]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/regulator/core.c
regulator: regulator_enable() permission checking
[mirror_ubuntu-bionic-kernel.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
32
33 /*
34 * struct regulator_map
35 *
36 * Used to provide symbolic supply names to devices.
37 */
38 struct regulator_map {
39 struct list_head list;
40 const char *dev_name; /* The dev_name() for the consumer */
41 const char *supply;
42 struct regulator_dev *regulator;
43 };
44
45 /*
46 * struct regulator
47 *
48 * One for each consumer device.
49 */
50 struct regulator {
51 struct device *dev;
52 struct list_head list;
53 int uA_load;
54 int min_uV;
55 int max_uV;
56 char *supply_name;
57 struct device_attribute dev_attr;
58 struct regulator_dev *rdev;
59 };
60
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67 unsigned long event, void *data);
68
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72 struct regulator *regulator = NULL;
73 struct regulator_dev *rdev;
74
75 mutex_lock(&regulator_list_mutex);
76 list_for_each_entry(rdev, &regulator_list, list) {
77 mutex_lock(&rdev->mutex);
78 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79 if (regulator->dev == dev) {
80 mutex_unlock(&rdev->mutex);
81 mutex_unlock(&regulator_list_mutex);
82 return regulator;
83 }
84 }
85 mutex_unlock(&rdev->mutex);
86 }
87 mutex_unlock(&regulator_list_mutex);
88 return NULL;
89 }
90
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93 int *min_uV, int *max_uV)
94 {
95 BUG_ON(*min_uV > *max_uV);
96
97 if (!rdev->constraints) {
98 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99 rdev->desc->name);
100 return -ENODEV;
101 }
102 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103 printk(KERN_ERR "%s: operation not allowed for %s\n",
104 __func__, rdev->desc->name);
105 return -EPERM;
106 }
107
108 if (*max_uV > rdev->constraints->max_uV)
109 *max_uV = rdev->constraints->max_uV;
110 if (*min_uV < rdev->constraints->min_uV)
111 *min_uV = rdev->constraints->min_uV;
112
113 if (*min_uV > *max_uV)
114 return -EINVAL;
115
116 return 0;
117 }
118
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121 int *min_uA, int *max_uA)
122 {
123 BUG_ON(*min_uA > *max_uA);
124
125 if (!rdev->constraints) {
126 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127 rdev->desc->name);
128 return -ENODEV;
129 }
130 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131 printk(KERN_ERR "%s: operation not allowed for %s\n",
132 __func__, rdev->desc->name);
133 return -EPERM;
134 }
135
136 if (*max_uA > rdev->constraints->max_uA)
137 *max_uA = rdev->constraints->max_uA;
138 if (*min_uA < rdev->constraints->min_uA)
139 *min_uA = rdev->constraints->min_uA;
140
141 if (*min_uA > *max_uA)
142 return -EINVAL;
143
144 return 0;
145 }
146
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150 switch (mode) {
151 case REGULATOR_MODE_FAST:
152 case REGULATOR_MODE_NORMAL:
153 case REGULATOR_MODE_IDLE:
154 case REGULATOR_MODE_STANDBY:
155 break;
156 default:
157 return -EINVAL;
158 }
159
160 if (!rdev->constraints) {
161 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162 rdev->desc->name);
163 return -ENODEV;
164 }
165 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166 printk(KERN_ERR "%s: operation not allowed for %s\n",
167 __func__, rdev->desc->name);
168 return -EPERM;
169 }
170 if (!(rdev->constraints->valid_modes_mask & mode)) {
171 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172 __func__, mode, rdev->desc->name);
173 return -EINVAL;
174 }
175 return 0;
176 }
177
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181 if (!rdev->constraints) {
182 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183 rdev->desc->name);
184 return -ENODEV;
185 }
186 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187 printk(KERN_ERR "%s: operation not allowed for %s\n",
188 __func__, rdev->desc->name);
189 return -EPERM;
190 }
191 return 0;
192 }
193
194 static ssize_t device_requested_uA_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
196 {
197 struct regulator *regulator;
198
199 regulator = get_device_regulator(dev);
200 if (regulator == NULL)
201 return 0;
202
203 return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205
206 static ssize_t regulator_uV_show(struct device *dev,
207 struct device_attribute *attr, char *buf)
208 {
209 struct regulator_dev *rdev = dev_get_drvdata(dev);
210 ssize_t ret;
211
212 mutex_lock(&rdev->mutex);
213 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214 mutex_unlock(&rdev->mutex);
215
216 return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220 static ssize_t regulator_uA_show(struct device *dev,
221 struct device_attribute *attr, char *buf)
222 {
223 struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229 static ssize_t regulator_name_show(struct device *dev,
230 struct device_attribute *attr, char *buf)
231 {
232 struct regulator_dev *rdev = dev_get_drvdata(dev);
233 const char *name;
234
235 if (rdev->constraints && rdev->constraints->name)
236 name = rdev->constraints->name;
237 else if (rdev->desc->name)
238 name = rdev->desc->name;
239 else
240 name = "";
241
242 return sprintf(buf, "%s\n", name);
243 }
244
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247 switch (mode) {
248 case REGULATOR_MODE_FAST:
249 return sprintf(buf, "fast\n");
250 case REGULATOR_MODE_NORMAL:
251 return sprintf(buf, "normal\n");
252 case REGULATOR_MODE_IDLE:
253 return sprintf(buf, "idle\n");
254 case REGULATOR_MODE_STANDBY:
255 return sprintf(buf, "standby\n");
256 }
257 return sprintf(buf, "unknown\n");
258 }
259
260 static ssize_t regulator_opmode_show(struct device *dev,
261 struct device_attribute *attr, char *buf)
262 {
263 struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271 if (state > 0)
272 return sprintf(buf, "enabled\n");
273 else if (state == 0)
274 return sprintf(buf, "disabled\n");
275 else
276 return sprintf(buf, "unknown\n");
277 }
278
279 static ssize_t regulator_state_show(struct device *dev,
280 struct device_attribute *attr, char *buf)
281 {
282 struct regulator_dev *rdev = dev_get_drvdata(dev);
283 ssize_t ret;
284
285 mutex_lock(&rdev->mutex);
286 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
287 mutex_unlock(&rdev->mutex);
288
289 return ret;
290 }
291 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
292
293 static ssize_t regulator_status_show(struct device *dev,
294 struct device_attribute *attr, char *buf)
295 {
296 struct regulator_dev *rdev = dev_get_drvdata(dev);
297 int status;
298 char *label;
299
300 status = rdev->desc->ops->get_status(rdev);
301 if (status < 0)
302 return status;
303
304 switch (status) {
305 case REGULATOR_STATUS_OFF:
306 label = "off";
307 break;
308 case REGULATOR_STATUS_ON:
309 label = "on";
310 break;
311 case REGULATOR_STATUS_ERROR:
312 label = "error";
313 break;
314 case REGULATOR_STATUS_FAST:
315 label = "fast";
316 break;
317 case REGULATOR_STATUS_NORMAL:
318 label = "normal";
319 break;
320 case REGULATOR_STATUS_IDLE:
321 label = "idle";
322 break;
323 case REGULATOR_STATUS_STANDBY:
324 label = "standby";
325 break;
326 default:
327 return -ERANGE;
328 }
329
330 return sprintf(buf, "%s\n", label);
331 }
332 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
333
334 static ssize_t regulator_min_uA_show(struct device *dev,
335 struct device_attribute *attr, char *buf)
336 {
337 struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339 if (!rdev->constraints)
340 return sprintf(buf, "constraint not defined\n");
341
342 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
343 }
344 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
345
346 static ssize_t regulator_max_uA_show(struct device *dev,
347 struct device_attribute *attr, char *buf)
348 {
349 struct regulator_dev *rdev = dev_get_drvdata(dev);
350
351 if (!rdev->constraints)
352 return sprintf(buf, "constraint not defined\n");
353
354 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
355 }
356 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
357
358 static ssize_t regulator_min_uV_show(struct device *dev,
359 struct device_attribute *attr, char *buf)
360 {
361 struct regulator_dev *rdev = dev_get_drvdata(dev);
362
363 if (!rdev->constraints)
364 return sprintf(buf, "constraint not defined\n");
365
366 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
367 }
368 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
369
370 static ssize_t regulator_max_uV_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
372 {
373 struct regulator_dev *rdev = dev_get_drvdata(dev);
374
375 if (!rdev->constraints)
376 return sprintf(buf, "constraint not defined\n");
377
378 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
379 }
380 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
381
382 static ssize_t regulator_total_uA_show(struct device *dev,
383 struct device_attribute *attr, char *buf)
384 {
385 struct regulator_dev *rdev = dev_get_drvdata(dev);
386 struct regulator *regulator;
387 int uA = 0;
388
389 mutex_lock(&rdev->mutex);
390 list_for_each_entry(regulator, &rdev->consumer_list, list)
391 uA += regulator->uA_load;
392 mutex_unlock(&rdev->mutex);
393 return sprintf(buf, "%d\n", uA);
394 }
395 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
396
397 static ssize_t regulator_num_users_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399 {
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
401 return sprintf(buf, "%d\n", rdev->use_count);
402 }
403
404 static ssize_t regulator_type_show(struct device *dev,
405 struct device_attribute *attr, char *buf)
406 {
407 struct regulator_dev *rdev = dev_get_drvdata(dev);
408
409 switch (rdev->desc->type) {
410 case REGULATOR_VOLTAGE:
411 return sprintf(buf, "voltage\n");
412 case REGULATOR_CURRENT:
413 return sprintf(buf, "current\n");
414 }
415 return sprintf(buf, "unknown\n");
416 }
417
418 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
419 struct device_attribute *attr, char *buf)
420 {
421 struct regulator_dev *rdev = dev_get_drvdata(dev);
422
423 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
424 }
425 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
426 regulator_suspend_mem_uV_show, NULL);
427
428 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
429 struct device_attribute *attr, char *buf)
430 {
431 struct regulator_dev *rdev = dev_get_drvdata(dev);
432
433 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
434 }
435 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
436 regulator_suspend_disk_uV_show, NULL);
437
438 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
439 struct device_attribute *attr, char *buf)
440 {
441 struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
444 }
445 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
446 regulator_suspend_standby_uV_show, NULL);
447
448 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
449 struct device_attribute *attr, char *buf)
450 {
451 struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453 return regulator_print_opmode(buf,
454 rdev->constraints->state_mem.mode);
455 }
456 static DEVICE_ATTR(suspend_mem_mode, 0444,
457 regulator_suspend_mem_mode_show, NULL);
458
459 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
460 struct device_attribute *attr, char *buf)
461 {
462 struct regulator_dev *rdev = dev_get_drvdata(dev);
463
464 return regulator_print_opmode(buf,
465 rdev->constraints->state_disk.mode);
466 }
467 static DEVICE_ATTR(suspend_disk_mode, 0444,
468 regulator_suspend_disk_mode_show, NULL);
469
470 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
471 struct device_attribute *attr, char *buf)
472 {
473 struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475 return regulator_print_opmode(buf,
476 rdev->constraints->state_standby.mode);
477 }
478 static DEVICE_ATTR(suspend_standby_mode, 0444,
479 regulator_suspend_standby_mode_show, NULL);
480
481 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
482 struct device_attribute *attr, char *buf)
483 {
484 struct regulator_dev *rdev = dev_get_drvdata(dev);
485
486 return regulator_print_state(buf,
487 rdev->constraints->state_mem.enabled);
488 }
489 static DEVICE_ATTR(suspend_mem_state, 0444,
490 regulator_suspend_mem_state_show, NULL);
491
492 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
493 struct device_attribute *attr, char *buf)
494 {
495 struct regulator_dev *rdev = dev_get_drvdata(dev);
496
497 return regulator_print_state(buf,
498 rdev->constraints->state_disk.enabled);
499 }
500 static DEVICE_ATTR(suspend_disk_state, 0444,
501 regulator_suspend_disk_state_show, NULL);
502
503 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
504 struct device_attribute *attr, char *buf)
505 {
506 struct regulator_dev *rdev = dev_get_drvdata(dev);
507
508 return regulator_print_state(buf,
509 rdev->constraints->state_standby.enabled);
510 }
511 static DEVICE_ATTR(suspend_standby_state, 0444,
512 regulator_suspend_standby_state_show, NULL);
513
514
515 /*
516 * These are the only attributes are present for all regulators.
517 * Other attributes are a function of regulator functionality.
518 */
519 static struct device_attribute regulator_dev_attrs[] = {
520 __ATTR(name, 0444, regulator_name_show, NULL),
521 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
522 __ATTR(type, 0444, regulator_type_show, NULL),
523 __ATTR_NULL,
524 };
525
526 static void regulator_dev_release(struct device *dev)
527 {
528 struct regulator_dev *rdev = dev_get_drvdata(dev);
529 kfree(rdev);
530 }
531
532 static struct class regulator_class = {
533 .name = "regulator",
534 .dev_release = regulator_dev_release,
535 .dev_attrs = regulator_dev_attrs,
536 };
537
538 /* Calculate the new optimum regulator operating mode based on the new total
539 * consumer load. All locks held by caller */
540 static void drms_uA_update(struct regulator_dev *rdev)
541 {
542 struct regulator *sibling;
543 int current_uA = 0, output_uV, input_uV, err;
544 unsigned int mode;
545
546 err = regulator_check_drms(rdev);
547 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
548 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
549 return;
550
551 /* get output voltage */
552 output_uV = rdev->desc->ops->get_voltage(rdev);
553 if (output_uV <= 0)
554 return;
555
556 /* get input voltage */
557 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
558 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
559 else
560 input_uV = rdev->constraints->input_uV;
561 if (input_uV <= 0)
562 return;
563
564 /* calc total requested load */
565 list_for_each_entry(sibling, &rdev->consumer_list, list)
566 current_uA += sibling->uA_load;
567
568 /* now get the optimum mode for our new total regulator load */
569 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
570 output_uV, current_uA);
571
572 /* check the new mode is allowed */
573 err = regulator_check_mode(rdev, mode);
574 if (err == 0)
575 rdev->desc->ops->set_mode(rdev, mode);
576 }
577
578 static int suspend_set_state(struct regulator_dev *rdev,
579 struct regulator_state *rstate)
580 {
581 int ret = 0;
582
583 /* enable & disable are mandatory for suspend control */
584 if (!rdev->desc->ops->set_suspend_enable ||
585 !rdev->desc->ops->set_suspend_disable) {
586 printk(KERN_ERR "%s: no way to set suspend state\n",
587 __func__);
588 return -EINVAL;
589 }
590
591 if (rstate->enabled)
592 ret = rdev->desc->ops->set_suspend_enable(rdev);
593 else
594 ret = rdev->desc->ops->set_suspend_disable(rdev);
595 if (ret < 0) {
596 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
597 return ret;
598 }
599
600 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
601 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
602 if (ret < 0) {
603 printk(KERN_ERR "%s: failed to set voltage\n",
604 __func__);
605 return ret;
606 }
607 }
608
609 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
610 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
611 if (ret < 0) {
612 printk(KERN_ERR "%s: failed to set mode\n", __func__);
613 return ret;
614 }
615 }
616 return ret;
617 }
618
619 /* locks held by caller */
620 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
621 {
622 if (!rdev->constraints)
623 return -EINVAL;
624
625 switch (state) {
626 case PM_SUSPEND_STANDBY:
627 return suspend_set_state(rdev,
628 &rdev->constraints->state_standby);
629 case PM_SUSPEND_MEM:
630 return suspend_set_state(rdev,
631 &rdev->constraints->state_mem);
632 case PM_SUSPEND_MAX:
633 return suspend_set_state(rdev,
634 &rdev->constraints->state_disk);
635 default:
636 return -EINVAL;
637 }
638 }
639
640 static void print_constraints(struct regulator_dev *rdev)
641 {
642 struct regulation_constraints *constraints = rdev->constraints;
643 char buf[80];
644 int count;
645
646 if (rdev->desc->type == REGULATOR_VOLTAGE) {
647 if (constraints->min_uV == constraints->max_uV)
648 count = sprintf(buf, "%d mV ",
649 constraints->min_uV / 1000);
650 else
651 count = sprintf(buf, "%d <--> %d mV ",
652 constraints->min_uV / 1000,
653 constraints->max_uV / 1000);
654 } else {
655 if (constraints->min_uA == constraints->max_uA)
656 count = sprintf(buf, "%d mA ",
657 constraints->min_uA / 1000);
658 else
659 count = sprintf(buf, "%d <--> %d mA ",
660 constraints->min_uA / 1000,
661 constraints->max_uA / 1000);
662 }
663 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
664 count += sprintf(buf + count, "fast ");
665 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
666 count += sprintf(buf + count, "normal ");
667 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
668 count += sprintf(buf + count, "idle ");
669 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
670 count += sprintf(buf + count, "standby");
671
672 printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
673 }
674
675 /**
676 * set_machine_constraints - sets regulator constraints
677 * @rdev: regulator source
678 * @constraints: constraints to apply
679 *
680 * Allows platform initialisation code to define and constrain
681 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
682 * Constraints *must* be set by platform code in order for some
683 * regulator operations to proceed i.e. set_voltage, set_current_limit,
684 * set_mode.
685 */
686 static int set_machine_constraints(struct regulator_dev *rdev,
687 struct regulation_constraints *constraints)
688 {
689 int ret = 0;
690 const char *name;
691 struct regulator_ops *ops = rdev->desc->ops;
692
693 if (constraints->name)
694 name = constraints->name;
695 else if (rdev->desc->name)
696 name = rdev->desc->name;
697 else
698 name = "regulator";
699
700 /* constrain machine-level voltage specs to fit
701 * the actual range supported by this regulator.
702 */
703 if (ops->list_voltage && rdev->desc->n_voltages) {
704 int count = rdev->desc->n_voltages;
705 int i;
706 int min_uV = INT_MAX;
707 int max_uV = INT_MIN;
708 int cmin = constraints->min_uV;
709 int cmax = constraints->max_uV;
710
711 /* it's safe to autoconfigure fixed-voltage supplies
712 and the constraints are used by list_voltage. */
713 if (count == 1 && !cmin) {
714 cmin = 1;
715 cmax = INT_MAX;
716 constraints->min_uV = cmin;
717 constraints->max_uV = cmax;
718 }
719
720 /* voltage constraints are optional */
721 if ((cmin == 0) && (cmax == 0))
722 goto out;
723
724 /* else require explicit machine-level constraints */
725 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
726 pr_err("%s: %s '%s' voltage constraints\n",
727 __func__, "invalid", name);
728 ret = -EINVAL;
729 goto out;
730 }
731
732 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
733 for (i = 0; i < count; i++) {
734 int value;
735
736 value = ops->list_voltage(rdev, i);
737 if (value <= 0)
738 continue;
739
740 /* maybe adjust [min_uV..max_uV] */
741 if (value >= cmin && value < min_uV)
742 min_uV = value;
743 if (value <= cmax && value > max_uV)
744 max_uV = value;
745 }
746
747 /* final: [min_uV..max_uV] valid iff constraints valid */
748 if (max_uV < min_uV) {
749 pr_err("%s: %s '%s' voltage constraints\n",
750 __func__, "unsupportable", name);
751 ret = -EINVAL;
752 goto out;
753 }
754
755 /* use regulator's subset of machine constraints */
756 if (constraints->min_uV < min_uV) {
757 pr_debug("%s: override '%s' %s, %d -> %d\n",
758 __func__, name, "min_uV",
759 constraints->min_uV, min_uV);
760 constraints->min_uV = min_uV;
761 }
762 if (constraints->max_uV > max_uV) {
763 pr_debug("%s: override '%s' %s, %d -> %d\n",
764 __func__, name, "max_uV",
765 constraints->max_uV, max_uV);
766 constraints->max_uV = max_uV;
767 }
768 }
769
770 rdev->constraints = constraints;
771
772 /* do we need to apply the constraint voltage */
773 if (rdev->constraints->apply_uV &&
774 rdev->constraints->min_uV == rdev->constraints->max_uV &&
775 ops->set_voltage) {
776 ret = ops->set_voltage(rdev,
777 rdev->constraints->min_uV, rdev->constraints->max_uV);
778 if (ret < 0) {
779 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
780 __func__,
781 rdev->constraints->min_uV, name);
782 rdev->constraints = NULL;
783 goto out;
784 }
785 }
786
787 /* do we need to setup our suspend state */
788 if (constraints->initial_state) {
789 ret = suspend_prepare(rdev, constraints->initial_state);
790 if (ret < 0) {
791 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
792 __func__, name);
793 rdev->constraints = NULL;
794 goto out;
795 }
796 }
797
798 if (constraints->initial_mode) {
799 if (!ops->set_mode) {
800 printk(KERN_ERR "%s: no set_mode operation for %s\n",
801 __func__, name);
802 ret = -EINVAL;
803 goto out;
804 }
805
806 ret = ops->set_mode(rdev, constraints->initial_mode);
807 if (ret < 0) {
808 printk(KERN_ERR
809 "%s: failed to set initial mode for %s: %d\n",
810 __func__, name, ret);
811 goto out;
812 }
813 }
814
815 /* If the constraints say the regulator should be on at this point
816 * and we have control then make sure it is enabled.
817 */
818 if ((constraints->always_on || constraints->boot_on) && ops->enable) {
819 ret = ops->enable(rdev);
820 if (ret < 0) {
821 printk(KERN_ERR "%s: failed to enable %s\n",
822 __func__, name);
823 rdev->constraints = NULL;
824 goto out;
825 }
826 }
827
828 print_constraints(rdev);
829 out:
830 return ret;
831 }
832
833 /**
834 * set_supply - set regulator supply regulator
835 * @rdev: regulator name
836 * @supply_rdev: supply regulator name
837 *
838 * Called by platform initialisation code to set the supply regulator for this
839 * regulator. This ensures that a regulators supply will also be enabled by the
840 * core if it's child is enabled.
841 */
842 static int set_supply(struct regulator_dev *rdev,
843 struct regulator_dev *supply_rdev)
844 {
845 int err;
846
847 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
848 "supply");
849 if (err) {
850 printk(KERN_ERR
851 "%s: could not add device link %s err %d\n",
852 __func__, supply_rdev->dev.kobj.name, err);
853 goto out;
854 }
855 rdev->supply = supply_rdev;
856 list_add(&rdev->slist, &supply_rdev->supply_list);
857 out:
858 return err;
859 }
860
861 /**
862 * set_consumer_device_supply: Bind a regulator to a symbolic supply
863 * @rdev: regulator source
864 * @consumer_dev: device the supply applies to
865 * @consumer_dev_name: dev_name() string for device supply applies to
866 * @supply: symbolic name for supply
867 *
868 * Allows platform initialisation code to map physical regulator
869 * sources to symbolic names for supplies for use by devices. Devices
870 * should use these symbolic names to request regulators, avoiding the
871 * need to provide board-specific regulator names as platform data.
872 *
873 * Only one of consumer_dev and consumer_dev_name may be specified.
874 */
875 static int set_consumer_device_supply(struct regulator_dev *rdev,
876 struct device *consumer_dev, const char *consumer_dev_name,
877 const char *supply)
878 {
879 struct regulator_map *node;
880 int has_dev;
881
882 if (consumer_dev && consumer_dev_name)
883 return -EINVAL;
884
885 if (!consumer_dev_name && consumer_dev)
886 consumer_dev_name = dev_name(consumer_dev);
887
888 if (supply == NULL)
889 return -EINVAL;
890
891 if (consumer_dev_name != NULL)
892 has_dev = 1;
893 else
894 has_dev = 0;
895
896 list_for_each_entry(node, &regulator_map_list, list) {
897 if (consumer_dev_name != node->dev_name)
898 continue;
899 if (strcmp(node->supply, supply) != 0)
900 continue;
901
902 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
903 dev_name(&node->regulator->dev),
904 node->regulator->desc->name,
905 supply,
906 dev_name(&rdev->dev), rdev->desc->name);
907 return -EBUSY;
908 }
909
910 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
911 if (node == NULL)
912 return -ENOMEM;
913
914 node->regulator = rdev;
915 node->supply = supply;
916
917 if (has_dev) {
918 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
919 if (node->dev_name == NULL) {
920 kfree(node);
921 return -ENOMEM;
922 }
923 }
924
925 list_add(&node->list, &regulator_map_list);
926 return 0;
927 }
928
929 static void unset_consumer_device_supply(struct regulator_dev *rdev,
930 const char *consumer_dev_name, struct device *consumer_dev)
931 {
932 struct regulator_map *node, *n;
933
934 if (consumer_dev && !consumer_dev_name)
935 consumer_dev_name = dev_name(consumer_dev);
936
937 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
938 if (rdev != node->regulator)
939 continue;
940
941 if (consumer_dev_name && node->dev_name &&
942 strcmp(consumer_dev_name, node->dev_name))
943 continue;
944
945 list_del(&node->list);
946 kfree(node->dev_name);
947 kfree(node);
948 return;
949 }
950 }
951
952 static void unset_regulator_supplies(struct regulator_dev *rdev)
953 {
954 struct regulator_map *node, *n;
955
956 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
957 if (rdev == node->regulator) {
958 list_del(&node->list);
959 kfree(node->dev_name);
960 kfree(node);
961 return;
962 }
963 }
964 }
965
966 #define REG_STR_SIZE 32
967
968 static struct regulator *create_regulator(struct regulator_dev *rdev,
969 struct device *dev,
970 const char *supply_name)
971 {
972 struct regulator *regulator;
973 char buf[REG_STR_SIZE];
974 int err, size;
975
976 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
977 if (regulator == NULL)
978 return NULL;
979
980 mutex_lock(&rdev->mutex);
981 regulator->rdev = rdev;
982 list_add(&regulator->list, &rdev->consumer_list);
983
984 if (dev) {
985 /* create a 'requested_microamps_name' sysfs entry */
986 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
987 supply_name);
988 if (size >= REG_STR_SIZE)
989 goto overflow_err;
990
991 regulator->dev = dev;
992 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
993 if (regulator->dev_attr.attr.name == NULL)
994 goto attr_name_err;
995
996 regulator->dev_attr.attr.owner = THIS_MODULE;
997 regulator->dev_attr.attr.mode = 0444;
998 regulator->dev_attr.show = device_requested_uA_show;
999 err = device_create_file(dev, &regulator->dev_attr);
1000 if (err < 0) {
1001 printk(KERN_WARNING "%s: could not add regulator_dev"
1002 " load sysfs\n", __func__);
1003 goto attr_name_err;
1004 }
1005
1006 /* also add a link to the device sysfs entry */
1007 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1008 dev->kobj.name, supply_name);
1009 if (size >= REG_STR_SIZE)
1010 goto attr_err;
1011
1012 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1013 if (regulator->supply_name == NULL)
1014 goto attr_err;
1015
1016 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1017 buf);
1018 if (err) {
1019 printk(KERN_WARNING
1020 "%s: could not add device link %s err %d\n",
1021 __func__, dev->kobj.name, err);
1022 device_remove_file(dev, &regulator->dev_attr);
1023 goto link_name_err;
1024 }
1025 }
1026 mutex_unlock(&rdev->mutex);
1027 return regulator;
1028 link_name_err:
1029 kfree(regulator->supply_name);
1030 attr_err:
1031 device_remove_file(regulator->dev, &regulator->dev_attr);
1032 attr_name_err:
1033 kfree(regulator->dev_attr.attr.name);
1034 overflow_err:
1035 list_del(&regulator->list);
1036 kfree(regulator);
1037 mutex_unlock(&rdev->mutex);
1038 return NULL;
1039 }
1040
1041 /* Internal regulator request function */
1042 static struct regulator *_regulator_get(struct device *dev, const char *id,
1043 int exclusive)
1044 {
1045 struct regulator_dev *rdev;
1046 struct regulator_map *map;
1047 struct regulator *regulator = ERR_PTR(-ENODEV);
1048 const char *devname = NULL;
1049 int ret;
1050
1051 if (id == NULL) {
1052 printk(KERN_ERR "regulator: get() with no identifier\n");
1053 return regulator;
1054 }
1055
1056 if (dev)
1057 devname = dev_name(dev);
1058
1059 mutex_lock(&regulator_list_mutex);
1060
1061 list_for_each_entry(map, &regulator_map_list, list) {
1062 /* If the mapping has a device set up it must match */
1063 if (map->dev_name &&
1064 (!devname || strcmp(map->dev_name, devname)))
1065 continue;
1066
1067 if (strcmp(map->supply, id) == 0) {
1068 rdev = map->regulator;
1069 goto found;
1070 }
1071 }
1072 mutex_unlock(&regulator_list_mutex);
1073 return regulator;
1074
1075 found:
1076 if (rdev->exclusive) {
1077 regulator = ERR_PTR(-EPERM);
1078 goto out;
1079 }
1080
1081 if (exclusive && rdev->open_count) {
1082 regulator = ERR_PTR(-EBUSY);
1083 goto out;
1084 }
1085
1086 if (!try_module_get(rdev->owner))
1087 goto out;
1088
1089 regulator = create_regulator(rdev, dev, id);
1090 if (regulator == NULL) {
1091 regulator = ERR_PTR(-ENOMEM);
1092 module_put(rdev->owner);
1093 }
1094
1095 rdev->open_count++;
1096 if (exclusive) {
1097 rdev->exclusive = 1;
1098
1099 ret = _regulator_is_enabled(rdev);
1100 if (ret > 0)
1101 rdev->use_count = 1;
1102 else
1103 rdev->use_count = 0;
1104 }
1105
1106 out:
1107 mutex_unlock(&regulator_list_mutex);
1108
1109 return regulator;
1110 }
1111
1112 /**
1113 * regulator_get - lookup and obtain a reference to a regulator.
1114 * @dev: device for regulator "consumer"
1115 * @id: Supply name or regulator ID.
1116 *
1117 * Returns a struct regulator corresponding to the regulator producer,
1118 * or IS_ERR() condition containing errno.
1119 *
1120 * Use of supply names configured via regulator_set_device_supply() is
1121 * strongly encouraged. It is recommended that the supply name used
1122 * should match the name used for the supply and/or the relevant
1123 * device pins in the datasheet.
1124 */
1125 struct regulator *regulator_get(struct device *dev, const char *id)
1126 {
1127 return _regulator_get(dev, id, 0);
1128 }
1129 EXPORT_SYMBOL_GPL(regulator_get);
1130
1131 /**
1132 * regulator_get_exclusive - obtain exclusive access to a regulator.
1133 * @dev: device for regulator "consumer"
1134 * @id: Supply name or regulator ID.
1135 *
1136 * Returns a struct regulator corresponding to the regulator producer,
1137 * or IS_ERR() condition containing errno. Other consumers will be
1138 * unable to obtain this reference is held and the use count for the
1139 * regulator will be initialised to reflect the current state of the
1140 * regulator.
1141 *
1142 * This is intended for use by consumers which cannot tolerate shared
1143 * use of the regulator such as those which need to force the
1144 * regulator off for correct operation of the hardware they are
1145 * controlling.
1146 *
1147 * Use of supply names configured via regulator_set_device_supply() is
1148 * strongly encouraged. It is recommended that the supply name used
1149 * should match the name used for the supply and/or the relevant
1150 * device pins in the datasheet.
1151 */
1152 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1153 {
1154 return _regulator_get(dev, id, 1);
1155 }
1156 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1157
1158 /**
1159 * regulator_put - "free" the regulator source
1160 * @regulator: regulator source
1161 *
1162 * Note: drivers must ensure that all regulator_enable calls made on this
1163 * regulator source are balanced by regulator_disable calls prior to calling
1164 * this function.
1165 */
1166 void regulator_put(struct regulator *regulator)
1167 {
1168 struct regulator_dev *rdev;
1169
1170 if (regulator == NULL || IS_ERR(regulator))
1171 return;
1172
1173 mutex_lock(&regulator_list_mutex);
1174 rdev = regulator->rdev;
1175
1176 /* remove any sysfs entries */
1177 if (regulator->dev) {
1178 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1179 kfree(regulator->supply_name);
1180 device_remove_file(regulator->dev, &regulator->dev_attr);
1181 kfree(regulator->dev_attr.attr.name);
1182 }
1183 list_del(&regulator->list);
1184 kfree(regulator);
1185
1186 rdev->open_count--;
1187 rdev->exclusive = 0;
1188
1189 module_put(rdev->owner);
1190 mutex_unlock(&regulator_list_mutex);
1191 }
1192 EXPORT_SYMBOL_GPL(regulator_put);
1193
1194 static int _regulator_can_change_status(struct regulator_dev *rdev)
1195 {
1196 if (!rdev->constraints)
1197 return 0;
1198
1199 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1200 return 1;
1201 else
1202 return 0;
1203 }
1204
1205 /* locks held by regulator_enable() */
1206 static int _regulator_enable(struct regulator_dev *rdev)
1207 {
1208 int ret;
1209
1210 /* do we need to enable the supply regulator first */
1211 if (rdev->supply) {
1212 ret = _regulator_enable(rdev->supply);
1213 if (ret < 0) {
1214 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1215 __func__, rdev->desc->name, ret);
1216 return ret;
1217 }
1218 }
1219
1220 /* check voltage and requested load before enabling */
1221 if (rdev->constraints &&
1222 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1223 drms_uA_update(rdev);
1224
1225 if (rdev->use_count == 0) {
1226 /* The regulator may on if it's not switchable or left on */
1227 ret = _regulator_is_enabled(rdev);
1228 if (ret == -EINVAL || ret == 0) {
1229 if (!_regulator_can_change_status(rdev))
1230 return -EPERM;
1231
1232 if (rdev->desc->ops->enable) {
1233 ret = rdev->desc->ops->enable(rdev);
1234 if (ret < 0)
1235 return ret;
1236 } else {
1237 return -EINVAL;
1238 }
1239 } else {
1240 printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1241 __func__, rdev->desc->name, ret);
1242 return ret;
1243 }
1244 }
1245
1246 rdev->use_count++;
1247
1248 return 0;
1249 }
1250
1251 /**
1252 * regulator_enable - enable regulator output
1253 * @regulator: regulator source
1254 *
1255 * Request that the regulator be enabled with the regulator output at
1256 * the predefined voltage or current value. Calls to regulator_enable()
1257 * must be balanced with calls to regulator_disable().
1258 *
1259 * NOTE: the output value can be set by other drivers, boot loader or may be
1260 * hardwired in the regulator.
1261 */
1262 int regulator_enable(struct regulator *regulator)
1263 {
1264 struct regulator_dev *rdev = regulator->rdev;
1265 int ret = 0;
1266
1267 mutex_lock(&rdev->mutex);
1268 ret = _regulator_enable(rdev);
1269 mutex_unlock(&rdev->mutex);
1270 return ret;
1271 }
1272 EXPORT_SYMBOL_GPL(regulator_enable);
1273
1274 /* locks held by regulator_disable() */
1275 static int _regulator_disable(struct regulator_dev *rdev)
1276 {
1277 int ret = 0;
1278
1279 if (WARN(rdev->use_count <= 0,
1280 "unbalanced disables for %s\n",
1281 rdev->desc->name))
1282 return -EIO;
1283
1284 /* are we the last user and permitted to disable ? */
1285 if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1286
1287 /* we are last user */
1288 if (_regulator_can_change_status(rdev) &&
1289 rdev->desc->ops->disable) {
1290 ret = rdev->desc->ops->disable(rdev);
1291 if (ret < 0) {
1292 printk(KERN_ERR "%s: failed to disable %s\n",
1293 __func__, rdev->desc->name);
1294 return ret;
1295 }
1296 }
1297
1298 /* decrease our supplies ref count and disable if required */
1299 if (rdev->supply)
1300 _regulator_disable(rdev->supply);
1301
1302 rdev->use_count = 0;
1303 } else if (rdev->use_count > 1) {
1304
1305 if (rdev->constraints &&
1306 (rdev->constraints->valid_ops_mask &
1307 REGULATOR_CHANGE_DRMS))
1308 drms_uA_update(rdev);
1309
1310 rdev->use_count--;
1311 }
1312 return ret;
1313 }
1314
1315 /**
1316 * regulator_disable - disable regulator output
1317 * @regulator: regulator source
1318 *
1319 * Disable the regulator output voltage or current. Calls to
1320 * regulator_enable() must be balanced with calls to
1321 * regulator_disable().
1322 *
1323 * NOTE: this will only disable the regulator output if no other consumer
1324 * devices have it enabled, the regulator device supports disabling and
1325 * machine constraints permit this operation.
1326 */
1327 int regulator_disable(struct regulator *regulator)
1328 {
1329 struct regulator_dev *rdev = regulator->rdev;
1330 int ret = 0;
1331
1332 mutex_lock(&rdev->mutex);
1333 ret = _regulator_disable(rdev);
1334 mutex_unlock(&rdev->mutex);
1335 return ret;
1336 }
1337 EXPORT_SYMBOL_GPL(regulator_disable);
1338
1339 /* locks held by regulator_force_disable() */
1340 static int _regulator_force_disable(struct regulator_dev *rdev)
1341 {
1342 int ret = 0;
1343
1344 /* force disable */
1345 if (rdev->desc->ops->disable) {
1346 /* ah well, who wants to live forever... */
1347 ret = rdev->desc->ops->disable(rdev);
1348 if (ret < 0) {
1349 printk(KERN_ERR "%s: failed to force disable %s\n",
1350 __func__, rdev->desc->name);
1351 return ret;
1352 }
1353 /* notify other consumers that power has been forced off */
1354 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1355 NULL);
1356 }
1357
1358 /* decrease our supplies ref count and disable if required */
1359 if (rdev->supply)
1360 _regulator_disable(rdev->supply);
1361
1362 rdev->use_count = 0;
1363 return ret;
1364 }
1365
1366 /**
1367 * regulator_force_disable - force disable regulator output
1368 * @regulator: regulator source
1369 *
1370 * Forcibly disable the regulator output voltage or current.
1371 * NOTE: this *will* disable the regulator output even if other consumer
1372 * devices have it enabled. This should be used for situations when device
1373 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1374 */
1375 int regulator_force_disable(struct regulator *regulator)
1376 {
1377 int ret;
1378
1379 mutex_lock(&regulator->rdev->mutex);
1380 regulator->uA_load = 0;
1381 ret = _regulator_force_disable(regulator->rdev);
1382 mutex_unlock(&regulator->rdev->mutex);
1383 return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(regulator_force_disable);
1386
1387 static int _regulator_is_enabled(struct regulator_dev *rdev)
1388 {
1389 /* sanity check */
1390 if (!rdev->desc->ops->is_enabled)
1391 return -EINVAL;
1392
1393 return rdev->desc->ops->is_enabled(rdev);
1394 }
1395
1396 /**
1397 * regulator_is_enabled - is the regulator output enabled
1398 * @regulator: regulator source
1399 *
1400 * Returns positive if the regulator driver backing the source/client
1401 * has requested that the device be enabled, zero if it hasn't, else a
1402 * negative errno code.
1403 *
1404 * Note that the device backing this regulator handle can have multiple
1405 * users, so it might be enabled even if regulator_enable() was never
1406 * called for this particular source.
1407 */
1408 int regulator_is_enabled(struct regulator *regulator)
1409 {
1410 int ret;
1411
1412 mutex_lock(&regulator->rdev->mutex);
1413 ret = _regulator_is_enabled(regulator->rdev);
1414 mutex_unlock(&regulator->rdev->mutex);
1415
1416 return ret;
1417 }
1418 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1419
1420 /**
1421 * regulator_count_voltages - count regulator_list_voltage() selectors
1422 * @regulator: regulator source
1423 *
1424 * Returns number of selectors, or negative errno. Selectors are
1425 * numbered starting at zero, and typically correspond to bitfields
1426 * in hardware registers.
1427 */
1428 int regulator_count_voltages(struct regulator *regulator)
1429 {
1430 struct regulator_dev *rdev = regulator->rdev;
1431
1432 return rdev->desc->n_voltages ? : -EINVAL;
1433 }
1434 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1435
1436 /**
1437 * regulator_list_voltage - enumerate supported voltages
1438 * @regulator: regulator source
1439 * @selector: identify voltage to list
1440 * Context: can sleep
1441 *
1442 * Returns a voltage that can be passed to @regulator_set_voltage(),
1443 * zero if this selector code can't be used on this sytem, or a
1444 * negative errno.
1445 */
1446 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1447 {
1448 struct regulator_dev *rdev = regulator->rdev;
1449 struct regulator_ops *ops = rdev->desc->ops;
1450 int ret;
1451
1452 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1453 return -EINVAL;
1454
1455 mutex_lock(&rdev->mutex);
1456 ret = ops->list_voltage(rdev, selector);
1457 mutex_unlock(&rdev->mutex);
1458
1459 if (ret > 0) {
1460 if (ret < rdev->constraints->min_uV)
1461 ret = 0;
1462 else if (ret > rdev->constraints->max_uV)
1463 ret = 0;
1464 }
1465
1466 return ret;
1467 }
1468 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1469
1470 /**
1471 * regulator_is_supported_voltage - check if a voltage range can be supported
1472 *
1473 * @regulator: Regulator to check.
1474 * @min_uV: Minimum required voltage in uV.
1475 * @max_uV: Maximum required voltage in uV.
1476 *
1477 * Returns a boolean or a negative error code.
1478 */
1479 int regulator_is_supported_voltage(struct regulator *regulator,
1480 int min_uV, int max_uV)
1481 {
1482 int i, voltages, ret;
1483
1484 ret = regulator_count_voltages(regulator);
1485 if (ret < 0)
1486 return ret;
1487 voltages = ret;
1488
1489 for (i = 0; i < voltages; i++) {
1490 ret = regulator_list_voltage(regulator, i);
1491
1492 if (ret >= min_uV && ret <= max_uV)
1493 return 1;
1494 }
1495
1496 return 0;
1497 }
1498
1499 /**
1500 * regulator_set_voltage - set regulator output voltage
1501 * @regulator: regulator source
1502 * @min_uV: Minimum required voltage in uV
1503 * @max_uV: Maximum acceptable voltage in uV
1504 *
1505 * Sets a voltage regulator to the desired output voltage. This can be set
1506 * during any regulator state. IOW, regulator can be disabled or enabled.
1507 *
1508 * If the regulator is enabled then the voltage will change to the new value
1509 * immediately otherwise if the regulator is disabled the regulator will
1510 * output at the new voltage when enabled.
1511 *
1512 * NOTE: If the regulator is shared between several devices then the lowest
1513 * request voltage that meets the system constraints will be used.
1514 * Regulator system constraints must be set for this regulator before
1515 * calling this function otherwise this call will fail.
1516 */
1517 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1518 {
1519 struct regulator_dev *rdev = regulator->rdev;
1520 int ret;
1521
1522 mutex_lock(&rdev->mutex);
1523
1524 /* sanity check */
1525 if (!rdev->desc->ops->set_voltage) {
1526 ret = -EINVAL;
1527 goto out;
1528 }
1529
1530 /* constraints check */
1531 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1532 if (ret < 0)
1533 goto out;
1534 regulator->min_uV = min_uV;
1535 regulator->max_uV = max_uV;
1536 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1537
1538 out:
1539 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1540 mutex_unlock(&rdev->mutex);
1541 return ret;
1542 }
1543 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1544
1545 static int _regulator_get_voltage(struct regulator_dev *rdev)
1546 {
1547 /* sanity check */
1548 if (rdev->desc->ops->get_voltage)
1549 return rdev->desc->ops->get_voltage(rdev);
1550 else
1551 return -EINVAL;
1552 }
1553
1554 /**
1555 * regulator_get_voltage - get regulator output voltage
1556 * @regulator: regulator source
1557 *
1558 * This returns the current regulator voltage in uV.
1559 *
1560 * NOTE: If the regulator is disabled it will return the voltage value. This
1561 * function should not be used to determine regulator state.
1562 */
1563 int regulator_get_voltage(struct regulator *regulator)
1564 {
1565 int ret;
1566
1567 mutex_lock(&regulator->rdev->mutex);
1568
1569 ret = _regulator_get_voltage(regulator->rdev);
1570
1571 mutex_unlock(&regulator->rdev->mutex);
1572
1573 return ret;
1574 }
1575 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1576
1577 /**
1578 * regulator_set_current_limit - set regulator output current limit
1579 * @regulator: regulator source
1580 * @min_uA: Minimuum supported current in uA
1581 * @max_uA: Maximum supported current in uA
1582 *
1583 * Sets current sink to the desired output current. This can be set during
1584 * any regulator state. IOW, regulator can be disabled or enabled.
1585 *
1586 * If the regulator is enabled then the current will change to the new value
1587 * immediately otherwise if the regulator is disabled the regulator will
1588 * output at the new current when enabled.
1589 *
1590 * NOTE: Regulator system constraints must be set for this regulator before
1591 * calling this function otherwise this call will fail.
1592 */
1593 int regulator_set_current_limit(struct regulator *regulator,
1594 int min_uA, int max_uA)
1595 {
1596 struct regulator_dev *rdev = regulator->rdev;
1597 int ret;
1598
1599 mutex_lock(&rdev->mutex);
1600
1601 /* sanity check */
1602 if (!rdev->desc->ops->set_current_limit) {
1603 ret = -EINVAL;
1604 goto out;
1605 }
1606
1607 /* constraints check */
1608 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1609 if (ret < 0)
1610 goto out;
1611
1612 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1613 out:
1614 mutex_unlock(&rdev->mutex);
1615 return ret;
1616 }
1617 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1618
1619 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1620 {
1621 int ret;
1622
1623 mutex_lock(&rdev->mutex);
1624
1625 /* sanity check */
1626 if (!rdev->desc->ops->get_current_limit) {
1627 ret = -EINVAL;
1628 goto out;
1629 }
1630
1631 ret = rdev->desc->ops->get_current_limit(rdev);
1632 out:
1633 mutex_unlock(&rdev->mutex);
1634 return ret;
1635 }
1636
1637 /**
1638 * regulator_get_current_limit - get regulator output current
1639 * @regulator: regulator source
1640 *
1641 * This returns the current supplied by the specified current sink in uA.
1642 *
1643 * NOTE: If the regulator is disabled it will return the current value. This
1644 * function should not be used to determine regulator state.
1645 */
1646 int regulator_get_current_limit(struct regulator *regulator)
1647 {
1648 return _regulator_get_current_limit(regulator->rdev);
1649 }
1650 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1651
1652 /**
1653 * regulator_set_mode - set regulator operating mode
1654 * @regulator: regulator source
1655 * @mode: operating mode - one of the REGULATOR_MODE constants
1656 *
1657 * Set regulator operating mode to increase regulator efficiency or improve
1658 * regulation performance.
1659 *
1660 * NOTE: Regulator system constraints must be set for this regulator before
1661 * calling this function otherwise this call will fail.
1662 */
1663 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1664 {
1665 struct regulator_dev *rdev = regulator->rdev;
1666 int ret;
1667
1668 mutex_lock(&rdev->mutex);
1669
1670 /* sanity check */
1671 if (!rdev->desc->ops->set_mode) {
1672 ret = -EINVAL;
1673 goto out;
1674 }
1675
1676 /* constraints check */
1677 ret = regulator_check_mode(rdev, mode);
1678 if (ret < 0)
1679 goto out;
1680
1681 ret = rdev->desc->ops->set_mode(rdev, mode);
1682 out:
1683 mutex_unlock(&rdev->mutex);
1684 return ret;
1685 }
1686 EXPORT_SYMBOL_GPL(regulator_set_mode);
1687
1688 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1689 {
1690 int ret;
1691
1692 mutex_lock(&rdev->mutex);
1693
1694 /* sanity check */
1695 if (!rdev->desc->ops->get_mode) {
1696 ret = -EINVAL;
1697 goto out;
1698 }
1699
1700 ret = rdev->desc->ops->get_mode(rdev);
1701 out:
1702 mutex_unlock(&rdev->mutex);
1703 return ret;
1704 }
1705
1706 /**
1707 * regulator_get_mode - get regulator operating mode
1708 * @regulator: regulator source
1709 *
1710 * Get the current regulator operating mode.
1711 */
1712 unsigned int regulator_get_mode(struct regulator *regulator)
1713 {
1714 return _regulator_get_mode(regulator->rdev);
1715 }
1716 EXPORT_SYMBOL_GPL(regulator_get_mode);
1717
1718 /**
1719 * regulator_set_optimum_mode - set regulator optimum operating mode
1720 * @regulator: regulator source
1721 * @uA_load: load current
1722 *
1723 * Notifies the regulator core of a new device load. This is then used by
1724 * DRMS (if enabled by constraints) to set the most efficient regulator
1725 * operating mode for the new regulator loading.
1726 *
1727 * Consumer devices notify their supply regulator of the maximum power
1728 * they will require (can be taken from device datasheet in the power
1729 * consumption tables) when they change operational status and hence power
1730 * state. Examples of operational state changes that can affect power
1731 * consumption are :-
1732 *
1733 * o Device is opened / closed.
1734 * o Device I/O is about to begin or has just finished.
1735 * o Device is idling in between work.
1736 *
1737 * This information is also exported via sysfs to userspace.
1738 *
1739 * DRMS will sum the total requested load on the regulator and change
1740 * to the most efficient operating mode if platform constraints allow.
1741 *
1742 * Returns the new regulator mode or error.
1743 */
1744 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1745 {
1746 struct regulator_dev *rdev = regulator->rdev;
1747 struct regulator *consumer;
1748 int ret, output_uV, input_uV, total_uA_load = 0;
1749 unsigned int mode;
1750
1751 mutex_lock(&rdev->mutex);
1752
1753 regulator->uA_load = uA_load;
1754 ret = regulator_check_drms(rdev);
1755 if (ret < 0)
1756 goto out;
1757 ret = -EINVAL;
1758
1759 /* sanity check */
1760 if (!rdev->desc->ops->get_optimum_mode)
1761 goto out;
1762
1763 /* get output voltage */
1764 output_uV = rdev->desc->ops->get_voltage(rdev);
1765 if (output_uV <= 0) {
1766 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1767 __func__, rdev->desc->name);
1768 goto out;
1769 }
1770
1771 /* get input voltage */
1772 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1773 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1774 else
1775 input_uV = rdev->constraints->input_uV;
1776 if (input_uV <= 0) {
1777 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1778 __func__, rdev->desc->name);
1779 goto out;
1780 }
1781
1782 /* calc total requested load for this regulator */
1783 list_for_each_entry(consumer, &rdev->consumer_list, list)
1784 total_uA_load += consumer->uA_load;
1785
1786 mode = rdev->desc->ops->get_optimum_mode(rdev,
1787 input_uV, output_uV,
1788 total_uA_load);
1789 ret = regulator_check_mode(rdev, mode);
1790 if (ret < 0) {
1791 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1792 " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1793 total_uA_load, input_uV, output_uV);
1794 goto out;
1795 }
1796
1797 ret = rdev->desc->ops->set_mode(rdev, mode);
1798 if (ret < 0) {
1799 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1800 __func__, mode, rdev->desc->name);
1801 goto out;
1802 }
1803 ret = mode;
1804 out:
1805 mutex_unlock(&rdev->mutex);
1806 return ret;
1807 }
1808 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1809
1810 /**
1811 * regulator_register_notifier - register regulator event notifier
1812 * @regulator: regulator source
1813 * @nb: notifier block
1814 *
1815 * Register notifier block to receive regulator events.
1816 */
1817 int regulator_register_notifier(struct regulator *regulator,
1818 struct notifier_block *nb)
1819 {
1820 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1821 nb);
1822 }
1823 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1824
1825 /**
1826 * regulator_unregister_notifier - unregister regulator event notifier
1827 * @regulator: regulator source
1828 * @nb: notifier block
1829 *
1830 * Unregister regulator event notifier block.
1831 */
1832 int regulator_unregister_notifier(struct regulator *regulator,
1833 struct notifier_block *nb)
1834 {
1835 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1836 nb);
1837 }
1838 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1839
1840 /* notify regulator consumers and downstream regulator consumers.
1841 * Note mutex must be held by caller.
1842 */
1843 static void _notifier_call_chain(struct regulator_dev *rdev,
1844 unsigned long event, void *data)
1845 {
1846 struct regulator_dev *_rdev;
1847
1848 /* call rdev chain first */
1849 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1850
1851 /* now notify regulator we supply */
1852 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1853 mutex_lock(&_rdev->mutex);
1854 _notifier_call_chain(_rdev, event, data);
1855 mutex_unlock(&_rdev->mutex);
1856 }
1857 }
1858
1859 /**
1860 * regulator_bulk_get - get multiple regulator consumers
1861 *
1862 * @dev: Device to supply
1863 * @num_consumers: Number of consumers to register
1864 * @consumers: Configuration of consumers; clients are stored here.
1865 *
1866 * @return 0 on success, an errno on failure.
1867 *
1868 * This helper function allows drivers to get several regulator
1869 * consumers in one operation. If any of the regulators cannot be
1870 * acquired then any regulators that were allocated will be freed
1871 * before returning to the caller.
1872 */
1873 int regulator_bulk_get(struct device *dev, int num_consumers,
1874 struct regulator_bulk_data *consumers)
1875 {
1876 int i;
1877 int ret;
1878
1879 for (i = 0; i < num_consumers; i++)
1880 consumers[i].consumer = NULL;
1881
1882 for (i = 0; i < num_consumers; i++) {
1883 consumers[i].consumer = regulator_get(dev,
1884 consumers[i].supply);
1885 if (IS_ERR(consumers[i].consumer)) {
1886 dev_err(dev, "Failed to get supply '%s'\n",
1887 consumers[i].supply);
1888 ret = PTR_ERR(consumers[i].consumer);
1889 consumers[i].consumer = NULL;
1890 goto err;
1891 }
1892 }
1893
1894 return 0;
1895
1896 err:
1897 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1898 regulator_put(consumers[i].consumer);
1899
1900 return ret;
1901 }
1902 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1903
1904 /**
1905 * regulator_bulk_enable - enable multiple regulator consumers
1906 *
1907 * @num_consumers: Number of consumers
1908 * @consumers: Consumer data; clients are stored here.
1909 * @return 0 on success, an errno on failure
1910 *
1911 * This convenience API allows consumers to enable multiple regulator
1912 * clients in a single API call. If any consumers cannot be enabled
1913 * then any others that were enabled will be disabled again prior to
1914 * return.
1915 */
1916 int regulator_bulk_enable(int num_consumers,
1917 struct regulator_bulk_data *consumers)
1918 {
1919 int i;
1920 int ret;
1921
1922 for (i = 0; i < num_consumers; i++) {
1923 ret = regulator_enable(consumers[i].consumer);
1924 if (ret != 0)
1925 goto err;
1926 }
1927
1928 return 0;
1929
1930 err:
1931 printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1932 for (i = 0; i < num_consumers; i++)
1933 regulator_disable(consumers[i].consumer);
1934
1935 return ret;
1936 }
1937 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1938
1939 /**
1940 * regulator_bulk_disable - disable multiple regulator consumers
1941 *
1942 * @num_consumers: Number of consumers
1943 * @consumers: Consumer data; clients are stored here.
1944 * @return 0 on success, an errno on failure
1945 *
1946 * This convenience API allows consumers to disable multiple regulator
1947 * clients in a single API call. If any consumers cannot be enabled
1948 * then any others that were disabled will be disabled again prior to
1949 * return.
1950 */
1951 int regulator_bulk_disable(int num_consumers,
1952 struct regulator_bulk_data *consumers)
1953 {
1954 int i;
1955 int ret;
1956
1957 for (i = 0; i < num_consumers; i++) {
1958 ret = regulator_disable(consumers[i].consumer);
1959 if (ret != 0)
1960 goto err;
1961 }
1962
1963 return 0;
1964
1965 err:
1966 printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1967 for (i = 0; i < num_consumers; i++)
1968 regulator_enable(consumers[i].consumer);
1969
1970 return ret;
1971 }
1972 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1973
1974 /**
1975 * regulator_bulk_free - free multiple regulator consumers
1976 *
1977 * @num_consumers: Number of consumers
1978 * @consumers: Consumer data; clients are stored here.
1979 *
1980 * This convenience API allows consumers to free multiple regulator
1981 * clients in a single API call.
1982 */
1983 void regulator_bulk_free(int num_consumers,
1984 struct regulator_bulk_data *consumers)
1985 {
1986 int i;
1987
1988 for (i = 0; i < num_consumers; i++) {
1989 regulator_put(consumers[i].consumer);
1990 consumers[i].consumer = NULL;
1991 }
1992 }
1993 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1994
1995 /**
1996 * regulator_notifier_call_chain - call regulator event notifier
1997 * @rdev: regulator source
1998 * @event: notifier block
1999 * @data: callback-specific data.
2000 *
2001 * Called by regulator drivers to notify clients a regulator event has
2002 * occurred. We also notify regulator clients downstream.
2003 * Note lock must be held by caller.
2004 */
2005 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2006 unsigned long event, void *data)
2007 {
2008 _notifier_call_chain(rdev, event, data);
2009 return NOTIFY_DONE;
2010
2011 }
2012 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2013
2014 /**
2015 * regulator_mode_to_status - convert a regulator mode into a status
2016 *
2017 * @mode: Mode to convert
2018 *
2019 * Convert a regulator mode into a status.
2020 */
2021 int regulator_mode_to_status(unsigned int mode)
2022 {
2023 switch (mode) {
2024 case REGULATOR_MODE_FAST:
2025 return REGULATOR_STATUS_FAST;
2026 case REGULATOR_MODE_NORMAL:
2027 return REGULATOR_STATUS_NORMAL;
2028 case REGULATOR_MODE_IDLE:
2029 return REGULATOR_STATUS_IDLE;
2030 case REGULATOR_STATUS_STANDBY:
2031 return REGULATOR_STATUS_STANDBY;
2032 default:
2033 return 0;
2034 }
2035 }
2036 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2037
2038 /*
2039 * To avoid cluttering sysfs (and memory) with useless state, only
2040 * create attributes that can be meaningfully displayed.
2041 */
2042 static int add_regulator_attributes(struct regulator_dev *rdev)
2043 {
2044 struct device *dev = &rdev->dev;
2045 struct regulator_ops *ops = rdev->desc->ops;
2046 int status = 0;
2047
2048 /* some attributes need specific methods to be displayed */
2049 if (ops->get_voltage) {
2050 status = device_create_file(dev, &dev_attr_microvolts);
2051 if (status < 0)
2052 return status;
2053 }
2054 if (ops->get_current_limit) {
2055 status = device_create_file(dev, &dev_attr_microamps);
2056 if (status < 0)
2057 return status;
2058 }
2059 if (ops->get_mode) {
2060 status = device_create_file(dev, &dev_attr_opmode);
2061 if (status < 0)
2062 return status;
2063 }
2064 if (ops->is_enabled) {
2065 status = device_create_file(dev, &dev_attr_state);
2066 if (status < 0)
2067 return status;
2068 }
2069 if (ops->get_status) {
2070 status = device_create_file(dev, &dev_attr_status);
2071 if (status < 0)
2072 return status;
2073 }
2074
2075 /* some attributes are type-specific */
2076 if (rdev->desc->type == REGULATOR_CURRENT) {
2077 status = device_create_file(dev, &dev_attr_requested_microamps);
2078 if (status < 0)
2079 return status;
2080 }
2081
2082 /* all the other attributes exist to support constraints;
2083 * don't show them if there are no constraints, or if the
2084 * relevant supporting methods are missing.
2085 */
2086 if (!rdev->constraints)
2087 return status;
2088
2089 /* constraints need specific supporting methods */
2090 if (ops->set_voltage) {
2091 status = device_create_file(dev, &dev_attr_min_microvolts);
2092 if (status < 0)
2093 return status;
2094 status = device_create_file(dev, &dev_attr_max_microvolts);
2095 if (status < 0)
2096 return status;
2097 }
2098 if (ops->set_current_limit) {
2099 status = device_create_file(dev, &dev_attr_min_microamps);
2100 if (status < 0)
2101 return status;
2102 status = device_create_file(dev, &dev_attr_max_microamps);
2103 if (status < 0)
2104 return status;
2105 }
2106
2107 /* suspend mode constraints need multiple supporting methods */
2108 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2109 return status;
2110
2111 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2112 if (status < 0)
2113 return status;
2114 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2115 if (status < 0)
2116 return status;
2117 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2118 if (status < 0)
2119 return status;
2120
2121 if (ops->set_suspend_voltage) {
2122 status = device_create_file(dev,
2123 &dev_attr_suspend_standby_microvolts);
2124 if (status < 0)
2125 return status;
2126 status = device_create_file(dev,
2127 &dev_attr_suspend_mem_microvolts);
2128 if (status < 0)
2129 return status;
2130 status = device_create_file(dev,
2131 &dev_attr_suspend_disk_microvolts);
2132 if (status < 0)
2133 return status;
2134 }
2135
2136 if (ops->set_suspend_mode) {
2137 status = device_create_file(dev,
2138 &dev_attr_suspend_standby_mode);
2139 if (status < 0)
2140 return status;
2141 status = device_create_file(dev,
2142 &dev_attr_suspend_mem_mode);
2143 if (status < 0)
2144 return status;
2145 status = device_create_file(dev,
2146 &dev_attr_suspend_disk_mode);
2147 if (status < 0)
2148 return status;
2149 }
2150
2151 return status;
2152 }
2153
2154 /**
2155 * regulator_register - register regulator
2156 * @regulator_desc: regulator to register
2157 * @dev: struct device for the regulator
2158 * @init_data: platform provided init data, passed through by driver
2159 * @driver_data: private regulator data
2160 *
2161 * Called by regulator drivers to register a regulator.
2162 * Returns 0 on success.
2163 */
2164 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2165 struct device *dev, struct regulator_init_data *init_data,
2166 void *driver_data)
2167 {
2168 static atomic_t regulator_no = ATOMIC_INIT(0);
2169 struct regulator_dev *rdev;
2170 int ret, i;
2171
2172 if (regulator_desc == NULL)
2173 return ERR_PTR(-EINVAL);
2174
2175 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2176 return ERR_PTR(-EINVAL);
2177
2178 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2179 regulator_desc->type != REGULATOR_CURRENT)
2180 return ERR_PTR(-EINVAL);
2181
2182 if (!init_data)
2183 return ERR_PTR(-EINVAL);
2184
2185 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2186 if (rdev == NULL)
2187 return ERR_PTR(-ENOMEM);
2188
2189 mutex_lock(&regulator_list_mutex);
2190
2191 mutex_init(&rdev->mutex);
2192 rdev->reg_data = driver_data;
2193 rdev->owner = regulator_desc->owner;
2194 rdev->desc = regulator_desc;
2195 INIT_LIST_HEAD(&rdev->consumer_list);
2196 INIT_LIST_HEAD(&rdev->supply_list);
2197 INIT_LIST_HEAD(&rdev->list);
2198 INIT_LIST_HEAD(&rdev->slist);
2199 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2200
2201 /* preform any regulator specific init */
2202 if (init_data->regulator_init) {
2203 ret = init_data->regulator_init(rdev->reg_data);
2204 if (ret < 0)
2205 goto clean;
2206 }
2207
2208 /* register with sysfs */
2209 rdev->dev.class = &regulator_class;
2210 rdev->dev.parent = dev;
2211 dev_set_name(&rdev->dev, "regulator.%d",
2212 atomic_inc_return(&regulator_no) - 1);
2213 ret = device_register(&rdev->dev);
2214 if (ret != 0)
2215 goto clean;
2216
2217 dev_set_drvdata(&rdev->dev, rdev);
2218
2219 /* set regulator constraints */
2220 ret = set_machine_constraints(rdev, &init_data->constraints);
2221 if (ret < 0)
2222 goto scrub;
2223
2224 /* add attributes supported by this regulator */
2225 ret = add_regulator_attributes(rdev);
2226 if (ret < 0)
2227 goto scrub;
2228
2229 /* set supply regulator if it exists */
2230 if (init_data->supply_regulator_dev) {
2231 ret = set_supply(rdev,
2232 dev_get_drvdata(init_data->supply_regulator_dev));
2233 if (ret < 0)
2234 goto scrub;
2235 }
2236
2237 /* add consumers devices */
2238 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2239 ret = set_consumer_device_supply(rdev,
2240 init_data->consumer_supplies[i].dev,
2241 init_data->consumer_supplies[i].dev_name,
2242 init_data->consumer_supplies[i].supply);
2243 if (ret < 0) {
2244 for (--i; i >= 0; i--)
2245 unset_consumer_device_supply(rdev,
2246 init_data->consumer_supplies[i].dev_name,
2247 init_data->consumer_supplies[i].dev);
2248 goto scrub;
2249 }
2250 }
2251
2252 list_add(&rdev->list, &regulator_list);
2253 out:
2254 mutex_unlock(&regulator_list_mutex);
2255 return rdev;
2256
2257 scrub:
2258 device_unregister(&rdev->dev);
2259 /* device core frees rdev */
2260 rdev = ERR_PTR(ret);
2261 goto out;
2262
2263 clean:
2264 kfree(rdev);
2265 rdev = ERR_PTR(ret);
2266 goto out;
2267 }
2268 EXPORT_SYMBOL_GPL(regulator_register);
2269
2270 /**
2271 * regulator_unregister - unregister regulator
2272 * @rdev: regulator to unregister
2273 *
2274 * Called by regulator drivers to unregister a regulator.
2275 */
2276 void regulator_unregister(struct regulator_dev *rdev)
2277 {
2278 if (rdev == NULL)
2279 return;
2280
2281 mutex_lock(&regulator_list_mutex);
2282 WARN_ON(rdev->open_count);
2283 unset_regulator_supplies(rdev);
2284 list_del(&rdev->list);
2285 if (rdev->supply)
2286 sysfs_remove_link(&rdev->dev.kobj, "supply");
2287 device_unregister(&rdev->dev);
2288 mutex_unlock(&regulator_list_mutex);
2289 }
2290 EXPORT_SYMBOL_GPL(regulator_unregister);
2291
2292 /**
2293 * regulator_suspend_prepare - prepare regulators for system wide suspend
2294 * @state: system suspend state
2295 *
2296 * Configure each regulator with it's suspend operating parameters for state.
2297 * This will usually be called by machine suspend code prior to supending.
2298 */
2299 int regulator_suspend_prepare(suspend_state_t state)
2300 {
2301 struct regulator_dev *rdev;
2302 int ret = 0;
2303
2304 /* ON is handled by regulator active state */
2305 if (state == PM_SUSPEND_ON)
2306 return -EINVAL;
2307
2308 mutex_lock(&regulator_list_mutex);
2309 list_for_each_entry(rdev, &regulator_list, list) {
2310
2311 mutex_lock(&rdev->mutex);
2312 ret = suspend_prepare(rdev, state);
2313 mutex_unlock(&rdev->mutex);
2314
2315 if (ret < 0) {
2316 printk(KERN_ERR "%s: failed to prepare %s\n",
2317 __func__, rdev->desc->name);
2318 goto out;
2319 }
2320 }
2321 out:
2322 mutex_unlock(&regulator_list_mutex);
2323 return ret;
2324 }
2325 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2326
2327 /**
2328 * regulator_has_full_constraints - the system has fully specified constraints
2329 *
2330 * Calling this function will cause the regulator API to disable all
2331 * regulators which have a zero use count and don't have an always_on
2332 * constraint in a late_initcall.
2333 *
2334 * The intention is that this will become the default behaviour in a
2335 * future kernel release so users are encouraged to use this facility
2336 * now.
2337 */
2338 void regulator_has_full_constraints(void)
2339 {
2340 has_full_constraints = 1;
2341 }
2342 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2343
2344 /**
2345 * rdev_get_drvdata - get rdev regulator driver data
2346 * @rdev: regulator
2347 *
2348 * Get rdev regulator driver private data. This call can be used in the
2349 * regulator driver context.
2350 */
2351 void *rdev_get_drvdata(struct regulator_dev *rdev)
2352 {
2353 return rdev->reg_data;
2354 }
2355 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2356
2357 /**
2358 * regulator_get_drvdata - get regulator driver data
2359 * @regulator: regulator
2360 *
2361 * Get regulator driver private data. This call can be used in the consumer
2362 * driver context when non API regulator specific functions need to be called.
2363 */
2364 void *regulator_get_drvdata(struct regulator *regulator)
2365 {
2366 return regulator->rdev->reg_data;
2367 }
2368 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2369
2370 /**
2371 * regulator_set_drvdata - set regulator driver data
2372 * @regulator: regulator
2373 * @data: data
2374 */
2375 void regulator_set_drvdata(struct regulator *regulator, void *data)
2376 {
2377 regulator->rdev->reg_data = data;
2378 }
2379 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2380
2381 /**
2382 * regulator_get_id - get regulator ID
2383 * @rdev: regulator
2384 */
2385 int rdev_get_id(struct regulator_dev *rdev)
2386 {
2387 return rdev->desc->id;
2388 }
2389 EXPORT_SYMBOL_GPL(rdev_get_id);
2390
2391 struct device *rdev_get_dev(struct regulator_dev *rdev)
2392 {
2393 return &rdev->dev;
2394 }
2395 EXPORT_SYMBOL_GPL(rdev_get_dev);
2396
2397 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2398 {
2399 return reg_init_data->driver_data;
2400 }
2401 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2402
2403 static int __init regulator_init(void)
2404 {
2405 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2406 return class_register(&regulator_class);
2407 }
2408
2409 /* init early to allow our consumers to complete system booting */
2410 core_initcall(regulator_init);
2411
2412 static int __init regulator_init_complete(void)
2413 {
2414 struct regulator_dev *rdev;
2415 struct regulator_ops *ops;
2416 struct regulation_constraints *c;
2417 int enabled, ret;
2418 const char *name;
2419
2420 mutex_lock(&regulator_list_mutex);
2421
2422 /* If we have a full configuration then disable any regulators
2423 * which are not in use or always_on. This will become the
2424 * default behaviour in the future.
2425 */
2426 list_for_each_entry(rdev, &regulator_list, list) {
2427 ops = rdev->desc->ops;
2428 c = rdev->constraints;
2429
2430 if (c && c->name)
2431 name = c->name;
2432 else if (rdev->desc->name)
2433 name = rdev->desc->name;
2434 else
2435 name = "regulator";
2436
2437 if (!ops->disable || (c && c->always_on))
2438 continue;
2439
2440 mutex_lock(&rdev->mutex);
2441
2442 if (rdev->use_count)
2443 goto unlock;
2444
2445 /* If we can't read the status assume it's on. */
2446 if (ops->is_enabled)
2447 enabled = ops->is_enabled(rdev);
2448 else
2449 enabled = 1;
2450
2451 if (!enabled)
2452 goto unlock;
2453
2454 if (has_full_constraints) {
2455 /* We log since this may kill the system if it
2456 * goes wrong. */
2457 printk(KERN_INFO "%s: disabling %s\n",
2458 __func__, name);
2459 ret = ops->disable(rdev);
2460 if (ret != 0) {
2461 printk(KERN_ERR
2462 "%s: couldn't disable %s: %d\n",
2463 __func__, name, ret);
2464 }
2465 } else {
2466 /* The intention is that in future we will
2467 * assume that full constraints are provided
2468 * so warn even if we aren't going to do
2469 * anything here.
2470 */
2471 printk(KERN_WARNING
2472 "%s: incomplete constraints, leaving %s on\n",
2473 __func__, name);
2474 }
2475
2476 unlock:
2477 mutex_unlock(&rdev->mutex);
2478 }
2479
2480 mutex_unlock(&regulator_list_mutex);
2481
2482 return 0;
2483 }
2484 late_initcall(regulator_init_complete);