]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/regulator/core.c
Merge tag 'char-misc-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[mirror_ubuntu-zesty-kernel.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63 * struct regulator_map
64 *
65 * Used to provide symbolic supply names to devices.
66 */
67 struct regulator_map {
68 struct list_head list;
69 const char *dev_name; /* The dev_name() for the consumer */
70 const char *supply;
71 struct regulator_dev *regulator;
72 };
73
74 /*
75 * struct regulator_enable_gpio
76 *
77 * Management for shared enable GPIO pin
78 */
79 struct regulator_enable_gpio {
80 struct list_head list;
81 struct gpio_desc *gpiod;
82 u32 enable_count; /* a number of enabled shared GPIO */
83 u32 request_count; /* a number of requested shared GPIO */
84 unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88 * struct regulator_supply_alias
89 *
90 * Used to map lookups for a supply onto an alternative device.
91 */
92 struct regulator_supply_alias {
93 struct list_head list;
94 struct device *src_dev;
95 const char *src_supply;
96 struct device *alias_dev;
97 const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 struct device *dev,
111 const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 if (rdev->constraints && rdev->constraints->name)
116 return rdev->constraints->name;
117 else if (rdev->desc->name)
118 return rdev->desc->name;
119 else
120 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125 return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129 * of_get_regulator - get a regulator device node based on supply name
130 * @dev: Device pointer for the consumer (of regulator) device
131 * @supply: regulator supply name
132 *
133 * Extract the regulator device node corresponding to the supply name.
134 * returns the device node corresponding to the regulator if found, else
135 * returns NULL.
136 */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139 struct device_node *regnode = NULL;
140 char prop_name[32]; /* 32 is max size of property name */
141
142 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144 snprintf(prop_name, 32, "%s-supply", supply);
145 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147 if (!regnode) {
148 dev_dbg(dev, "Looking up %s property in node %s failed",
149 prop_name, dev->of_node->full_name);
150 return NULL;
151 }
152 return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157 if (!rdev->constraints)
158 return 0;
159
160 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161 return 1;
162 else
163 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168 int *min_uV, int *max_uV)
169 {
170 BUG_ON(*min_uV > *max_uV);
171
172 if (!rdev->constraints) {
173 rdev_err(rdev, "no constraints\n");
174 return -ENODEV;
175 }
176 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177 rdev_err(rdev, "operation not allowed\n");
178 return -EPERM;
179 }
180
181 if (*max_uV > rdev->constraints->max_uV)
182 *max_uV = rdev->constraints->max_uV;
183 if (*min_uV < rdev->constraints->min_uV)
184 *min_uV = rdev->constraints->min_uV;
185
186 if (*min_uV > *max_uV) {
187 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188 *min_uV, *max_uV);
189 return -EINVAL;
190 }
191
192 return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196 * regulator consumers
197 */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199 int *min_uV, int *max_uV)
200 {
201 struct regulator *regulator;
202
203 list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 /*
205 * Assume consumers that didn't say anything are OK
206 * with anything in the constraint range.
207 */
208 if (!regulator->min_uV && !regulator->max_uV)
209 continue;
210
211 if (*max_uV > regulator->max_uV)
212 *max_uV = regulator->max_uV;
213 if (*min_uV < regulator->min_uV)
214 *min_uV = regulator->min_uV;
215 }
216
217 if (*min_uV > *max_uV) {
218 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219 *min_uV, *max_uV);
220 return -EINVAL;
221 }
222
223 return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228 int *min_uA, int *max_uA)
229 {
230 BUG_ON(*min_uA > *max_uA);
231
232 if (!rdev->constraints) {
233 rdev_err(rdev, "no constraints\n");
234 return -ENODEV;
235 }
236 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237 rdev_err(rdev, "operation not allowed\n");
238 return -EPERM;
239 }
240
241 if (*max_uA > rdev->constraints->max_uA)
242 *max_uA = rdev->constraints->max_uA;
243 if (*min_uA < rdev->constraints->min_uA)
244 *min_uA = rdev->constraints->min_uA;
245
246 if (*min_uA > *max_uA) {
247 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248 *min_uA, *max_uA);
249 return -EINVAL;
250 }
251
252 return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258 switch (*mode) {
259 case REGULATOR_MODE_FAST:
260 case REGULATOR_MODE_NORMAL:
261 case REGULATOR_MODE_IDLE:
262 case REGULATOR_MODE_STANDBY:
263 break;
264 default:
265 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 return -EINVAL;
267 }
268
269 if (!rdev->constraints) {
270 rdev_err(rdev, "no constraints\n");
271 return -ENODEV;
272 }
273 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274 rdev_err(rdev, "operation not allowed\n");
275 return -EPERM;
276 }
277
278 /* The modes are bitmasks, the most power hungry modes having
279 * the lowest values. If the requested mode isn't supported
280 * try higher modes. */
281 while (*mode) {
282 if (rdev->constraints->valid_modes_mask & *mode)
283 return 0;
284 *mode /= 2;
285 }
286
287 return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293 if (!rdev->constraints) {
294 rdev_err(rdev, "no constraints\n");
295 return -ENODEV;
296 }
297 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298 rdev_err(rdev, "operation not allowed\n");
299 return -EPERM;
300 }
301 return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
306 {
307 struct regulator_dev *rdev = dev_get_drvdata(dev);
308 ssize_t ret;
309
310 mutex_lock(&rdev->mutex);
311 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312 mutex_unlock(&rdev->mutex);
313
314 return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
320 {
321 struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328 char *buf)
329 {
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332 return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338 switch (mode) {
339 case REGULATOR_MODE_FAST:
340 return sprintf(buf, "fast\n");
341 case REGULATOR_MODE_NORMAL:
342 return sprintf(buf, "normal\n");
343 case REGULATOR_MODE_IDLE:
344 return sprintf(buf, "idle\n");
345 case REGULATOR_MODE_STANDBY:
346 return sprintf(buf, "standby\n");
347 }
348 return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
353 {
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362 if (state > 0)
363 return sprintf(buf, "enabled\n");
364 else if (state == 0)
365 return sprintf(buf, "disabled\n");
366 else
367 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
372 {
373 struct regulator_dev *rdev = dev_get_drvdata(dev);
374 ssize_t ret;
375
376 mutex_lock(&rdev->mutex);
377 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 mutex_unlock(&rdev->mutex);
379
380 return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385 struct device_attribute *attr, char *buf)
386 {
387 struct regulator_dev *rdev = dev_get_drvdata(dev);
388 int status;
389 char *label;
390
391 status = rdev->desc->ops->get_status(rdev);
392 if (status < 0)
393 return status;
394
395 switch (status) {
396 case REGULATOR_STATUS_OFF:
397 label = "off";
398 break;
399 case REGULATOR_STATUS_ON:
400 label = "on";
401 break;
402 case REGULATOR_STATUS_ERROR:
403 label = "error";
404 break;
405 case REGULATOR_STATUS_FAST:
406 label = "fast";
407 break;
408 case REGULATOR_STATUS_NORMAL:
409 label = "normal";
410 break;
411 case REGULATOR_STATUS_IDLE:
412 label = "idle";
413 break;
414 case REGULATOR_STATUS_STANDBY:
415 label = "standby";
416 break;
417 case REGULATOR_STATUS_BYPASS:
418 label = "bypass";
419 break;
420 case REGULATOR_STATUS_UNDEFINED:
421 label = "undefined";
422 break;
423 default:
424 return -ERANGE;
425 }
426
427 return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 struct device_attribute *attr, char *buf)
433 {
434 struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436 if (!rdev->constraints)
437 return sprintf(buf, "constraint not defined\n");
438
439 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
445 {
446 struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448 if (!rdev->constraints)
449 return sprintf(buf, "constraint not defined\n");
450
451 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 struct device_attribute *attr, char *buf)
457 {
458 struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460 if (!rdev->constraints)
461 return sprintf(buf, "constraint not defined\n");
462
463 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
469 {
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472 if (!rdev->constraints)
473 return sprintf(buf, "constraint not defined\n");
474
475 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 struct device_attribute *attr, char *buf)
481 {
482 struct regulator_dev *rdev = dev_get_drvdata(dev);
483 struct regulator *regulator;
484 int uA = 0;
485
486 mutex_lock(&rdev->mutex);
487 list_for_each_entry(regulator, &rdev->consumer_list, list)
488 uA += regulator->uA_load;
489 mutex_unlock(&rdev->mutex);
490 return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495 char *buf)
496 {
497 struct regulator_dev *rdev = dev_get_drvdata(dev);
498 return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503 char *buf)
504 {
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507 switch (rdev->desc->type) {
508 case REGULATOR_VOLTAGE:
509 return sprintf(buf, "voltage\n");
510 case REGULATOR_CURRENT:
511 return sprintf(buf, "current\n");
512 }
513 return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518 struct device_attribute *attr, char *buf)
519 {
520 struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528 struct device_attribute *attr, char *buf)
529 {
530 struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539 {
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548 struct device_attribute *attr, char *buf)
549 {
550 struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552 return regulator_print_opmode(buf,
553 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559 struct device_attribute *attr, char *buf)
560 {
561 struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563 return regulator_print_opmode(buf,
564 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570 struct device_attribute *attr, char *buf)
571 {
572 struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574 return regulator_print_opmode(buf,
575 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582 {
583 struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585 return regulator_print_state(buf,
586 rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
593 {
594 struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596 return regulator_print_state(buf,
597 rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603 struct device_attribute *attr, char *buf)
604 {
605 struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607 return regulator_print_state(buf,
608 rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614 struct device_attribute *attr, char *buf)
615 {
616 struct regulator_dev *rdev = dev_get_drvdata(dev);
617 const char *report;
618 bool bypass;
619 int ret;
620
621 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623 if (ret != 0)
624 report = "unknown";
625 else if (bypass)
626 report = "enabled";
627 else
628 report = "disabled";
629
630 return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633 regulator_bypass_show, NULL);
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636 * consumer load. All locks held by caller */
637 static int drms_uA_update(struct regulator_dev *rdev)
638 {
639 struct regulator *sibling;
640 int current_uA = 0, output_uV, input_uV, err;
641 unsigned int mode;
642
643 /*
644 * first check to see if we can set modes at all, otherwise just
645 * tell the consumer everything is OK.
646 */
647 err = regulator_check_drms(rdev);
648 if (err < 0)
649 return 0;
650
651 if (!rdev->desc->ops->get_optimum_mode &&
652 !rdev->desc->ops->set_load)
653 return 0;
654
655 if (!rdev->desc->ops->set_mode &&
656 !rdev->desc->ops->set_load)
657 return -EINVAL;
658
659 /* get output voltage */
660 output_uV = _regulator_get_voltage(rdev);
661 if (output_uV <= 0) {
662 rdev_err(rdev, "invalid output voltage found\n");
663 return -EINVAL;
664 }
665
666 /* get input voltage */
667 input_uV = 0;
668 if (rdev->supply)
669 input_uV = regulator_get_voltage(rdev->supply);
670 if (input_uV <= 0)
671 input_uV = rdev->constraints->input_uV;
672 if (input_uV <= 0) {
673 rdev_err(rdev, "invalid input voltage found\n");
674 return -EINVAL;
675 }
676
677 /* calc total requested load */
678 list_for_each_entry(sibling, &rdev->consumer_list, list)
679 current_uA += sibling->uA_load;
680
681 current_uA += rdev->constraints->system_load;
682
683 if (rdev->desc->ops->set_load) {
684 /* set the optimum mode for our new total regulator load */
685 err = rdev->desc->ops->set_load(rdev, current_uA);
686 if (err < 0)
687 rdev_err(rdev, "failed to set load %d\n", current_uA);
688 } else {
689 /* now get the optimum mode for our new total regulator load */
690 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
691 output_uV, current_uA);
692
693 /* check the new mode is allowed */
694 err = regulator_mode_constrain(rdev, &mode);
695 if (err < 0) {
696 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
697 current_uA, input_uV, output_uV);
698 return err;
699 }
700
701 err = rdev->desc->ops->set_mode(rdev, mode);
702 if (err < 0)
703 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
704 }
705
706 return err;
707 }
708
709 static int suspend_set_state(struct regulator_dev *rdev,
710 struct regulator_state *rstate)
711 {
712 int ret = 0;
713
714 /* If we have no suspend mode configration don't set anything;
715 * only warn if the driver implements set_suspend_voltage or
716 * set_suspend_mode callback.
717 */
718 if (!rstate->enabled && !rstate->disabled) {
719 if (rdev->desc->ops->set_suspend_voltage ||
720 rdev->desc->ops->set_suspend_mode)
721 rdev_warn(rdev, "No configuration\n");
722 return 0;
723 }
724
725 if (rstate->enabled && rstate->disabled) {
726 rdev_err(rdev, "invalid configuration\n");
727 return -EINVAL;
728 }
729
730 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
731 ret = rdev->desc->ops->set_suspend_enable(rdev);
732 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
733 ret = rdev->desc->ops->set_suspend_disable(rdev);
734 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
735 ret = 0;
736
737 if (ret < 0) {
738 rdev_err(rdev, "failed to enabled/disable\n");
739 return ret;
740 }
741
742 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
743 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
744 if (ret < 0) {
745 rdev_err(rdev, "failed to set voltage\n");
746 return ret;
747 }
748 }
749
750 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
751 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
752 if (ret < 0) {
753 rdev_err(rdev, "failed to set mode\n");
754 return ret;
755 }
756 }
757 return ret;
758 }
759
760 /* locks held by caller */
761 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
762 {
763 if (!rdev->constraints)
764 return -EINVAL;
765
766 switch (state) {
767 case PM_SUSPEND_STANDBY:
768 return suspend_set_state(rdev,
769 &rdev->constraints->state_standby);
770 case PM_SUSPEND_MEM:
771 return suspend_set_state(rdev,
772 &rdev->constraints->state_mem);
773 case PM_SUSPEND_MAX:
774 return suspend_set_state(rdev,
775 &rdev->constraints->state_disk);
776 default:
777 return -EINVAL;
778 }
779 }
780
781 static void print_constraints(struct regulator_dev *rdev)
782 {
783 struct regulation_constraints *constraints = rdev->constraints;
784 char buf[160] = "";
785 size_t len = sizeof(buf) - 1;
786 int count = 0;
787 int ret;
788
789 if (constraints->min_uV && constraints->max_uV) {
790 if (constraints->min_uV == constraints->max_uV)
791 count += scnprintf(buf + count, len - count, "%d mV ",
792 constraints->min_uV / 1000);
793 else
794 count += scnprintf(buf + count, len - count,
795 "%d <--> %d mV ",
796 constraints->min_uV / 1000,
797 constraints->max_uV / 1000);
798 }
799
800 if (!constraints->min_uV ||
801 constraints->min_uV != constraints->max_uV) {
802 ret = _regulator_get_voltage(rdev);
803 if (ret > 0)
804 count += scnprintf(buf + count, len - count,
805 "at %d mV ", ret / 1000);
806 }
807
808 if (constraints->uV_offset)
809 count += scnprintf(buf + count, len - count, "%dmV offset ",
810 constraints->uV_offset / 1000);
811
812 if (constraints->min_uA && constraints->max_uA) {
813 if (constraints->min_uA == constraints->max_uA)
814 count += scnprintf(buf + count, len - count, "%d mA ",
815 constraints->min_uA / 1000);
816 else
817 count += scnprintf(buf + count, len - count,
818 "%d <--> %d mA ",
819 constraints->min_uA / 1000,
820 constraints->max_uA / 1000);
821 }
822
823 if (!constraints->min_uA ||
824 constraints->min_uA != constraints->max_uA) {
825 ret = _regulator_get_current_limit(rdev);
826 if (ret > 0)
827 count += scnprintf(buf + count, len - count,
828 "at %d mA ", ret / 1000);
829 }
830
831 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
832 count += scnprintf(buf + count, len - count, "fast ");
833 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
834 count += scnprintf(buf + count, len - count, "normal ");
835 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
836 count += scnprintf(buf + count, len - count, "idle ");
837 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
838 count += scnprintf(buf + count, len - count, "standby");
839
840 if (!count)
841 scnprintf(buf, len, "no parameters");
842
843 rdev_dbg(rdev, "%s\n", buf);
844
845 if ((constraints->min_uV != constraints->max_uV) &&
846 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
847 rdev_warn(rdev,
848 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
849 }
850
851 static int machine_constraints_voltage(struct regulator_dev *rdev,
852 struct regulation_constraints *constraints)
853 {
854 const struct regulator_ops *ops = rdev->desc->ops;
855 int ret;
856
857 /* do we need to apply the constraint voltage */
858 if (rdev->constraints->apply_uV &&
859 rdev->constraints->min_uV == rdev->constraints->max_uV) {
860 int current_uV = _regulator_get_voltage(rdev);
861 if (current_uV < 0) {
862 rdev_err(rdev,
863 "failed to get the current voltage(%d)\n",
864 current_uV);
865 return current_uV;
866 }
867 if (current_uV < rdev->constraints->min_uV ||
868 current_uV > rdev->constraints->max_uV) {
869 ret = _regulator_do_set_voltage(
870 rdev, rdev->constraints->min_uV,
871 rdev->constraints->max_uV);
872 if (ret < 0) {
873 rdev_err(rdev,
874 "failed to apply %duV constraint(%d)\n",
875 rdev->constraints->min_uV, ret);
876 return ret;
877 }
878 }
879 }
880
881 /* constrain machine-level voltage specs to fit
882 * the actual range supported by this regulator.
883 */
884 if (ops->list_voltage && rdev->desc->n_voltages) {
885 int count = rdev->desc->n_voltages;
886 int i;
887 int min_uV = INT_MAX;
888 int max_uV = INT_MIN;
889 int cmin = constraints->min_uV;
890 int cmax = constraints->max_uV;
891
892 /* it's safe to autoconfigure fixed-voltage supplies
893 and the constraints are used by list_voltage. */
894 if (count == 1 && !cmin) {
895 cmin = 1;
896 cmax = INT_MAX;
897 constraints->min_uV = cmin;
898 constraints->max_uV = cmax;
899 }
900
901 /* voltage constraints are optional */
902 if ((cmin == 0) && (cmax == 0))
903 return 0;
904
905 /* else require explicit machine-level constraints */
906 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
907 rdev_err(rdev, "invalid voltage constraints\n");
908 return -EINVAL;
909 }
910
911 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
912 for (i = 0; i < count; i++) {
913 int value;
914
915 value = ops->list_voltage(rdev, i);
916 if (value <= 0)
917 continue;
918
919 /* maybe adjust [min_uV..max_uV] */
920 if (value >= cmin && value < min_uV)
921 min_uV = value;
922 if (value <= cmax && value > max_uV)
923 max_uV = value;
924 }
925
926 /* final: [min_uV..max_uV] valid iff constraints valid */
927 if (max_uV < min_uV) {
928 rdev_err(rdev,
929 "unsupportable voltage constraints %u-%uuV\n",
930 min_uV, max_uV);
931 return -EINVAL;
932 }
933
934 /* use regulator's subset of machine constraints */
935 if (constraints->min_uV < min_uV) {
936 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
937 constraints->min_uV, min_uV);
938 constraints->min_uV = min_uV;
939 }
940 if (constraints->max_uV > max_uV) {
941 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
942 constraints->max_uV, max_uV);
943 constraints->max_uV = max_uV;
944 }
945 }
946
947 return 0;
948 }
949
950 static int machine_constraints_current(struct regulator_dev *rdev,
951 struct regulation_constraints *constraints)
952 {
953 const struct regulator_ops *ops = rdev->desc->ops;
954 int ret;
955
956 if (!constraints->min_uA && !constraints->max_uA)
957 return 0;
958
959 if (constraints->min_uA > constraints->max_uA) {
960 rdev_err(rdev, "Invalid current constraints\n");
961 return -EINVAL;
962 }
963
964 if (!ops->set_current_limit || !ops->get_current_limit) {
965 rdev_warn(rdev, "Operation of current configuration missing\n");
966 return 0;
967 }
968
969 /* Set regulator current in constraints range */
970 ret = ops->set_current_limit(rdev, constraints->min_uA,
971 constraints->max_uA);
972 if (ret < 0) {
973 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
974 return ret;
975 }
976
977 return 0;
978 }
979
980 static int _regulator_do_enable(struct regulator_dev *rdev);
981
982 /**
983 * set_machine_constraints - sets regulator constraints
984 * @rdev: regulator source
985 * @constraints: constraints to apply
986 *
987 * Allows platform initialisation code to define and constrain
988 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
989 * Constraints *must* be set by platform code in order for some
990 * regulator operations to proceed i.e. set_voltage, set_current_limit,
991 * set_mode.
992 */
993 static int set_machine_constraints(struct regulator_dev *rdev,
994 const struct regulation_constraints *constraints)
995 {
996 int ret = 0;
997 const struct regulator_ops *ops = rdev->desc->ops;
998
999 if (constraints)
1000 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1001 GFP_KERNEL);
1002 else
1003 rdev->constraints = kzalloc(sizeof(*constraints),
1004 GFP_KERNEL);
1005 if (!rdev->constraints)
1006 return -ENOMEM;
1007
1008 ret = machine_constraints_voltage(rdev, rdev->constraints);
1009 if (ret != 0)
1010 goto out;
1011
1012 ret = machine_constraints_current(rdev, rdev->constraints);
1013 if (ret != 0)
1014 goto out;
1015
1016 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1017 ret = ops->set_input_current_limit(rdev,
1018 rdev->constraints->ilim_uA);
1019 if (ret < 0) {
1020 rdev_err(rdev, "failed to set input limit\n");
1021 goto out;
1022 }
1023 }
1024
1025 /* do we need to setup our suspend state */
1026 if (rdev->constraints->initial_state) {
1027 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1028 if (ret < 0) {
1029 rdev_err(rdev, "failed to set suspend state\n");
1030 goto out;
1031 }
1032 }
1033
1034 if (rdev->constraints->initial_mode) {
1035 if (!ops->set_mode) {
1036 rdev_err(rdev, "no set_mode operation\n");
1037 ret = -EINVAL;
1038 goto out;
1039 }
1040
1041 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1042 if (ret < 0) {
1043 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1044 goto out;
1045 }
1046 }
1047
1048 /* If the constraints say the regulator should be on at this point
1049 * and we have control then make sure it is enabled.
1050 */
1051 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1052 ret = _regulator_do_enable(rdev);
1053 if (ret < 0 && ret != -EINVAL) {
1054 rdev_err(rdev, "failed to enable\n");
1055 goto out;
1056 }
1057 }
1058
1059 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1060 && ops->set_ramp_delay) {
1061 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1062 if (ret < 0) {
1063 rdev_err(rdev, "failed to set ramp_delay\n");
1064 goto out;
1065 }
1066 }
1067
1068 if (rdev->constraints->pull_down && ops->set_pull_down) {
1069 ret = ops->set_pull_down(rdev);
1070 if (ret < 0) {
1071 rdev_err(rdev, "failed to set pull down\n");
1072 goto out;
1073 }
1074 }
1075
1076 if (rdev->constraints->soft_start && ops->set_soft_start) {
1077 ret = ops->set_soft_start(rdev);
1078 if (ret < 0) {
1079 rdev_err(rdev, "failed to set soft start\n");
1080 goto out;
1081 }
1082 }
1083
1084 print_constraints(rdev);
1085 return 0;
1086 out:
1087 kfree(rdev->constraints);
1088 rdev->constraints = NULL;
1089 return ret;
1090 }
1091
1092 /**
1093 * set_supply - set regulator supply regulator
1094 * @rdev: regulator name
1095 * @supply_rdev: supply regulator name
1096 *
1097 * Called by platform initialisation code to set the supply regulator for this
1098 * regulator. This ensures that a regulators supply will also be enabled by the
1099 * core if it's child is enabled.
1100 */
1101 static int set_supply(struct regulator_dev *rdev,
1102 struct regulator_dev *supply_rdev)
1103 {
1104 int err;
1105
1106 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1107
1108 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1109 if (rdev->supply == NULL) {
1110 err = -ENOMEM;
1111 return err;
1112 }
1113 supply_rdev->open_count++;
1114
1115 return 0;
1116 }
1117
1118 /**
1119 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1120 * @rdev: regulator source
1121 * @consumer_dev_name: dev_name() string for device supply applies to
1122 * @supply: symbolic name for supply
1123 *
1124 * Allows platform initialisation code to map physical regulator
1125 * sources to symbolic names for supplies for use by devices. Devices
1126 * should use these symbolic names to request regulators, avoiding the
1127 * need to provide board-specific regulator names as platform data.
1128 */
1129 static int set_consumer_device_supply(struct regulator_dev *rdev,
1130 const char *consumer_dev_name,
1131 const char *supply)
1132 {
1133 struct regulator_map *node;
1134 int has_dev;
1135
1136 if (supply == NULL)
1137 return -EINVAL;
1138
1139 if (consumer_dev_name != NULL)
1140 has_dev = 1;
1141 else
1142 has_dev = 0;
1143
1144 list_for_each_entry(node, &regulator_map_list, list) {
1145 if (node->dev_name && consumer_dev_name) {
1146 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1147 continue;
1148 } else if (node->dev_name || consumer_dev_name) {
1149 continue;
1150 }
1151
1152 if (strcmp(node->supply, supply) != 0)
1153 continue;
1154
1155 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1156 consumer_dev_name,
1157 dev_name(&node->regulator->dev),
1158 node->regulator->desc->name,
1159 supply,
1160 dev_name(&rdev->dev), rdev_get_name(rdev));
1161 return -EBUSY;
1162 }
1163
1164 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1165 if (node == NULL)
1166 return -ENOMEM;
1167
1168 node->regulator = rdev;
1169 node->supply = supply;
1170
1171 if (has_dev) {
1172 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1173 if (node->dev_name == NULL) {
1174 kfree(node);
1175 return -ENOMEM;
1176 }
1177 }
1178
1179 list_add(&node->list, &regulator_map_list);
1180 return 0;
1181 }
1182
1183 static void unset_regulator_supplies(struct regulator_dev *rdev)
1184 {
1185 struct regulator_map *node, *n;
1186
1187 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1188 if (rdev == node->regulator) {
1189 list_del(&node->list);
1190 kfree(node->dev_name);
1191 kfree(node);
1192 }
1193 }
1194 }
1195
1196 #define REG_STR_SIZE 64
1197
1198 static struct regulator *create_regulator(struct regulator_dev *rdev,
1199 struct device *dev,
1200 const char *supply_name)
1201 {
1202 struct regulator *regulator;
1203 char buf[REG_STR_SIZE];
1204 int err, size;
1205
1206 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1207 if (regulator == NULL)
1208 return NULL;
1209
1210 mutex_lock(&rdev->mutex);
1211 regulator->rdev = rdev;
1212 list_add(&regulator->list, &rdev->consumer_list);
1213
1214 if (dev) {
1215 regulator->dev = dev;
1216
1217 /* Add a link to the device sysfs entry */
1218 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1219 dev->kobj.name, supply_name);
1220 if (size >= REG_STR_SIZE)
1221 goto overflow_err;
1222
1223 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1224 if (regulator->supply_name == NULL)
1225 goto overflow_err;
1226
1227 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1228 buf);
1229 if (err) {
1230 rdev_dbg(rdev, "could not add device link %s err %d\n",
1231 dev->kobj.name, err);
1232 /* non-fatal */
1233 }
1234 } else {
1235 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1236 if (regulator->supply_name == NULL)
1237 goto overflow_err;
1238 }
1239
1240 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1241 rdev->debugfs);
1242 if (!regulator->debugfs) {
1243 rdev_warn(rdev, "Failed to create debugfs directory\n");
1244 } else {
1245 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1246 &regulator->uA_load);
1247 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1248 &regulator->min_uV);
1249 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1250 &regulator->max_uV);
1251 }
1252
1253 /*
1254 * Check now if the regulator is an always on regulator - if
1255 * it is then we don't need to do nearly so much work for
1256 * enable/disable calls.
1257 */
1258 if (!_regulator_can_change_status(rdev) &&
1259 _regulator_is_enabled(rdev))
1260 regulator->always_on = true;
1261
1262 mutex_unlock(&rdev->mutex);
1263 return regulator;
1264 overflow_err:
1265 list_del(&regulator->list);
1266 kfree(regulator);
1267 mutex_unlock(&rdev->mutex);
1268 return NULL;
1269 }
1270
1271 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1272 {
1273 if (rdev->constraints && rdev->constraints->enable_time)
1274 return rdev->constraints->enable_time;
1275 if (!rdev->desc->ops->enable_time)
1276 return rdev->desc->enable_time;
1277 return rdev->desc->ops->enable_time(rdev);
1278 }
1279
1280 static struct regulator_supply_alias *regulator_find_supply_alias(
1281 struct device *dev, const char *supply)
1282 {
1283 struct regulator_supply_alias *map;
1284
1285 list_for_each_entry(map, &regulator_supply_alias_list, list)
1286 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1287 return map;
1288
1289 return NULL;
1290 }
1291
1292 static void regulator_supply_alias(struct device **dev, const char **supply)
1293 {
1294 struct regulator_supply_alias *map;
1295
1296 map = regulator_find_supply_alias(*dev, *supply);
1297 if (map) {
1298 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1299 *supply, map->alias_supply,
1300 dev_name(map->alias_dev));
1301 *dev = map->alias_dev;
1302 *supply = map->alias_supply;
1303 }
1304 }
1305
1306 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1307 const char *supply,
1308 int *ret)
1309 {
1310 struct regulator_dev *r;
1311 struct device_node *node;
1312 struct regulator_map *map;
1313 const char *devname = NULL;
1314
1315 regulator_supply_alias(&dev, &supply);
1316
1317 /* first do a dt based lookup */
1318 if (dev && dev->of_node) {
1319 node = of_get_regulator(dev, supply);
1320 if (node) {
1321 list_for_each_entry(r, &regulator_list, list)
1322 if (r->dev.parent &&
1323 node == r->dev.of_node)
1324 return r;
1325 *ret = -EPROBE_DEFER;
1326 return NULL;
1327 } else {
1328 /*
1329 * If we couldn't even get the node then it's
1330 * not just that the device didn't register
1331 * yet, there's no node and we'll never
1332 * succeed.
1333 */
1334 *ret = -ENODEV;
1335 }
1336 }
1337
1338 /* if not found, try doing it non-dt way */
1339 if (dev)
1340 devname = dev_name(dev);
1341
1342 list_for_each_entry(r, &regulator_list, list)
1343 if (strcmp(rdev_get_name(r), supply) == 0)
1344 return r;
1345
1346 list_for_each_entry(map, &regulator_map_list, list) {
1347 /* If the mapping has a device set up it must match */
1348 if (map->dev_name &&
1349 (!devname || strcmp(map->dev_name, devname)))
1350 continue;
1351
1352 if (strcmp(map->supply, supply) == 0)
1353 return map->regulator;
1354 }
1355
1356
1357 return NULL;
1358 }
1359
1360 static int regulator_resolve_supply(struct regulator_dev *rdev)
1361 {
1362 struct regulator_dev *r;
1363 struct device *dev = rdev->dev.parent;
1364 int ret;
1365
1366 /* No supply to resovle? */
1367 if (!rdev->supply_name)
1368 return 0;
1369
1370 /* Supply already resolved? */
1371 if (rdev->supply)
1372 return 0;
1373
1374 r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1375 if (ret == -ENODEV) {
1376 /*
1377 * No supply was specified for this regulator and
1378 * there will never be one.
1379 */
1380 return 0;
1381 }
1382
1383 if (!r) {
1384 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1385 rdev->supply_name, rdev->desc->name);
1386 return -EPROBE_DEFER;
1387 }
1388
1389 /* Recursively resolve the supply of the supply */
1390 ret = regulator_resolve_supply(r);
1391 if (ret < 0)
1392 return ret;
1393
1394 ret = set_supply(rdev, r);
1395 if (ret < 0)
1396 return ret;
1397
1398 /* Cascade always-on state to supply */
1399 if (_regulator_is_enabled(rdev)) {
1400 ret = regulator_enable(rdev->supply);
1401 if (ret < 0)
1402 return ret;
1403 }
1404
1405 return 0;
1406 }
1407
1408 /* Internal regulator request function */
1409 static struct regulator *_regulator_get(struct device *dev, const char *id,
1410 bool exclusive, bool allow_dummy)
1411 {
1412 struct regulator_dev *rdev;
1413 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1414 const char *devname = NULL;
1415 int ret;
1416
1417 if (id == NULL) {
1418 pr_err("get() with no identifier\n");
1419 return ERR_PTR(-EINVAL);
1420 }
1421
1422 if (dev)
1423 devname = dev_name(dev);
1424
1425 if (have_full_constraints())
1426 ret = -ENODEV;
1427 else
1428 ret = -EPROBE_DEFER;
1429
1430 mutex_lock(&regulator_list_mutex);
1431
1432 rdev = regulator_dev_lookup(dev, id, &ret);
1433 if (rdev)
1434 goto found;
1435
1436 regulator = ERR_PTR(ret);
1437
1438 /*
1439 * If we have return value from dev_lookup fail, we do not expect to
1440 * succeed, so, quit with appropriate error value
1441 */
1442 if (ret && ret != -ENODEV)
1443 goto out;
1444
1445 if (!devname)
1446 devname = "deviceless";
1447
1448 /*
1449 * Assume that a regulator is physically present and enabled
1450 * even if it isn't hooked up and just provide a dummy.
1451 */
1452 if (have_full_constraints() && allow_dummy) {
1453 pr_warn("%s supply %s not found, using dummy regulator\n",
1454 devname, id);
1455
1456 rdev = dummy_regulator_rdev;
1457 goto found;
1458 /* Don't log an error when called from regulator_get_optional() */
1459 } else if (!have_full_constraints() || exclusive) {
1460 dev_warn(dev, "dummy supplies not allowed\n");
1461 }
1462
1463 mutex_unlock(&regulator_list_mutex);
1464 return regulator;
1465
1466 found:
1467 if (rdev->exclusive) {
1468 regulator = ERR_PTR(-EPERM);
1469 goto out;
1470 }
1471
1472 if (exclusive && rdev->open_count) {
1473 regulator = ERR_PTR(-EBUSY);
1474 goto out;
1475 }
1476
1477 ret = regulator_resolve_supply(rdev);
1478 if (ret < 0) {
1479 regulator = ERR_PTR(ret);
1480 goto out;
1481 }
1482
1483 if (!try_module_get(rdev->owner))
1484 goto out;
1485
1486 regulator = create_regulator(rdev, dev, id);
1487 if (regulator == NULL) {
1488 regulator = ERR_PTR(-ENOMEM);
1489 module_put(rdev->owner);
1490 goto out;
1491 }
1492
1493 rdev->open_count++;
1494 if (exclusive) {
1495 rdev->exclusive = 1;
1496
1497 ret = _regulator_is_enabled(rdev);
1498 if (ret > 0)
1499 rdev->use_count = 1;
1500 else
1501 rdev->use_count = 0;
1502 }
1503
1504 out:
1505 mutex_unlock(&regulator_list_mutex);
1506
1507 return regulator;
1508 }
1509
1510 /**
1511 * regulator_get - lookup and obtain a reference to a regulator.
1512 * @dev: device for regulator "consumer"
1513 * @id: Supply name or regulator ID.
1514 *
1515 * Returns a struct regulator corresponding to the regulator producer,
1516 * or IS_ERR() condition containing errno.
1517 *
1518 * Use of supply names configured via regulator_set_device_supply() is
1519 * strongly encouraged. It is recommended that the supply name used
1520 * should match the name used for the supply and/or the relevant
1521 * device pins in the datasheet.
1522 */
1523 struct regulator *regulator_get(struct device *dev, const char *id)
1524 {
1525 return _regulator_get(dev, id, false, true);
1526 }
1527 EXPORT_SYMBOL_GPL(regulator_get);
1528
1529 /**
1530 * regulator_get_exclusive - obtain exclusive access to a regulator.
1531 * @dev: device for regulator "consumer"
1532 * @id: Supply name or regulator ID.
1533 *
1534 * Returns a struct regulator corresponding to the regulator producer,
1535 * or IS_ERR() condition containing errno. Other consumers will be
1536 * unable to obtain this regulator while this reference is held and the
1537 * use count for the regulator will be initialised to reflect the current
1538 * state of the regulator.
1539 *
1540 * This is intended for use by consumers which cannot tolerate shared
1541 * use of the regulator such as those which need to force the
1542 * regulator off for correct operation of the hardware they are
1543 * controlling.
1544 *
1545 * Use of supply names configured via regulator_set_device_supply() is
1546 * strongly encouraged. It is recommended that the supply name used
1547 * should match the name used for the supply and/or the relevant
1548 * device pins in the datasheet.
1549 */
1550 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1551 {
1552 return _regulator_get(dev, id, true, false);
1553 }
1554 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1555
1556 /**
1557 * regulator_get_optional - obtain optional access to a regulator.
1558 * @dev: device for regulator "consumer"
1559 * @id: Supply name or regulator ID.
1560 *
1561 * Returns a struct regulator corresponding to the regulator producer,
1562 * or IS_ERR() condition containing errno.
1563 *
1564 * This is intended for use by consumers for devices which can have
1565 * some supplies unconnected in normal use, such as some MMC devices.
1566 * It can allow the regulator core to provide stub supplies for other
1567 * supplies requested using normal regulator_get() calls without
1568 * disrupting the operation of drivers that can handle absent
1569 * supplies.
1570 *
1571 * Use of supply names configured via regulator_set_device_supply() is
1572 * strongly encouraged. It is recommended that the supply name used
1573 * should match the name used for the supply and/or the relevant
1574 * device pins in the datasheet.
1575 */
1576 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1577 {
1578 return _regulator_get(dev, id, false, false);
1579 }
1580 EXPORT_SYMBOL_GPL(regulator_get_optional);
1581
1582 /* regulator_list_mutex lock held by regulator_put() */
1583 static void _regulator_put(struct regulator *regulator)
1584 {
1585 struct regulator_dev *rdev;
1586
1587 if (regulator == NULL || IS_ERR(regulator))
1588 return;
1589
1590 rdev = regulator->rdev;
1591
1592 debugfs_remove_recursive(regulator->debugfs);
1593
1594 /* remove any sysfs entries */
1595 if (regulator->dev)
1596 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1597 mutex_lock(&rdev->mutex);
1598 kfree(regulator->supply_name);
1599 list_del(&regulator->list);
1600 kfree(regulator);
1601
1602 rdev->open_count--;
1603 rdev->exclusive = 0;
1604 mutex_unlock(&rdev->mutex);
1605
1606 module_put(rdev->owner);
1607 }
1608
1609 /**
1610 * regulator_put - "free" the regulator source
1611 * @regulator: regulator source
1612 *
1613 * Note: drivers must ensure that all regulator_enable calls made on this
1614 * regulator source are balanced by regulator_disable calls prior to calling
1615 * this function.
1616 */
1617 void regulator_put(struct regulator *regulator)
1618 {
1619 mutex_lock(&regulator_list_mutex);
1620 _regulator_put(regulator);
1621 mutex_unlock(&regulator_list_mutex);
1622 }
1623 EXPORT_SYMBOL_GPL(regulator_put);
1624
1625 /**
1626 * regulator_register_supply_alias - Provide device alias for supply lookup
1627 *
1628 * @dev: device that will be given as the regulator "consumer"
1629 * @id: Supply name or regulator ID
1630 * @alias_dev: device that should be used to lookup the supply
1631 * @alias_id: Supply name or regulator ID that should be used to lookup the
1632 * supply
1633 *
1634 * All lookups for id on dev will instead be conducted for alias_id on
1635 * alias_dev.
1636 */
1637 int regulator_register_supply_alias(struct device *dev, const char *id,
1638 struct device *alias_dev,
1639 const char *alias_id)
1640 {
1641 struct regulator_supply_alias *map;
1642
1643 map = regulator_find_supply_alias(dev, id);
1644 if (map)
1645 return -EEXIST;
1646
1647 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1648 if (!map)
1649 return -ENOMEM;
1650
1651 map->src_dev = dev;
1652 map->src_supply = id;
1653 map->alias_dev = alias_dev;
1654 map->alias_supply = alias_id;
1655
1656 list_add(&map->list, &regulator_supply_alias_list);
1657
1658 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1659 id, dev_name(dev), alias_id, dev_name(alias_dev));
1660
1661 return 0;
1662 }
1663 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1664
1665 /**
1666 * regulator_unregister_supply_alias - Remove device alias
1667 *
1668 * @dev: device that will be given as the regulator "consumer"
1669 * @id: Supply name or regulator ID
1670 *
1671 * Remove a lookup alias if one exists for id on dev.
1672 */
1673 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1674 {
1675 struct regulator_supply_alias *map;
1676
1677 map = regulator_find_supply_alias(dev, id);
1678 if (map) {
1679 list_del(&map->list);
1680 kfree(map);
1681 }
1682 }
1683 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1684
1685 /**
1686 * regulator_bulk_register_supply_alias - register multiple aliases
1687 *
1688 * @dev: device that will be given as the regulator "consumer"
1689 * @id: List of supply names or regulator IDs
1690 * @alias_dev: device that should be used to lookup the supply
1691 * @alias_id: List of supply names or regulator IDs that should be used to
1692 * lookup the supply
1693 * @num_id: Number of aliases to register
1694 *
1695 * @return 0 on success, an errno on failure.
1696 *
1697 * This helper function allows drivers to register several supply
1698 * aliases in one operation. If any of the aliases cannot be
1699 * registered any aliases that were registered will be removed
1700 * before returning to the caller.
1701 */
1702 int regulator_bulk_register_supply_alias(struct device *dev,
1703 const char *const *id,
1704 struct device *alias_dev,
1705 const char *const *alias_id,
1706 int num_id)
1707 {
1708 int i;
1709 int ret;
1710
1711 for (i = 0; i < num_id; ++i) {
1712 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1713 alias_id[i]);
1714 if (ret < 0)
1715 goto err;
1716 }
1717
1718 return 0;
1719
1720 err:
1721 dev_err(dev,
1722 "Failed to create supply alias %s,%s -> %s,%s\n",
1723 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1724
1725 while (--i >= 0)
1726 regulator_unregister_supply_alias(dev, id[i]);
1727
1728 return ret;
1729 }
1730 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1731
1732 /**
1733 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1734 *
1735 * @dev: device that will be given as the regulator "consumer"
1736 * @id: List of supply names or regulator IDs
1737 * @num_id: Number of aliases to unregister
1738 *
1739 * This helper function allows drivers to unregister several supply
1740 * aliases in one operation.
1741 */
1742 void regulator_bulk_unregister_supply_alias(struct device *dev,
1743 const char *const *id,
1744 int num_id)
1745 {
1746 int i;
1747
1748 for (i = 0; i < num_id; ++i)
1749 regulator_unregister_supply_alias(dev, id[i]);
1750 }
1751 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1752
1753
1754 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1755 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1756 const struct regulator_config *config)
1757 {
1758 struct regulator_enable_gpio *pin;
1759 struct gpio_desc *gpiod;
1760 int ret;
1761
1762 gpiod = gpio_to_desc(config->ena_gpio);
1763
1764 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1765 if (pin->gpiod == gpiod) {
1766 rdev_dbg(rdev, "GPIO %d is already used\n",
1767 config->ena_gpio);
1768 goto update_ena_gpio_to_rdev;
1769 }
1770 }
1771
1772 ret = gpio_request_one(config->ena_gpio,
1773 GPIOF_DIR_OUT | config->ena_gpio_flags,
1774 rdev_get_name(rdev));
1775 if (ret)
1776 return ret;
1777
1778 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1779 if (pin == NULL) {
1780 gpio_free(config->ena_gpio);
1781 return -ENOMEM;
1782 }
1783
1784 pin->gpiod = gpiod;
1785 pin->ena_gpio_invert = config->ena_gpio_invert;
1786 list_add(&pin->list, &regulator_ena_gpio_list);
1787
1788 update_ena_gpio_to_rdev:
1789 pin->request_count++;
1790 rdev->ena_pin = pin;
1791 return 0;
1792 }
1793
1794 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1795 {
1796 struct regulator_enable_gpio *pin, *n;
1797
1798 if (!rdev->ena_pin)
1799 return;
1800
1801 /* Free the GPIO only in case of no use */
1802 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1803 if (pin->gpiod == rdev->ena_pin->gpiod) {
1804 if (pin->request_count <= 1) {
1805 pin->request_count = 0;
1806 gpiod_put(pin->gpiod);
1807 list_del(&pin->list);
1808 kfree(pin);
1809 rdev->ena_pin = NULL;
1810 return;
1811 } else {
1812 pin->request_count--;
1813 }
1814 }
1815 }
1816 }
1817
1818 /**
1819 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1820 * @rdev: regulator_dev structure
1821 * @enable: enable GPIO at initial use?
1822 *
1823 * GPIO is enabled in case of initial use. (enable_count is 0)
1824 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1825 */
1826 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1827 {
1828 struct regulator_enable_gpio *pin = rdev->ena_pin;
1829
1830 if (!pin)
1831 return -EINVAL;
1832
1833 if (enable) {
1834 /* Enable GPIO at initial use */
1835 if (pin->enable_count == 0)
1836 gpiod_set_value_cansleep(pin->gpiod,
1837 !pin->ena_gpio_invert);
1838
1839 pin->enable_count++;
1840 } else {
1841 if (pin->enable_count > 1) {
1842 pin->enable_count--;
1843 return 0;
1844 }
1845
1846 /* Disable GPIO if not used */
1847 if (pin->enable_count <= 1) {
1848 gpiod_set_value_cansleep(pin->gpiod,
1849 pin->ena_gpio_invert);
1850 pin->enable_count = 0;
1851 }
1852 }
1853
1854 return 0;
1855 }
1856
1857 /**
1858 * _regulator_enable_delay - a delay helper function
1859 * @delay: time to delay in microseconds
1860 *
1861 * Delay for the requested amount of time as per the guidelines in:
1862 *
1863 * Documentation/timers/timers-howto.txt
1864 *
1865 * The assumption here is that regulators will never be enabled in
1866 * atomic context and therefore sleeping functions can be used.
1867 */
1868 static void _regulator_enable_delay(unsigned int delay)
1869 {
1870 unsigned int ms = delay / 1000;
1871 unsigned int us = delay % 1000;
1872
1873 if (ms > 0) {
1874 /*
1875 * For small enough values, handle super-millisecond
1876 * delays in the usleep_range() call below.
1877 */
1878 if (ms < 20)
1879 us += ms * 1000;
1880 else
1881 msleep(ms);
1882 }
1883
1884 /*
1885 * Give the scheduler some room to coalesce with any other
1886 * wakeup sources. For delays shorter than 10 us, don't even
1887 * bother setting up high-resolution timers and just busy-
1888 * loop.
1889 */
1890 if (us >= 10)
1891 usleep_range(us, us + 100);
1892 else
1893 udelay(us);
1894 }
1895
1896 static int _regulator_do_enable(struct regulator_dev *rdev)
1897 {
1898 int ret, delay;
1899
1900 /* Query before enabling in case configuration dependent. */
1901 ret = _regulator_get_enable_time(rdev);
1902 if (ret >= 0) {
1903 delay = ret;
1904 } else {
1905 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1906 delay = 0;
1907 }
1908
1909 trace_regulator_enable(rdev_get_name(rdev));
1910
1911 if (rdev->desc->off_on_delay) {
1912 /* if needed, keep a distance of off_on_delay from last time
1913 * this regulator was disabled.
1914 */
1915 unsigned long start_jiffy = jiffies;
1916 unsigned long intended, max_delay, remaining;
1917
1918 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1919 intended = rdev->last_off_jiffy + max_delay;
1920
1921 if (time_before(start_jiffy, intended)) {
1922 /* calc remaining jiffies to deal with one-time
1923 * timer wrapping.
1924 * in case of multiple timer wrapping, either it can be
1925 * detected by out-of-range remaining, or it cannot be
1926 * detected and we gets a panelty of
1927 * _regulator_enable_delay().
1928 */
1929 remaining = intended - start_jiffy;
1930 if (remaining <= max_delay)
1931 _regulator_enable_delay(
1932 jiffies_to_usecs(remaining));
1933 }
1934 }
1935
1936 if (rdev->ena_pin) {
1937 if (!rdev->ena_gpio_state) {
1938 ret = regulator_ena_gpio_ctrl(rdev, true);
1939 if (ret < 0)
1940 return ret;
1941 rdev->ena_gpio_state = 1;
1942 }
1943 } else if (rdev->desc->ops->enable) {
1944 ret = rdev->desc->ops->enable(rdev);
1945 if (ret < 0)
1946 return ret;
1947 } else {
1948 return -EINVAL;
1949 }
1950
1951 /* Allow the regulator to ramp; it would be useful to extend
1952 * this for bulk operations so that the regulators can ramp
1953 * together. */
1954 trace_regulator_enable_delay(rdev_get_name(rdev));
1955
1956 _regulator_enable_delay(delay);
1957
1958 trace_regulator_enable_complete(rdev_get_name(rdev));
1959
1960 return 0;
1961 }
1962
1963 /* locks held by regulator_enable() */
1964 static int _regulator_enable(struct regulator_dev *rdev)
1965 {
1966 int ret;
1967
1968 /* check voltage and requested load before enabling */
1969 if (rdev->constraints &&
1970 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1971 drms_uA_update(rdev);
1972
1973 if (rdev->use_count == 0) {
1974 /* The regulator may on if it's not switchable or left on */
1975 ret = _regulator_is_enabled(rdev);
1976 if (ret == -EINVAL || ret == 0) {
1977 if (!_regulator_can_change_status(rdev))
1978 return -EPERM;
1979
1980 ret = _regulator_do_enable(rdev);
1981 if (ret < 0)
1982 return ret;
1983
1984 } else if (ret < 0) {
1985 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1986 return ret;
1987 }
1988 /* Fallthrough on positive return values - already enabled */
1989 }
1990
1991 rdev->use_count++;
1992
1993 return 0;
1994 }
1995
1996 /**
1997 * regulator_enable - enable regulator output
1998 * @regulator: regulator source
1999 *
2000 * Request that the regulator be enabled with the regulator output at
2001 * the predefined voltage or current value. Calls to regulator_enable()
2002 * must be balanced with calls to regulator_disable().
2003 *
2004 * NOTE: the output value can be set by other drivers, boot loader or may be
2005 * hardwired in the regulator.
2006 */
2007 int regulator_enable(struct regulator *regulator)
2008 {
2009 struct regulator_dev *rdev = regulator->rdev;
2010 int ret = 0;
2011
2012 if (regulator->always_on)
2013 return 0;
2014
2015 if (rdev->supply) {
2016 ret = regulator_enable(rdev->supply);
2017 if (ret != 0)
2018 return ret;
2019 }
2020
2021 mutex_lock(&rdev->mutex);
2022 ret = _regulator_enable(rdev);
2023 mutex_unlock(&rdev->mutex);
2024
2025 if (ret != 0 && rdev->supply)
2026 regulator_disable(rdev->supply);
2027
2028 return ret;
2029 }
2030 EXPORT_SYMBOL_GPL(regulator_enable);
2031
2032 static int _regulator_do_disable(struct regulator_dev *rdev)
2033 {
2034 int ret;
2035
2036 trace_regulator_disable(rdev_get_name(rdev));
2037
2038 if (rdev->ena_pin) {
2039 if (rdev->ena_gpio_state) {
2040 ret = regulator_ena_gpio_ctrl(rdev, false);
2041 if (ret < 0)
2042 return ret;
2043 rdev->ena_gpio_state = 0;
2044 }
2045
2046 } else if (rdev->desc->ops->disable) {
2047 ret = rdev->desc->ops->disable(rdev);
2048 if (ret != 0)
2049 return ret;
2050 }
2051
2052 /* cares about last_off_jiffy only if off_on_delay is required by
2053 * device.
2054 */
2055 if (rdev->desc->off_on_delay)
2056 rdev->last_off_jiffy = jiffies;
2057
2058 trace_regulator_disable_complete(rdev_get_name(rdev));
2059
2060 return 0;
2061 }
2062
2063 /* locks held by regulator_disable() */
2064 static int _regulator_disable(struct regulator_dev *rdev)
2065 {
2066 int ret = 0;
2067
2068 if (WARN(rdev->use_count <= 0,
2069 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2070 return -EIO;
2071
2072 /* are we the last user and permitted to disable ? */
2073 if (rdev->use_count == 1 &&
2074 (rdev->constraints && !rdev->constraints->always_on)) {
2075
2076 /* we are last user */
2077 if (_regulator_can_change_status(rdev)) {
2078 ret = _notifier_call_chain(rdev,
2079 REGULATOR_EVENT_PRE_DISABLE,
2080 NULL);
2081 if (ret & NOTIFY_STOP_MASK)
2082 return -EINVAL;
2083
2084 ret = _regulator_do_disable(rdev);
2085 if (ret < 0) {
2086 rdev_err(rdev, "failed to disable\n");
2087 _notifier_call_chain(rdev,
2088 REGULATOR_EVENT_ABORT_DISABLE,
2089 NULL);
2090 return ret;
2091 }
2092 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2093 NULL);
2094 }
2095
2096 rdev->use_count = 0;
2097 } else if (rdev->use_count > 1) {
2098
2099 if (rdev->constraints &&
2100 (rdev->constraints->valid_ops_mask &
2101 REGULATOR_CHANGE_DRMS))
2102 drms_uA_update(rdev);
2103
2104 rdev->use_count--;
2105 }
2106
2107 return ret;
2108 }
2109
2110 /**
2111 * regulator_disable - disable regulator output
2112 * @regulator: regulator source
2113 *
2114 * Disable the regulator output voltage or current. Calls to
2115 * regulator_enable() must be balanced with calls to
2116 * regulator_disable().
2117 *
2118 * NOTE: this will only disable the regulator output if no other consumer
2119 * devices have it enabled, the regulator device supports disabling and
2120 * machine constraints permit this operation.
2121 */
2122 int regulator_disable(struct regulator *regulator)
2123 {
2124 struct regulator_dev *rdev = regulator->rdev;
2125 int ret = 0;
2126
2127 if (regulator->always_on)
2128 return 0;
2129
2130 mutex_lock(&rdev->mutex);
2131 ret = _regulator_disable(rdev);
2132 mutex_unlock(&rdev->mutex);
2133
2134 if (ret == 0 && rdev->supply)
2135 regulator_disable(rdev->supply);
2136
2137 return ret;
2138 }
2139 EXPORT_SYMBOL_GPL(regulator_disable);
2140
2141 /* locks held by regulator_force_disable() */
2142 static int _regulator_force_disable(struct regulator_dev *rdev)
2143 {
2144 int ret = 0;
2145
2146 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2147 REGULATOR_EVENT_PRE_DISABLE, NULL);
2148 if (ret & NOTIFY_STOP_MASK)
2149 return -EINVAL;
2150
2151 ret = _regulator_do_disable(rdev);
2152 if (ret < 0) {
2153 rdev_err(rdev, "failed to force disable\n");
2154 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2155 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2156 return ret;
2157 }
2158
2159 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2160 REGULATOR_EVENT_DISABLE, NULL);
2161
2162 return 0;
2163 }
2164
2165 /**
2166 * regulator_force_disable - force disable regulator output
2167 * @regulator: regulator source
2168 *
2169 * Forcibly disable the regulator output voltage or current.
2170 * NOTE: this *will* disable the regulator output even if other consumer
2171 * devices have it enabled. This should be used for situations when device
2172 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2173 */
2174 int regulator_force_disable(struct regulator *regulator)
2175 {
2176 struct regulator_dev *rdev = regulator->rdev;
2177 int ret;
2178
2179 mutex_lock(&rdev->mutex);
2180 regulator->uA_load = 0;
2181 ret = _regulator_force_disable(regulator->rdev);
2182 mutex_unlock(&rdev->mutex);
2183
2184 if (rdev->supply)
2185 while (rdev->open_count--)
2186 regulator_disable(rdev->supply);
2187
2188 return ret;
2189 }
2190 EXPORT_SYMBOL_GPL(regulator_force_disable);
2191
2192 static void regulator_disable_work(struct work_struct *work)
2193 {
2194 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2195 disable_work.work);
2196 int count, i, ret;
2197
2198 mutex_lock(&rdev->mutex);
2199
2200 BUG_ON(!rdev->deferred_disables);
2201
2202 count = rdev->deferred_disables;
2203 rdev->deferred_disables = 0;
2204
2205 for (i = 0; i < count; i++) {
2206 ret = _regulator_disable(rdev);
2207 if (ret != 0)
2208 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2209 }
2210
2211 mutex_unlock(&rdev->mutex);
2212
2213 if (rdev->supply) {
2214 for (i = 0; i < count; i++) {
2215 ret = regulator_disable(rdev->supply);
2216 if (ret != 0) {
2217 rdev_err(rdev,
2218 "Supply disable failed: %d\n", ret);
2219 }
2220 }
2221 }
2222 }
2223
2224 /**
2225 * regulator_disable_deferred - disable regulator output with delay
2226 * @regulator: regulator source
2227 * @ms: miliseconds until the regulator is disabled
2228 *
2229 * Execute regulator_disable() on the regulator after a delay. This
2230 * is intended for use with devices that require some time to quiesce.
2231 *
2232 * NOTE: this will only disable the regulator output if no other consumer
2233 * devices have it enabled, the regulator device supports disabling and
2234 * machine constraints permit this operation.
2235 */
2236 int regulator_disable_deferred(struct regulator *regulator, int ms)
2237 {
2238 struct regulator_dev *rdev = regulator->rdev;
2239 int ret;
2240
2241 if (regulator->always_on)
2242 return 0;
2243
2244 if (!ms)
2245 return regulator_disable(regulator);
2246
2247 mutex_lock(&rdev->mutex);
2248 rdev->deferred_disables++;
2249 mutex_unlock(&rdev->mutex);
2250
2251 ret = queue_delayed_work(system_power_efficient_wq,
2252 &rdev->disable_work,
2253 msecs_to_jiffies(ms));
2254 if (ret < 0)
2255 return ret;
2256 else
2257 return 0;
2258 }
2259 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2260
2261 static int _regulator_is_enabled(struct regulator_dev *rdev)
2262 {
2263 /* A GPIO control always takes precedence */
2264 if (rdev->ena_pin)
2265 return rdev->ena_gpio_state;
2266
2267 /* If we don't know then assume that the regulator is always on */
2268 if (!rdev->desc->ops->is_enabled)
2269 return 1;
2270
2271 return rdev->desc->ops->is_enabled(rdev);
2272 }
2273
2274 /**
2275 * regulator_is_enabled - is the regulator output enabled
2276 * @regulator: regulator source
2277 *
2278 * Returns positive if the regulator driver backing the source/client
2279 * has requested that the device be enabled, zero if it hasn't, else a
2280 * negative errno code.
2281 *
2282 * Note that the device backing this regulator handle can have multiple
2283 * users, so it might be enabled even if regulator_enable() was never
2284 * called for this particular source.
2285 */
2286 int regulator_is_enabled(struct regulator *regulator)
2287 {
2288 int ret;
2289
2290 if (regulator->always_on)
2291 return 1;
2292
2293 mutex_lock(&regulator->rdev->mutex);
2294 ret = _regulator_is_enabled(regulator->rdev);
2295 mutex_unlock(&regulator->rdev->mutex);
2296
2297 return ret;
2298 }
2299 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2300
2301 /**
2302 * regulator_can_change_voltage - check if regulator can change voltage
2303 * @regulator: regulator source
2304 *
2305 * Returns positive if the regulator driver backing the source/client
2306 * can change its voltage, false otherwise. Useful for detecting fixed
2307 * or dummy regulators and disabling voltage change logic in the client
2308 * driver.
2309 */
2310 int regulator_can_change_voltage(struct regulator *regulator)
2311 {
2312 struct regulator_dev *rdev = regulator->rdev;
2313
2314 if (rdev->constraints &&
2315 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2316 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2317 return 1;
2318
2319 if (rdev->desc->continuous_voltage_range &&
2320 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2321 rdev->constraints->min_uV != rdev->constraints->max_uV)
2322 return 1;
2323 }
2324
2325 return 0;
2326 }
2327 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2328
2329 /**
2330 * regulator_count_voltages - count regulator_list_voltage() selectors
2331 * @regulator: regulator source
2332 *
2333 * Returns number of selectors, or negative errno. Selectors are
2334 * numbered starting at zero, and typically correspond to bitfields
2335 * in hardware registers.
2336 */
2337 int regulator_count_voltages(struct regulator *regulator)
2338 {
2339 struct regulator_dev *rdev = regulator->rdev;
2340
2341 if (rdev->desc->n_voltages)
2342 return rdev->desc->n_voltages;
2343
2344 if (!rdev->supply)
2345 return -EINVAL;
2346
2347 return regulator_count_voltages(rdev->supply);
2348 }
2349 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2350
2351 /**
2352 * regulator_list_voltage - enumerate supported voltages
2353 * @regulator: regulator source
2354 * @selector: identify voltage to list
2355 * Context: can sleep
2356 *
2357 * Returns a voltage that can be passed to @regulator_set_voltage(),
2358 * zero if this selector code can't be used on this system, or a
2359 * negative errno.
2360 */
2361 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2362 {
2363 struct regulator_dev *rdev = regulator->rdev;
2364 const struct regulator_ops *ops = rdev->desc->ops;
2365 int ret;
2366
2367 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2368 return rdev->desc->fixed_uV;
2369
2370 if (ops->list_voltage) {
2371 if (selector >= rdev->desc->n_voltages)
2372 return -EINVAL;
2373 mutex_lock(&rdev->mutex);
2374 ret = ops->list_voltage(rdev, selector);
2375 mutex_unlock(&rdev->mutex);
2376 } else if (rdev->supply) {
2377 ret = regulator_list_voltage(rdev->supply, selector);
2378 } else {
2379 return -EINVAL;
2380 }
2381
2382 if (ret > 0) {
2383 if (ret < rdev->constraints->min_uV)
2384 ret = 0;
2385 else if (ret > rdev->constraints->max_uV)
2386 ret = 0;
2387 }
2388
2389 return ret;
2390 }
2391 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2392
2393 /**
2394 * regulator_get_regmap - get the regulator's register map
2395 * @regulator: regulator source
2396 *
2397 * Returns the register map for the given regulator, or an ERR_PTR value
2398 * if the regulator doesn't use regmap.
2399 */
2400 struct regmap *regulator_get_regmap(struct regulator *regulator)
2401 {
2402 struct regmap *map = regulator->rdev->regmap;
2403
2404 return map ? map : ERR_PTR(-EOPNOTSUPP);
2405 }
2406
2407 /**
2408 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2409 * @regulator: regulator source
2410 * @vsel_reg: voltage selector register, output parameter
2411 * @vsel_mask: mask for voltage selector bitfield, output parameter
2412 *
2413 * Returns the hardware register offset and bitmask used for setting the
2414 * regulator voltage. This might be useful when configuring voltage-scaling
2415 * hardware or firmware that can make I2C requests behind the kernel's back,
2416 * for example.
2417 *
2418 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2419 * and 0 is returned, otherwise a negative errno is returned.
2420 */
2421 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2422 unsigned *vsel_reg,
2423 unsigned *vsel_mask)
2424 {
2425 struct regulator_dev *rdev = regulator->rdev;
2426 const struct regulator_ops *ops = rdev->desc->ops;
2427
2428 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2429 return -EOPNOTSUPP;
2430
2431 *vsel_reg = rdev->desc->vsel_reg;
2432 *vsel_mask = rdev->desc->vsel_mask;
2433
2434 return 0;
2435 }
2436 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2437
2438 /**
2439 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2440 * @regulator: regulator source
2441 * @selector: identify voltage to list
2442 *
2443 * Converts the selector to a hardware-specific voltage selector that can be
2444 * directly written to the regulator registers. The address of the voltage
2445 * register can be determined by calling @regulator_get_hardware_vsel_register.
2446 *
2447 * On error a negative errno is returned.
2448 */
2449 int regulator_list_hardware_vsel(struct regulator *regulator,
2450 unsigned selector)
2451 {
2452 struct regulator_dev *rdev = regulator->rdev;
2453 const struct regulator_ops *ops = rdev->desc->ops;
2454
2455 if (selector >= rdev->desc->n_voltages)
2456 return -EINVAL;
2457 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2458 return -EOPNOTSUPP;
2459
2460 return selector;
2461 }
2462 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2463
2464 /**
2465 * regulator_get_linear_step - return the voltage step size between VSEL values
2466 * @regulator: regulator source
2467 *
2468 * Returns the voltage step size between VSEL values for linear
2469 * regulators, or return 0 if the regulator isn't a linear regulator.
2470 */
2471 unsigned int regulator_get_linear_step(struct regulator *regulator)
2472 {
2473 struct regulator_dev *rdev = regulator->rdev;
2474
2475 return rdev->desc->uV_step;
2476 }
2477 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2478
2479 /**
2480 * regulator_is_supported_voltage - check if a voltage range can be supported
2481 *
2482 * @regulator: Regulator to check.
2483 * @min_uV: Minimum required voltage in uV.
2484 * @max_uV: Maximum required voltage in uV.
2485 *
2486 * Returns a boolean or a negative error code.
2487 */
2488 int regulator_is_supported_voltage(struct regulator *regulator,
2489 int min_uV, int max_uV)
2490 {
2491 struct regulator_dev *rdev = regulator->rdev;
2492 int i, voltages, ret;
2493
2494 /* If we can't change voltage check the current voltage */
2495 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2496 ret = regulator_get_voltage(regulator);
2497 if (ret >= 0)
2498 return min_uV <= ret && ret <= max_uV;
2499 else
2500 return ret;
2501 }
2502
2503 /* Any voltage within constrains range is fine? */
2504 if (rdev->desc->continuous_voltage_range)
2505 return min_uV >= rdev->constraints->min_uV &&
2506 max_uV <= rdev->constraints->max_uV;
2507
2508 ret = regulator_count_voltages(regulator);
2509 if (ret < 0)
2510 return ret;
2511 voltages = ret;
2512
2513 for (i = 0; i < voltages; i++) {
2514 ret = regulator_list_voltage(regulator, i);
2515
2516 if (ret >= min_uV && ret <= max_uV)
2517 return 1;
2518 }
2519
2520 return 0;
2521 }
2522 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2523
2524 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2525 int min_uV, int max_uV,
2526 unsigned *selector)
2527 {
2528 struct pre_voltage_change_data data;
2529 int ret;
2530
2531 data.old_uV = _regulator_get_voltage(rdev);
2532 data.min_uV = min_uV;
2533 data.max_uV = max_uV;
2534 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2535 &data);
2536 if (ret & NOTIFY_STOP_MASK)
2537 return -EINVAL;
2538
2539 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2540 if (ret >= 0)
2541 return ret;
2542
2543 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2544 (void *)data.old_uV);
2545
2546 return ret;
2547 }
2548
2549 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2550 int uV, unsigned selector)
2551 {
2552 struct pre_voltage_change_data data;
2553 int ret;
2554
2555 data.old_uV = _regulator_get_voltage(rdev);
2556 data.min_uV = uV;
2557 data.max_uV = uV;
2558 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2559 &data);
2560 if (ret & NOTIFY_STOP_MASK)
2561 return -EINVAL;
2562
2563 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2564 if (ret >= 0)
2565 return ret;
2566
2567 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2568 (void *)data.old_uV);
2569
2570 return ret;
2571 }
2572
2573 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2574 int min_uV, int max_uV)
2575 {
2576 int ret;
2577 int delay = 0;
2578 int best_val = 0;
2579 unsigned int selector;
2580 int old_selector = -1;
2581
2582 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2583
2584 min_uV += rdev->constraints->uV_offset;
2585 max_uV += rdev->constraints->uV_offset;
2586
2587 /*
2588 * If we can't obtain the old selector there is not enough
2589 * info to call set_voltage_time_sel().
2590 */
2591 if (_regulator_is_enabled(rdev) &&
2592 rdev->desc->ops->set_voltage_time_sel &&
2593 rdev->desc->ops->get_voltage_sel) {
2594 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2595 if (old_selector < 0)
2596 return old_selector;
2597 }
2598
2599 if (rdev->desc->ops->set_voltage) {
2600 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2601 &selector);
2602
2603 if (ret >= 0) {
2604 if (rdev->desc->ops->list_voltage)
2605 best_val = rdev->desc->ops->list_voltage(rdev,
2606 selector);
2607 else
2608 best_val = _regulator_get_voltage(rdev);
2609 }
2610
2611 } else if (rdev->desc->ops->set_voltage_sel) {
2612 if (rdev->desc->ops->map_voltage) {
2613 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2614 max_uV);
2615 } else {
2616 if (rdev->desc->ops->list_voltage ==
2617 regulator_list_voltage_linear)
2618 ret = regulator_map_voltage_linear(rdev,
2619 min_uV, max_uV);
2620 else if (rdev->desc->ops->list_voltage ==
2621 regulator_list_voltage_linear_range)
2622 ret = regulator_map_voltage_linear_range(rdev,
2623 min_uV, max_uV);
2624 else
2625 ret = regulator_map_voltage_iterate(rdev,
2626 min_uV, max_uV);
2627 }
2628
2629 if (ret >= 0) {
2630 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2631 if (min_uV <= best_val && max_uV >= best_val) {
2632 selector = ret;
2633 if (old_selector == selector)
2634 ret = 0;
2635 else
2636 ret = _regulator_call_set_voltage_sel(
2637 rdev, best_val, selector);
2638 } else {
2639 ret = -EINVAL;
2640 }
2641 }
2642 } else {
2643 ret = -EINVAL;
2644 }
2645
2646 /* Call set_voltage_time_sel if successfully obtained old_selector */
2647 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2648 && old_selector != selector) {
2649
2650 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2651 old_selector, selector);
2652 if (delay < 0) {
2653 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2654 delay);
2655 delay = 0;
2656 }
2657
2658 /* Insert any necessary delays */
2659 if (delay >= 1000) {
2660 mdelay(delay / 1000);
2661 udelay(delay % 1000);
2662 } else if (delay) {
2663 udelay(delay);
2664 }
2665 }
2666
2667 if (ret == 0 && best_val >= 0) {
2668 unsigned long data = best_val;
2669
2670 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2671 (void *)data);
2672 }
2673
2674 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2675
2676 return ret;
2677 }
2678
2679 /**
2680 * regulator_set_voltage - set regulator output voltage
2681 * @regulator: regulator source
2682 * @min_uV: Minimum required voltage in uV
2683 * @max_uV: Maximum acceptable voltage in uV
2684 *
2685 * Sets a voltage regulator to the desired output voltage. This can be set
2686 * during any regulator state. IOW, regulator can be disabled or enabled.
2687 *
2688 * If the regulator is enabled then the voltage will change to the new value
2689 * immediately otherwise if the regulator is disabled the regulator will
2690 * output at the new voltage when enabled.
2691 *
2692 * NOTE: If the regulator is shared between several devices then the lowest
2693 * request voltage that meets the system constraints will be used.
2694 * Regulator system constraints must be set for this regulator before
2695 * calling this function otherwise this call will fail.
2696 */
2697 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2698 {
2699 struct regulator_dev *rdev = regulator->rdev;
2700 int ret = 0;
2701 int old_min_uV, old_max_uV;
2702 int current_uV;
2703
2704 mutex_lock(&rdev->mutex);
2705
2706 /* If we're setting the same range as last time the change
2707 * should be a noop (some cpufreq implementations use the same
2708 * voltage for multiple frequencies, for example).
2709 */
2710 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2711 goto out;
2712
2713 /* If we're trying to set a range that overlaps the current voltage,
2714 * return succesfully even though the regulator does not support
2715 * changing the voltage.
2716 */
2717 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2718 current_uV = _regulator_get_voltage(rdev);
2719 if (min_uV <= current_uV && current_uV <= max_uV) {
2720 regulator->min_uV = min_uV;
2721 regulator->max_uV = max_uV;
2722 goto out;
2723 }
2724 }
2725
2726 /* sanity check */
2727 if (!rdev->desc->ops->set_voltage &&
2728 !rdev->desc->ops->set_voltage_sel) {
2729 ret = -EINVAL;
2730 goto out;
2731 }
2732
2733 /* constraints check */
2734 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2735 if (ret < 0)
2736 goto out;
2737
2738 /* restore original values in case of error */
2739 old_min_uV = regulator->min_uV;
2740 old_max_uV = regulator->max_uV;
2741 regulator->min_uV = min_uV;
2742 regulator->max_uV = max_uV;
2743
2744 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2745 if (ret < 0)
2746 goto out2;
2747
2748 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2749 if (ret < 0)
2750 goto out2;
2751
2752 out:
2753 mutex_unlock(&rdev->mutex);
2754 return ret;
2755 out2:
2756 regulator->min_uV = old_min_uV;
2757 regulator->max_uV = old_max_uV;
2758 mutex_unlock(&rdev->mutex);
2759 return ret;
2760 }
2761 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2762
2763 /**
2764 * regulator_set_voltage_time - get raise/fall time
2765 * @regulator: regulator source
2766 * @old_uV: starting voltage in microvolts
2767 * @new_uV: target voltage in microvolts
2768 *
2769 * Provided with the starting and ending voltage, this function attempts to
2770 * calculate the time in microseconds required to rise or fall to this new
2771 * voltage.
2772 */
2773 int regulator_set_voltage_time(struct regulator *regulator,
2774 int old_uV, int new_uV)
2775 {
2776 struct regulator_dev *rdev = regulator->rdev;
2777 const struct regulator_ops *ops = rdev->desc->ops;
2778 int old_sel = -1;
2779 int new_sel = -1;
2780 int voltage;
2781 int i;
2782
2783 /* Currently requires operations to do this */
2784 if (!ops->list_voltage || !ops->set_voltage_time_sel
2785 || !rdev->desc->n_voltages)
2786 return -EINVAL;
2787
2788 for (i = 0; i < rdev->desc->n_voltages; i++) {
2789 /* We only look for exact voltage matches here */
2790 voltage = regulator_list_voltage(regulator, i);
2791 if (voltage < 0)
2792 return -EINVAL;
2793 if (voltage == 0)
2794 continue;
2795 if (voltage == old_uV)
2796 old_sel = i;
2797 if (voltage == new_uV)
2798 new_sel = i;
2799 }
2800
2801 if (old_sel < 0 || new_sel < 0)
2802 return -EINVAL;
2803
2804 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2805 }
2806 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2807
2808 /**
2809 * regulator_set_voltage_time_sel - get raise/fall time
2810 * @rdev: regulator source device
2811 * @old_selector: selector for starting voltage
2812 * @new_selector: selector for target voltage
2813 *
2814 * Provided with the starting and target voltage selectors, this function
2815 * returns time in microseconds required to rise or fall to this new voltage
2816 *
2817 * Drivers providing ramp_delay in regulation_constraints can use this as their
2818 * set_voltage_time_sel() operation.
2819 */
2820 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2821 unsigned int old_selector,
2822 unsigned int new_selector)
2823 {
2824 unsigned int ramp_delay = 0;
2825 int old_volt, new_volt;
2826
2827 if (rdev->constraints->ramp_delay)
2828 ramp_delay = rdev->constraints->ramp_delay;
2829 else if (rdev->desc->ramp_delay)
2830 ramp_delay = rdev->desc->ramp_delay;
2831
2832 if (ramp_delay == 0) {
2833 rdev_warn(rdev, "ramp_delay not set\n");
2834 return 0;
2835 }
2836
2837 /* sanity check */
2838 if (!rdev->desc->ops->list_voltage)
2839 return -EINVAL;
2840
2841 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2842 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2843
2844 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2845 }
2846 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2847
2848 /**
2849 * regulator_sync_voltage - re-apply last regulator output voltage
2850 * @regulator: regulator source
2851 *
2852 * Re-apply the last configured voltage. This is intended to be used
2853 * where some external control source the consumer is cooperating with
2854 * has caused the configured voltage to change.
2855 */
2856 int regulator_sync_voltage(struct regulator *regulator)
2857 {
2858 struct regulator_dev *rdev = regulator->rdev;
2859 int ret, min_uV, max_uV;
2860
2861 mutex_lock(&rdev->mutex);
2862
2863 if (!rdev->desc->ops->set_voltage &&
2864 !rdev->desc->ops->set_voltage_sel) {
2865 ret = -EINVAL;
2866 goto out;
2867 }
2868
2869 /* This is only going to work if we've had a voltage configured. */
2870 if (!regulator->min_uV && !regulator->max_uV) {
2871 ret = -EINVAL;
2872 goto out;
2873 }
2874
2875 min_uV = regulator->min_uV;
2876 max_uV = regulator->max_uV;
2877
2878 /* This should be a paranoia check... */
2879 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2880 if (ret < 0)
2881 goto out;
2882
2883 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2884 if (ret < 0)
2885 goto out;
2886
2887 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2888
2889 out:
2890 mutex_unlock(&rdev->mutex);
2891 return ret;
2892 }
2893 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2894
2895 static int _regulator_get_voltage(struct regulator_dev *rdev)
2896 {
2897 int sel, ret;
2898
2899 if (rdev->desc->ops->get_voltage_sel) {
2900 sel = rdev->desc->ops->get_voltage_sel(rdev);
2901 if (sel < 0)
2902 return sel;
2903 ret = rdev->desc->ops->list_voltage(rdev, sel);
2904 } else if (rdev->desc->ops->get_voltage) {
2905 ret = rdev->desc->ops->get_voltage(rdev);
2906 } else if (rdev->desc->ops->list_voltage) {
2907 ret = rdev->desc->ops->list_voltage(rdev, 0);
2908 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2909 ret = rdev->desc->fixed_uV;
2910 } else if (rdev->supply) {
2911 ret = regulator_get_voltage(rdev->supply);
2912 } else {
2913 return -EINVAL;
2914 }
2915
2916 if (ret < 0)
2917 return ret;
2918 return ret - rdev->constraints->uV_offset;
2919 }
2920
2921 /**
2922 * regulator_get_voltage - get regulator output voltage
2923 * @regulator: regulator source
2924 *
2925 * This returns the current regulator voltage in uV.
2926 *
2927 * NOTE: If the regulator is disabled it will return the voltage value. This
2928 * function should not be used to determine regulator state.
2929 */
2930 int regulator_get_voltage(struct regulator *regulator)
2931 {
2932 int ret;
2933
2934 mutex_lock(&regulator->rdev->mutex);
2935
2936 ret = _regulator_get_voltage(regulator->rdev);
2937
2938 mutex_unlock(&regulator->rdev->mutex);
2939
2940 return ret;
2941 }
2942 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2943
2944 /**
2945 * regulator_set_current_limit - set regulator output current limit
2946 * @regulator: regulator source
2947 * @min_uA: Minimum supported current in uA
2948 * @max_uA: Maximum supported current in uA
2949 *
2950 * Sets current sink to the desired output current. This can be set during
2951 * any regulator state. IOW, regulator can be disabled or enabled.
2952 *
2953 * If the regulator is enabled then the current will change to the new value
2954 * immediately otherwise if the regulator is disabled the regulator will
2955 * output at the new current when enabled.
2956 *
2957 * NOTE: Regulator system constraints must be set for this regulator before
2958 * calling this function otherwise this call will fail.
2959 */
2960 int regulator_set_current_limit(struct regulator *regulator,
2961 int min_uA, int max_uA)
2962 {
2963 struct regulator_dev *rdev = regulator->rdev;
2964 int ret;
2965
2966 mutex_lock(&rdev->mutex);
2967
2968 /* sanity check */
2969 if (!rdev->desc->ops->set_current_limit) {
2970 ret = -EINVAL;
2971 goto out;
2972 }
2973
2974 /* constraints check */
2975 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2976 if (ret < 0)
2977 goto out;
2978
2979 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2980 out:
2981 mutex_unlock(&rdev->mutex);
2982 return ret;
2983 }
2984 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2985
2986 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2987 {
2988 int ret;
2989
2990 mutex_lock(&rdev->mutex);
2991
2992 /* sanity check */
2993 if (!rdev->desc->ops->get_current_limit) {
2994 ret = -EINVAL;
2995 goto out;
2996 }
2997
2998 ret = rdev->desc->ops->get_current_limit(rdev);
2999 out:
3000 mutex_unlock(&rdev->mutex);
3001 return ret;
3002 }
3003
3004 /**
3005 * regulator_get_current_limit - get regulator output current
3006 * @regulator: regulator source
3007 *
3008 * This returns the current supplied by the specified current sink in uA.
3009 *
3010 * NOTE: If the regulator is disabled it will return the current value. This
3011 * function should not be used to determine regulator state.
3012 */
3013 int regulator_get_current_limit(struct regulator *regulator)
3014 {
3015 return _regulator_get_current_limit(regulator->rdev);
3016 }
3017 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3018
3019 /**
3020 * regulator_set_mode - set regulator operating mode
3021 * @regulator: regulator source
3022 * @mode: operating mode - one of the REGULATOR_MODE constants
3023 *
3024 * Set regulator operating mode to increase regulator efficiency or improve
3025 * regulation performance.
3026 *
3027 * NOTE: Regulator system constraints must be set for this regulator before
3028 * calling this function otherwise this call will fail.
3029 */
3030 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3031 {
3032 struct regulator_dev *rdev = regulator->rdev;
3033 int ret;
3034 int regulator_curr_mode;
3035
3036 mutex_lock(&rdev->mutex);
3037
3038 /* sanity check */
3039 if (!rdev->desc->ops->set_mode) {
3040 ret = -EINVAL;
3041 goto out;
3042 }
3043
3044 /* return if the same mode is requested */
3045 if (rdev->desc->ops->get_mode) {
3046 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3047 if (regulator_curr_mode == mode) {
3048 ret = 0;
3049 goto out;
3050 }
3051 }
3052
3053 /* constraints check */
3054 ret = regulator_mode_constrain(rdev, &mode);
3055 if (ret < 0)
3056 goto out;
3057
3058 ret = rdev->desc->ops->set_mode(rdev, mode);
3059 out:
3060 mutex_unlock(&rdev->mutex);
3061 return ret;
3062 }
3063 EXPORT_SYMBOL_GPL(regulator_set_mode);
3064
3065 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3066 {
3067 int ret;
3068
3069 mutex_lock(&rdev->mutex);
3070
3071 /* sanity check */
3072 if (!rdev->desc->ops->get_mode) {
3073 ret = -EINVAL;
3074 goto out;
3075 }
3076
3077 ret = rdev->desc->ops->get_mode(rdev);
3078 out:
3079 mutex_unlock(&rdev->mutex);
3080 return ret;
3081 }
3082
3083 /**
3084 * regulator_get_mode - get regulator operating mode
3085 * @regulator: regulator source
3086 *
3087 * Get the current regulator operating mode.
3088 */
3089 unsigned int regulator_get_mode(struct regulator *regulator)
3090 {
3091 return _regulator_get_mode(regulator->rdev);
3092 }
3093 EXPORT_SYMBOL_GPL(regulator_get_mode);
3094
3095 /**
3096 * regulator_set_load - set regulator load
3097 * @regulator: regulator source
3098 * @uA_load: load current
3099 *
3100 * Notifies the regulator core of a new device load. This is then used by
3101 * DRMS (if enabled by constraints) to set the most efficient regulator
3102 * operating mode for the new regulator loading.
3103 *
3104 * Consumer devices notify their supply regulator of the maximum power
3105 * they will require (can be taken from device datasheet in the power
3106 * consumption tables) when they change operational status and hence power
3107 * state. Examples of operational state changes that can affect power
3108 * consumption are :-
3109 *
3110 * o Device is opened / closed.
3111 * o Device I/O is about to begin or has just finished.
3112 * o Device is idling in between work.
3113 *
3114 * This information is also exported via sysfs to userspace.
3115 *
3116 * DRMS will sum the total requested load on the regulator and change
3117 * to the most efficient operating mode if platform constraints allow.
3118 *
3119 * On error a negative errno is returned.
3120 */
3121 int regulator_set_load(struct regulator *regulator, int uA_load)
3122 {
3123 struct regulator_dev *rdev = regulator->rdev;
3124 int ret;
3125
3126 mutex_lock(&rdev->mutex);
3127 regulator->uA_load = uA_load;
3128 ret = drms_uA_update(rdev);
3129 mutex_unlock(&rdev->mutex);
3130
3131 return ret;
3132 }
3133 EXPORT_SYMBOL_GPL(regulator_set_load);
3134
3135 /**
3136 * regulator_allow_bypass - allow the regulator to go into bypass mode
3137 *
3138 * @regulator: Regulator to configure
3139 * @enable: enable or disable bypass mode
3140 *
3141 * Allow the regulator to go into bypass mode if all other consumers
3142 * for the regulator also enable bypass mode and the machine
3143 * constraints allow this. Bypass mode means that the regulator is
3144 * simply passing the input directly to the output with no regulation.
3145 */
3146 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3147 {
3148 struct regulator_dev *rdev = regulator->rdev;
3149 int ret = 0;
3150
3151 if (!rdev->desc->ops->set_bypass)
3152 return 0;
3153
3154 if (rdev->constraints &&
3155 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3156 return 0;
3157
3158 mutex_lock(&rdev->mutex);
3159
3160 if (enable && !regulator->bypass) {
3161 rdev->bypass_count++;
3162
3163 if (rdev->bypass_count == rdev->open_count) {
3164 ret = rdev->desc->ops->set_bypass(rdev, enable);
3165 if (ret != 0)
3166 rdev->bypass_count--;
3167 }
3168
3169 } else if (!enable && regulator->bypass) {
3170 rdev->bypass_count--;
3171
3172 if (rdev->bypass_count != rdev->open_count) {
3173 ret = rdev->desc->ops->set_bypass(rdev, enable);
3174 if (ret != 0)
3175 rdev->bypass_count++;
3176 }
3177 }
3178
3179 if (ret == 0)
3180 regulator->bypass = enable;
3181
3182 mutex_unlock(&rdev->mutex);
3183
3184 return ret;
3185 }
3186 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3187
3188 /**
3189 * regulator_register_notifier - register regulator event notifier
3190 * @regulator: regulator source
3191 * @nb: notifier block
3192 *
3193 * Register notifier block to receive regulator events.
3194 */
3195 int regulator_register_notifier(struct regulator *regulator,
3196 struct notifier_block *nb)
3197 {
3198 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3199 nb);
3200 }
3201 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3202
3203 /**
3204 * regulator_unregister_notifier - unregister regulator event notifier
3205 * @regulator: regulator source
3206 * @nb: notifier block
3207 *
3208 * Unregister regulator event notifier block.
3209 */
3210 int regulator_unregister_notifier(struct regulator *regulator,
3211 struct notifier_block *nb)
3212 {
3213 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3214 nb);
3215 }
3216 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3217
3218 /* notify regulator consumers and downstream regulator consumers.
3219 * Note mutex must be held by caller.
3220 */
3221 static int _notifier_call_chain(struct regulator_dev *rdev,
3222 unsigned long event, void *data)
3223 {
3224 /* call rdev chain first */
3225 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3226 }
3227
3228 /**
3229 * regulator_bulk_get - get multiple regulator consumers
3230 *
3231 * @dev: Device to supply
3232 * @num_consumers: Number of consumers to register
3233 * @consumers: Configuration of consumers; clients are stored here.
3234 *
3235 * @return 0 on success, an errno on failure.
3236 *
3237 * This helper function allows drivers to get several regulator
3238 * consumers in one operation. If any of the regulators cannot be
3239 * acquired then any regulators that were allocated will be freed
3240 * before returning to the caller.
3241 */
3242 int regulator_bulk_get(struct device *dev, int num_consumers,
3243 struct regulator_bulk_data *consumers)
3244 {
3245 int i;
3246 int ret;
3247
3248 for (i = 0; i < num_consumers; i++)
3249 consumers[i].consumer = NULL;
3250
3251 for (i = 0; i < num_consumers; i++) {
3252 consumers[i].consumer = regulator_get(dev,
3253 consumers[i].supply);
3254 if (IS_ERR(consumers[i].consumer)) {
3255 ret = PTR_ERR(consumers[i].consumer);
3256 dev_err(dev, "Failed to get supply '%s': %d\n",
3257 consumers[i].supply, ret);
3258 consumers[i].consumer = NULL;
3259 goto err;
3260 }
3261 }
3262
3263 return 0;
3264
3265 err:
3266 while (--i >= 0)
3267 regulator_put(consumers[i].consumer);
3268
3269 return ret;
3270 }
3271 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3272
3273 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3274 {
3275 struct regulator_bulk_data *bulk = data;
3276
3277 bulk->ret = regulator_enable(bulk->consumer);
3278 }
3279
3280 /**
3281 * regulator_bulk_enable - enable multiple regulator consumers
3282 *
3283 * @num_consumers: Number of consumers
3284 * @consumers: Consumer data; clients are stored here.
3285 * @return 0 on success, an errno on failure
3286 *
3287 * This convenience API allows consumers to enable multiple regulator
3288 * clients in a single API call. If any consumers cannot be enabled
3289 * then any others that were enabled will be disabled again prior to
3290 * return.
3291 */
3292 int regulator_bulk_enable(int num_consumers,
3293 struct regulator_bulk_data *consumers)
3294 {
3295 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3296 int i;
3297 int ret = 0;
3298
3299 for (i = 0; i < num_consumers; i++) {
3300 if (consumers[i].consumer->always_on)
3301 consumers[i].ret = 0;
3302 else
3303 async_schedule_domain(regulator_bulk_enable_async,
3304 &consumers[i], &async_domain);
3305 }
3306
3307 async_synchronize_full_domain(&async_domain);
3308
3309 /* If any consumer failed we need to unwind any that succeeded */
3310 for (i = 0; i < num_consumers; i++) {
3311 if (consumers[i].ret != 0) {
3312 ret = consumers[i].ret;
3313 goto err;
3314 }
3315 }
3316
3317 return 0;
3318
3319 err:
3320 for (i = 0; i < num_consumers; i++) {
3321 if (consumers[i].ret < 0)
3322 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3323 consumers[i].ret);
3324 else
3325 regulator_disable(consumers[i].consumer);
3326 }
3327
3328 return ret;
3329 }
3330 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3331
3332 /**
3333 * regulator_bulk_disable - disable multiple regulator consumers
3334 *
3335 * @num_consumers: Number of consumers
3336 * @consumers: Consumer data; clients are stored here.
3337 * @return 0 on success, an errno on failure
3338 *
3339 * This convenience API allows consumers to disable multiple regulator
3340 * clients in a single API call. If any consumers cannot be disabled
3341 * then any others that were disabled will be enabled again prior to
3342 * return.
3343 */
3344 int regulator_bulk_disable(int num_consumers,
3345 struct regulator_bulk_data *consumers)
3346 {
3347 int i;
3348 int ret, r;
3349
3350 for (i = num_consumers - 1; i >= 0; --i) {
3351 ret = regulator_disable(consumers[i].consumer);
3352 if (ret != 0)
3353 goto err;
3354 }
3355
3356 return 0;
3357
3358 err:
3359 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3360 for (++i; i < num_consumers; ++i) {
3361 r = regulator_enable(consumers[i].consumer);
3362 if (r != 0)
3363 pr_err("Failed to reename %s: %d\n",
3364 consumers[i].supply, r);
3365 }
3366
3367 return ret;
3368 }
3369 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3370
3371 /**
3372 * regulator_bulk_force_disable - force disable multiple regulator consumers
3373 *
3374 * @num_consumers: Number of consumers
3375 * @consumers: Consumer data; clients are stored here.
3376 * @return 0 on success, an errno on failure
3377 *
3378 * This convenience API allows consumers to forcibly disable multiple regulator
3379 * clients in a single API call.
3380 * NOTE: This should be used for situations when device damage will
3381 * likely occur if the regulators are not disabled (e.g. over temp).
3382 * Although regulator_force_disable function call for some consumers can
3383 * return error numbers, the function is called for all consumers.
3384 */
3385 int regulator_bulk_force_disable(int num_consumers,
3386 struct regulator_bulk_data *consumers)
3387 {
3388 int i;
3389 int ret;
3390
3391 for (i = 0; i < num_consumers; i++)
3392 consumers[i].ret =
3393 regulator_force_disable(consumers[i].consumer);
3394
3395 for (i = 0; i < num_consumers; i++) {
3396 if (consumers[i].ret != 0) {
3397 ret = consumers[i].ret;
3398 goto out;
3399 }
3400 }
3401
3402 return 0;
3403 out:
3404 return ret;
3405 }
3406 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3407
3408 /**
3409 * regulator_bulk_free - free multiple regulator consumers
3410 *
3411 * @num_consumers: Number of consumers
3412 * @consumers: Consumer data; clients are stored here.
3413 *
3414 * This convenience API allows consumers to free multiple regulator
3415 * clients in a single API call.
3416 */
3417 void regulator_bulk_free(int num_consumers,
3418 struct regulator_bulk_data *consumers)
3419 {
3420 int i;
3421
3422 for (i = 0; i < num_consumers; i++) {
3423 regulator_put(consumers[i].consumer);
3424 consumers[i].consumer = NULL;
3425 }
3426 }
3427 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3428
3429 /**
3430 * regulator_notifier_call_chain - call regulator event notifier
3431 * @rdev: regulator source
3432 * @event: notifier block
3433 * @data: callback-specific data.
3434 *
3435 * Called by regulator drivers to notify clients a regulator event has
3436 * occurred. We also notify regulator clients downstream.
3437 * Note lock must be held by caller.
3438 */
3439 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3440 unsigned long event, void *data)
3441 {
3442 _notifier_call_chain(rdev, event, data);
3443 return NOTIFY_DONE;
3444
3445 }
3446 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3447
3448 /**
3449 * regulator_mode_to_status - convert a regulator mode into a status
3450 *
3451 * @mode: Mode to convert
3452 *
3453 * Convert a regulator mode into a status.
3454 */
3455 int regulator_mode_to_status(unsigned int mode)
3456 {
3457 switch (mode) {
3458 case REGULATOR_MODE_FAST:
3459 return REGULATOR_STATUS_FAST;
3460 case REGULATOR_MODE_NORMAL:
3461 return REGULATOR_STATUS_NORMAL;
3462 case REGULATOR_MODE_IDLE:
3463 return REGULATOR_STATUS_IDLE;
3464 case REGULATOR_MODE_STANDBY:
3465 return REGULATOR_STATUS_STANDBY;
3466 default:
3467 return REGULATOR_STATUS_UNDEFINED;
3468 }
3469 }
3470 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3471
3472 static struct attribute *regulator_dev_attrs[] = {
3473 &dev_attr_name.attr,
3474 &dev_attr_num_users.attr,
3475 &dev_attr_type.attr,
3476 &dev_attr_microvolts.attr,
3477 &dev_attr_microamps.attr,
3478 &dev_attr_opmode.attr,
3479 &dev_attr_state.attr,
3480 &dev_attr_status.attr,
3481 &dev_attr_bypass.attr,
3482 &dev_attr_requested_microamps.attr,
3483 &dev_attr_min_microvolts.attr,
3484 &dev_attr_max_microvolts.attr,
3485 &dev_attr_min_microamps.attr,
3486 &dev_attr_max_microamps.attr,
3487 &dev_attr_suspend_standby_state.attr,
3488 &dev_attr_suspend_mem_state.attr,
3489 &dev_attr_suspend_disk_state.attr,
3490 &dev_attr_suspend_standby_microvolts.attr,
3491 &dev_attr_suspend_mem_microvolts.attr,
3492 &dev_attr_suspend_disk_microvolts.attr,
3493 &dev_attr_suspend_standby_mode.attr,
3494 &dev_attr_suspend_mem_mode.attr,
3495 &dev_attr_suspend_disk_mode.attr,
3496 NULL
3497 };
3498
3499 /*
3500 * To avoid cluttering sysfs (and memory) with useless state, only
3501 * create attributes that can be meaningfully displayed.
3502 */
3503 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3504 struct attribute *attr, int idx)
3505 {
3506 struct device *dev = kobj_to_dev(kobj);
3507 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3508 const struct regulator_ops *ops = rdev->desc->ops;
3509 umode_t mode = attr->mode;
3510
3511 /* these three are always present */
3512 if (attr == &dev_attr_name.attr ||
3513 attr == &dev_attr_num_users.attr ||
3514 attr == &dev_attr_type.attr)
3515 return mode;
3516
3517 /* some attributes need specific methods to be displayed */
3518 if (attr == &dev_attr_microvolts.attr) {
3519 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3520 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3521 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3522 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3523 return mode;
3524 return 0;
3525 }
3526
3527 if (attr == &dev_attr_microamps.attr)
3528 return ops->get_current_limit ? mode : 0;
3529
3530 if (attr == &dev_attr_opmode.attr)
3531 return ops->get_mode ? mode : 0;
3532
3533 if (attr == &dev_attr_state.attr)
3534 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3535
3536 if (attr == &dev_attr_status.attr)
3537 return ops->get_status ? mode : 0;
3538
3539 if (attr == &dev_attr_bypass.attr)
3540 return ops->get_bypass ? mode : 0;
3541
3542 /* some attributes are type-specific */
3543 if (attr == &dev_attr_requested_microamps.attr)
3544 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3545
3546 /* constraints need specific supporting methods */
3547 if (attr == &dev_attr_min_microvolts.attr ||
3548 attr == &dev_attr_max_microvolts.attr)
3549 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3550
3551 if (attr == &dev_attr_min_microamps.attr ||
3552 attr == &dev_attr_max_microamps.attr)
3553 return ops->set_current_limit ? mode : 0;
3554
3555 if (attr == &dev_attr_suspend_standby_state.attr ||
3556 attr == &dev_attr_suspend_mem_state.attr ||
3557 attr == &dev_attr_suspend_disk_state.attr)
3558 return mode;
3559
3560 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3561 attr == &dev_attr_suspend_mem_microvolts.attr ||
3562 attr == &dev_attr_suspend_disk_microvolts.attr)
3563 return ops->set_suspend_voltage ? mode : 0;
3564
3565 if (attr == &dev_attr_suspend_standby_mode.attr ||
3566 attr == &dev_attr_suspend_mem_mode.attr ||
3567 attr == &dev_attr_suspend_disk_mode.attr)
3568 return ops->set_suspend_mode ? mode : 0;
3569
3570 return mode;
3571 }
3572
3573 static const struct attribute_group regulator_dev_group = {
3574 .attrs = regulator_dev_attrs,
3575 .is_visible = regulator_attr_is_visible,
3576 };
3577
3578 static const struct attribute_group *regulator_dev_groups[] = {
3579 &regulator_dev_group,
3580 NULL
3581 };
3582
3583 static void regulator_dev_release(struct device *dev)
3584 {
3585 struct regulator_dev *rdev = dev_get_drvdata(dev);
3586 kfree(rdev);
3587 }
3588
3589 static struct class regulator_class = {
3590 .name = "regulator",
3591 .dev_release = regulator_dev_release,
3592 .dev_groups = regulator_dev_groups,
3593 };
3594
3595 static void rdev_init_debugfs(struct regulator_dev *rdev)
3596 {
3597 struct device *parent = rdev->dev.parent;
3598 const char *rname = rdev_get_name(rdev);
3599 char name[NAME_MAX];
3600
3601 /* Avoid duplicate debugfs directory names */
3602 if (parent && rname == rdev->desc->name) {
3603 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3604 rname);
3605 rname = name;
3606 }
3607
3608 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3609 if (!rdev->debugfs) {
3610 rdev_warn(rdev, "Failed to create debugfs directory\n");
3611 return;
3612 }
3613
3614 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3615 &rdev->use_count);
3616 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3617 &rdev->open_count);
3618 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3619 &rdev->bypass_count);
3620 }
3621
3622 /**
3623 * regulator_register - register regulator
3624 * @regulator_desc: regulator to register
3625 * @cfg: runtime configuration for regulator
3626 *
3627 * Called by regulator drivers to register a regulator.
3628 * Returns a valid pointer to struct regulator_dev on success
3629 * or an ERR_PTR() on error.
3630 */
3631 struct regulator_dev *
3632 regulator_register(const struct regulator_desc *regulator_desc,
3633 const struct regulator_config *cfg)
3634 {
3635 const struct regulation_constraints *constraints = NULL;
3636 const struct regulator_init_data *init_data;
3637 struct regulator_config *config = NULL;
3638 static atomic_t regulator_no = ATOMIC_INIT(-1);
3639 struct regulator_dev *rdev;
3640 struct device *dev;
3641 int ret, i;
3642
3643 if (regulator_desc == NULL || cfg == NULL)
3644 return ERR_PTR(-EINVAL);
3645
3646 dev = cfg->dev;
3647 WARN_ON(!dev);
3648
3649 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3650 return ERR_PTR(-EINVAL);
3651
3652 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3653 regulator_desc->type != REGULATOR_CURRENT)
3654 return ERR_PTR(-EINVAL);
3655
3656 /* Only one of each should be implemented */
3657 WARN_ON(regulator_desc->ops->get_voltage &&
3658 regulator_desc->ops->get_voltage_sel);
3659 WARN_ON(regulator_desc->ops->set_voltage &&
3660 regulator_desc->ops->set_voltage_sel);
3661
3662 /* If we're using selectors we must implement list_voltage. */
3663 if (regulator_desc->ops->get_voltage_sel &&
3664 !regulator_desc->ops->list_voltage) {
3665 return ERR_PTR(-EINVAL);
3666 }
3667 if (regulator_desc->ops->set_voltage_sel &&
3668 !regulator_desc->ops->list_voltage) {
3669 return ERR_PTR(-EINVAL);
3670 }
3671
3672 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3673 if (rdev == NULL)
3674 return ERR_PTR(-ENOMEM);
3675
3676 /*
3677 * Duplicate the config so the driver could override it after
3678 * parsing init data.
3679 */
3680 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3681 if (config == NULL) {
3682 kfree(rdev);
3683 return ERR_PTR(-ENOMEM);
3684 }
3685
3686 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3687 &rdev->dev.of_node);
3688 if (!init_data) {
3689 init_data = config->init_data;
3690 rdev->dev.of_node = of_node_get(config->of_node);
3691 }
3692
3693 mutex_lock(&regulator_list_mutex);
3694
3695 mutex_init(&rdev->mutex);
3696 rdev->reg_data = config->driver_data;
3697 rdev->owner = regulator_desc->owner;
3698 rdev->desc = regulator_desc;
3699 if (config->regmap)
3700 rdev->regmap = config->regmap;
3701 else if (dev_get_regmap(dev, NULL))
3702 rdev->regmap = dev_get_regmap(dev, NULL);
3703 else if (dev->parent)
3704 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3705 INIT_LIST_HEAD(&rdev->consumer_list);
3706 INIT_LIST_HEAD(&rdev->list);
3707 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3708 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3709
3710 /* preform any regulator specific init */
3711 if (init_data && init_data->regulator_init) {
3712 ret = init_data->regulator_init(rdev->reg_data);
3713 if (ret < 0)
3714 goto clean;
3715 }
3716
3717 /* register with sysfs */
3718 rdev->dev.class = &regulator_class;
3719 rdev->dev.parent = dev;
3720 dev_set_name(&rdev->dev, "regulator.%lu",
3721 (unsigned long) atomic_inc_return(&regulator_no));
3722 ret = device_register(&rdev->dev);
3723 if (ret != 0) {
3724 put_device(&rdev->dev);
3725 goto clean;
3726 }
3727
3728 dev_set_drvdata(&rdev->dev, rdev);
3729
3730 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3731 gpio_is_valid(config->ena_gpio)) {
3732 ret = regulator_ena_gpio_request(rdev, config);
3733 if (ret != 0) {
3734 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3735 config->ena_gpio, ret);
3736 goto wash;
3737 }
3738 }
3739
3740 /* set regulator constraints */
3741 if (init_data)
3742 constraints = &init_data->constraints;
3743
3744 ret = set_machine_constraints(rdev, constraints);
3745 if (ret < 0)
3746 goto scrub;
3747
3748 if (init_data && init_data->supply_regulator)
3749 rdev->supply_name = init_data->supply_regulator;
3750 else if (regulator_desc->supply_name)
3751 rdev->supply_name = regulator_desc->supply_name;
3752
3753 /* add consumers devices */
3754 if (init_data) {
3755 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3756 ret = set_consumer_device_supply(rdev,
3757 init_data->consumer_supplies[i].dev_name,
3758 init_data->consumer_supplies[i].supply);
3759 if (ret < 0) {
3760 dev_err(dev, "Failed to set supply %s\n",
3761 init_data->consumer_supplies[i].supply);
3762 goto unset_supplies;
3763 }
3764 }
3765 }
3766
3767 list_add(&rdev->list, &regulator_list);
3768
3769 rdev_init_debugfs(rdev);
3770 out:
3771 mutex_unlock(&regulator_list_mutex);
3772 kfree(config);
3773 return rdev;
3774
3775 unset_supplies:
3776 unset_regulator_supplies(rdev);
3777
3778 scrub:
3779 regulator_ena_gpio_free(rdev);
3780 kfree(rdev->constraints);
3781 wash:
3782 device_unregister(&rdev->dev);
3783 /* device core frees rdev */
3784 rdev = ERR_PTR(ret);
3785 goto out;
3786
3787 clean:
3788 kfree(rdev);
3789 rdev = ERR_PTR(ret);
3790 goto out;
3791 }
3792 EXPORT_SYMBOL_GPL(regulator_register);
3793
3794 /**
3795 * regulator_unregister - unregister regulator
3796 * @rdev: regulator to unregister
3797 *
3798 * Called by regulator drivers to unregister a regulator.
3799 */
3800 void regulator_unregister(struct regulator_dev *rdev)
3801 {
3802 if (rdev == NULL)
3803 return;
3804
3805 if (rdev->supply) {
3806 while (rdev->use_count--)
3807 regulator_disable(rdev->supply);
3808 regulator_put(rdev->supply);
3809 }
3810 mutex_lock(&regulator_list_mutex);
3811 debugfs_remove_recursive(rdev->debugfs);
3812 flush_work(&rdev->disable_work.work);
3813 WARN_ON(rdev->open_count);
3814 unset_regulator_supplies(rdev);
3815 list_del(&rdev->list);
3816 kfree(rdev->constraints);
3817 regulator_ena_gpio_free(rdev);
3818 of_node_put(rdev->dev.of_node);
3819 device_unregister(&rdev->dev);
3820 mutex_unlock(&regulator_list_mutex);
3821 }
3822 EXPORT_SYMBOL_GPL(regulator_unregister);
3823
3824 /**
3825 * regulator_suspend_prepare - prepare regulators for system wide suspend
3826 * @state: system suspend state
3827 *
3828 * Configure each regulator with it's suspend operating parameters for state.
3829 * This will usually be called by machine suspend code prior to supending.
3830 */
3831 int regulator_suspend_prepare(suspend_state_t state)
3832 {
3833 struct regulator_dev *rdev;
3834 int ret = 0;
3835
3836 /* ON is handled by regulator active state */
3837 if (state == PM_SUSPEND_ON)
3838 return -EINVAL;
3839
3840 mutex_lock(&regulator_list_mutex);
3841 list_for_each_entry(rdev, &regulator_list, list) {
3842
3843 mutex_lock(&rdev->mutex);
3844 ret = suspend_prepare(rdev, state);
3845 mutex_unlock(&rdev->mutex);
3846
3847 if (ret < 0) {
3848 rdev_err(rdev, "failed to prepare\n");
3849 goto out;
3850 }
3851 }
3852 out:
3853 mutex_unlock(&regulator_list_mutex);
3854 return ret;
3855 }
3856 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3857
3858 /**
3859 * regulator_suspend_finish - resume regulators from system wide suspend
3860 *
3861 * Turn on regulators that might be turned off by regulator_suspend_prepare
3862 * and that should be turned on according to the regulators properties.
3863 */
3864 int regulator_suspend_finish(void)
3865 {
3866 struct regulator_dev *rdev;
3867 int ret = 0, error;
3868
3869 mutex_lock(&regulator_list_mutex);
3870 list_for_each_entry(rdev, &regulator_list, list) {
3871 mutex_lock(&rdev->mutex);
3872 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3873 if (!_regulator_is_enabled(rdev)) {
3874 error = _regulator_do_enable(rdev);
3875 if (error)
3876 ret = error;
3877 }
3878 } else {
3879 if (!have_full_constraints())
3880 goto unlock;
3881 if (!_regulator_is_enabled(rdev))
3882 goto unlock;
3883
3884 error = _regulator_do_disable(rdev);
3885 if (error)
3886 ret = error;
3887 }
3888 unlock:
3889 mutex_unlock(&rdev->mutex);
3890 }
3891 mutex_unlock(&regulator_list_mutex);
3892 return ret;
3893 }
3894 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3895
3896 /**
3897 * regulator_has_full_constraints - the system has fully specified constraints
3898 *
3899 * Calling this function will cause the regulator API to disable all
3900 * regulators which have a zero use count and don't have an always_on
3901 * constraint in a late_initcall.
3902 *
3903 * The intention is that this will become the default behaviour in a
3904 * future kernel release so users are encouraged to use this facility
3905 * now.
3906 */
3907 void regulator_has_full_constraints(void)
3908 {
3909 has_full_constraints = 1;
3910 }
3911 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3912
3913 /**
3914 * rdev_get_drvdata - get rdev regulator driver data
3915 * @rdev: regulator
3916 *
3917 * Get rdev regulator driver private data. This call can be used in the
3918 * regulator driver context.
3919 */
3920 void *rdev_get_drvdata(struct regulator_dev *rdev)
3921 {
3922 return rdev->reg_data;
3923 }
3924 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3925
3926 /**
3927 * regulator_get_drvdata - get regulator driver data
3928 * @regulator: regulator
3929 *
3930 * Get regulator driver private data. This call can be used in the consumer
3931 * driver context when non API regulator specific functions need to be called.
3932 */
3933 void *regulator_get_drvdata(struct regulator *regulator)
3934 {
3935 return regulator->rdev->reg_data;
3936 }
3937 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3938
3939 /**
3940 * regulator_set_drvdata - set regulator driver data
3941 * @regulator: regulator
3942 * @data: data
3943 */
3944 void regulator_set_drvdata(struct regulator *regulator, void *data)
3945 {
3946 regulator->rdev->reg_data = data;
3947 }
3948 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3949
3950 /**
3951 * regulator_get_id - get regulator ID
3952 * @rdev: regulator
3953 */
3954 int rdev_get_id(struct regulator_dev *rdev)
3955 {
3956 return rdev->desc->id;
3957 }
3958 EXPORT_SYMBOL_GPL(rdev_get_id);
3959
3960 struct device *rdev_get_dev(struct regulator_dev *rdev)
3961 {
3962 return &rdev->dev;
3963 }
3964 EXPORT_SYMBOL_GPL(rdev_get_dev);
3965
3966 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3967 {
3968 return reg_init_data->driver_data;
3969 }
3970 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3971
3972 #ifdef CONFIG_DEBUG_FS
3973 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3974 size_t count, loff_t *ppos)
3975 {
3976 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3977 ssize_t len, ret = 0;
3978 struct regulator_map *map;
3979
3980 if (!buf)
3981 return -ENOMEM;
3982
3983 list_for_each_entry(map, &regulator_map_list, list) {
3984 len = snprintf(buf + ret, PAGE_SIZE - ret,
3985 "%s -> %s.%s\n",
3986 rdev_get_name(map->regulator), map->dev_name,
3987 map->supply);
3988 if (len >= 0)
3989 ret += len;
3990 if (ret > PAGE_SIZE) {
3991 ret = PAGE_SIZE;
3992 break;
3993 }
3994 }
3995
3996 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3997
3998 kfree(buf);
3999
4000 return ret;
4001 }
4002 #endif
4003
4004 static const struct file_operations supply_map_fops = {
4005 #ifdef CONFIG_DEBUG_FS
4006 .read = supply_map_read_file,
4007 .llseek = default_llseek,
4008 #endif
4009 };
4010
4011 #ifdef CONFIG_DEBUG_FS
4012 static void regulator_summary_show_subtree(struct seq_file *s,
4013 struct regulator_dev *rdev,
4014 int level)
4015 {
4016 struct list_head *list = s->private;
4017 struct regulator_dev *child;
4018 struct regulation_constraints *c;
4019 struct regulator *consumer;
4020
4021 if (!rdev)
4022 return;
4023
4024 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4025 level * 3 + 1, "",
4026 30 - level * 3, rdev_get_name(rdev),
4027 rdev->use_count, rdev->open_count, rdev->bypass_count);
4028
4029 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4030 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4031
4032 c = rdev->constraints;
4033 if (c) {
4034 switch (rdev->desc->type) {
4035 case REGULATOR_VOLTAGE:
4036 seq_printf(s, "%5dmV %5dmV ",
4037 c->min_uV / 1000, c->max_uV / 1000);
4038 break;
4039 case REGULATOR_CURRENT:
4040 seq_printf(s, "%5dmA %5dmA ",
4041 c->min_uA / 1000, c->max_uA / 1000);
4042 break;
4043 }
4044 }
4045
4046 seq_puts(s, "\n");
4047
4048 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4049 if (consumer->dev->class == &regulator_class)
4050 continue;
4051
4052 seq_printf(s, "%*s%-*s ",
4053 (level + 1) * 3 + 1, "",
4054 30 - (level + 1) * 3, dev_name(consumer->dev));
4055
4056 switch (rdev->desc->type) {
4057 case REGULATOR_VOLTAGE:
4058 seq_printf(s, "%37dmV %5dmV",
4059 consumer->min_uV / 1000,
4060 consumer->max_uV / 1000);
4061 break;
4062 case REGULATOR_CURRENT:
4063 break;
4064 }
4065
4066 seq_puts(s, "\n");
4067 }
4068
4069 list_for_each_entry(child, list, list) {
4070 /* handle only non-root regulators supplied by current rdev */
4071 if (!child->supply || child->supply->rdev != rdev)
4072 continue;
4073
4074 regulator_summary_show_subtree(s, child, level + 1);
4075 }
4076 }
4077
4078 static int regulator_summary_show(struct seq_file *s, void *data)
4079 {
4080 struct list_head *list = s->private;
4081 struct regulator_dev *rdev;
4082
4083 seq_puts(s, " regulator use open bypass voltage current min max\n");
4084 seq_puts(s, "-------------------------------------------------------------------------------\n");
4085
4086 mutex_lock(&regulator_list_mutex);
4087
4088 list_for_each_entry(rdev, list, list) {
4089 if (rdev->supply)
4090 continue;
4091
4092 regulator_summary_show_subtree(s, rdev, 0);
4093 }
4094
4095 mutex_unlock(&regulator_list_mutex);
4096
4097 return 0;
4098 }
4099
4100 static int regulator_summary_open(struct inode *inode, struct file *file)
4101 {
4102 return single_open(file, regulator_summary_show, inode->i_private);
4103 }
4104 #endif
4105
4106 static const struct file_operations regulator_summary_fops = {
4107 #ifdef CONFIG_DEBUG_FS
4108 .open = regulator_summary_open,
4109 .read = seq_read,
4110 .llseek = seq_lseek,
4111 .release = single_release,
4112 #endif
4113 };
4114
4115 static int __init regulator_init(void)
4116 {
4117 int ret;
4118
4119 ret = class_register(&regulator_class);
4120
4121 debugfs_root = debugfs_create_dir("regulator", NULL);
4122 if (!debugfs_root)
4123 pr_warn("regulator: Failed to create debugfs directory\n");
4124
4125 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4126 &supply_map_fops);
4127
4128 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4129 &regulator_list, &regulator_summary_fops);
4130
4131 regulator_dummy_init();
4132
4133 return ret;
4134 }
4135
4136 /* init early to allow our consumers to complete system booting */
4137 core_initcall(regulator_init);
4138
4139 static int __init regulator_init_complete(void)
4140 {
4141 struct regulator_dev *rdev;
4142 const struct regulator_ops *ops;
4143 struct regulation_constraints *c;
4144 int enabled, ret;
4145
4146 /*
4147 * Since DT doesn't provide an idiomatic mechanism for
4148 * enabling full constraints and since it's much more natural
4149 * with DT to provide them just assume that a DT enabled
4150 * system has full constraints.
4151 */
4152 if (of_have_populated_dt())
4153 has_full_constraints = true;
4154
4155 mutex_lock(&regulator_list_mutex);
4156
4157 /* If we have a full configuration then disable any regulators
4158 * we have permission to change the status for and which are
4159 * not in use or always_on. This is effectively the default
4160 * for DT and ACPI as they have full constraints.
4161 */
4162 list_for_each_entry(rdev, &regulator_list, list) {
4163 ops = rdev->desc->ops;
4164 c = rdev->constraints;
4165
4166 if (c && c->always_on)
4167 continue;
4168
4169 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4170 continue;
4171
4172 mutex_lock(&rdev->mutex);
4173
4174 if (rdev->use_count)
4175 goto unlock;
4176
4177 /* If we can't read the status assume it's on. */
4178 if (ops->is_enabled)
4179 enabled = ops->is_enabled(rdev);
4180 else
4181 enabled = 1;
4182
4183 if (!enabled)
4184 goto unlock;
4185
4186 if (have_full_constraints()) {
4187 /* We log since this may kill the system if it
4188 * goes wrong. */
4189 rdev_info(rdev, "disabling\n");
4190 ret = _regulator_do_disable(rdev);
4191 if (ret != 0)
4192 rdev_err(rdev, "couldn't disable: %d\n", ret);
4193 } else {
4194 /* The intention is that in future we will
4195 * assume that full constraints are provided
4196 * so warn even if we aren't going to do
4197 * anything here.
4198 */
4199 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4200 }
4201
4202 unlock:
4203 mutex_unlock(&rdev->mutex);
4204 }
4205
4206 mutex_unlock(&regulator_list_mutex);
4207
4208 return 0;
4209 }
4210 late_initcall_sync(regulator_init_complete);