]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/regulator/core.c
Merge branch 'drm-intel-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/ickle...
[mirror_ubuntu-artful-kernel.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
27
28 #include "dummy.h"
29
30 #define REGULATOR_VERSION "0.5"
31
32 static DEFINE_MUTEX(regulator_list_mutex);
33 static LIST_HEAD(regulator_list);
34 static LIST_HEAD(regulator_map_list);
35 static int has_full_constraints;
36 static bool board_wants_dummy_regulator;
37
38 /*
39 * struct regulator_map
40 *
41 * Used to provide symbolic supply names to devices.
42 */
43 struct regulator_map {
44 struct list_head list;
45 const char *dev_name; /* The dev_name() for the consumer */
46 const char *supply;
47 struct regulator_dev *regulator;
48 };
49
50 /*
51 * struct regulator
52 *
53 * One for each consumer device.
54 */
55 struct regulator {
56 struct device *dev;
57 struct list_head list;
58 int uA_load;
59 int min_uV;
60 int max_uV;
61 char *supply_name;
62 struct device_attribute dev_attr;
63 struct regulator_dev *rdev;
64 };
65
66 static int _regulator_is_enabled(struct regulator_dev *rdev);
67 static int _regulator_disable(struct regulator_dev *rdev,
68 struct regulator_dev **supply_rdev_ptr);
69 static int _regulator_get_voltage(struct regulator_dev *rdev);
70 static int _regulator_get_current_limit(struct regulator_dev *rdev);
71 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
72 static void _notifier_call_chain(struct regulator_dev *rdev,
73 unsigned long event, void *data);
74
75 static const char *rdev_get_name(struct regulator_dev *rdev)
76 {
77 if (rdev->constraints && rdev->constraints->name)
78 return rdev->constraints->name;
79 else if (rdev->desc->name)
80 return rdev->desc->name;
81 else
82 return "";
83 }
84
85 /* gets the regulator for a given consumer device */
86 static struct regulator *get_device_regulator(struct device *dev)
87 {
88 struct regulator *regulator = NULL;
89 struct regulator_dev *rdev;
90
91 mutex_lock(&regulator_list_mutex);
92 list_for_each_entry(rdev, &regulator_list, list) {
93 mutex_lock(&rdev->mutex);
94 list_for_each_entry(regulator, &rdev->consumer_list, list) {
95 if (regulator->dev == dev) {
96 mutex_unlock(&rdev->mutex);
97 mutex_unlock(&regulator_list_mutex);
98 return regulator;
99 }
100 }
101 mutex_unlock(&rdev->mutex);
102 }
103 mutex_unlock(&regulator_list_mutex);
104 return NULL;
105 }
106
107 /* Platform voltage constraint check */
108 static int regulator_check_voltage(struct regulator_dev *rdev,
109 int *min_uV, int *max_uV)
110 {
111 BUG_ON(*min_uV > *max_uV);
112
113 if (!rdev->constraints) {
114 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
115 rdev_get_name(rdev));
116 return -ENODEV;
117 }
118 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
119 printk(KERN_ERR "%s: operation not allowed for %s\n",
120 __func__, rdev_get_name(rdev));
121 return -EPERM;
122 }
123
124 if (*max_uV > rdev->constraints->max_uV)
125 *max_uV = rdev->constraints->max_uV;
126 if (*min_uV < rdev->constraints->min_uV)
127 *min_uV = rdev->constraints->min_uV;
128
129 if (*min_uV > *max_uV)
130 return -EINVAL;
131
132 return 0;
133 }
134
135 /* current constraint check */
136 static int regulator_check_current_limit(struct regulator_dev *rdev,
137 int *min_uA, int *max_uA)
138 {
139 BUG_ON(*min_uA > *max_uA);
140
141 if (!rdev->constraints) {
142 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
143 rdev_get_name(rdev));
144 return -ENODEV;
145 }
146 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
147 printk(KERN_ERR "%s: operation not allowed for %s\n",
148 __func__, rdev_get_name(rdev));
149 return -EPERM;
150 }
151
152 if (*max_uA > rdev->constraints->max_uA)
153 *max_uA = rdev->constraints->max_uA;
154 if (*min_uA < rdev->constraints->min_uA)
155 *min_uA = rdev->constraints->min_uA;
156
157 if (*min_uA > *max_uA)
158 return -EINVAL;
159
160 return 0;
161 }
162
163 /* operating mode constraint check */
164 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
165 {
166 switch (mode) {
167 case REGULATOR_MODE_FAST:
168 case REGULATOR_MODE_NORMAL:
169 case REGULATOR_MODE_IDLE:
170 case REGULATOR_MODE_STANDBY:
171 break;
172 default:
173 return -EINVAL;
174 }
175
176 if (!rdev->constraints) {
177 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
178 rdev_get_name(rdev));
179 return -ENODEV;
180 }
181 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
182 printk(KERN_ERR "%s: operation not allowed for %s\n",
183 __func__, rdev_get_name(rdev));
184 return -EPERM;
185 }
186 if (!(rdev->constraints->valid_modes_mask & mode)) {
187 printk(KERN_ERR "%s: invalid mode %x for %s\n",
188 __func__, mode, rdev_get_name(rdev));
189 return -EINVAL;
190 }
191 return 0;
192 }
193
194 /* dynamic regulator mode switching constraint check */
195 static int regulator_check_drms(struct regulator_dev *rdev)
196 {
197 if (!rdev->constraints) {
198 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
199 rdev_get_name(rdev));
200 return -ENODEV;
201 }
202 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
203 printk(KERN_ERR "%s: operation not allowed for %s\n",
204 __func__, rdev_get_name(rdev));
205 return -EPERM;
206 }
207 return 0;
208 }
209
210 static ssize_t device_requested_uA_show(struct device *dev,
211 struct device_attribute *attr, char *buf)
212 {
213 struct regulator *regulator;
214
215 regulator = get_device_regulator(dev);
216 if (regulator == NULL)
217 return 0;
218
219 return sprintf(buf, "%d\n", regulator->uA_load);
220 }
221
222 static ssize_t regulator_uV_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224 {
225 struct regulator_dev *rdev = dev_get_drvdata(dev);
226 ssize_t ret;
227
228 mutex_lock(&rdev->mutex);
229 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
230 mutex_unlock(&rdev->mutex);
231
232 return ret;
233 }
234 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
235
236 static ssize_t regulator_uA_show(struct device *dev,
237 struct device_attribute *attr, char *buf)
238 {
239 struct regulator_dev *rdev = dev_get_drvdata(dev);
240
241 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
242 }
243 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
244
245 static ssize_t regulator_name_show(struct device *dev,
246 struct device_attribute *attr, char *buf)
247 {
248 struct regulator_dev *rdev = dev_get_drvdata(dev);
249
250 return sprintf(buf, "%s\n", rdev_get_name(rdev));
251 }
252
253 static ssize_t regulator_print_opmode(char *buf, int mode)
254 {
255 switch (mode) {
256 case REGULATOR_MODE_FAST:
257 return sprintf(buf, "fast\n");
258 case REGULATOR_MODE_NORMAL:
259 return sprintf(buf, "normal\n");
260 case REGULATOR_MODE_IDLE:
261 return sprintf(buf, "idle\n");
262 case REGULATOR_MODE_STANDBY:
263 return sprintf(buf, "standby\n");
264 }
265 return sprintf(buf, "unknown\n");
266 }
267
268 static ssize_t regulator_opmode_show(struct device *dev,
269 struct device_attribute *attr, char *buf)
270 {
271 struct regulator_dev *rdev = dev_get_drvdata(dev);
272
273 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
274 }
275 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
276
277 static ssize_t regulator_print_state(char *buf, int state)
278 {
279 if (state > 0)
280 return sprintf(buf, "enabled\n");
281 else if (state == 0)
282 return sprintf(buf, "disabled\n");
283 else
284 return sprintf(buf, "unknown\n");
285 }
286
287 static ssize_t regulator_state_show(struct device *dev,
288 struct device_attribute *attr, char *buf)
289 {
290 struct regulator_dev *rdev = dev_get_drvdata(dev);
291 ssize_t ret;
292
293 mutex_lock(&rdev->mutex);
294 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
295 mutex_unlock(&rdev->mutex);
296
297 return ret;
298 }
299 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
300
301 static ssize_t regulator_status_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303 {
304 struct regulator_dev *rdev = dev_get_drvdata(dev);
305 int status;
306 char *label;
307
308 status = rdev->desc->ops->get_status(rdev);
309 if (status < 0)
310 return status;
311
312 switch (status) {
313 case REGULATOR_STATUS_OFF:
314 label = "off";
315 break;
316 case REGULATOR_STATUS_ON:
317 label = "on";
318 break;
319 case REGULATOR_STATUS_ERROR:
320 label = "error";
321 break;
322 case REGULATOR_STATUS_FAST:
323 label = "fast";
324 break;
325 case REGULATOR_STATUS_NORMAL:
326 label = "normal";
327 break;
328 case REGULATOR_STATUS_IDLE:
329 label = "idle";
330 break;
331 case REGULATOR_STATUS_STANDBY:
332 label = "standby";
333 break;
334 default:
335 return -ERANGE;
336 }
337
338 return sprintf(buf, "%s\n", label);
339 }
340 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
341
342 static ssize_t regulator_min_uA_show(struct device *dev,
343 struct device_attribute *attr, char *buf)
344 {
345 struct regulator_dev *rdev = dev_get_drvdata(dev);
346
347 if (!rdev->constraints)
348 return sprintf(buf, "constraint not defined\n");
349
350 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
351 }
352 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
353
354 static ssize_t regulator_max_uA_show(struct device *dev,
355 struct device_attribute *attr, char *buf)
356 {
357 struct regulator_dev *rdev = dev_get_drvdata(dev);
358
359 if (!rdev->constraints)
360 return sprintf(buf, "constraint not defined\n");
361
362 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
363 }
364 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
365
366 static ssize_t regulator_min_uV_show(struct device *dev,
367 struct device_attribute *attr, char *buf)
368 {
369 struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371 if (!rdev->constraints)
372 return sprintf(buf, "constraint not defined\n");
373
374 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
375 }
376 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
377
378 static ssize_t regulator_max_uV_show(struct device *dev,
379 struct device_attribute *attr, char *buf)
380 {
381 struct regulator_dev *rdev = dev_get_drvdata(dev);
382
383 if (!rdev->constraints)
384 return sprintf(buf, "constraint not defined\n");
385
386 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
387 }
388 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
389
390 static ssize_t regulator_total_uA_show(struct device *dev,
391 struct device_attribute *attr, char *buf)
392 {
393 struct regulator_dev *rdev = dev_get_drvdata(dev);
394 struct regulator *regulator;
395 int uA = 0;
396
397 mutex_lock(&rdev->mutex);
398 list_for_each_entry(regulator, &rdev->consumer_list, list)
399 uA += regulator->uA_load;
400 mutex_unlock(&rdev->mutex);
401 return sprintf(buf, "%d\n", uA);
402 }
403 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
404
405 static ssize_t regulator_num_users_show(struct device *dev,
406 struct device_attribute *attr, char *buf)
407 {
408 struct regulator_dev *rdev = dev_get_drvdata(dev);
409 return sprintf(buf, "%d\n", rdev->use_count);
410 }
411
412 static ssize_t regulator_type_show(struct device *dev,
413 struct device_attribute *attr, char *buf)
414 {
415 struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417 switch (rdev->desc->type) {
418 case REGULATOR_VOLTAGE:
419 return sprintf(buf, "voltage\n");
420 case REGULATOR_CURRENT:
421 return sprintf(buf, "current\n");
422 }
423 return sprintf(buf, "unknown\n");
424 }
425
426 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
427 struct device_attribute *attr, char *buf)
428 {
429 struct regulator_dev *rdev = dev_get_drvdata(dev);
430
431 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
432 }
433 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
434 regulator_suspend_mem_uV_show, NULL);
435
436 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
437 struct device_attribute *attr, char *buf)
438 {
439 struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
442 }
443 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
444 regulator_suspend_disk_uV_show, NULL);
445
446 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
447 struct device_attribute *attr, char *buf)
448 {
449 struct regulator_dev *rdev = dev_get_drvdata(dev);
450
451 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
452 }
453 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
454 regulator_suspend_standby_uV_show, NULL);
455
456 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
457 struct device_attribute *attr, char *buf)
458 {
459 struct regulator_dev *rdev = dev_get_drvdata(dev);
460
461 return regulator_print_opmode(buf,
462 rdev->constraints->state_mem.mode);
463 }
464 static DEVICE_ATTR(suspend_mem_mode, 0444,
465 regulator_suspend_mem_mode_show, NULL);
466
467 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
469 {
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472 return regulator_print_opmode(buf,
473 rdev->constraints->state_disk.mode);
474 }
475 static DEVICE_ATTR(suspend_disk_mode, 0444,
476 regulator_suspend_disk_mode_show, NULL);
477
478 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
480 {
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483 return regulator_print_opmode(buf,
484 rdev->constraints->state_standby.mode);
485 }
486 static DEVICE_ATTR(suspend_standby_mode, 0444,
487 regulator_suspend_standby_mode_show, NULL);
488
489 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
490 struct device_attribute *attr, char *buf)
491 {
492 struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494 return regulator_print_state(buf,
495 rdev->constraints->state_mem.enabled);
496 }
497 static DEVICE_ATTR(suspend_mem_state, 0444,
498 regulator_suspend_mem_state_show, NULL);
499
500 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
501 struct device_attribute *attr, char *buf)
502 {
503 struct regulator_dev *rdev = dev_get_drvdata(dev);
504
505 return regulator_print_state(buf,
506 rdev->constraints->state_disk.enabled);
507 }
508 static DEVICE_ATTR(suspend_disk_state, 0444,
509 regulator_suspend_disk_state_show, NULL);
510
511 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
512 struct device_attribute *attr, char *buf)
513 {
514 struct regulator_dev *rdev = dev_get_drvdata(dev);
515
516 return regulator_print_state(buf,
517 rdev->constraints->state_standby.enabled);
518 }
519 static DEVICE_ATTR(suspend_standby_state, 0444,
520 regulator_suspend_standby_state_show, NULL);
521
522
523 /*
524 * These are the only attributes are present for all regulators.
525 * Other attributes are a function of regulator functionality.
526 */
527 static struct device_attribute regulator_dev_attrs[] = {
528 __ATTR(name, 0444, regulator_name_show, NULL),
529 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
530 __ATTR(type, 0444, regulator_type_show, NULL),
531 __ATTR_NULL,
532 };
533
534 static void regulator_dev_release(struct device *dev)
535 {
536 struct regulator_dev *rdev = dev_get_drvdata(dev);
537 kfree(rdev);
538 }
539
540 static struct class regulator_class = {
541 .name = "regulator",
542 .dev_release = regulator_dev_release,
543 .dev_attrs = regulator_dev_attrs,
544 };
545
546 /* Calculate the new optimum regulator operating mode based on the new total
547 * consumer load. All locks held by caller */
548 static void drms_uA_update(struct regulator_dev *rdev)
549 {
550 struct regulator *sibling;
551 int current_uA = 0, output_uV, input_uV, err;
552 unsigned int mode;
553
554 err = regulator_check_drms(rdev);
555 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
556 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
557 return;
558
559 /* get output voltage */
560 output_uV = rdev->desc->ops->get_voltage(rdev);
561 if (output_uV <= 0)
562 return;
563
564 /* get input voltage */
565 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
566 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
567 else
568 input_uV = rdev->constraints->input_uV;
569 if (input_uV <= 0)
570 return;
571
572 /* calc total requested load */
573 list_for_each_entry(sibling, &rdev->consumer_list, list)
574 current_uA += sibling->uA_load;
575
576 /* now get the optimum mode for our new total regulator load */
577 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
578 output_uV, current_uA);
579
580 /* check the new mode is allowed */
581 err = regulator_check_mode(rdev, mode);
582 if (err == 0)
583 rdev->desc->ops->set_mode(rdev, mode);
584 }
585
586 static int suspend_set_state(struct regulator_dev *rdev,
587 struct regulator_state *rstate)
588 {
589 int ret = 0;
590 bool can_set_state;
591
592 can_set_state = rdev->desc->ops->set_suspend_enable &&
593 rdev->desc->ops->set_suspend_disable;
594
595 /* If we have no suspend mode configration don't set anything;
596 * only warn if the driver actually makes the suspend mode
597 * configurable.
598 */
599 if (!rstate->enabled && !rstate->disabled) {
600 if (can_set_state)
601 printk(KERN_WARNING "%s: No configuration for %s\n",
602 __func__, rdev_get_name(rdev));
603 return 0;
604 }
605
606 if (rstate->enabled && rstate->disabled) {
607 printk(KERN_ERR "%s: invalid configuration for %s\n",
608 __func__, rdev_get_name(rdev));
609 return -EINVAL;
610 }
611
612 if (!can_set_state) {
613 printk(KERN_ERR "%s: no way to set suspend state\n",
614 __func__);
615 return -EINVAL;
616 }
617
618 if (rstate->enabled)
619 ret = rdev->desc->ops->set_suspend_enable(rdev);
620 else
621 ret = rdev->desc->ops->set_suspend_disable(rdev);
622 if (ret < 0) {
623 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
624 return ret;
625 }
626
627 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
628 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
629 if (ret < 0) {
630 printk(KERN_ERR "%s: failed to set voltage\n",
631 __func__);
632 return ret;
633 }
634 }
635
636 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
637 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
638 if (ret < 0) {
639 printk(KERN_ERR "%s: failed to set mode\n", __func__);
640 return ret;
641 }
642 }
643 return ret;
644 }
645
646 /* locks held by caller */
647 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
648 {
649 if (!rdev->constraints)
650 return -EINVAL;
651
652 switch (state) {
653 case PM_SUSPEND_STANDBY:
654 return suspend_set_state(rdev,
655 &rdev->constraints->state_standby);
656 case PM_SUSPEND_MEM:
657 return suspend_set_state(rdev,
658 &rdev->constraints->state_mem);
659 case PM_SUSPEND_MAX:
660 return suspend_set_state(rdev,
661 &rdev->constraints->state_disk);
662 default:
663 return -EINVAL;
664 }
665 }
666
667 static void print_constraints(struct regulator_dev *rdev)
668 {
669 struct regulation_constraints *constraints = rdev->constraints;
670 char buf[80] = "";
671 int count = 0;
672 int ret;
673
674 if (constraints->min_uV && constraints->max_uV) {
675 if (constraints->min_uV == constraints->max_uV)
676 count += sprintf(buf + count, "%d mV ",
677 constraints->min_uV / 1000);
678 else
679 count += sprintf(buf + count, "%d <--> %d mV ",
680 constraints->min_uV / 1000,
681 constraints->max_uV / 1000);
682 }
683
684 if (!constraints->min_uV ||
685 constraints->min_uV != constraints->max_uV) {
686 ret = _regulator_get_voltage(rdev);
687 if (ret > 0)
688 count += sprintf(buf + count, "at %d mV ", ret / 1000);
689 }
690
691 if (constraints->min_uA && constraints->max_uA) {
692 if (constraints->min_uA == constraints->max_uA)
693 count += sprintf(buf + count, "%d mA ",
694 constraints->min_uA / 1000);
695 else
696 count += sprintf(buf + count, "%d <--> %d mA ",
697 constraints->min_uA / 1000,
698 constraints->max_uA / 1000);
699 }
700
701 if (!constraints->min_uA ||
702 constraints->min_uA != constraints->max_uA) {
703 ret = _regulator_get_current_limit(rdev);
704 if (ret > 0)
705 count += sprintf(buf + count, "at %d mA ", ret / 1000);
706 }
707
708 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
709 count += sprintf(buf + count, "fast ");
710 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
711 count += sprintf(buf + count, "normal ");
712 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
713 count += sprintf(buf + count, "idle ");
714 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
715 count += sprintf(buf + count, "standby");
716
717 printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
718 }
719
720 static int machine_constraints_voltage(struct regulator_dev *rdev,
721 struct regulation_constraints *constraints)
722 {
723 struct regulator_ops *ops = rdev->desc->ops;
724 const char *name = rdev_get_name(rdev);
725 int ret;
726
727 /* do we need to apply the constraint voltage */
728 if (rdev->constraints->apply_uV &&
729 rdev->constraints->min_uV == rdev->constraints->max_uV &&
730 ops->set_voltage) {
731 ret = ops->set_voltage(rdev,
732 rdev->constraints->min_uV, rdev->constraints->max_uV);
733 if (ret < 0) {
734 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
735 __func__,
736 rdev->constraints->min_uV, name);
737 rdev->constraints = NULL;
738 return ret;
739 }
740 }
741
742 /* constrain machine-level voltage specs to fit
743 * the actual range supported by this regulator.
744 */
745 if (ops->list_voltage && rdev->desc->n_voltages) {
746 int count = rdev->desc->n_voltages;
747 int i;
748 int min_uV = INT_MAX;
749 int max_uV = INT_MIN;
750 int cmin = constraints->min_uV;
751 int cmax = constraints->max_uV;
752
753 /* it's safe to autoconfigure fixed-voltage supplies
754 and the constraints are used by list_voltage. */
755 if (count == 1 && !cmin) {
756 cmin = 1;
757 cmax = INT_MAX;
758 constraints->min_uV = cmin;
759 constraints->max_uV = cmax;
760 }
761
762 /* voltage constraints are optional */
763 if ((cmin == 0) && (cmax == 0))
764 return 0;
765
766 /* else require explicit machine-level constraints */
767 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
768 pr_err("%s: %s '%s' voltage constraints\n",
769 __func__, "invalid", name);
770 return -EINVAL;
771 }
772
773 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
774 for (i = 0; i < count; i++) {
775 int value;
776
777 value = ops->list_voltage(rdev, i);
778 if (value <= 0)
779 continue;
780
781 /* maybe adjust [min_uV..max_uV] */
782 if (value >= cmin && value < min_uV)
783 min_uV = value;
784 if (value <= cmax && value > max_uV)
785 max_uV = value;
786 }
787
788 /* final: [min_uV..max_uV] valid iff constraints valid */
789 if (max_uV < min_uV) {
790 pr_err("%s: %s '%s' voltage constraints\n",
791 __func__, "unsupportable", name);
792 return -EINVAL;
793 }
794
795 /* use regulator's subset of machine constraints */
796 if (constraints->min_uV < min_uV) {
797 pr_debug("%s: override '%s' %s, %d -> %d\n",
798 __func__, name, "min_uV",
799 constraints->min_uV, min_uV);
800 constraints->min_uV = min_uV;
801 }
802 if (constraints->max_uV > max_uV) {
803 pr_debug("%s: override '%s' %s, %d -> %d\n",
804 __func__, name, "max_uV",
805 constraints->max_uV, max_uV);
806 constraints->max_uV = max_uV;
807 }
808 }
809
810 return 0;
811 }
812
813 /**
814 * set_machine_constraints - sets regulator constraints
815 * @rdev: regulator source
816 * @constraints: constraints to apply
817 *
818 * Allows platform initialisation code to define and constrain
819 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
820 * Constraints *must* be set by platform code in order for some
821 * regulator operations to proceed i.e. set_voltage, set_current_limit,
822 * set_mode.
823 */
824 static int set_machine_constraints(struct regulator_dev *rdev,
825 struct regulation_constraints *constraints)
826 {
827 int ret = 0;
828 const char *name;
829 struct regulator_ops *ops = rdev->desc->ops;
830
831 rdev->constraints = constraints;
832
833 name = rdev_get_name(rdev);
834
835 ret = machine_constraints_voltage(rdev, constraints);
836 if (ret != 0)
837 goto out;
838
839 /* do we need to setup our suspend state */
840 if (constraints->initial_state) {
841 ret = suspend_prepare(rdev, constraints->initial_state);
842 if (ret < 0) {
843 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
844 __func__, name);
845 rdev->constraints = NULL;
846 goto out;
847 }
848 }
849
850 if (constraints->initial_mode) {
851 if (!ops->set_mode) {
852 printk(KERN_ERR "%s: no set_mode operation for %s\n",
853 __func__, name);
854 ret = -EINVAL;
855 goto out;
856 }
857
858 ret = ops->set_mode(rdev, constraints->initial_mode);
859 if (ret < 0) {
860 printk(KERN_ERR
861 "%s: failed to set initial mode for %s: %d\n",
862 __func__, name, ret);
863 goto out;
864 }
865 }
866
867 /* If the constraints say the regulator should be on at this point
868 * and we have control then make sure it is enabled.
869 */
870 if ((constraints->always_on || constraints->boot_on) && ops->enable) {
871 ret = ops->enable(rdev);
872 if (ret < 0) {
873 printk(KERN_ERR "%s: failed to enable %s\n",
874 __func__, name);
875 rdev->constraints = NULL;
876 goto out;
877 }
878 }
879
880 print_constraints(rdev);
881 out:
882 return ret;
883 }
884
885 /**
886 * set_supply - set regulator supply regulator
887 * @rdev: regulator name
888 * @supply_rdev: supply regulator name
889 *
890 * Called by platform initialisation code to set the supply regulator for this
891 * regulator. This ensures that a regulators supply will also be enabled by the
892 * core if it's child is enabled.
893 */
894 static int set_supply(struct regulator_dev *rdev,
895 struct regulator_dev *supply_rdev)
896 {
897 int err;
898
899 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
900 "supply");
901 if (err) {
902 printk(KERN_ERR
903 "%s: could not add device link %s err %d\n",
904 __func__, supply_rdev->dev.kobj.name, err);
905 goto out;
906 }
907 rdev->supply = supply_rdev;
908 list_add(&rdev->slist, &supply_rdev->supply_list);
909 out:
910 return err;
911 }
912
913 /**
914 * set_consumer_device_supply: Bind a regulator to a symbolic supply
915 * @rdev: regulator source
916 * @consumer_dev: device the supply applies to
917 * @consumer_dev_name: dev_name() string for device supply applies to
918 * @supply: symbolic name for supply
919 *
920 * Allows platform initialisation code to map physical regulator
921 * sources to symbolic names for supplies for use by devices. Devices
922 * should use these symbolic names to request regulators, avoiding the
923 * need to provide board-specific regulator names as platform data.
924 *
925 * Only one of consumer_dev and consumer_dev_name may be specified.
926 */
927 static int set_consumer_device_supply(struct regulator_dev *rdev,
928 struct device *consumer_dev, const char *consumer_dev_name,
929 const char *supply)
930 {
931 struct regulator_map *node;
932 int has_dev;
933
934 if (consumer_dev && consumer_dev_name)
935 return -EINVAL;
936
937 if (!consumer_dev_name && consumer_dev)
938 consumer_dev_name = dev_name(consumer_dev);
939
940 if (supply == NULL)
941 return -EINVAL;
942
943 if (consumer_dev_name != NULL)
944 has_dev = 1;
945 else
946 has_dev = 0;
947
948 list_for_each_entry(node, &regulator_map_list, list) {
949 if (node->dev_name && consumer_dev_name) {
950 if (strcmp(node->dev_name, consumer_dev_name) != 0)
951 continue;
952 } else if (node->dev_name || consumer_dev_name) {
953 continue;
954 }
955
956 if (strcmp(node->supply, supply) != 0)
957 continue;
958
959 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
960 dev_name(&node->regulator->dev),
961 node->regulator->desc->name,
962 supply,
963 dev_name(&rdev->dev), rdev_get_name(rdev));
964 return -EBUSY;
965 }
966
967 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
968 if (node == NULL)
969 return -ENOMEM;
970
971 node->regulator = rdev;
972 node->supply = supply;
973
974 if (has_dev) {
975 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
976 if (node->dev_name == NULL) {
977 kfree(node);
978 return -ENOMEM;
979 }
980 }
981
982 list_add(&node->list, &regulator_map_list);
983 return 0;
984 }
985
986 static void unset_regulator_supplies(struct regulator_dev *rdev)
987 {
988 struct regulator_map *node, *n;
989
990 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
991 if (rdev == node->regulator) {
992 list_del(&node->list);
993 kfree(node->dev_name);
994 kfree(node);
995 }
996 }
997 }
998
999 #define REG_STR_SIZE 32
1000
1001 static struct regulator *create_regulator(struct regulator_dev *rdev,
1002 struct device *dev,
1003 const char *supply_name)
1004 {
1005 struct regulator *regulator;
1006 char buf[REG_STR_SIZE];
1007 int err, size;
1008
1009 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1010 if (regulator == NULL)
1011 return NULL;
1012
1013 mutex_lock(&rdev->mutex);
1014 regulator->rdev = rdev;
1015 list_add(&regulator->list, &rdev->consumer_list);
1016
1017 if (dev) {
1018 /* create a 'requested_microamps_name' sysfs entry */
1019 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1020 supply_name);
1021 if (size >= REG_STR_SIZE)
1022 goto overflow_err;
1023
1024 regulator->dev = dev;
1025 sysfs_attr_init(&regulator->dev_attr.attr);
1026 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1027 if (regulator->dev_attr.attr.name == NULL)
1028 goto attr_name_err;
1029
1030 regulator->dev_attr.attr.mode = 0444;
1031 regulator->dev_attr.show = device_requested_uA_show;
1032 err = device_create_file(dev, &regulator->dev_attr);
1033 if (err < 0) {
1034 printk(KERN_WARNING "%s: could not add regulator_dev"
1035 " load sysfs\n", __func__);
1036 goto attr_name_err;
1037 }
1038
1039 /* also add a link to the device sysfs entry */
1040 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1041 dev->kobj.name, supply_name);
1042 if (size >= REG_STR_SIZE)
1043 goto attr_err;
1044
1045 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1046 if (regulator->supply_name == NULL)
1047 goto attr_err;
1048
1049 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1050 buf);
1051 if (err) {
1052 printk(KERN_WARNING
1053 "%s: could not add device link %s err %d\n",
1054 __func__, dev->kobj.name, err);
1055 device_remove_file(dev, &regulator->dev_attr);
1056 goto link_name_err;
1057 }
1058 }
1059 mutex_unlock(&rdev->mutex);
1060 return regulator;
1061 link_name_err:
1062 kfree(regulator->supply_name);
1063 attr_err:
1064 device_remove_file(regulator->dev, &regulator->dev_attr);
1065 attr_name_err:
1066 kfree(regulator->dev_attr.attr.name);
1067 overflow_err:
1068 list_del(&regulator->list);
1069 kfree(regulator);
1070 mutex_unlock(&rdev->mutex);
1071 return NULL;
1072 }
1073
1074 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1075 {
1076 if (!rdev->desc->ops->enable_time)
1077 return 0;
1078 return rdev->desc->ops->enable_time(rdev);
1079 }
1080
1081 /* Internal regulator request function */
1082 static struct regulator *_regulator_get(struct device *dev, const char *id,
1083 int exclusive)
1084 {
1085 struct regulator_dev *rdev;
1086 struct regulator_map *map;
1087 struct regulator *regulator = ERR_PTR(-ENODEV);
1088 const char *devname = NULL;
1089 int ret;
1090
1091 if (id == NULL) {
1092 printk(KERN_ERR "regulator: get() with no identifier\n");
1093 return regulator;
1094 }
1095
1096 if (dev)
1097 devname = dev_name(dev);
1098
1099 mutex_lock(&regulator_list_mutex);
1100
1101 list_for_each_entry(map, &regulator_map_list, list) {
1102 /* If the mapping has a device set up it must match */
1103 if (map->dev_name &&
1104 (!devname || strcmp(map->dev_name, devname)))
1105 continue;
1106
1107 if (strcmp(map->supply, id) == 0) {
1108 rdev = map->regulator;
1109 goto found;
1110 }
1111 }
1112
1113 if (board_wants_dummy_regulator) {
1114 rdev = dummy_regulator_rdev;
1115 goto found;
1116 }
1117
1118 #ifdef CONFIG_REGULATOR_DUMMY
1119 if (!devname)
1120 devname = "deviceless";
1121
1122 /* If the board didn't flag that it was fully constrained then
1123 * substitute in a dummy regulator so consumers can continue.
1124 */
1125 if (!has_full_constraints) {
1126 pr_warning("%s supply %s not found, using dummy regulator\n",
1127 devname, id);
1128 rdev = dummy_regulator_rdev;
1129 goto found;
1130 }
1131 #endif
1132
1133 mutex_unlock(&regulator_list_mutex);
1134 return regulator;
1135
1136 found:
1137 if (rdev->exclusive) {
1138 regulator = ERR_PTR(-EPERM);
1139 goto out;
1140 }
1141
1142 if (exclusive && rdev->open_count) {
1143 regulator = ERR_PTR(-EBUSY);
1144 goto out;
1145 }
1146
1147 if (!try_module_get(rdev->owner))
1148 goto out;
1149
1150 regulator = create_regulator(rdev, dev, id);
1151 if (regulator == NULL) {
1152 regulator = ERR_PTR(-ENOMEM);
1153 module_put(rdev->owner);
1154 }
1155
1156 rdev->open_count++;
1157 if (exclusive) {
1158 rdev->exclusive = 1;
1159
1160 ret = _regulator_is_enabled(rdev);
1161 if (ret > 0)
1162 rdev->use_count = 1;
1163 else
1164 rdev->use_count = 0;
1165 }
1166
1167 out:
1168 mutex_unlock(&regulator_list_mutex);
1169
1170 return regulator;
1171 }
1172
1173 /**
1174 * regulator_get - lookup and obtain a reference to a regulator.
1175 * @dev: device for regulator "consumer"
1176 * @id: Supply name or regulator ID.
1177 *
1178 * Returns a struct regulator corresponding to the regulator producer,
1179 * or IS_ERR() condition containing errno.
1180 *
1181 * Use of supply names configured via regulator_set_device_supply() is
1182 * strongly encouraged. It is recommended that the supply name used
1183 * should match the name used for the supply and/or the relevant
1184 * device pins in the datasheet.
1185 */
1186 struct regulator *regulator_get(struct device *dev, const char *id)
1187 {
1188 return _regulator_get(dev, id, 0);
1189 }
1190 EXPORT_SYMBOL_GPL(regulator_get);
1191
1192 /**
1193 * regulator_get_exclusive - obtain exclusive access to a regulator.
1194 * @dev: device for regulator "consumer"
1195 * @id: Supply name or regulator ID.
1196 *
1197 * Returns a struct regulator corresponding to the regulator producer,
1198 * or IS_ERR() condition containing errno. Other consumers will be
1199 * unable to obtain this reference is held and the use count for the
1200 * regulator will be initialised to reflect the current state of the
1201 * regulator.
1202 *
1203 * This is intended for use by consumers which cannot tolerate shared
1204 * use of the regulator such as those which need to force the
1205 * regulator off for correct operation of the hardware they are
1206 * controlling.
1207 *
1208 * Use of supply names configured via regulator_set_device_supply() is
1209 * strongly encouraged. It is recommended that the supply name used
1210 * should match the name used for the supply and/or the relevant
1211 * device pins in the datasheet.
1212 */
1213 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1214 {
1215 return _regulator_get(dev, id, 1);
1216 }
1217 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1218
1219 /**
1220 * regulator_put - "free" the regulator source
1221 * @regulator: regulator source
1222 *
1223 * Note: drivers must ensure that all regulator_enable calls made on this
1224 * regulator source are balanced by regulator_disable calls prior to calling
1225 * this function.
1226 */
1227 void regulator_put(struct regulator *regulator)
1228 {
1229 struct regulator_dev *rdev;
1230
1231 if (regulator == NULL || IS_ERR(regulator))
1232 return;
1233
1234 mutex_lock(&regulator_list_mutex);
1235 rdev = regulator->rdev;
1236
1237 /* remove any sysfs entries */
1238 if (regulator->dev) {
1239 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1240 kfree(regulator->supply_name);
1241 device_remove_file(regulator->dev, &regulator->dev_attr);
1242 kfree(regulator->dev_attr.attr.name);
1243 }
1244 list_del(&regulator->list);
1245 kfree(regulator);
1246
1247 rdev->open_count--;
1248 rdev->exclusive = 0;
1249
1250 module_put(rdev->owner);
1251 mutex_unlock(&regulator_list_mutex);
1252 }
1253 EXPORT_SYMBOL_GPL(regulator_put);
1254
1255 static int _regulator_can_change_status(struct regulator_dev *rdev)
1256 {
1257 if (!rdev->constraints)
1258 return 0;
1259
1260 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1261 return 1;
1262 else
1263 return 0;
1264 }
1265
1266 /* locks held by regulator_enable() */
1267 static int _regulator_enable(struct regulator_dev *rdev)
1268 {
1269 int ret, delay;
1270
1271 /* do we need to enable the supply regulator first */
1272 if (rdev->supply) {
1273 ret = _regulator_enable(rdev->supply);
1274 if (ret < 0) {
1275 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1276 __func__, rdev_get_name(rdev), ret);
1277 return ret;
1278 }
1279 }
1280
1281 /* check voltage and requested load before enabling */
1282 if (rdev->constraints &&
1283 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1284 drms_uA_update(rdev);
1285
1286 if (rdev->use_count == 0) {
1287 /* The regulator may on if it's not switchable or left on */
1288 ret = _regulator_is_enabled(rdev);
1289 if (ret == -EINVAL || ret == 0) {
1290 if (!_regulator_can_change_status(rdev))
1291 return -EPERM;
1292
1293 if (!rdev->desc->ops->enable)
1294 return -EINVAL;
1295
1296 /* Query before enabling in case configuration
1297 * dependant. */
1298 ret = _regulator_get_enable_time(rdev);
1299 if (ret >= 0) {
1300 delay = ret;
1301 } else {
1302 printk(KERN_WARNING
1303 "%s: enable_time() failed for %s: %d\n",
1304 __func__, rdev_get_name(rdev),
1305 ret);
1306 delay = 0;
1307 }
1308
1309 /* Allow the regulator to ramp; it would be useful
1310 * to extend this for bulk operations so that the
1311 * regulators can ramp together. */
1312 ret = rdev->desc->ops->enable(rdev);
1313 if (ret < 0)
1314 return ret;
1315
1316 if (delay >= 1000)
1317 mdelay(delay / 1000);
1318 else if (delay)
1319 udelay(delay);
1320
1321 } else if (ret < 0) {
1322 printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1323 __func__, rdev_get_name(rdev), ret);
1324 return ret;
1325 }
1326 /* Fallthrough on positive return values - already enabled */
1327 }
1328
1329 rdev->use_count++;
1330
1331 return 0;
1332 }
1333
1334 /**
1335 * regulator_enable - enable regulator output
1336 * @regulator: regulator source
1337 *
1338 * Request that the regulator be enabled with the regulator output at
1339 * the predefined voltage or current value. Calls to regulator_enable()
1340 * must be balanced with calls to regulator_disable().
1341 *
1342 * NOTE: the output value can be set by other drivers, boot loader or may be
1343 * hardwired in the regulator.
1344 */
1345 int regulator_enable(struct regulator *regulator)
1346 {
1347 struct regulator_dev *rdev = regulator->rdev;
1348 int ret = 0;
1349
1350 mutex_lock(&rdev->mutex);
1351 ret = _regulator_enable(rdev);
1352 mutex_unlock(&rdev->mutex);
1353 return ret;
1354 }
1355 EXPORT_SYMBOL_GPL(regulator_enable);
1356
1357 /* locks held by regulator_disable() */
1358 static int _regulator_disable(struct regulator_dev *rdev,
1359 struct regulator_dev **supply_rdev_ptr)
1360 {
1361 int ret = 0;
1362
1363 if (WARN(rdev->use_count <= 0,
1364 "unbalanced disables for %s\n",
1365 rdev_get_name(rdev)))
1366 return -EIO;
1367
1368 /* are we the last user and permitted to disable ? */
1369 if (rdev->use_count == 1 &&
1370 (rdev->constraints && !rdev->constraints->always_on)) {
1371
1372 /* we are last user */
1373 if (_regulator_can_change_status(rdev) &&
1374 rdev->desc->ops->disable) {
1375 ret = rdev->desc->ops->disable(rdev);
1376 if (ret < 0) {
1377 printk(KERN_ERR "%s: failed to disable %s\n",
1378 __func__, rdev_get_name(rdev));
1379 return ret;
1380 }
1381
1382 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1383 NULL);
1384 }
1385
1386 /* decrease our supplies ref count and disable if required */
1387 *supply_rdev_ptr = rdev->supply;
1388
1389 rdev->use_count = 0;
1390 } else if (rdev->use_count > 1) {
1391
1392 if (rdev->constraints &&
1393 (rdev->constraints->valid_ops_mask &
1394 REGULATOR_CHANGE_DRMS))
1395 drms_uA_update(rdev);
1396
1397 rdev->use_count--;
1398 }
1399 return ret;
1400 }
1401
1402 /**
1403 * regulator_disable - disable regulator output
1404 * @regulator: regulator source
1405 *
1406 * Disable the regulator output voltage or current. Calls to
1407 * regulator_enable() must be balanced with calls to
1408 * regulator_disable().
1409 *
1410 * NOTE: this will only disable the regulator output if no other consumer
1411 * devices have it enabled, the regulator device supports disabling and
1412 * machine constraints permit this operation.
1413 */
1414 int regulator_disable(struct regulator *regulator)
1415 {
1416 struct regulator_dev *rdev = regulator->rdev;
1417 struct regulator_dev *supply_rdev = NULL;
1418 int ret = 0;
1419
1420 mutex_lock(&rdev->mutex);
1421 ret = _regulator_disable(rdev, &supply_rdev);
1422 mutex_unlock(&rdev->mutex);
1423
1424 /* decrease our supplies ref count and disable if required */
1425 while (supply_rdev != NULL) {
1426 rdev = supply_rdev;
1427
1428 mutex_lock(&rdev->mutex);
1429 _regulator_disable(rdev, &supply_rdev);
1430 mutex_unlock(&rdev->mutex);
1431 }
1432
1433 return ret;
1434 }
1435 EXPORT_SYMBOL_GPL(regulator_disable);
1436
1437 /* locks held by regulator_force_disable() */
1438 static int _regulator_force_disable(struct regulator_dev *rdev,
1439 struct regulator_dev **supply_rdev_ptr)
1440 {
1441 int ret = 0;
1442
1443 /* force disable */
1444 if (rdev->desc->ops->disable) {
1445 /* ah well, who wants to live forever... */
1446 ret = rdev->desc->ops->disable(rdev);
1447 if (ret < 0) {
1448 printk(KERN_ERR "%s: failed to force disable %s\n",
1449 __func__, rdev_get_name(rdev));
1450 return ret;
1451 }
1452 /* notify other consumers that power has been forced off */
1453 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1454 REGULATOR_EVENT_DISABLE, NULL);
1455 }
1456
1457 /* decrease our supplies ref count and disable if required */
1458 *supply_rdev_ptr = rdev->supply;
1459
1460 rdev->use_count = 0;
1461 return ret;
1462 }
1463
1464 /**
1465 * regulator_force_disable - force disable regulator output
1466 * @regulator: regulator source
1467 *
1468 * Forcibly disable the regulator output voltage or current.
1469 * NOTE: this *will* disable the regulator output even if other consumer
1470 * devices have it enabled. This should be used for situations when device
1471 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1472 */
1473 int regulator_force_disable(struct regulator *regulator)
1474 {
1475 struct regulator_dev *supply_rdev = NULL;
1476 int ret;
1477
1478 mutex_lock(&regulator->rdev->mutex);
1479 regulator->uA_load = 0;
1480 ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1481 mutex_unlock(&regulator->rdev->mutex);
1482
1483 if (supply_rdev)
1484 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1485
1486 return ret;
1487 }
1488 EXPORT_SYMBOL_GPL(regulator_force_disable);
1489
1490 static int _regulator_is_enabled(struct regulator_dev *rdev)
1491 {
1492 /* If we don't know then assume that the regulator is always on */
1493 if (!rdev->desc->ops->is_enabled)
1494 return 1;
1495
1496 return rdev->desc->ops->is_enabled(rdev);
1497 }
1498
1499 /**
1500 * regulator_is_enabled - is the regulator output enabled
1501 * @regulator: regulator source
1502 *
1503 * Returns positive if the regulator driver backing the source/client
1504 * has requested that the device be enabled, zero if it hasn't, else a
1505 * negative errno code.
1506 *
1507 * Note that the device backing this regulator handle can have multiple
1508 * users, so it might be enabled even if regulator_enable() was never
1509 * called for this particular source.
1510 */
1511 int regulator_is_enabled(struct regulator *regulator)
1512 {
1513 int ret;
1514
1515 mutex_lock(&regulator->rdev->mutex);
1516 ret = _regulator_is_enabled(regulator->rdev);
1517 mutex_unlock(&regulator->rdev->mutex);
1518
1519 return ret;
1520 }
1521 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1522
1523 /**
1524 * regulator_count_voltages - count regulator_list_voltage() selectors
1525 * @regulator: regulator source
1526 *
1527 * Returns number of selectors, or negative errno. Selectors are
1528 * numbered starting at zero, and typically correspond to bitfields
1529 * in hardware registers.
1530 */
1531 int regulator_count_voltages(struct regulator *regulator)
1532 {
1533 struct regulator_dev *rdev = regulator->rdev;
1534
1535 return rdev->desc->n_voltages ? : -EINVAL;
1536 }
1537 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1538
1539 /**
1540 * regulator_list_voltage - enumerate supported voltages
1541 * @regulator: regulator source
1542 * @selector: identify voltage to list
1543 * Context: can sleep
1544 *
1545 * Returns a voltage that can be passed to @regulator_set_voltage(),
1546 * zero if this selector code can't be used on this system, or a
1547 * negative errno.
1548 */
1549 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1550 {
1551 struct regulator_dev *rdev = regulator->rdev;
1552 struct regulator_ops *ops = rdev->desc->ops;
1553 int ret;
1554
1555 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1556 return -EINVAL;
1557
1558 mutex_lock(&rdev->mutex);
1559 ret = ops->list_voltage(rdev, selector);
1560 mutex_unlock(&rdev->mutex);
1561
1562 if (ret > 0) {
1563 if (ret < rdev->constraints->min_uV)
1564 ret = 0;
1565 else if (ret > rdev->constraints->max_uV)
1566 ret = 0;
1567 }
1568
1569 return ret;
1570 }
1571 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1572
1573 /**
1574 * regulator_is_supported_voltage - check if a voltage range can be supported
1575 *
1576 * @regulator: Regulator to check.
1577 * @min_uV: Minimum required voltage in uV.
1578 * @max_uV: Maximum required voltage in uV.
1579 *
1580 * Returns a boolean or a negative error code.
1581 */
1582 int regulator_is_supported_voltage(struct regulator *regulator,
1583 int min_uV, int max_uV)
1584 {
1585 int i, voltages, ret;
1586
1587 ret = regulator_count_voltages(regulator);
1588 if (ret < 0)
1589 return ret;
1590 voltages = ret;
1591
1592 for (i = 0; i < voltages; i++) {
1593 ret = regulator_list_voltage(regulator, i);
1594
1595 if (ret >= min_uV && ret <= max_uV)
1596 return 1;
1597 }
1598
1599 return 0;
1600 }
1601
1602 /**
1603 * regulator_set_voltage - set regulator output voltage
1604 * @regulator: regulator source
1605 * @min_uV: Minimum required voltage in uV
1606 * @max_uV: Maximum acceptable voltage in uV
1607 *
1608 * Sets a voltage regulator to the desired output voltage. This can be set
1609 * during any regulator state. IOW, regulator can be disabled or enabled.
1610 *
1611 * If the regulator is enabled then the voltage will change to the new value
1612 * immediately otherwise if the regulator is disabled the regulator will
1613 * output at the new voltage when enabled.
1614 *
1615 * NOTE: If the regulator is shared between several devices then the lowest
1616 * request voltage that meets the system constraints will be used.
1617 * Regulator system constraints must be set for this regulator before
1618 * calling this function otherwise this call will fail.
1619 */
1620 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1621 {
1622 struct regulator_dev *rdev = regulator->rdev;
1623 int ret;
1624
1625 mutex_lock(&rdev->mutex);
1626
1627 /* sanity check */
1628 if (!rdev->desc->ops->set_voltage) {
1629 ret = -EINVAL;
1630 goto out;
1631 }
1632
1633 /* constraints check */
1634 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1635 if (ret < 0)
1636 goto out;
1637 regulator->min_uV = min_uV;
1638 regulator->max_uV = max_uV;
1639 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1640
1641 out:
1642 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1643 mutex_unlock(&rdev->mutex);
1644 return ret;
1645 }
1646 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1647
1648 static int _regulator_get_voltage(struct regulator_dev *rdev)
1649 {
1650 /* sanity check */
1651 if (rdev->desc->ops->get_voltage)
1652 return rdev->desc->ops->get_voltage(rdev);
1653 else
1654 return -EINVAL;
1655 }
1656
1657 /**
1658 * regulator_get_voltage - get regulator output voltage
1659 * @regulator: regulator source
1660 *
1661 * This returns the current regulator voltage in uV.
1662 *
1663 * NOTE: If the regulator is disabled it will return the voltage value. This
1664 * function should not be used to determine regulator state.
1665 */
1666 int regulator_get_voltage(struct regulator *regulator)
1667 {
1668 int ret;
1669
1670 mutex_lock(&regulator->rdev->mutex);
1671
1672 ret = _regulator_get_voltage(regulator->rdev);
1673
1674 mutex_unlock(&regulator->rdev->mutex);
1675
1676 return ret;
1677 }
1678 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1679
1680 /**
1681 * regulator_set_current_limit - set regulator output current limit
1682 * @regulator: regulator source
1683 * @min_uA: Minimuum supported current in uA
1684 * @max_uA: Maximum supported current in uA
1685 *
1686 * Sets current sink to the desired output current. This can be set during
1687 * any regulator state. IOW, regulator can be disabled or enabled.
1688 *
1689 * If the regulator is enabled then the current will change to the new value
1690 * immediately otherwise if the regulator is disabled the regulator will
1691 * output at the new current when enabled.
1692 *
1693 * NOTE: Regulator system constraints must be set for this regulator before
1694 * calling this function otherwise this call will fail.
1695 */
1696 int regulator_set_current_limit(struct regulator *regulator,
1697 int min_uA, int max_uA)
1698 {
1699 struct regulator_dev *rdev = regulator->rdev;
1700 int ret;
1701
1702 mutex_lock(&rdev->mutex);
1703
1704 /* sanity check */
1705 if (!rdev->desc->ops->set_current_limit) {
1706 ret = -EINVAL;
1707 goto out;
1708 }
1709
1710 /* constraints check */
1711 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1712 if (ret < 0)
1713 goto out;
1714
1715 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1716 out:
1717 mutex_unlock(&rdev->mutex);
1718 return ret;
1719 }
1720 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1721
1722 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1723 {
1724 int ret;
1725
1726 mutex_lock(&rdev->mutex);
1727
1728 /* sanity check */
1729 if (!rdev->desc->ops->get_current_limit) {
1730 ret = -EINVAL;
1731 goto out;
1732 }
1733
1734 ret = rdev->desc->ops->get_current_limit(rdev);
1735 out:
1736 mutex_unlock(&rdev->mutex);
1737 return ret;
1738 }
1739
1740 /**
1741 * regulator_get_current_limit - get regulator output current
1742 * @regulator: regulator source
1743 *
1744 * This returns the current supplied by the specified current sink in uA.
1745 *
1746 * NOTE: If the regulator is disabled it will return the current value. This
1747 * function should not be used to determine regulator state.
1748 */
1749 int regulator_get_current_limit(struct regulator *regulator)
1750 {
1751 return _regulator_get_current_limit(regulator->rdev);
1752 }
1753 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1754
1755 /**
1756 * regulator_set_mode - set regulator operating mode
1757 * @regulator: regulator source
1758 * @mode: operating mode - one of the REGULATOR_MODE constants
1759 *
1760 * Set regulator operating mode to increase regulator efficiency or improve
1761 * regulation performance.
1762 *
1763 * NOTE: Regulator system constraints must be set for this regulator before
1764 * calling this function otherwise this call will fail.
1765 */
1766 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1767 {
1768 struct regulator_dev *rdev = regulator->rdev;
1769 int ret;
1770 int regulator_curr_mode;
1771
1772 mutex_lock(&rdev->mutex);
1773
1774 /* sanity check */
1775 if (!rdev->desc->ops->set_mode) {
1776 ret = -EINVAL;
1777 goto out;
1778 }
1779
1780 /* return if the same mode is requested */
1781 if (rdev->desc->ops->get_mode) {
1782 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1783 if (regulator_curr_mode == mode) {
1784 ret = 0;
1785 goto out;
1786 }
1787 }
1788
1789 /* constraints check */
1790 ret = regulator_check_mode(rdev, mode);
1791 if (ret < 0)
1792 goto out;
1793
1794 ret = rdev->desc->ops->set_mode(rdev, mode);
1795 out:
1796 mutex_unlock(&rdev->mutex);
1797 return ret;
1798 }
1799 EXPORT_SYMBOL_GPL(regulator_set_mode);
1800
1801 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1802 {
1803 int ret;
1804
1805 mutex_lock(&rdev->mutex);
1806
1807 /* sanity check */
1808 if (!rdev->desc->ops->get_mode) {
1809 ret = -EINVAL;
1810 goto out;
1811 }
1812
1813 ret = rdev->desc->ops->get_mode(rdev);
1814 out:
1815 mutex_unlock(&rdev->mutex);
1816 return ret;
1817 }
1818
1819 /**
1820 * regulator_get_mode - get regulator operating mode
1821 * @regulator: regulator source
1822 *
1823 * Get the current regulator operating mode.
1824 */
1825 unsigned int regulator_get_mode(struct regulator *regulator)
1826 {
1827 return _regulator_get_mode(regulator->rdev);
1828 }
1829 EXPORT_SYMBOL_GPL(regulator_get_mode);
1830
1831 /**
1832 * regulator_set_optimum_mode - set regulator optimum operating mode
1833 * @regulator: regulator source
1834 * @uA_load: load current
1835 *
1836 * Notifies the regulator core of a new device load. This is then used by
1837 * DRMS (if enabled by constraints) to set the most efficient regulator
1838 * operating mode for the new regulator loading.
1839 *
1840 * Consumer devices notify their supply regulator of the maximum power
1841 * they will require (can be taken from device datasheet in the power
1842 * consumption tables) when they change operational status and hence power
1843 * state. Examples of operational state changes that can affect power
1844 * consumption are :-
1845 *
1846 * o Device is opened / closed.
1847 * o Device I/O is about to begin or has just finished.
1848 * o Device is idling in between work.
1849 *
1850 * This information is also exported via sysfs to userspace.
1851 *
1852 * DRMS will sum the total requested load on the regulator and change
1853 * to the most efficient operating mode if platform constraints allow.
1854 *
1855 * Returns the new regulator mode or error.
1856 */
1857 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1858 {
1859 struct regulator_dev *rdev = regulator->rdev;
1860 struct regulator *consumer;
1861 int ret, output_uV, input_uV, total_uA_load = 0;
1862 unsigned int mode;
1863
1864 mutex_lock(&rdev->mutex);
1865
1866 regulator->uA_load = uA_load;
1867 ret = regulator_check_drms(rdev);
1868 if (ret < 0)
1869 goto out;
1870 ret = -EINVAL;
1871
1872 /* sanity check */
1873 if (!rdev->desc->ops->get_optimum_mode)
1874 goto out;
1875
1876 /* get output voltage */
1877 output_uV = rdev->desc->ops->get_voltage(rdev);
1878 if (output_uV <= 0) {
1879 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1880 __func__, rdev_get_name(rdev));
1881 goto out;
1882 }
1883
1884 /* get input voltage */
1885 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1886 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1887 else
1888 input_uV = rdev->constraints->input_uV;
1889 if (input_uV <= 0) {
1890 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1891 __func__, rdev_get_name(rdev));
1892 goto out;
1893 }
1894
1895 /* calc total requested load for this regulator */
1896 list_for_each_entry(consumer, &rdev->consumer_list, list)
1897 total_uA_load += consumer->uA_load;
1898
1899 mode = rdev->desc->ops->get_optimum_mode(rdev,
1900 input_uV, output_uV,
1901 total_uA_load);
1902 ret = regulator_check_mode(rdev, mode);
1903 if (ret < 0) {
1904 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1905 " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1906 total_uA_load, input_uV, output_uV);
1907 goto out;
1908 }
1909
1910 ret = rdev->desc->ops->set_mode(rdev, mode);
1911 if (ret < 0) {
1912 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1913 __func__, mode, rdev_get_name(rdev));
1914 goto out;
1915 }
1916 ret = mode;
1917 out:
1918 mutex_unlock(&rdev->mutex);
1919 return ret;
1920 }
1921 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1922
1923 /**
1924 * regulator_register_notifier - register regulator event notifier
1925 * @regulator: regulator source
1926 * @nb: notifier block
1927 *
1928 * Register notifier block to receive regulator events.
1929 */
1930 int regulator_register_notifier(struct regulator *regulator,
1931 struct notifier_block *nb)
1932 {
1933 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1934 nb);
1935 }
1936 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1937
1938 /**
1939 * regulator_unregister_notifier - unregister regulator event notifier
1940 * @regulator: regulator source
1941 * @nb: notifier block
1942 *
1943 * Unregister regulator event notifier block.
1944 */
1945 int regulator_unregister_notifier(struct regulator *regulator,
1946 struct notifier_block *nb)
1947 {
1948 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1949 nb);
1950 }
1951 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1952
1953 /* notify regulator consumers and downstream regulator consumers.
1954 * Note mutex must be held by caller.
1955 */
1956 static void _notifier_call_chain(struct regulator_dev *rdev,
1957 unsigned long event, void *data)
1958 {
1959 struct regulator_dev *_rdev;
1960
1961 /* call rdev chain first */
1962 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1963
1964 /* now notify regulator we supply */
1965 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1966 mutex_lock(&_rdev->mutex);
1967 _notifier_call_chain(_rdev, event, data);
1968 mutex_unlock(&_rdev->mutex);
1969 }
1970 }
1971
1972 /**
1973 * regulator_bulk_get - get multiple regulator consumers
1974 *
1975 * @dev: Device to supply
1976 * @num_consumers: Number of consumers to register
1977 * @consumers: Configuration of consumers; clients are stored here.
1978 *
1979 * @return 0 on success, an errno on failure.
1980 *
1981 * This helper function allows drivers to get several regulator
1982 * consumers in one operation. If any of the regulators cannot be
1983 * acquired then any regulators that were allocated will be freed
1984 * before returning to the caller.
1985 */
1986 int regulator_bulk_get(struct device *dev, int num_consumers,
1987 struct regulator_bulk_data *consumers)
1988 {
1989 int i;
1990 int ret;
1991
1992 for (i = 0; i < num_consumers; i++)
1993 consumers[i].consumer = NULL;
1994
1995 for (i = 0; i < num_consumers; i++) {
1996 consumers[i].consumer = regulator_get(dev,
1997 consumers[i].supply);
1998 if (IS_ERR(consumers[i].consumer)) {
1999 ret = PTR_ERR(consumers[i].consumer);
2000 dev_err(dev, "Failed to get supply '%s': %d\n",
2001 consumers[i].supply, ret);
2002 consumers[i].consumer = NULL;
2003 goto err;
2004 }
2005 }
2006
2007 return 0;
2008
2009 err:
2010 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2011 regulator_put(consumers[i].consumer);
2012
2013 return ret;
2014 }
2015 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2016
2017 /**
2018 * regulator_bulk_enable - enable multiple regulator consumers
2019 *
2020 * @num_consumers: Number of consumers
2021 * @consumers: Consumer data; clients are stored here.
2022 * @return 0 on success, an errno on failure
2023 *
2024 * This convenience API allows consumers to enable multiple regulator
2025 * clients in a single API call. If any consumers cannot be enabled
2026 * then any others that were enabled will be disabled again prior to
2027 * return.
2028 */
2029 int regulator_bulk_enable(int num_consumers,
2030 struct regulator_bulk_data *consumers)
2031 {
2032 int i;
2033 int ret;
2034
2035 for (i = 0; i < num_consumers; i++) {
2036 ret = regulator_enable(consumers[i].consumer);
2037 if (ret != 0)
2038 goto err;
2039 }
2040
2041 return 0;
2042
2043 err:
2044 printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2045 for (--i; i >= 0; --i)
2046 regulator_disable(consumers[i].consumer);
2047
2048 return ret;
2049 }
2050 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2051
2052 /**
2053 * regulator_bulk_disable - disable multiple regulator consumers
2054 *
2055 * @num_consumers: Number of consumers
2056 * @consumers: Consumer data; clients are stored here.
2057 * @return 0 on success, an errno on failure
2058 *
2059 * This convenience API allows consumers to disable multiple regulator
2060 * clients in a single API call. If any consumers cannot be enabled
2061 * then any others that were disabled will be disabled again prior to
2062 * return.
2063 */
2064 int regulator_bulk_disable(int num_consumers,
2065 struct regulator_bulk_data *consumers)
2066 {
2067 int i;
2068 int ret;
2069
2070 for (i = 0; i < num_consumers; i++) {
2071 ret = regulator_disable(consumers[i].consumer);
2072 if (ret != 0)
2073 goto err;
2074 }
2075
2076 return 0;
2077
2078 err:
2079 printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2080 ret);
2081 for (--i; i >= 0; --i)
2082 regulator_enable(consumers[i].consumer);
2083
2084 return ret;
2085 }
2086 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2087
2088 /**
2089 * regulator_bulk_free - free multiple regulator consumers
2090 *
2091 * @num_consumers: Number of consumers
2092 * @consumers: Consumer data; clients are stored here.
2093 *
2094 * This convenience API allows consumers to free multiple regulator
2095 * clients in a single API call.
2096 */
2097 void regulator_bulk_free(int num_consumers,
2098 struct regulator_bulk_data *consumers)
2099 {
2100 int i;
2101
2102 for (i = 0; i < num_consumers; i++) {
2103 regulator_put(consumers[i].consumer);
2104 consumers[i].consumer = NULL;
2105 }
2106 }
2107 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2108
2109 /**
2110 * regulator_notifier_call_chain - call regulator event notifier
2111 * @rdev: regulator source
2112 * @event: notifier block
2113 * @data: callback-specific data.
2114 *
2115 * Called by regulator drivers to notify clients a regulator event has
2116 * occurred. We also notify regulator clients downstream.
2117 * Note lock must be held by caller.
2118 */
2119 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2120 unsigned long event, void *data)
2121 {
2122 _notifier_call_chain(rdev, event, data);
2123 return NOTIFY_DONE;
2124
2125 }
2126 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2127
2128 /**
2129 * regulator_mode_to_status - convert a regulator mode into a status
2130 *
2131 * @mode: Mode to convert
2132 *
2133 * Convert a regulator mode into a status.
2134 */
2135 int regulator_mode_to_status(unsigned int mode)
2136 {
2137 switch (mode) {
2138 case REGULATOR_MODE_FAST:
2139 return REGULATOR_STATUS_FAST;
2140 case REGULATOR_MODE_NORMAL:
2141 return REGULATOR_STATUS_NORMAL;
2142 case REGULATOR_MODE_IDLE:
2143 return REGULATOR_STATUS_IDLE;
2144 case REGULATOR_STATUS_STANDBY:
2145 return REGULATOR_STATUS_STANDBY;
2146 default:
2147 return 0;
2148 }
2149 }
2150 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2151
2152 /*
2153 * To avoid cluttering sysfs (and memory) with useless state, only
2154 * create attributes that can be meaningfully displayed.
2155 */
2156 static int add_regulator_attributes(struct regulator_dev *rdev)
2157 {
2158 struct device *dev = &rdev->dev;
2159 struct regulator_ops *ops = rdev->desc->ops;
2160 int status = 0;
2161
2162 /* some attributes need specific methods to be displayed */
2163 if (ops->get_voltage) {
2164 status = device_create_file(dev, &dev_attr_microvolts);
2165 if (status < 0)
2166 return status;
2167 }
2168 if (ops->get_current_limit) {
2169 status = device_create_file(dev, &dev_attr_microamps);
2170 if (status < 0)
2171 return status;
2172 }
2173 if (ops->get_mode) {
2174 status = device_create_file(dev, &dev_attr_opmode);
2175 if (status < 0)
2176 return status;
2177 }
2178 if (ops->is_enabled) {
2179 status = device_create_file(dev, &dev_attr_state);
2180 if (status < 0)
2181 return status;
2182 }
2183 if (ops->get_status) {
2184 status = device_create_file(dev, &dev_attr_status);
2185 if (status < 0)
2186 return status;
2187 }
2188
2189 /* some attributes are type-specific */
2190 if (rdev->desc->type == REGULATOR_CURRENT) {
2191 status = device_create_file(dev, &dev_attr_requested_microamps);
2192 if (status < 0)
2193 return status;
2194 }
2195
2196 /* all the other attributes exist to support constraints;
2197 * don't show them if there are no constraints, or if the
2198 * relevant supporting methods are missing.
2199 */
2200 if (!rdev->constraints)
2201 return status;
2202
2203 /* constraints need specific supporting methods */
2204 if (ops->set_voltage) {
2205 status = device_create_file(dev, &dev_attr_min_microvolts);
2206 if (status < 0)
2207 return status;
2208 status = device_create_file(dev, &dev_attr_max_microvolts);
2209 if (status < 0)
2210 return status;
2211 }
2212 if (ops->set_current_limit) {
2213 status = device_create_file(dev, &dev_attr_min_microamps);
2214 if (status < 0)
2215 return status;
2216 status = device_create_file(dev, &dev_attr_max_microamps);
2217 if (status < 0)
2218 return status;
2219 }
2220
2221 /* suspend mode constraints need multiple supporting methods */
2222 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2223 return status;
2224
2225 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2226 if (status < 0)
2227 return status;
2228 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2229 if (status < 0)
2230 return status;
2231 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2232 if (status < 0)
2233 return status;
2234
2235 if (ops->set_suspend_voltage) {
2236 status = device_create_file(dev,
2237 &dev_attr_suspend_standby_microvolts);
2238 if (status < 0)
2239 return status;
2240 status = device_create_file(dev,
2241 &dev_attr_suspend_mem_microvolts);
2242 if (status < 0)
2243 return status;
2244 status = device_create_file(dev,
2245 &dev_attr_suspend_disk_microvolts);
2246 if (status < 0)
2247 return status;
2248 }
2249
2250 if (ops->set_suspend_mode) {
2251 status = device_create_file(dev,
2252 &dev_attr_suspend_standby_mode);
2253 if (status < 0)
2254 return status;
2255 status = device_create_file(dev,
2256 &dev_attr_suspend_mem_mode);
2257 if (status < 0)
2258 return status;
2259 status = device_create_file(dev,
2260 &dev_attr_suspend_disk_mode);
2261 if (status < 0)
2262 return status;
2263 }
2264
2265 return status;
2266 }
2267
2268 /**
2269 * regulator_register - register regulator
2270 * @regulator_desc: regulator to register
2271 * @dev: struct device for the regulator
2272 * @init_data: platform provided init data, passed through by driver
2273 * @driver_data: private regulator data
2274 *
2275 * Called by regulator drivers to register a regulator.
2276 * Returns 0 on success.
2277 */
2278 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2279 struct device *dev, struct regulator_init_data *init_data,
2280 void *driver_data)
2281 {
2282 static atomic_t regulator_no = ATOMIC_INIT(0);
2283 struct regulator_dev *rdev;
2284 int ret, i;
2285
2286 if (regulator_desc == NULL)
2287 return ERR_PTR(-EINVAL);
2288
2289 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2290 return ERR_PTR(-EINVAL);
2291
2292 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2293 regulator_desc->type != REGULATOR_CURRENT)
2294 return ERR_PTR(-EINVAL);
2295
2296 if (!init_data)
2297 return ERR_PTR(-EINVAL);
2298
2299 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2300 if (rdev == NULL)
2301 return ERR_PTR(-ENOMEM);
2302
2303 mutex_lock(&regulator_list_mutex);
2304
2305 mutex_init(&rdev->mutex);
2306 rdev->reg_data = driver_data;
2307 rdev->owner = regulator_desc->owner;
2308 rdev->desc = regulator_desc;
2309 INIT_LIST_HEAD(&rdev->consumer_list);
2310 INIT_LIST_HEAD(&rdev->supply_list);
2311 INIT_LIST_HEAD(&rdev->list);
2312 INIT_LIST_HEAD(&rdev->slist);
2313 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2314
2315 /* preform any regulator specific init */
2316 if (init_data->regulator_init) {
2317 ret = init_data->regulator_init(rdev->reg_data);
2318 if (ret < 0)
2319 goto clean;
2320 }
2321
2322 /* register with sysfs */
2323 rdev->dev.class = &regulator_class;
2324 rdev->dev.parent = dev;
2325 dev_set_name(&rdev->dev, "regulator.%d",
2326 atomic_inc_return(&regulator_no) - 1);
2327 ret = device_register(&rdev->dev);
2328 if (ret != 0) {
2329 put_device(&rdev->dev);
2330 goto clean;
2331 }
2332
2333 dev_set_drvdata(&rdev->dev, rdev);
2334
2335 /* set regulator constraints */
2336 ret = set_machine_constraints(rdev, &init_data->constraints);
2337 if (ret < 0)
2338 goto scrub;
2339
2340 /* add attributes supported by this regulator */
2341 ret = add_regulator_attributes(rdev);
2342 if (ret < 0)
2343 goto scrub;
2344
2345 /* set supply regulator if it exists */
2346 if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2347 dev_err(dev,
2348 "Supply regulator specified by both name and dev\n");
2349 goto scrub;
2350 }
2351
2352 if (init_data->supply_regulator) {
2353 struct regulator_dev *r;
2354 int found = 0;
2355
2356 list_for_each_entry(r, &regulator_list, list) {
2357 if (strcmp(rdev_get_name(r),
2358 init_data->supply_regulator) == 0) {
2359 found = 1;
2360 break;
2361 }
2362 }
2363
2364 if (!found) {
2365 dev_err(dev, "Failed to find supply %s\n",
2366 init_data->supply_regulator);
2367 goto scrub;
2368 }
2369
2370 ret = set_supply(rdev, r);
2371 if (ret < 0)
2372 goto scrub;
2373 }
2374
2375 if (init_data->supply_regulator_dev) {
2376 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2377 ret = set_supply(rdev,
2378 dev_get_drvdata(init_data->supply_regulator_dev));
2379 if (ret < 0)
2380 goto scrub;
2381 }
2382
2383 /* add consumers devices */
2384 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2385 ret = set_consumer_device_supply(rdev,
2386 init_data->consumer_supplies[i].dev,
2387 init_data->consumer_supplies[i].dev_name,
2388 init_data->consumer_supplies[i].supply);
2389 if (ret < 0)
2390 goto unset_supplies;
2391 }
2392
2393 list_add(&rdev->list, &regulator_list);
2394 out:
2395 mutex_unlock(&regulator_list_mutex);
2396 return rdev;
2397
2398 unset_supplies:
2399 unset_regulator_supplies(rdev);
2400
2401 scrub:
2402 device_unregister(&rdev->dev);
2403 /* device core frees rdev */
2404 rdev = ERR_PTR(ret);
2405 goto out;
2406
2407 clean:
2408 kfree(rdev);
2409 rdev = ERR_PTR(ret);
2410 goto out;
2411 }
2412 EXPORT_SYMBOL_GPL(regulator_register);
2413
2414 /**
2415 * regulator_unregister - unregister regulator
2416 * @rdev: regulator to unregister
2417 *
2418 * Called by regulator drivers to unregister a regulator.
2419 */
2420 void regulator_unregister(struct regulator_dev *rdev)
2421 {
2422 if (rdev == NULL)
2423 return;
2424
2425 mutex_lock(&regulator_list_mutex);
2426 WARN_ON(rdev->open_count);
2427 unset_regulator_supplies(rdev);
2428 list_del(&rdev->list);
2429 if (rdev->supply)
2430 sysfs_remove_link(&rdev->dev.kobj, "supply");
2431 device_unregister(&rdev->dev);
2432 mutex_unlock(&regulator_list_mutex);
2433 }
2434 EXPORT_SYMBOL_GPL(regulator_unregister);
2435
2436 /**
2437 * regulator_suspend_prepare - prepare regulators for system wide suspend
2438 * @state: system suspend state
2439 *
2440 * Configure each regulator with it's suspend operating parameters for state.
2441 * This will usually be called by machine suspend code prior to supending.
2442 */
2443 int regulator_suspend_prepare(suspend_state_t state)
2444 {
2445 struct regulator_dev *rdev;
2446 int ret = 0;
2447
2448 /* ON is handled by regulator active state */
2449 if (state == PM_SUSPEND_ON)
2450 return -EINVAL;
2451
2452 mutex_lock(&regulator_list_mutex);
2453 list_for_each_entry(rdev, &regulator_list, list) {
2454
2455 mutex_lock(&rdev->mutex);
2456 ret = suspend_prepare(rdev, state);
2457 mutex_unlock(&rdev->mutex);
2458
2459 if (ret < 0) {
2460 printk(KERN_ERR "%s: failed to prepare %s\n",
2461 __func__, rdev_get_name(rdev));
2462 goto out;
2463 }
2464 }
2465 out:
2466 mutex_unlock(&regulator_list_mutex);
2467 return ret;
2468 }
2469 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2470
2471 /**
2472 * regulator_has_full_constraints - the system has fully specified constraints
2473 *
2474 * Calling this function will cause the regulator API to disable all
2475 * regulators which have a zero use count and don't have an always_on
2476 * constraint in a late_initcall.
2477 *
2478 * The intention is that this will become the default behaviour in a
2479 * future kernel release so users are encouraged to use this facility
2480 * now.
2481 */
2482 void regulator_has_full_constraints(void)
2483 {
2484 has_full_constraints = 1;
2485 }
2486 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2487
2488 /**
2489 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2490 *
2491 * Calling this function will cause the regulator API to provide a
2492 * dummy regulator to consumers if no physical regulator is found,
2493 * allowing most consumers to proceed as though a regulator were
2494 * configured. This allows systems such as those with software
2495 * controllable regulators for the CPU core only to be brought up more
2496 * readily.
2497 */
2498 void regulator_use_dummy_regulator(void)
2499 {
2500 board_wants_dummy_regulator = true;
2501 }
2502 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2503
2504 /**
2505 * rdev_get_drvdata - get rdev regulator driver data
2506 * @rdev: regulator
2507 *
2508 * Get rdev regulator driver private data. This call can be used in the
2509 * regulator driver context.
2510 */
2511 void *rdev_get_drvdata(struct regulator_dev *rdev)
2512 {
2513 return rdev->reg_data;
2514 }
2515 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2516
2517 /**
2518 * regulator_get_drvdata - get regulator driver data
2519 * @regulator: regulator
2520 *
2521 * Get regulator driver private data. This call can be used in the consumer
2522 * driver context when non API regulator specific functions need to be called.
2523 */
2524 void *regulator_get_drvdata(struct regulator *regulator)
2525 {
2526 return regulator->rdev->reg_data;
2527 }
2528 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2529
2530 /**
2531 * regulator_set_drvdata - set regulator driver data
2532 * @regulator: regulator
2533 * @data: data
2534 */
2535 void regulator_set_drvdata(struct regulator *regulator, void *data)
2536 {
2537 regulator->rdev->reg_data = data;
2538 }
2539 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2540
2541 /**
2542 * regulator_get_id - get regulator ID
2543 * @rdev: regulator
2544 */
2545 int rdev_get_id(struct regulator_dev *rdev)
2546 {
2547 return rdev->desc->id;
2548 }
2549 EXPORT_SYMBOL_GPL(rdev_get_id);
2550
2551 struct device *rdev_get_dev(struct regulator_dev *rdev)
2552 {
2553 return &rdev->dev;
2554 }
2555 EXPORT_SYMBOL_GPL(rdev_get_dev);
2556
2557 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2558 {
2559 return reg_init_data->driver_data;
2560 }
2561 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2562
2563 static int __init regulator_init(void)
2564 {
2565 int ret;
2566
2567 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2568
2569 ret = class_register(&regulator_class);
2570
2571 regulator_dummy_init();
2572
2573 return ret;
2574 }
2575
2576 /* init early to allow our consumers to complete system booting */
2577 core_initcall(regulator_init);
2578
2579 static int __init regulator_init_complete(void)
2580 {
2581 struct regulator_dev *rdev;
2582 struct regulator_ops *ops;
2583 struct regulation_constraints *c;
2584 int enabled, ret;
2585 const char *name;
2586
2587 mutex_lock(&regulator_list_mutex);
2588
2589 /* If we have a full configuration then disable any regulators
2590 * which are not in use or always_on. This will become the
2591 * default behaviour in the future.
2592 */
2593 list_for_each_entry(rdev, &regulator_list, list) {
2594 ops = rdev->desc->ops;
2595 c = rdev->constraints;
2596
2597 name = rdev_get_name(rdev);
2598
2599 if (!ops->disable || (c && c->always_on))
2600 continue;
2601
2602 mutex_lock(&rdev->mutex);
2603
2604 if (rdev->use_count)
2605 goto unlock;
2606
2607 /* If we can't read the status assume it's on. */
2608 if (ops->is_enabled)
2609 enabled = ops->is_enabled(rdev);
2610 else
2611 enabled = 1;
2612
2613 if (!enabled)
2614 goto unlock;
2615
2616 if (has_full_constraints) {
2617 /* We log since this may kill the system if it
2618 * goes wrong. */
2619 printk(KERN_INFO "%s: disabling %s\n",
2620 __func__, name);
2621 ret = ops->disable(rdev);
2622 if (ret != 0) {
2623 printk(KERN_ERR
2624 "%s: couldn't disable %s: %d\n",
2625 __func__, name, ret);
2626 }
2627 } else {
2628 /* The intention is that in future we will
2629 * assume that full constraints are provided
2630 * so warn even if we aren't going to do
2631 * anything here.
2632 */
2633 printk(KERN_WARNING
2634 "%s: incomplete constraints, leaving %s on\n",
2635 __func__, name);
2636 }
2637
2638 unlock:
2639 mutex_unlock(&rdev->mutex);
2640 }
2641
2642 mutex_unlock(&regulator_list_mutex);
2643
2644 return 0;
2645 }
2646 late_initcall(regulator_init_complete);