3146
3147 /**
3148 * regulator_bulk_free - free multiple regulator consumers
3149 *
3150 * @num_consumers: Number of consumers
3151 * @consumers: Consumer data; clients are stored here.
3152 *
3153 * This convenience API allows consumers to free multiple regulator
3154 * clients in a single API call.
3155 */
3156 void regulator_bulk_free(int num_consumers,
3157 struct regulator_bulk_data *consumers)
3158 {
3159 int i;
3160
3161 for (i = 0; i < num_consumers; i++) {
3162 regulator_put(consumers[i].consumer);
3163 consumers[i].consumer = NULL;
3164 }
3165 }
3166 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3167
3168 /**
3169 * regulator_notifier_call_chain - call regulator event notifier
3170 * @rdev: regulator source
3171 * @event: notifier block
3172 * @data: callback-specific data.
3173 *
3174 * Called by regulator drivers to notify clients a regulator event has
3175 * occurred. We also notify regulator clients downstream.
3176 * Note lock must be held by caller.
3177 */
3178 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3179 unsigned long event, void *data)
3180 {
3181 _notifier_call_chain(rdev, event, data);
3182 return NOTIFY_DONE;
3183
3184 }
3185 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3186
3187 /**
3188 * regulator_mode_to_status - convert a regulator mode into a status
3189 *
3190 * @mode: Mode to convert
3191 *
3192 * Convert a regulator mode into a status.
3193 */
3194 int regulator_mode_to_status(unsigned int mode)
3195 {
3196 switch (mode) {
3197 case REGULATOR_MODE_FAST:
3198 return REGULATOR_STATUS_FAST;
3199 case REGULATOR_MODE_NORMAL:
3200 return REGULATOR_STATUS_NORMAL;
3201 case REGULATOR_MODE_IDLE:
3202 return REGULATOR_STATUS_IDLE;
3203 case REGULATOR_MODE_STANDBY:
3204 return REGULATOR_STATUS_STANDBY;
3205 default:
3206 return REGULATOR_STATUS_UNDEFINED;
3207 }
3208 }
3209 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3210
3211 /*
3212 * To avoid cluttering sysfs (and memory) with useless state, only
3213 * create attributes that can be meaningfully displayed.
3214 */
3215 static int add_regulator_attributes(struct regulator_dev *rdev)
3216 {
3217 struct device *dev = &rdev->dev;
3218 struct regulator_ops *ops = rdev->desc->ops;
3219 int status = 0;
3220
3221 /* some attributes need specific methods to be displayed */
3222 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3223 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3224 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3225 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3226 status = device_create_file(dev, &dev_attr_microvolts);
3227 if (status < 0)
3228 return status;
3229 }
3230 if (ops->get_current_limit) {
3231 status = device_create_file(dev, &dev_attr_microamps);
3232 if (status < 0)
3233 return status;
3234 }
3235 if (ops->get_mode) {
3236 status = device_create_file(dev, &dev_attr_opmode);
3237 if (status < 0)
3238 return status;
3239 }
3240 if (rdev->ena_pin || ops->is_enabled) {
3241 status = device_create_file(dev, &dev_attr_state);
3242 if (status < 0)
3243 return status;
3244 }
3245 if (ops->get_status) {
3246 status = device_create_file(dev, &dev_attr_status);
3247 if (status < 0)
3248 return status;
3249 }
3250 if (ops->get_bypass) {
3251 status = device_create_file(dev, &dev_attr_bypass);
3252 if (status < 0)
3253 return status;
3254 }
3255
3256 /* some attributes are type-specific */
3257 if (rdev->desc->type == REGULATOR_CURRENT) {
3258 status = device_create_file(dev, &dev_attr_requested_microamps);
3259 if (status < 0)
3260 return status;
3261 }
3262
3263 /* all the other attributes exist to support constraints;
3264 * don't show them if there are no constraints, or if the
3265 * relevant supporting methods are missing.
3266 */
3267 if (!rdev->constraints)
3268 return status;
3269
3270 /* constraints need specific supporting methods */
3271 if (ops->set_voltage || ops->set_voltage_sel) {
3272 status = device_create_file(dev, &dev_attr_min_microvolts);
3273 if (status < 0)
3274 return status;
3275 status = device_create_file(dev, &dev_attr_max_microvolts);
3276 if (status < 0)
3277 return status;
3278 }
3279 if (ops->set_current_limit) {
3280 status = device_create_file(dev, &dev_attr_min_microamps);
3281 if (status < 0)
3282 return status;
3283 status = device_create_file(dev, &dev_attr_max_microamps);
3284 if (status < 0)
3285 return status;
3286 }
3287
3288 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3289 if (status < 0)
3290 return status;
3291 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3292 if (status < 0)
3293 return status;
3294 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3295 if (status < 0)
3296 return status;
3297
3298 if (ops->set_suspend_voltage) {
3299 status = device_create_file(dev,
3300 &dev_attr_suspend_standby_microvolts);
3301 if (status < 0)
3302 return status;
3303 status = device_create_file(dev,
3304 &dev_attr_suspend_mem_microvolts);
3305 if (status < 0)
3306 return status;
3307 status = device_create_file(dev,
3308 &dev_attr_suspend_disk_microvolts);
3309 if (status < 0)
3310 return status;
3311 }
3312
3313 if (ops->set_suspend_mode) {
3314 status = device_create_file(dev,
3315 &dev_attr_suspend_standby_mode);
3316 if (status < 0)
3317 return status;
3318 status = device_create_file(dev,
3319 &dev_attr_suspend_mem_mode);
3320 if (status < 0)
3321 return status;
3322 status = device_create_file(dev,
3323 &dev_attr_suspend_disk_mode);
3324 if (status < 0)
3325 return status;
3326 }
3327
3328 return status;
3329 }
3330
3331 static void rdev_init_debugfs(struct regulator_dev *rdev)
3332 {
3333 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3334 if (!rdev->debugfs) {
3335 rdev_warn(rdev, "Failed to create debugfs directory\n");
3336 return;
3337 }
3338
3339 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3340 &rdev->use_count);
3341 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3342 &rdev->open_count);
3343 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3344 &rdev->bypass_count);
3345 }
3346
3347 /**
3348 * regulator_register - register regulator
3349 * @regulator_desc: regulator to register
3350 * @config: runtime configuration for regulator
3351 *
3352 * Called by regulator drivers to register a regulator.
3353 * Returns a valid pointer to struct regulator_dev on success
3354 * or an ERR_PTR() on error.
3355 */
3356 struct regulator_dev *
3357 regulator_register(const struct regulator_desc *regulator_desc,
3358 const struct regulator_config *config)
3359 {
3360 const struct regulation_constraints *constraints = NULL;
3361 const struct regulator_init_data *init_data;
3362 static atomic_t regulator_no = ATOMIC_INIT(0);
3363 struct regulator_dev *rdev;
3364 struct device *dev;
3365 int ret, i;
3366 const char *supply = NULL;
3367
3368 if (regulator_desc == NULL || config == NULL)
3369 return ERR_PTR(-EINVAL);
3370
3371 dev = config->dev;
3372 WARN_ON(!dev);
3373
3374 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3375 return ERR_PTR(-EINVAL);
3376
3377 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3378 regulator_desc->type != REGULATOR_CURRENT)
3379 return ERR_PTR(-EINVAL);
3380
3381 /* Only one of each should be implemented */
3382 WARN_ON(regulator_desc->ops->get_voltage &&
3383 regulator_desc->ops->get_voltage_sel);
3384 WARN_ON(regulator_desc->ops->set_voltage &&
3385 regulator_desc->ops->set_voltage_sel);
3386
3387 /* If we're using selectors we must implement list_voltage. */
3388 if (regulator_desc->ops->get_voltage_sel &&
3389 !regulator_desc->ops->list_voltage) {
3390 return ERR_PTR(-EINVAL);
3391 }
3392 if (regulator_desc->ops->set_voltage_sel &&
3393 !regulator_desc->ops->list_voltage) {
3394 return ERR_PTR(-EINVAL);
3395 }
3396
3397 init_data = config->init_data;
3398
3399 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3400 if (rdev == NULL)
3401 return ERR_PTR(-ENOMEM);
3402
3403 mutex_lock(&regulator_list_mutex);
3404
3405 mutex_init(&rdev->mutex);
3406 rdev->reg_data = config->driver_data;
3407 rdev->owner = regulator_desc->owner;
3408 rdev->desc = regulator_desc;
3409 if (config->regmap)
3410 rdev->regmap = config->regmap;
3411 else if (dev_get_regmap(dev, NULL))
3412 rdev->regmap = dev_get_regmap(dev, NULL);
3413 else if (dev->parent)
3414 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3415 INIT_LIST_HEAD(&rdev->consumer_list);
3416 INIT_LIST_HEAD(&rdev->list);
3417 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3418 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3419
3420 /* preform any regulator specific init */
3421 if (init_data && init_data->regulator_init) {
3422 ret = init_data->regulator_init(rdev->reg_data);
3423 if (ret < 0)
3424 goto clean;
3425 }
3426
3427 /* register with sysfs */
3428 rdev->dev.class = &regulator_class;
3429 rdev->dev.of_node = config->of_node;
3430 rdev->dev.parent = dev;
3431 dev_set_name(&rdev->dev, "regulator.%d",
3432 atomic_inc_return(&regulator_no) - 1);
3433 ret = device_register(&rdev->dev);
3434 if (ret != 0) {
3435 put_device(&rdev->dev);
3436 goto clean;
3437 }
3438
3439 dev_set_drvdata(&rdev->dev, rdev);
3440
3441 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3442 ret = regulator_ena_gpio_request(rdev, config);
3443 if (ret != 0) {
3444 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3445 config->ena_gpio, ret);
3446 goto wash;
3447 }
3448
3449 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3450 rdev->ena_gpio_state = 1;
3451
3452 if (config->ena_gpio_invert)
3453 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3454 }
3455
3456 /* set regulator constraints */
3457 if (init_data)
3458 constraints = &init_data->constraints;
3459
3460 ret = set_machine_constraints(rdev, constraints);
3461 if (ret < 0)
3462 goto scrub;
3463
3464 /* add attributes supported by this regulator */
3465 ret = add_regulator_attributes(rdev);
3466 if (ret < 0)
3467 goto scrub;
3468
3469 if (init_data && init_data->supply_regulator)
3470 supply = init_data->supply_regulator;
3471 else if (regulator_desc->supply_name)
3472 supply = regulator_desc->supply_name;
3473
3474 if (supply) {
3475 struct regulator_dev *r;
3476
3477 r = regulator_dev_lookup(dev, supply, &ret);
3478
3479 if (ret == -ENODEV) {
3480 /*
3481 * No supply was specified for this regulator and
3482 * there will never be one.
3483 */
3484 ret = 0;
3485 goto add_dev;
3486 } else if (!r) {
3487 dev_err(dev, "Failed to find supply %s\n", supply);
3488 ret = -EPROBE_DEFER;
3489 goto scrub;
3490 }
3491
3492 ret = set_supply(rdev, r);
3493 if (ret < 0)
3494 goto scrub;
3495
3496 /* Enable supply if rail is enabled */
3497 if (_regulator_is_enabled(rdev)) {
3498 ret = regulator_enable(rdev->supply);
3499 if (ret < 0)
3500 goto scrub;
3501 }
3502 }
3503
3504 add_dev:
3505 /* add consumers devices */
3506 if (init_data) {
3507 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3508 ret = set_consumer_device_supply(rdev,
3509 init_data->consumer_supplies[i].dev_name,
3510 init_data->consumer_supplies[i].supply);
3511 if (ret < 0) {
3512 dev_err(dev, "Failed to set supply %s\n",
3513 init_data->consumer_supplies[i].supply);
3514 goto unset_supplies;
3515 }
3516 }
3517 }
3518
3519 list_add(&rdev->list, &regulator_list);
3520
3521 rdev_init_debugfs(rdev);
3522 out:
3523 mutex_unlock(&regulator_list_mutex);
3524 return rdev;
3525
3526 unset_supplies:
3527 unset_regulator_supplies(rdev);
3528
3529 scrub:
3530 if (rdev->supply)
3531 _regulator_put(rdev->supply);
3532 regulator_ena_gpio_free(rdev);
3533 kfree(rdev->constraints);
3534 wash:
3535 device_unregister(&rdev->dev);
3536 /* device core frees rdev */
3537 rdev = ERR_PTR(ret);
3538 goto out;
3539
3540 clean:
3541 kfree(rdev);
3542 rdev = ERR_PTR(ret);
3543 goto out;
3544 }
3545 EXPORT_SYMBOL_GPL(regulator_register);
3546
3547 /**
3548 * regulator_unregister - unregister regulator
3549 * @rdev: regulator to unregister
3550 *
3551 * Called by regulator drivers to unregister a regulator.
3552 */
3553 void regulator_unregister(struct regulator_dev *rdev)
3554 {
3555 if (rdev == NULL)
3556 return;
3557
3558 if (rdev->supply) {
3559 while (rdev->use_count--)
3560 regulator_disable(rdev->supply);
3561 regulator_put(rdev->supply);
3562 }
3563 mutex_lock(&regulator_list_mutex);
3564 debugfs_remove_recursive(rdev->debugfs);
3565 flush_work(&rdev->disable_work.work);
3566 WARN_ON(rdev->open_count);
3567 unset_regulator_supplies(rdev);
3568 list_del(&rdev->list);
3569 kfree(rdev->constraints);
3570 regulator_ena_gpio_free(rdev);
3571 device_unregister(&rdev->dev);
3572 mutex_unlock(&regulator_list_mutex);
3573 }
3574 EXPORT_SYMBOL_GPL(regulator_unregister);
3575
3576 /**
3577 * regulator_suspend_prepare - prepare regulators for system wide suspend
3578 * @state: system suspend state
3579 *
3580 * Configure each regulator with it's suspend operating parameters for state.
3581 * This will usually be called by machine suspend code prior to supending.
3582 */
3583 int regulator_suspend_prepare(suspend_state_t state)
3584 {
3585 struct regulator_dev *rdev;
3586 int ret = 0;
3587
3588 /* ON is handled by regulator active state */
3589 if (state == PM_SUSPEND_ON)
3590 return -EINVAL;
3591
3592 mutex_lock(&regulator_list_mutex);
3593 list_for_each_entry(rdev, &regulator_list, list) {
3594
3595 mutex_lock(&rdev->mutex);
3596 ret = suspend_prepare(rdev, state);
3597 mutex_unlock(&rdev->mutex);
3598
3599 if (ret < 0) {
3600 rdev_err(rdev, "failed to prepare\n");
3601 goto out;
3602 }
3603 }
3604 out:
3605 mutex_unlock(&regulator_list_mutex);
3606 return ret;
3607 }
3608 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3609
3610 /**
3611 * regulator_suspend_finish - resume regulators from system wide suspend
3612 *
3613 * Turn on regulators that might be turned off by regulator_suspend_prepare
3614 * and that should be turned on according to the regulators properties.
3615 */
3616 int regulator_suspend_finish(void)
3617 {
3618 struct regulator_dev *rdev;
3619 int ret = 0, error;
3620
3621 mutex_lock(&regulator_list_mutex);
3622 list_for_each_entry(rdev, &regulator_list, list) {
3623 struct regulator_ops *ops = rdev->desc->ops;
3624
3625 mutex_lock(&rdev->mutex);
3626 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3627 ops->enable) {
3628 error = ops->enable(rdev);
3629 if (error)
3630 ret = error;
3631 } else {
3632 if (!have_full_constraints())
3633 goto unlock;
3634 if (!ops->disable)
3635 goto unlock;
3636 if (!_regulator_is_enabled(rdev))
3637 goto unlock;
3638
3639 error = ops->disable(rdev);
3640 if (error)
3641 ret = error;
3642 }
3643 unlock:
3644 mutex_unlock(&rdev->mutex);
3645 }
3646 mutex_unlock(&regulator_list_mutex);
3647 return ret;
3648 }
3649 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3650
3651 /**
3652 * regulator_has_full_constraints - the system has fully specified constraints
3653 *
3654 * Calling this function will cause the regulator API to disable all
3655 * regulators which have a zero use count and don't have an always_on
3656 * constraint in a late_initcall.
3657 *
3658 * The intention is that this will become the default behaviour in a
3659 * future kernel release so users are encouraged to use this facility
3660 * now.
3661 */
3662 void regulator_has_full_constraints(void)
3663 {
3664 has_full_constraints = 1;
3665 }
3666 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3667
3668 /**
3669 * rdev_get_drvdata - get rdev regulator driver data
3670 * @rdev: regulator
3671 *
3672 * Get rdev regulator driver private data. This call can be used in the
3673 * regulator driver context.
3674 */
3675 void *rdev_get_drvdata(struct regulator_dev *rdev)
3676 {
3677 return rdev->reg_data;
3678 }
3679 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3680
3681 /**
3682 * regulator_get_drvdata - get regulator driver data
3683 * @regulator: regulator
3684 *
3685 * Get regulator driver private data. This call can be used in the consumer
3686 * driver context when non API regulator specific functions need to be called.
3687 */
3688 void *regulator_get_drvdata(struct regulator *regulator)
3689 {
3690 return regulator->rdev->reg_data;
3691 }
3692 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3693
3694 /**
3695 * regulator_set_drvdata - set regulator driver data
3696 * @regulator: regulator
3697 * @data: data
3698 */
3699 void regulator_set_drvdata(struct regulator *regulator, void *data)
3700 {
3701 regulator->rdev->reg_data = data;
3702 }
3703 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3704
3705 /**
3706 * regulator_get_id - get regulator ID
3707 * @rdev: regulator
3708 */
3709 int rdev_get_id(struct regulator_dev *rdev)
3710 {
3711 return rdev->desc->id;
3712 }
3713 EXPORT_SYMBOL_GPL(rdev_get_id);
3714
3715 struct device *rdev_get_dev(struct regulator_dev *rdev)
3716 {
3717 return &rdev->dev;
3718 }
3719 EXPORT_SYMBOL_GPL(rdev_get_dev);
3720
3721 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3722 {
3723 return reg_init_data->driver_data;
3724 }
3725 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3726
3727 #ifdef CONFIG_DEBUG_FS
3728 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3729 size_t count, loff_t *ppos)
3730 {
3731 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3732 ssize_t len, ret = 0;
3733 struct regulator_map *map;
3734
3735 if (!buf)
3736 return -ENOMEM;
3737
3738 list_for_each_entry(map, &regulator_map_list, list) {
3739 len = snprintf(buf + ret, PAGE_SIZE - ret,
3740 "%s -> %s.%s\n",
3741 rdev_get_name(map->regulator), map->dev_name,
3742 map->supply);
3743 if (len >= 0)
3744 ret += len;
3745 if (ret > PAGE_SIZE) {
3746 ret = PAGE_SIZE;
3747 break;
3748 }
3749 }
3750
3751 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3752
3753 kfree(buf);
3754
3755 return ret;
3756 }
3757 #endif
3758
3759 static const struct file_operations supply_map_fops = {
3760 #ifdef CONFIG_DEBUG_FS
3761 .read = supply_map_read_file,
3762 .llseek = default_llseek,
3763 #endif
3764 };
3765
3766 static int __init regulator_init(void)
3767 {
3768 int ret;
3769
3770 ret = class_register(&regulator_class);
3771
3772 debugfs_root = debugfs_create_dir("regulator", NULL);
3773 if (!debugfs_root)
3774 pr_warn("regulator: Failed to create debugfs directory\n");
3775
3776 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3777 &supply_map_fops);
3778
3779 regulator_dummy_init();
3780
3781 return ret;
3782 }
3783
3784 /* init early to allow our consumers to complete system booting */
3785 core_initcall(regulator_init);
3786
3787 static int __init regulator_init_complete(void)
3788 {
3789 struct regulator_dev *rdev;
3790 struct regulator_ops *ops;
3791 struct regulation_constraints *c;
3792 int enabled, ret;
3793
3794 /*
3795 * Since DT doesn't provide an idiomatic mechanism for
3796 * enabling full constraints and since it's much more natural
3797 * with DT to provide them just assume that a DT enabled
3798 * system has full constraints.
3799 */
3800 if (of_have_populated_dt())
3801 has_full_constraints = true;
3802
3803 mutex_lock(&regulator_list_mutex);
3804
3805 /* If we have a full configuration then disable any regulators
3806 * which are not in use or always_on. This will become the
3807 * default behaviour in the future.
3808 */
3809 list_for_each_entry(rdev, &regulator_list, list) {
3810 ops = rdev->desc->ops;
3811 c = rdev->constraints;
3812
3813 if (!ops->disable || (c && c->always_on))
3814 continue;
3815
3816 mutex_lock(&rdev->mutex);
3817
3818 if (rdev->use_count)
3819 goto unlock;
3820
3821 /* If we can't read the status assume it's on. */
3822 if (ops->is_enabled)
3823 enabled = ops->is_enabled(rdev);
3824 else
3825 enabled = 1;
3826
3827 if (!enabled)
3828 goto unlock;
3829
3830 if (have_full_constraints()) {
3831 /* We log since this may kill the system if it
3832 * goes wrong. */
3833 rdev_info(rdev, "disabling\n");
3834 ret = ops->disable(rdev);
3835 if (ret != 0) {
3836 rdev_err(rdev, "couldn't disable: %d\n", ret);
3837 }
3838 } else {
3839 /* The intention is that in future we will
3840 * assume that full constraints are provided
3841 * so warn even if we aren't going to do
3842 * anything here.
3843 */
3844 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3845 }
3846
3847 unlock:
3848 mutex_unlock(&rdev->mutex);
3849 }
3850
3851 mutex_unlock(&regulator_list_mutex);
3852
3853 return 0;
3854 }
3855 late_initcall(regulator_init_complete);