]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/regulator/core.c
Merge tag 'x86_urgent_for_v5.11_rc7' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68 };
69
70 /*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75 struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
80 };
81
82 /*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87 struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113 if (rdev->constraints && rdev->constraints->name)
114 return rdev->constraints->name;
115 else if (rdev->desc->name)
116 return rdev->desc->name;
117 else
118 return "";
119 }
120
121 static bool have_full_constraints(void)
122 {
123 return has_full_constraints || of_have_populated_dt();
124 }
125
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128 if (!rdev->constraints) {
129 rdev_err(rdev, "no constraints\n");
130 return false;
131 }
132
133 if (rdev->constraints->valid_ops_mask & ops)
134 return true;
135
136 return false;
137 }
138
139 /**
140 * regulator_lock_nested - lock a single regulator
141 * @rdev: regulator source
142 * @ww_ctx: w/w mutex acquire context
143 *
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
148 * wait on mutex.
149 */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 struct ww_acquire_ctx *ww_ctx)
152 {
153 bool lock = false;
154 int ret = 0;
155
156 mutex_lock(&regulator_nesting_mutex);
157
158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 if (rdev->mutex_owner == current)
160 rdev->ref_cnt++;
161 else
162 lock = true;
163
164 if (lock) {
165 mutex_unlock(&regulator_nesting_mutex);
166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 mutex_lock(&regulator_nesting_mutex);
168 }
169 } else {
170 lock = true;
171 }
172
173 if (lock && ret != -EDEADLK) {
174 rdev->ref_cnt++;
175 rdev->mutex_owner = current;
176 }
177
178 mutex_unlock(&regulator_nesting_mutex);
179
180 return ret;
181 }
182
183 /**
184 * regulator_lock - lock a single regulator
185 * @rdev: regulator source
186 *
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
191 * wait on mutex.
192 */
193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195 regulator_lock_nested(rdev, NULL);
196 }
197
198 /**
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
201 *
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
204 */
205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207 mutex_lock(&regulator_nesting_mutex);
208
209 if (--rdev->ref_cnt == 0) {
210 rdev->mutex_owner = NULL;
211 ww_mutex_unlock(&rdev->mutex);
212 }
213
214 WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216 mutex_unlock(&regulator_nesting_mutex);
217 }
218
219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220 {
221 struct regulator_dev *c_rdev;
222 int i;
223
224 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226
227 if (rdev->supply->rdev == c_rdev)
228 return true;
229 }
230
231 return false;
232 }
233
234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235 unsigned int n_coupled)
236 {
237 struct regulator_dev *c_rdev, *supply_rdev;
238 int i, supply_n_coupled;
239
240 for (i = n_coupled; i > 0; i--) {
241 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242
243 if (!c_rdev)
244 continue;
245
246 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247 supply_rdev = c_rdev->supply->rdev;
248 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
249
250 regulator_unlock_recursive(supply_rdev,
251 supply_n_coupled);
252 }
253
254 regulator_unlock(c_rdev);
255 }
256 }
257
258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259 struct regulator_dev **new_contended_rdev,
260 struct regulator_dev **old_contended_rdev,
261 struct ww_acquire_ctx *ww_ctx)
262 {
263 struct regulator_dev *c_rdev;
264 int i, err;
265
266 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268
269 if (!c_rdev)
270 continue;
271
272 if (c_rdev != *old_contended_rdev) {
273 err = regulator_lock_nested(c_rdev, ww_ctx);
274 if (err) {
275 if (err == -EDEADLK) {
276 *new_contended_rdev = c_rdev;
277 goto err_unlock;
278 }
279
280 /* shouldn't happen */
281 WARN_ON_ONCE(err != -EALREADY);
282 }
283 } else {
284 *old_contended_rdev = NULL;
285 }
286
287 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288 err = regulator_lock_recursive(c_rdev->supply->rdev,
289 new_contended_rdev,
290 old_contended_rdev,
291 ww_ctx);
292 if (err) {
293 regulator_unlock(c_rdev);
294 goto err_unlock;
295 }
296 }
297 }
298
299 return 0;
300
301 err_unlock:
302 regulator_unlock_recursive(rdev, i);
303
304 return err;
305 }
306
307 /**
308 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
309 * regulators
310 * @rdev: regulator source
311 * @ww_ctx: w/w mutex acquire context
312 *
313 * Unlock all regulators related with rdev by coupling or supplying.
314 */
315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316 struct ww_acquire_ctx *ww_ctx)
317 {
318 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319 ww_acquire_fini(ww_ctx);
320 }
321
322 /**
323 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324 * @rdev: regulator source
325 * @ww_ctx: w/w mutex acquire context
326 *
327 * This function as a wrapper on regulator_lock_recursive(), which locks
328 * all regulators related with rdev by coupling or supplying.
329 */
330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331 struct ww_acquire_ctx *ww_ctx)
332 {
333 struct regulator_dev *new_contended_rdev = NULL;
334 struct regulator_dev *old_contended_rdev = NULL;
335 int err;
336
337 mutex_lock(&regulator_list_mutex);
338
339 ww_acquire_init(ww_ctx, &regulator_ww_class);
340
341 do {
342 if (new_contended_rdev) {
343 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344 old_contended_rdev = new_contended_rdev;
345 old_contended_rdev->ref_cnt++;
346 }
347
348 err = regulator_lock_recursive(rdev,
349 &new_contended_rdev,
350 &old_contended_rdev,
351 ww_ctx);
352
353 if (old_contended_rdev)
354 regulator_unlock(old_contended_rdev);
355
356 } while (err == -EDEADLK);
357
358 ww_acquire_done(ww_ctx);
359
360 mutex_unlock(&regulator_list_mutex);
361 }
362
363 /**
364 * of_get_child_regulator - get a child regulator device node
365 * based on supply name
366 * @parent: Parent device node
367 * @prop_name: Combination regulator supply name and "-supply"
368 *
369 * Traverse all child nodes.
370 * Extract the child regulator device node corresponding to the supply name.
371 * returns the device node corresponding to the regulator if found, else
372 * returns NULL.
373 */
374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375 const char *prop_name)
376 {
377 struct device_node *regnode = NULL;
378 struct device_node *child = NULL;
379
380 for_each_child_of_node(parent, child) {
381 regnode = of_parse_phandle(child, prop_name, 0);
382
383 if (!regnode) {
384 regnode = of_get_child_regulator(child, prop_name);
385 if (regnode)
386 goto err_node_put;
387 } else {
388 goto err_node_put;
389 }
390 }
391 return NULL;
392
393 err_node_put:
394 of_node_put(child);
395 return regnode;
396 }
397
398 /**
399 * of_get_regulator - get a regulator device node based on supply name
400 * @dev: Device pointer for the consumer (of regulator) device
401 * @supply: regulator supply name
402 *
403 * Extract the regulator device node corresponding to the supply name.
404 * returns the device node corresponding to the regulator if found, else
405 * returns NULL.
406 */
407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
408 {
409 struct device_node *regnode = NULL;
410 char prop_name[64]; /* 64 is max size of property name */
411
412 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
413
414 snprintf(prop_name, 64, "%s-supply", supply);
415 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416
417 if (!regnode) {
418 regnode = of_get_child_regulator(dev->of_node, prop_name);
419 if (regnode)
420 return regnode;
421
422 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423 prop_name, dev->of_node);
424 return NULL;
425 }
426 return regnode;
427 }
428
429 /* Platform voltage constraint check */
430 int regulator_check_voltage(struct regulator_dev *rdev,
431 int *min_uV, int *max_uV)
432 {
433 BUG_ON(*min_uV > *max_uV);
434
435 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436 rdev_err(rdev, "voltage operation not allowed\n");
437 return -EPERM;
438 }
439
440 if (*max_uV > rdev->constraints->max_uV)
441 *max_uV = rdev->constraints->max_uV;
442 if (*min_uV < rdev->constraints->min_uV)
443 *min_uV = rdev->constraints->min_uV;
444
445 if (*min_uV > *max_uV) {
446 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447 *min_uV, *max_uV);
448 return -EINVAL;
449 }
450
451 return 0;
452 }
453
454 /* return 0 if the state is valid */
455 static int regulator_check_states(suspend_state_t state)
456 {
457 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 }
459
460 /* Make sure we select a voltage that suits the needs of all
461 * regulator consumers
462 */
463 int regulator_check_consumers(struct regulator_dev *rdev,
464 int *min_uV, int *max_uV,
465 suspend_state_t state)
466 {
467 struct regulator *regulator;
468 struct regulator_voltage *voltage;
469
470 list_for_each_entry(regulator, &rdev->consumer_list, list) {
471 voltage = &regulator->voltage[state];
472 /*
473 * Assume consumers that didn't say anything are OK
474 * with anything in the constraint range.
475 */
476 if (!voltage->min_uV && !voltage->max_uV)
477 continue;
478
479 if (*max_uV > voltage->max_uV)
480 *max_uV = voltage->max_uV;
481 if (*min_uV < voltage->min_uV)
482 *min_uV = voltage->min_uV;
483 }
484
485 if (*min_uV > *max_uV) {
486 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
487 *min_uV, *max_uV);
488 return -EINVAL;
489 }
490
491 return 0;
492 }
493
494 /* current constraint check */
495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496 int *min_uA, int *max_uA)
497 {
498 BUG_ON(*min_uA > *max_uA);
499
500 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501 rdev_err(rdev, "current operation not allowed\n");
502 return -EPERM;
503 }
504
505 if (*max_uA > rdev->constraints->max_uA)
506 *max_uA = rdev->constraints->max_uA;
507 if (*min_uA < rdev->constraints->min_uA)
508 *min_uA = rdev->constraints->min_uA;
509
510 if (*min_uA > *max_uA) {
511 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512 *min_uA, *max_uA);
513 return -EINVAL;
514 }
515
516 return 0;
517 }
518
519 /* operating mode constraint check */
520 static int regulator_mode_constrain(struct regulator_dev *rdev,
521 unsigned int *mode)
522 {
523 switch (*mode) {
524 case REGULATOR_MODE_FAST:
525 case REGULATOR_MODE_NORMAL:
526 case REGULATOR_MODE_IDLE:
527 case REGULATOR_MODE_STANDBY:
528 break;
529 default:
530 rdev_err(rdev, "invalid mode %x specified\n", *mode);
531 return -EINVAL;
532 }
533
534 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535 rdev_err(rdev, "mode operation not allowed\n");
536 return -EPERM;
537 }
538
539 /* The modes are bitmasks, the most power hungry modes having
540 * the lowest values. If the requested mode isn't supported
541 * try higher modes. */
542 while (*mode) {
543 if (rdev->constraints->valid_modes_mask & *mode)
544 return 0;
545 *mode /= 2;
546 }
547
548 return -EINVAL;
549 }
550
551 static inline struct regulator_state *
552 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
553 {
554 if (rdev->constraints == NULL)
555 return NULL;
556
557 switch (state) {
558 case PM_SUSPEND_STANDBY:
559 return &rdev->constraints->state_standby;
560 case PM_SUSPEND_MEM:
561 return &rdev->constraints->state_mem;
562 case PM_SUSPEND_MAX:
563 return &rdev->constraints->state_disk;
564 default:
565 return NULL;
566 }
567 }
568
569 static const struct regulator_state *
570 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
571 {
572 const struct regulator_state *rstate;
573
574 rstate = regulator_get_suspend_state(rdev, state);
575 if (rstate == NULL)
576 return NULL;
577
578 /* If we have no suspend mode configuration don't set anything;
579 * only warn if the driver implements set_suspend_voltage or
580 * set_suspend_mode callback.
581 */
582 if (rstate->enabled != ENABLE_IN_SUSPEND &&
583 rstate->enabled != DISABLE_IN_SUSPEND) {
584 if (rdev->desc->ops->set_suspend_voltage ||
585 rdev->desc->ops->set_suspend_mode)
586 rdev_warn(rdev, "No configuration\n");
587 return NULL;
588 }
589
590 return rstate;
591 }
592
593 static ssize_t regulator_uV_show(struct device *dev,
594 struct device_attribute *attr, char *buf)
595 {
596 struct regulator_dev *rdev = dev_get_drvdata(dev);
597 int uV;
598
599 regulator_lock(rdev);
600 uV = regulator_get_voltage_rdev(rdev);
601 regulator_unlock(rdev);
602
603 if (uV < 0)
604 return uV;
605 return sprintf(buf, "%d\n", uV);
606 }
607 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
608
609 static ssize_t regulator_uA_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
611 {
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
615 }
616 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
617
618 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
619 char *buf)
620 {
621 struct regulator_dev *rdev = dev_get_drvdata(dev);
622
623 return sprintf(buf, "%s\n", rdev_get_name(rdev));
624 }
625 static DEVICE_ATTR_RO(name);
626
627 static const char *regulator_opmode_to_str(int mode)
628 {
629 switch (mode) {
630 case REGULATOR_MODE_FAST:
631 return "fast";
632 case REGULATOR_MODE_NORMAL:
633 return "normal";
634 case REGULATOR_MODE_IDLE:
635 return "idle";
636 case REGULATOR_MODE_STANDBY:
637 return "standby";
638 }
639 return "unknown";
640 }
641
642 static ssize_t regulator_print_opmode(char *buf, int mode)
643 {
644 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
645 }
646
647 static ssize_t regulator_opmode_show(struct device *dev,
648 struct device_attribute *attr, char *buf)
649 {
650 struct regulator_dev *rdev = dev_get_drvdata(dev);
651
652 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
653 }
654 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
655
656 static ssize_t regulator_print_state(char *buf, int state)
657 {
658 if (state > 0)
659 return sprintf(buf, "enabled\n");
660 else if (state == 0)
661 return sprintf(buf, "disabled\n");
662 else
663 return sprintf(buf, "unknown\n");
664 }
665
666 static ssize_t regulator_state_show(struct device *dev,
667 struct device_attribute *attr, char *buf)
668 {
669 struct regulator_dev *rdev = dev_get_drvdata(dev);
670 ssize_t ret;
671
672 regulator_lock(rdev);
673 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674 regulator_unlock(rdev);
675
676 return ret;
677 }
678 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
679
680 static ssize_t regulator_status_show(struct device *dev,
681 struct device_attribute *attr, char *buf)
682 {
683 struct regulator_dev *rdev = dev_get_drvdata(dev);
684 int status;
685 char *label;
686
687 status = rdev->desc->ops->get_status(rdev);
688 if (status < 0)
689 return status;
690
691 switch (status) {
692 case REGULATOR_STATUS_OFF:
693 label = "off";
694 break;
695 case REGULATOR_STATUS_ON:
696 label = "on";
697 break;
698 case REGULATOR_STATUS_ERROR:
699 label = "error";
700 break;
701 case REGULATOR_STATUS_FAST:
702 label = "fast";
703 break;
704 case REGULATOR_STATUS_NORMAL:
705 label = "normal";
706 break;
707 case REGULATOR_STATUS_IDLE:
708 label = "idle";
709 break;
710 case REGULATOR_STATUS_STANDBY:
711 label = "standby";
712 break;
713 case REGULATOR_STATUS_BYPASS:
714 label = "bypass";
715 break;
716 case REGULATOR_STATUS_UNDEFINED:
717 label = "undefined";
718 break;
719 default:
720 return -ERANGE;
721 }
722
723 return sprintf(buf, "%s\n", label);
724 }
725 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
726
727 static ssize_t regulator_min_uA_show(struct device *dev,
728 struct device_attribute *attr, char *buf)
729 {
730 struct regulator_dev *rdev = dev_get_drvdata(dev);
731
732 if (!rdev->constraints)
733 return sprintf(buf, "constraint not defined\n");
734
735 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
736 }
737 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
738
739 static ssize_t regulator_max_uA_show(struct device *dev,
740 struct device_attribute *attr, char *buf)
741 {
742 struct regulator_dev *rdev = dev_get_drvdata(dev);
743
744 if (!rdev->constraints)
745 return sprintf(buf, "constraint not defined\n");
746
747 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
748 }
749 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
750
751 static ssize_t regulator_min_uV_show(struct device *dev,
752 struct device_attribute *attr, char *buf)
753 {
754 struct regulator_dev *rdev = dev_get_drvdata(dev);
755
756 if (!rdev->constraints)
757 return sprintf(buf, "constraint not defined\n");
758
759 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
760 }
761 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
762
763 static ssize_t regulator_max_uV_show(struct device *dev,
764 struct device_attribute *attr, char *buf)
765 {
766 struct regulator_dev *rdev = dev_get_drvdata(dev);
767
768 if (!rdev->constraints)
769 return sprintf(buf, "constraint not defined\n");
770
771 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
772 }
773 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
774
775 static ssize_t regulator_total_uA_show(struct device *dev,
776 struct device_attribute *attr, char *buf)
777 {
778 struct regulator_dev *rdev = dev_get_drvdata(dev);
779 struct regulator *regulator;
780 int uA = 0;
781
782 regulator_lock(rdev);
783 list_for_each_entry(regulator, &rdev->consumer_list, list) {
784 if (regulator->enable_count)
785 uA += regulator->uA_load;
786 }
787 regulator_unlock(rdev);
788 return sprintf(buf, "%d\n", uA);
789 }
790 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
791
792 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
793 char *buf)
794 {
795 struct regulator_dev *rdev = dev_get_drvdata(dev);
796 return sprintf(buf, "%d\n", rdev->use_count);
797 }
798 static DEVICE_ATTR_RO(num_users);
799
800 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
801 char *buf)
802 {
803 struct regulator_dev *rdev = dev_get_drvdata(dev);
804
805 switch (rdev->desc->type) {
806 case REGULATOR_VOLTAGE:
807 return sprintf(buf, "voltage\n");
808 case REGULATOR_CURRENT:
809 return sprintf(buf, "current\n");
810 }
811 return sprintf(buf, "unknown\n");
812 }
813 static DEVICE_ATTR_RO(type);
814
815 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
816 struct device_attribute *attr, char *buf)
817 {
818 struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
821 }
822 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
823 regulator_suspend_mem_uV_show, NULL);
824
825 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
826 struct device_attribute *attr, char *buf)
827 {
828 struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
831 }
832 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
833 regulator_suspend_disk_uV_show, NULL);
834
835 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
837 {
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
839
840 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
841 }
842 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
843 regulator_suspend_standby_uV_show, NULL);
844
845 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
846 struct device_attribute *attr, char *buf)
847 {
848 struct regulator_dev *rdev = dev_get_drvdata(dev);
849
850 return regulator_print_opmode(buf,
851 rdev->constraints->state_mem.mode);
852 }
853 static DEVICE_ATTR(suspend_mem_mode, 0444,
854 regulator_suspend_mem_mode_show, NULL);
855
856 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
857 struct device_attribute *attr, char *buf)
858 {
859 struct regulator_dev *rdev = dev_get_drvdata(dev);
860
861 return regulator_print_opmode(buf,
862 rdev->constraints->state_disk.mode);
863 }
864 static DEVICE_ATTR(suspend_disk_mode, 0444,
865 regulator_suspend_disk_mode_show, NULL);
866
867 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
868 struct device_attribute *attr, char *buf)
869 {
870 struct regulator_dev *rdev = dev_get_drvdata(dev);
871
872 return regulator_print_opmode(buf,
873 rdev->constraints->state_standby.mode);
874 }
875 static DEVICE_ATTR(suspend_standby_mode, 0444,
876 regulator_suspend_standby_mode_show, NULL);
877
878 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
880 {
881 struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883 return regulator_print_state(buf,
884 rdev->constraints->state_mem.enabled);
885 }
886 static DEVICE_ATTR(suspend_mem_state, 0444,
887 regulator_suspend_mem_state_show, NULL);
888
889 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
891 {
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
893
894 return regulator_print_state(buf,
895 rdev->constraints->state_disk.enabled);
896 }
897 static DEVICE_ATTR(suspend_disk_state, 0444,
898 regulator_suspend_disk_state_show, NULL);
899
900 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
901 struct device_attribute *attr, char *buf)
902 {
903 struct regulator_dev *rdev = dev_get_drvdata(dev);
904
905 return regulator_print_state(buf,
906 rdev->constraints->state_standby.enabled);
907 }
908 static DEVICE_ATTR(suspend_standby_state, 0444,
909 regulator_suspend_standby_state_show, NULL);
910
911 static ssize_t regulator_bypass_show(struct device *dev,
912 struct device_attribute *attr, char *buf)
913 {
914 struct regulator_dev *rdev = dev_get_drvdata(dev);
915 const char *report;
916 bool bypass;
917 int ret;
918
919 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
920
921 if (ret != 0)
922 report = "unknown";
923 else if (bypass)
924 report = "enabled";
925 else
926 report = "disabled";
927
928 return sprintf(buf, "%s\n", report);
929 }
930 static DEVICE_ATTR(bypass, 0444,
931 regulator_bypass_show, NULL);
932
933 /* Calculate the new optimum regulator operating mode based on the new total
934 * consumer load. All locks held by caller */
935 static int drms_uA_update(struct regulator_dev *rdev)
936 {
937 struct regulator *sibling;
938 int current_uA = 0, output_uV, input_uV, err;
939 unsigned int mode;
940
941 /*
942 * first check to see if we can set modes at all, otherwise just
943 * tell the consumer everything is OK.
944 */
945 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
946 rdev_dbg(rdev, "DRMS operation not allowed\n");
947 return 0;
948 }
949
950 if (!rdev->desc->ops->get_optimum_mode &&
951 !rdev->desc->ops->set_load)
952 return 0;
953
954 if (!rdev->desc->ops->set_mode &&
955 !rdev->desc->ops->set_load)
956 return -EINVAL;
957
958 /* calc total requested load */
959 list_for_each_entry(sibling, &rdev->consumer_list, list) {
960 if (sibling->enable_count)
961 current_uA += sibling->uA_load;
962 }
963
964 current_uA += rdev->constraints->system_load;
965
966 if (rdev->desc->ops->set_load) {
967 /* set the optimum mode for our new total regulator load */
968 err = rdev->desc->ops->set_load(rdev, current_uA);
969 if (err < 0)
970 rdev_err(rdev, "failed to set load %d: %pe\n",
971 current_uA, ERR_PTR(err));
972 } else {
973 /* get output voltage */
974 output_uV = regulator_get_voltage_rdev(rdev);
975 if (output_uV <= 0) {
976 rdev_err(rdev, "invalid output voltage found\n");
977 return -EINVAL;
978 }
979
980 /* get input voltage */
981 input_uV = 0;
982 if (rdev->supply)
983 input_uV = regulator_get_voltage(rdev->supply);
984 if (input_uV <= 0)
985 input_uV = rdev->constraints->input_uV;
986 if (input_uV <= 0) {
987 rdev_err(rdev, "invalid input voltage found\n");
988 return -EINVAL;
989 }
990
991 /* now get the optimum mode for our new total regulator load */
992 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
993 output_uV, current_uA);
994
995 /* check the new mode is allowed */
996 err = regulator_mode_constrain(rdev, &mode);
997 if (err < 0) {
998 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
999 current_uA, input_uV, output_uV, ERR_PTR(err));
1000 return err;
1001 }
1002
1003 err = rdev->desc->ops->set_mode(rdev, mode);
1004 if (err < 0)
1005 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1006 mode, ERR_PTR(err));
1007 }
1008
1009 return err;
1010 }
1011
1012 static int __suspend_set_state(struct regulator_dev *rdev,
1013 const struct regulator_state *rstate)
1014 {
1015 int ret = 0;
1016
1017 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1018 rdev->desc->ops->set_suspend_enable)
1019 ret = rdev->desc->ops->set_suspend_enable(rdev);
1020 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1021 rdev->desc->ops->set_suspend_disable)
1022 ret = rdev->desc->ops->set_suspend_disable(rdev);
1023 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1024 ret = 0;
1025
1026 if (ret < 0) {
1027 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028 return ret;
1029 }
1030
1031 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1032 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1033 if (ret < 0) {
1034 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035 return ret;
1036 }
1037 }
1038
1039 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1040 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1041 if (ret < 0) {
1042 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043 return ret;
1044 }
1045 }
1046
1047 return ret;
1048 }
1049
1050 static int suspend_set_initial_state(struct regulator_dev *rdev)
1051 {
1052 const struct regulator_state *rstate;
1053
1054 rstate = regulator_get_suspend_state_check(rdev,
1055 rdev->constraints->initial_state);
1056 if (!rstate)
1057 return 0;
1058
1059 return __suspend_set_state(rdev, rstate);
1060 }
1061
1062 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1063 static void print_constraints_debug(struct regulator_dev *rdev)
1064 {
1065 struct regulation_constraints *constraints = rdev->constraints;
1066 char buf[160] = "";
1067 size_t len = sizeof(buf) - 1;
1068 int count = 0;
1069 int ret;
1070
1071 if (constraints->min_uV && constraints->max_uV) {
1072 if (constraints->min_uV == constraints->max_uV)
1073 count += scnprintf(buf + count, len - count, "%d mV ",
1074 constraints->min_uV / 1000);
1075 else
1076 count += scnprintf(buf + count, len - count,
1077 "%d <--> %d mV ",
1078 constraints->min_uV / 1000,
1079 constraints->max_uV / 1000);
1080 }
1081
1082 if (!constraints->min_uV ||
1083 constraints->min_uV != constraints->max_uV) {
1084 ret = regulator_get_voltage_rdev(rdev);
1085 if (ret > 0)
1086 count += scnprintf(buf + count, len - count,
1087 "at %d mV ", ret / 1000);
1088 }
1089
1090 if (constraints->uV_offset)
1091 count += scnprintf(buf + count, len - count, "%dmV offset ",
1092 constraints->uV_offset / 1000);
1093
1094 if (constraints->min_uA && constraints->max_uA) {
1095 if (constraints->min_uA == constraints->max_uA)
1096 count += scnprintf(buf + count, len - count, "%d mA ",
1097 constraints->min_uA / 1000);
1098 else
1099 count += scnprintf(buf + count, len - count,
1100 "%d <--> %d mA ",
1101 constraints->min_uA / 1000,
1102 constraints->max_uA / 1000);
1103 }
1104
1105 if (!constraints->min_uA ||
1106 constraints->min_uA != constraints->max_uA) {
1107 ret = _regulator_get_current_limit(rdev);
1108 if (ret > 0)
1109 count += scnprintf(buf + count, len - count,
1110 "at %d mA ", ret / 1000);
1111 }
1112
1113 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114 count += scnprintf(buf + count, len - count, "fast ");
1115 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116 count += scnprintf(buf + count, len - count, "normal ");
1117 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118 count += scnprintf(buf + count, len - count, "idle ");
1119 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120 count += scnprintf(buf + count, len - count, "standby ");
1121
1122 if (!count)
1123 count = scnprintf(buf, len, "no parameters");
1124 else
1125 --count;
1126
1127 count += scnprintf(buf + count, len - count, ", %s",
1128 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129
1130 rdev_dbg(rdev, "%s\n", buf);
1131 }
1132 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1133 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1134 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135
1136 static void print_constraints(struct regulator_dev *rdev)
1137 {
1138 struct regulation_constraints *constraints = rdev->constraints;
1139
1140 print_constraints_debug(rdev);
1141
1142 if ((constraints->min_uV != constraints->max_uV) &&
1143 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144 rdev_warn(rdev,
1145 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146 }
1147
1148 static int machine_constraints_voltage(struct regulator_dev *rdev,
1149 struct regulation_constraints *constraints)
1150 {
1151 const struct regulator_ops *ops = rdev->desc->ops;
1152 int ret;
1153
1154 /* do we need to apply the constraint voltage */
1155 if (rdev->constraints->apply_uV &&
1156 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1157 int target_min, target_max;
1158 int current_uV = regulator_get_voltage_rdev(rdev);
1159
1160 if (current_uV == -ENOTRECOVERABLE) {
1161 /* This regulator can't be read and must be initialized */
1162 rdev_info(rdev, "Setting %d-%duV\n",
1163 rdev->constraints->min_uV,
1164 rdev->constraints->max_uV);
1165 _regulator_do_set_voltage(rdev,
1166 rdev->constraints->min_uV,
1167 rdev->constraints->max_uV);
1168 current_uV = regulator_get_voltage_rdev(rdev);
1169 }
1170
1171 if (current_uV < 0) {
1172 rdev_err(rdev,
1173 "failed to get the current voltage: %pe\n",
1174 ERR_PTR(current_uV));
1175 return current_uV;
1176 }
1177
1178 /*
1179 * If we're below the minimum voltage move up to the
1180 * minimum voltage, if we're above the maximum voltage
1181 * then move down to the maximum.
1182 */
1183 target_min = current_uV;
1184 target_max = current_uV;
1185
1186 if (current_uV < rdev->constraints->min_uV) {
1187 target_min = rdev->constraints->min_uV;
1188 target_max = rdev->constraints->min_uV;
1189 }
1190
1191 if (current_uV > rdev->constraints->max_uV) {
1192 target_min = rdev->constraints->max_uV;
1193 target_max = rdev->constraints->max_uV;
1194 }
1195
1196 if (target_min != current_uV || target_max != current_uV) {
1197 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1198 current_uV, target_min, target_max);
1199 ret = _regulator_do_set_voltage(
1200 rdev, target_min, target_max);
1201 if (ret < 0) {
1202 rdev_err(rdev,
1203 "failed to apply %d-%duV constraint: %pe\n",
1204 target_min, target_max, ERR_PTR(ret));
1205 return ret;
1206 }
1207 }
1208 }
1209
1210 /* constrain machine-level voltage specs to fit
1211 * the actual range supported by this regulator.
1212 */
1213 if (ops->list_voltage && rdev->desc->n_voltages) {
1214 int count = rdev->desc->n_voltages;
1215 int i;
1216 int min_uV = INT_MAX;
1217 int max_uV = INT_MIN;
1218 int cmin = constraints->min_uV;
1219 int cmax = constraints->max_uV;
1220
1221 /* it's safe to autoconfigure fixed-voltage supplies
1222 and the constraints are used by list_voltage. */
1223 if (count == 1 && !cmin) {
1224 cmin = 1;
1225 cmax = INT_MAX;
1226 constraints->min_uV = cmin;
1227 constraints->max_uV = cmax;
1228 }
1229
1230 /* voltage constraints are optional */
1231 if ((cmin == 0) && (cmax == 0))
1232 return 0;
1233
1234 /* else require explicit machine-level constraints */
1235 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236 rdev_err(rdev, "invalid voltage constraints\n");
1237 return -EINVAL;
1238 }
1239
1240 /* no need to loop voltages if range is continuous */
1241 if (rdev->desc->continuous_voltage_range)
1242 return 0;
1243
1244 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1245 for (i = 0; i < count; i++) {
1246 int value;
1247
1248 value = ops->list_voltage(rdev, i);
1249 if (value <= 0)
1250 continue;
1251
1252 /* maybe adjust [min_uV..max_uV] */
1253 if (value >= cmin && value < min_uV)
1254 min_uV = value;
1255 if (value <= cmax && value > max_uV)
1256 max_uV = value;
1257 }
1258
1259 /* final: [min_uV..max_uV] valid iff constraints valid */
1260 if (max_uV < min_uV) {
1261 rdev_err(rdev,
1262 "unsupportable voltage constraints %u-%uuV\n",
1263 min_uV, max_uV);
1264 return -EINVAL;
1265 }
1266
1267 /* use regulator's subset of machine constraints */
1268 if (constraints->min_uV < min_uV) {
1269 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1270 constraints->min_uV, min_uV);
1271 constraints->min_uV = min_uV;
1272 }
1273 if (constraints->max_uV > max_uV) {
1274 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1275 constraints->max_uV, max_uV);
1276 constraints->max_uV = max_uV;
1277 }
1278 }
1279
1280 return 0;
1281 }
1282
1283 static int machine_constraints_current(struct regulator_dev *rdev,
1284 struct regulation_constraints *constraints)
1285 {
1286 const struct regulator_ops *ops = rdev->desc->ops;
1287 int ret;
1288
1289 if (!constraints->min_uA && !constraints->max_uA)
1290 return 0;
1291
1292 if (constraints->min_uA > constraints->max_uA) {
1293 rdev_err(rdev, "Invalid current constraints\n");
1294 return -EINVAL;
1295 }
1296
1297 if (!ops->set_current_limit || !ops->get_current_limit) {
1298 rdev_warn(rdev, "Operation of current configuration missing\n");
1299 return 0;
1300 }
1301
1302 /* Set regulator current in constraints range */
1303 ret = ops->set_current_limit(rdev, constraints->min_uA,
1304 constraints->max_uA);
1305 if (ret < 0) {
1306 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1307 return ret;
1308 }
1309
1310 return 0;
1311 }
1312
1313 static int _regulator_do_enable(struct regulator_dev *rdev);
1314
1315 /**
1316 * set_machine_constraints - sets regulator constraints
1317 * @rdev: regulator source
1318 *
1319 * Allows platform initialisation code to define and constrain
1320 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1321 * Constraints *must* be set by platform code in order for some
1322 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1323 * set_mode.
1324 */
1325 static int set_machine_constraints(struct regulator_dev *rdev)
1326 {
1327 int ret = 0;
1328 const struct regulator_ops *ops = rdev->desc->ops;
1329
1330 ret = machine_constraints_voltage(rdev, rdev->constraints);
1331 if (ret != 0)
1332 return ret;
1333
1334 ret = machine_constraints_current(rdev, rdev->constraints);
1335 if (ret != 0)
1336 return ret;
1337
1338 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1339 ret = ops->set_input_current_limit(rdev,
1340 rdev->constraints->ilim_uA);
1341 if (ret < 0) {
1342 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1343 return ret;
1344 }
1345 }
1346
1347 /* do we need to setup our suspend state */
1348 if (rdev->constraints->initial_state) {
1349 ret = suspend_set_initial_state(rdev);
1350 if (ret < 0) {
1351 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1352 return ret;
1353 }
1354 }
1355
1356 if (rdev->constraints->initial_mode) {
1357 if (!ops->set_mode) {
1358 rdev_err(rdev, "no set_mode operation\n");
1359 return -EINVAL;
1360 }
1361
1362 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1363 if (ret < 0) {
1364 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1365 return ret;
1366 }
1367 } else if (rdev->constraints->system_load) {
1368 /*
1369 * We'll only apply the initial system load if an
1370 * initial mode wasn't specified.
1371 */
1372 drms_uA_update(rdev);
1373 }
1374
1375 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1376 && ops->set_ramp_delay) {
1377 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1378 if (ret < 0) {
1379 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1380 return ret;
1381 }
1382 }
1383
1384 if (rdev->constraints->pull_down && ops->set_pull_down) {
1385 ret = ops->set_pull_down(rdev);
1386 if (ret < 0) {
1387 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1388 return ret;
1389 }
1390 }
1391
1392 if (rdev->constraints->soft_start && ops->set_soft_start) {
1393 ret = ops->set_soft_start(rdev);
1394 if (ret < 0) {
1395 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1396 return ret;
1397 }
1398 }
1399
1400 if (rdev->constraints->over_current_protection
1401 && ops->set_over_current_protection) {
1402 ret = ops->set_over_current_protection(rdev);
1403 if (ret < 0) {
1404 rdev_err(rdev, "failed to set over current protection: %pe\n",
1405 ERR_PTR(ret));
1406 return ret;
1407 }
1408 }
1409
1410 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1411 bool ad_state = (rdev->constraints->active_discharge ==
1412 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1413
1414 ret = ops->set_active_discharge(rdev, ad_state);
1415 if (ret < 0) {
1416 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1417 return ret;
1418 }
1419 }
1420
1421 /* If the constraints say the regulator should be on at this point
1422 * and we have control then make sure it is enabled.
1423 */
1424 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1425 if (rdev->supply) {
1426 ret = regulator_enable(rdev->supply);
1427 if (ret < 0) {
1428 _regulator_put(rdev->supply);
1429 rdev->supply = NULL;
1430 return ret;
1431 }
1432 }
1433
1434 ret = _regulator_do_enable(rdev);
1435 if (ret < 0 && ret != -EINVAL) {
1436 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1437 return ret;
1438 }
1439
1440 if (rdev->constraints->always_on)
1441 rdev->use_count++;
1442 }
1443
1444 print_constraints(rdev);
1445 return 0;
1446 }
1447
1448 /**
1449 * set_supply - set regulator supply regulator
1450 * @rdev: regulator name
1451 * @supply_rdev: supply regulator name
1452 *
1453 * Called by platform initialisation code to set the supply regulator for this
1454 * regulator. This ensures that a regulators supply will also be enabled by the
1455 * core if it's child is enabled.
1456 */
1457 static int set_supply(struct regulator_dev *rdev,
1458 struct regulator_dev *supply_rdev)
1459 {
1460 int err;
1461
1462 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1463
1464 if (!try_module_get(supply_rdev->owner))
1465 return -ENODEV;
1466
1467 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1468 if (rdev->supply == NULL) {
1469 err = -ENOMEM;
1470 return err;
1471 }
1472 supply_rdev->open_count++;
1473
1474 return 0;
1475 }
1476
1477 /**
1478 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1479 * @rdev: regulator source
1480 * @consumer_dev_name: dev_name() string for device supply applies to
1481 * @supply: symbolic name for supply
1482 *
1483 * Allows platform initialisation code to map physical regulator
1484 * sources to symbolic names for supplies for use by devices. Devices
1485 * should use these symbolic names to request regulators, avoiding the
1486 * need to provide board-specific regulator names as platform data.
1487 */
1488 static int set_consumer_device_supply(struct regulator_dev *rdev,
1489 const char *consumer_dev_name,
1490 const char *supply)
1491 {
1492 struct regulator_map *node, *new_node;
1493 int has_dev;
1494
1495 if (supply == NULL)
1496 return -EINVAL;
1497
1498 if (consumer_dev_name != NULL)
1499 has_dev = 1;
1500 else
1501 has_dev = 0;
1502
1503 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1504 if (new_node == NULL)
1505 return -ENOMEM;
1506
1507 new_node->regulator = rdev;
1508 new_node->supply = supply;
1509
1510 if (has_dev) {
1511 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1512 if (new_node->dev_name == NULL) {
1513 kfree(new_node);
1514 return -ENOMEM;
1515 }
1516 }
1517
1518 mutex_lock(&regulator_list_mutex);
1519 list_for_each_entry(node, &regulator_map_list, list) {
1520 if (node->dev_name && consumer_dev_name) {
1521 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1522 continue;
1523 } else if (node->dev_name || consumer_dev_name) {
1524 continue;
1525 }
1526
1527 if (strcmp(node->supply, supply) != 0)
1528 continue;
1529
1530 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1531 consumer_dev_name,
1532 dev_name(&node->regulator->dev),
1533 node->regulator->desc->name,
1534 supply,
1535 dev_name(&rdev->dev), rdev_get_name(rdev));
1536 goto fail;
1537 }
1538
1539 list_add(&new_node->list, &regulator_map_list);
1540 mutex_unlock(&regulator_list_mutex);
1541
1542 return 0;
1543
1544 fail:
1545 mutex_unlock(&regulator_list_mutex);
1546 kfree(new_node->dev_name);
1547 kfree(new_node);
1548 return -EBUSY;
1549 }
1550
1551 static void unset_regulator_supplies(struct regulator_dev *rdev)
1552 {
1553 struct regulator_map *node, *n;
1554
1555 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1556 if (rdev == node->regulator) {
1557 list_del(&node->list);
1558 kfree(node->dev_name);
1559 kfree(node);
1560 }
1561 }
1562 }
1563
1564 #ifdef CONFIG_DEBUG_FS
1565 static ssize_t constraint_flags_read_file(struct file *file,
1566 char __user *user_buf,
1567 size_t count, loff_t *ppos)
1568 {
1569 const struct regulator *regulator = file->private_data;
1570 const struct regulation_constraints *c = regulator->rdev->constraints;
1571 char *buf;
1572 ssize_t ret;
1573
1574 if (!c)
1575 return 0;
1576
1577 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1578 if (!buf)
1579 return -ENOMEM;
1580
1581 ret = snprintf(buf, PAGE_SIZE,
1582 "always_on: %u\n"
1583 "boot_on: %u\n"
1584 "apply_uV: %u\n"
1585 "ramp_disable: %u\n"
1586 "soft_start: %u\n"
1587 "pull_down: %u\n"
1588 "over_current_protection: %u\n",
1589 c->always_on,
1590 c->boot_on,
1591 c->apply_uV,
1592 c->ramp_disable,
1593 c->soft_start,
1594 c->pull_down,
1595 c->over_current_protection);
1596
1597 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1598 kfree(buf);
1599
1600 return ret;
1601 }
1602
1603 #endif
1604
1605 static const struct file_operations constraint_flags_fops = {
1606 #ifdef CONFIG_DEBUG_FS
1607 .open = simple_open,
1608 .read = constraint_flags_read_file,
1609 .llseek = default_llseek,
1610 #endif
1611 };
1612
1613 #define REG_STR_SIZE 64
1614
1615 static struct regulator *create_regulator(struct regulator_dev *rdev,
1616 struct device *dev,
1617 const char *supply_name)
1618 {
1619 struct regulator *regulator;
1620 int err;
1621
1622 if (dev) {
1623 char buf[REG_STR_SIZE];
1624 int size;
1625
1626 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1627 dev->kobj.name, supply_name);
1628 if (size >= REG_STR_SIZE)
1629 return NULL;
1630
1631 supply_name = kstrdup(buf, GFP_KERNEL);
1632 if (supply_name == NULL)
1633 return NULL;
1634 } else {
1635 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1636 if (supply_name == NULL)
1637 return NULL;
1638 }
1639
1640 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1641 if (regulator == NULL) {
1642 kfree(supply_name);
1643 return NULL;
1644 }
1645
1646 regulator->rdev = rdev;
1647 regulator->supply_name = supply_name;
1648
1649 regulator_lock(rdev);
1650 list_add(&regulator->list, &rdev->consumer_list);
1651 regulator_unlock(rdev);
1652
1653 if (dev) {
1654 regulator->dev = dev;
1655
1656 /* Add a link to the device sysfs entry */
1657 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1658 supply_name);
1659 if (err) {
1660 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1661 dev->kobj.name, ERR_PTR(err));
1662 /* non-fatal */
1663 }
1664 }
1665
1666 regulator->debugfs = debugfs_create_dir(supply_name,
1667 rdev->debugfs);
1668 if (!regulator->debugfs) {
1669 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1670 } else {
1671 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1672 &regulator->uA_load);
1673 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1674 &regulator->voltage[PM_SUSPEND_ON].min_uV);
1675 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1676 &regulator->voltage[PM_SUSPEND_ON].max_uV);
1677 debugfs_create_file("constraint_flags", 0444,
1678 regulator->debugfs, regulator,
1679 &constraint_flags_fops);
1680 }
1681
1682 /*
1683 * Check now if the regulator is an always on regulator - if
1684 * it is then we don't need to do nearly so much work for
1685 * enable/disable calls.
1686 */
1687 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1688 _regulator_is_enabled(rdev))
1689 regulator->always_on = true;
1690
1691 return regulator;
1692 }
1693
1694 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1695 {
1696 if (rdev->constraints && rdev->constraints->enable_time)
1697 return rdev->constraints->enable_time;
1698 if (rdev->desc->ops->enable_time)
1699 return rdev->desc->ops->enable_time(rdev);
1700 return rdev->desc->enable_time;
1701 }
1702
1703 static struct regulator_supply_alias *regulator_find_supply_alias(
1704 struct device *dev, const char *supply)
1705 {
1706 struct regulator_supply_alias *map;
1707
1708 list_for_each_entry(map, &regulator_supply_alias_list, list)
1709 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1710 return map;
1711
1712 return NULL;
1713 }
1714
1715 static void regulator_supply_alias(struct device **dev, const char **supply)
1716 {
1717 struct regulator_supply_alias *map;
1718
1719 map = regulator_find_supply_alias(*dev, *supply);
1720 if (map) {
1721 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1722 *supply, map->alias_supply,
1723 dev_name(map->alias_dev));
1724 *dev = map->alias_dev;
1725 *supply = map->alias_supply;
1726 }
1727 }
1728
1729 static int regulator_match(struct device *dev, const void *data)
1730 {
1731 struct regulator_dev *r = dev_to_rdev(dev);
1732
1733 return strcmp(rdev_get_name(r), data) == 0;
1734 }
1735
1736 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1737 {
1738 struct device *dev;
1739
1740 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1741
1742 return dev ? dev_to_rdev(dev) : NULL;
1743 }
1744
1745 /**
1746 * regulator_dev_lookup - lookup a regulator device.
1747 * @dev: device for regulator "consumer".
1748 * @supply: Supply name or regulator ID.
1749 *
1750 * If successful, returns a struct regulator_dev that corresponds to the name
1751 * @supply and with the embedded struct device refcount incremented by one.
1752 * The refcount must be dropped by calling put_device().
1753 * On failure one of the following ERR-PTR-encoded values is returned:
1754 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1755 * in the future.
1756 */
1757 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1758 const char *supply)
1759 {
1760 struct regulator_dev *r = NULL;
1761 struct device_node *node;
1762 struct regulator_map *map;
1763 const char *devname = NULL;
1764
1765 regulator_supply_alias(&dev, &supply);
1766
1767 /* first do a dt based lookup */
1768 if (dev && dev->of_node) {
1769 node = of_get_regulator(dev, supply);
1770 if (node) {
1771 r = of_find_regulator_by_node(node);
1772 if (r)
1773 return r;
1774
1775 /*
1776 * We have a node, but there is no device.
1777 * assume it has not registered yet.
1778 */
1779 return ERR_PTR(-EPROBE_DEFER);
1780 }
1781 }
1782
1783 /* if not found, try doing it non-dt way */
1784 if (dev)
1785 devname = dev_name(dev);
1786
1787 mutex_lock(&regulator_list_mutex);
1788 list_for_each_entry(map, &regulator_map_list, list) {
1789 /* If the mapping has a device set up it must match */
1790 if (map->dev_name &&
1791 (!devname || strcmp(map->dev_name, devname)))
1792 continue;
1793
1794 if (strcmp(map->supply, supply) == 0 &&
1795 get_device(&map->regulator->dev)) {
1796 r = map->regulator;
1797 break;
1798 }
1799 }
1800 mutex_unlock(&regulator_list_mutex);
1801
1802 if (r)
1803 return r;
1804
1805 r = regulator_lookup_by_name(supply);
1806 if (r)
1807 return r;
1808
1809 return ERR_PTR(-ENODEV);
1810 }
1811
1812 static int regulator_resolve_supply(struct regulator_dev *rdev)
1813 {
1814 struct regulator_dev *r;
1815 struct device *dev = rdev->dev.parent;
1816 int ret = 0;
1817
1818 /* No supply to resolve? */
1819 if (!rdev->supply_name)
1820 return 0;
1821
1822 /* Supply already resolved? (fast-path without locking contention) */
1823 if (rdev->supply)
1824 return 0;
1825
1826 r = regulator_dev_lookup(dev, rdev->supply_name);
1827 if (IS_ERR(r)) {
1828 ret = PTR_ERR(r);
1829
1830 /* Did the lookup explicitly defer for us? */
1831 if (ret == -EPROBE_DEFER)
1832 goto out;
1833
1834 if (have_full_constraints()) {
1835 r = dummy_regulator_rdev;
1836 get_device(&r->dev);
1837 } else {
1838 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1839 rdev->supply_name, rdev->desc->name);
1840 ret = -EPROBE_DEFER;
1841 goto out;
1842 }
1843 }
1844
1845 if (r == rdev) {
1846 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1847 rdev->desc->name, rdev->supply_name);
1848 if (!have_full_constraints()) {
1849 ret = -EINVAL;
1850 goto out;
1851 }
1852 r = dummy_regulator_rdev;
1853 get_device(&r->dev);
1854 }
1855
1856 /*
1857 * If the supply's parent device is not the same as the
1858 * regulator's parent device, then ensure the parent device
1859 * is bound before we resolve the supply, in case the parent
1860 * device get probe deferred and unregisters the supply.
1861 */
1862 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1863 if (!device_is_bound(r->dev.parent)) {
1864 put_device(&r->dev);
1865 ret = -EPROBE_DEFER;
1866 goto out;
1867 }
1868 }
1869
1870 /* Recursively resolve the supply of the supply */
1871 ret = regulator_resolve_supply(r);
1872 if (ret < 0) {
1873 put_device(&r->dev);
1874 goto out;
1875 }
1876
1877 /*
1878 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1879 * between rdev->supply null check and setting rdev->supply in
1880 * set_supply() from concurrent tasks.
1881 */
1882 regulator_lock(rdev);
1883
1884 /* Supply just resolved by a concurrent task? */
1885 if (rdev->supply) {
1886 regulator_unlock(rdev);
1887 put_device(&r->dev);
1888 goto out;
1889 }
1890
1891 ret = set_supply(rdev, r);
1892 if (ret < 0) {
1893 regulator_unlock(rdev);
1894 put_device(&r->dev);
1895 goto out;
1896 }
1897
1898 regulator_unlock(rdev);
1899
1900 /*
1901 * In set_machine_constraints() we may have turned this regulator on
1902 * but we couldn't propagate to the supply if it hadn't been resolved
1903 * yet. Do it now.
1904 */
1905 if (rdev->use_count) {
1906 ret = regulator_enable(rdev->supply);
1907 if (ret < 0) {
1908 _regulator_put(rdev->supply);
1909 rdev->supply = NULL;
1910 goto out;
1911 }
1912 }
1913
1914 out:
1915 return ret;
1916 }
1917
1918 /* Internal regulator request function */
1919 struct regulator *_regulator_get(struct device *dev, const char *id,
1920 enum regulator_get_type get_type)
1921 {
1922 struct regulator_dev *rdev;
1923 struct regulator *regulator;
1924 struct device_link *link;
1925 int ret;
1926
1927 if (get_type >= MAX_GET_TYPE) {
1928 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1929 return ERR_PTR(-EINVAL);
1930 }
1931
1932 if (id == NULL) {
1933 pr_err("get() with no identifier\n");
1934 return ERR_PTR(-EINVAL);
1935 }
1936
1937 rdev = regulator_dev_lookup(dev, id);
1938 if (IS_ERR(rdev)) {
1939 ret = PTR_ERR(rdev);
1940
1941 /*
1942 * If regulator_dev_lookup() fails with error other
1943 * than -ENODEV our job here is done, we simply return it.
1944 */
1945 if (ret != -ENODEV)
1946 return ERR_PTR(ret);
1947
1948 if (!have_full_constraints()) {
1949 dev_warn(dev,
1950 "incomplete constraints, dummy supplies not allowed\n");
1951 return ERR_PTR(-ENODEV);
1952 }
1953
1954 switch (get_type) {
1955 case NORMAL_GET:
1956 /*
1957 * Assume that a regulator is physically present and
1958 * enabled, even if it isn't hooked up, and just
1959 * provide a dummy.
1960 */
1961 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1962 rdev = dummy_regulator_rdev;
1963 get_device(&rdev->dev);
1964 break;
1965
1966 case EXCLUSIVE_GET:
1967 dev_warn(dev,
1968 "dummy supplies not allowed for exclusive requests\n");
1969 fallthrough;
1970
1971 default:
1972 return ERR_PTR(-ENODEV);
1973 }
1974 }
1975
1976 if (rdev->exclusive) {
1977 regulator = ERR_PTR(-EPERM);
1978 put_device(&rdev->dev);
1979 return regulator;
1980 }
1981
1982 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1983 regulator = ERR_PTR(-EBUSY);
1984 put_device(&rdev->dev);
1985 return regulator;
1986 }
1987
1988 mutex_lock(&regulator_list_mutex);
1989 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1990 mutex_unlock(&regulator_list_mutex);
1991
1992 if (ret != 0) {
1993 regulator = ERR_PTR(-EPROBE_DEFER);
1994 put_device(&rdev->dev);
1995 return regulator;
1996 }
1997
1998 ret = regulator_resolve_supply(rdev);
1999 if (ret < 0) {
2000 regulator = ERR_PTR(ret);
2001 put_device(&rdev->dev);
2002 return regulator;
2003 }
2004
2005 if (!try_module_get(rdev->owner)) {
2006 regulator = ERR_PTR(-EPROBE_DEFER);
2007 put_device(&rdev->dev);
2008 return regulator;
2009 }
2010
2011 regulator = create_regulator(rdev, dev, id);
2012 if (regulator == NULL) {
2013 regulator = ERR_PTR(-ENOMEM);
2014 module_put(rdev->owner);
2015 put_device(&rdev->dev);
2016 return regulator;
2017 }
2018
2019 rdev->open_count++;
2020 if (get_type == EXCLUSIVE_GET) {
2021 rdev->exclusive = 1;
2022
2023 ret = _regulator_is_enabled(rdev);
2024 if (ret > 0)
2025 rdev->use_count = 1;
2026 else
2027 rdev->use_count = 0;
2028 }
2029
2030 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2031 if (!IS_ERR_OR_NULL(link))
2032 regulator->device_link = true;
2033
2034 return regulator;
2035 }
2036
2037 /**
2038 * regulator_get - lookup and obtain a reference to a regulator.
2039 * @dev: device for regulator "consumer"
2040 * @id: Supply name or regulator ID.
2041 *
2042 * Returns a struct regulator corresponding to the regulator producer,
2043 * or IS_ERR() condition containing errno.
2044 *
2045 * Use of supply names configured via regulator_set_device_supply() is
2046 * strongly encouraged. It is recommended that the supply name used
2047 * should match the name used for the supply and/or the relevant
2048 * device pins in the datasheet.
2049 */
2050 struct regulator *regulator_get(struct device *dev, const char *id)
2051 {
2052 return _regulator_get(dev, id, NORMAL_GET);
2053 }
2054 EXPORT_SYMBOL_GPL(regulator_get);
2055
2056 /**
2057 * regulator_get_exclusive - obtain exclusive access to a regulator.
2058 * @dev: device for regulator "consumer"
2059 * @id: Supply name or regulator ID.
2060 *
2061 * Returns a struct regulator corresponding to the regulator producer,
2062 * or IS_ERR() condition containing errno. Other consumers will be
2063 * unable to obtain this regulator while this reference is held and the
2064 * use count for the regulator will be initialised to reflect the current
2065 * state of the regulator.
2066 *
2067 * This is intended for use by consumers which cannot tolerate shared
2068 * use of the regulator such as those which need to force the
2069 * regulator off for correct operation of the hardware they are
2070 * controlling.
2071 *
2072 * Use of supply names configured via regulator_set_device_supply() is
2073 * strongly encouraged. It is recommended that the supply name used
2074 * should match the name used for the supply and/or the relevant
2075 * device pins in the datasheet.
2076 */
2077 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2078 {
2079 return _regulator_get(dev, id, EXCLUSIVE_GET);
2080 }
2081 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2082
2083 /**
2084 * regulator_get_optional - obtain optional access to a regulator.
2085 * @dev: device for regulator "consumer"
2086 * @id: Supply name or regulator ID.
2087 *
2088 * Returns a struct regulator corresponding to the regulator producer,
2089 * or IS_ERR() condition containing errno.
2090 *
2091 * This is intended for use by consumers for devices which can have
2092 * some supplies unconnected in normal use, such as some MMC devices.
2093 * It can allow the regulator core to provide stub supplies for other
2094 * supplies requested using normal regulator_get() calls without
2095 * disrupting the operation of drivers that can handle absent
2096 * supplies.
2097 *
2098 * Use of supply names configured via regulator_set_device_supply() is
2099 * strongly encouraged. It is recommended that the supply name used
2100 * should match the name used for the supply and/or the relevant
2101 * device pins in the datasheet.
2102 */
2103 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2104 {
2105 return _regulator_get(dev, id, OPTIONAL_GET);
2106 }
2107 EXPORT_SYMBOL_GPL(regulator_get_optional);
2108
2109 static void destroy_regulator(struct regulator *regulator)
2110 {
2111 struct regulator_dev *rdev = regulator->rdev;
2112
2113 debugfs_remove_recursive(regulator->debugfs);
2114
2115 if (regulator->dev) {
2116 if (regulator->device_link)
2117 device_link_remove(regulator->dev, &rdev->dev);
2118
2119 /* remove any sysfs entries */
2120 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2121 }
2122
2123 regulator_lock(rdev);
2124 list_del(&regulator->list);
2125
2126 rdev->open_count--;
2127 rdev->exclusive = 0;
2128 regulator_unlock(rdev);
2129
2130 kfree_const(regulator->supply_name);
2131 kfree(regulator);
2132 }
2133
2134 /* regulator_list_mutex lock held by regulator_put() */
2135 static void _regulator_put(struct regulator *regulator)
2136 {
2137 struct regulator_dev *rdev;
2138
2139 if (IS_ERR_OR_NULL(regulator))
2140 return;
2141
2142 lockdep_assert_held_once(&regulator_list_mutex);
2143
2144 /* Docs say you must disable before calling regulator_put() */
2145 WARN_ON(regulator->enable_count);
2146
2147 rdev = regulator->rdev;
2148
2149 destroy_regulator(regulator);
2150
2151 module_put(rdev->owner);
2152 put_device(&rdev->dev);
2153 }
2154
2155 /**
2156 * regulator_put - "free" the regulator source
2157 * @regulator: regulator source
2158 *
2159 * Note: drivers must ensure that all regulator_enable calls made on this
2160 * regulator source are balanced by regulator_disable calls prior to calling
2161 * this function.
2162 */
2163 void regulator_put(struct regulator *regulator)
2164 {
2165 mutex_lock(&regulator_list_mutex);
2166 _regulator_put(regulator);
2167 mutex_unlock(&regulator_list_mutex);
2168 }
2169 EXPORT_SYMBOL_GPL(regulator_put);
2170
2171 /**
2172 * regulator_register_supply_alias - Provide device alias for supply lookup
2173 *
2174 * @dev: device that will be given as the regulator "consumer"
2175 * @id: Supply name or regulator ID
2176 * @alias_dev: device that should be used to lookup the supply
2177 * @alias_id: Supply name or regulator ID that should be used to lookup the
2178 * supply
2179 *
2180 * All lookups for id on dev will instead be conducted for alias_id on
2181 * alias_dev.
2182 */
2183 int regulator_register_supply_alias(struct device *dev, const char *id,
2184 struct device *alias_dev,
2185 const char *alias_id)
2186 {
2187 struct regulator_supply_alias *map;
2188
2189 map = regulator_find_supply_alias(dev, id);
2190 if (map)
2191 return -EEXIST;
2192
2193 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2194 if (!map)
2195 return -ENOMEM;
2196
2197 map->src_dev = dev;
2198 map->src_supply = id;
2199 map->alias_dev = alias_dev;
2200 map->alias_supply = alias_id;
2201
2202 list_add(&map->list, &regulator_supply_alias_list);
2203
2204 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2205 id, dev_name(dev), alias_id, dev_name(alias_dev));
2206
2207 return 0;
2208 }
2209 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2210
2211 /**
2212 * regulator_unregister_supply_alias - Remove device alias
2213 *
2214 * @dev: device that will be given as the regulator "consumer"
2215 * @id: Supply name or regulator ID
2216 *
2217 * Remove a lookup alias if one exists for id on dev.
2218 */
2219 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2220 {
2221 struct regulator_supply_alias *map;
2222
2223 map = regulator_find_supply_alias(dev, id);
2224 if (map) {
2225 list_del(&map->list);
2226 kfree(map);
2227 }
2228 }
2229 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2230
2231 /**
2232 * regulator_bulk_register_supply_alias - register multiple aliases
2233 *
2234 * @dev: device that will be given as the regulator "consumer"
2235 * @id: List of supply names or regulator IDs
2236 * @alias_dev: device that should be used to lookup the supply
2237 * @alias_id: List of supply names or regulator IDs that should be used to
2238 * lookup the supply
2239 * @num_id: Number of aliases to register
2240 *
2241 * @return 0 on success, an errno on failure.
2242 *
2243 * This helper function allows drivers to register several supply
2244 * aliases in one operation. If any of the aliases cannot be
2245 * registered any aliases that were registered will be removed
2246 * before returning to the caller.
2247 */
2248 int regulator_bulk_register_supply_alias(struct device *dev,
2249 const char *const *id,
2250 struct device *alias_dev,
2251 const char *const *alias_id,
2252 int num_id)
2253 {
2254 int i;
2255 int ret;
2256
2257 for (i = 0; i < num_id; ++i) {
2258 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2259 alias_id[i]);
2260 if (ret < 0)
2261 goto err;
2262 }
2263
2264 return 0;
2265
2266 err:
2267 dev_err(dev,
2268 "Failed to create supply alias %s,%s -> %s,%s\n",
2269 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2270
2271 while (--i >= 0)
2272 regulator_unregister_supply_alias(dev, id[i]);
2273
2274 return ret;
2275 }
2276 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2277
2278 /**
2279 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2280 *
2281 * @dev: device that will be given as the regulator "consumer"
2282 * @id: List of supply names or regulator IDs
2283 * @num_id: Number of aliases to unregister
2284 *
2285 * This helper function allows drivers to unregister several supply
2286 * aliases in one operation.
2287 */
2288 void regulator_bulk_unregister_supply_alias(struct device *dev,
2289 const char *const *id,
2290 int num_id)
2291 {
2292 int i;
2293
2294 for (i = 0; i < num_id; ++i)
2295 regulator_unregister_supply_alias(dev, id[i]);
2296 }
2297 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2298
2299
2300 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2301 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2302 const struct regulator_config *config)
2303 {
2304 struct regulator_enable_gpio *pin, *new_pin;
2305 struct gpio_desc *gpiod;
2306
2307 gpiod = config->ena_gpiod;
2308 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2309
2310 mutex_lock(&regulator_list_mutex);
2311
2312 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2313 if (pin->gpiod == gpiod) {
2314 rdev_dbg(rdev, "GPIO is already used\n");
2315 goto update_ena_gpio_to_rdev;
2316 }
2317 }
2318
2319 if (new_pin == NULL) {
2320 mutex_unlock(&regulator_list_mutex);
2321 return -ENOMEM;
2322 }
2323
2324 pin = new_pin;
2325 new_pin = NULL;
2326
2327 pin->gpiod = gpiod;
2328 list_add(&pin->list, &regulator_ena_gpio_list);
2329
2330 update_ena_gpio_to_rdev:
2331 pin->request_count++;
2332 rdev->ena_pin = pin;
2333
2334 mutex_unlock(&regulator_list_mutex);
2335 kfree(new_pin);
2336
2337 return 0;
2338 }
2339
2340 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2341 {
2342 struct regulator_enable_gpio *pin, *n;
2343
2344 if (!rdev->ena_pin)
2345 return;
2346
2347 /* Free the GPIO only in case of no use */
2348 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2349 if (pin != rdev->ena_pin)
2350 continue;
2351
2352 if (--pin->request_count)
2353 break;
2354
2355 gpiod_put(pin->gpiod);
2356 list_del(&pin->list);
2357 kfree(pin);
2358 break;
2359 }
2360
2361 rdev->ena_pin = NULL;
2362 }
2363
2364 /**
2365 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2366 * @rdev: regulator_dev structure
2367 * @enable: enable GPIO at initial use?
2368 *
2369 * GPIO is enabled in case of initial use. (enable_count is 0)
2370 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2371 */
2372 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2373 {
2374 struct regulator_enable_gpio *pin = rdev->ena_pin;
2375
2376 if (!pin)
2377 return -EINVAL;
2378
2379 if (enable) {
2380 /* Enable GPIO at initial use */
2381 if (pin->enable_count == 0)
2382 gpiod_set_value_cansleep(pin->gpiod, 1);
2383
2384 pin->enable_count++;
2385 } else {
2386 if (pin->enable_count > 1) {
2387 pin->enable_count--;
2388 return 0;
2389 }
2390
2391 /* Disable GPIO if not used */
2392 if (pin->enable_count <= 1) {
2393 gpiod_set_value_cansleep(pin->gpiod, 0);
2394 pin->enable_count = 0;
2395 }
2396 }
2397
2398 return 0;
2399 }
2400
2401 /**
2402 * _regulator_enable_delay - a delay helper function
2403 * @delay: time to delay in microseconds
2404 *
2405 * Delay for the requested amount of time as per the guidelines in:
2406 *
2407 * Documentation/timers/timers-howto.rst
2408 *
2409 * The assumption here is that regulators will never be enabled in
2410 * atomic context and therefore sleeping functions can be used.
2411 */
2412 static void _regulator_enable_delay(unsigned int delay)
2413 {
2414 unsigned int ms = delay / 1000;
2415 unsigned int us = delay % 1000;
2416
2417 if (ms > 0) {
2418 /*
2419 * For small enough values, handle super-millisecond
2420 * delays in the usleep_range() call below.
2421 */
2422 if (ms < 20)
2423 us += ms * 1000;
2424 else
2425 msleep(ms);
2426 }
2427
2428 /*
2429 * Give the scheduler some room to coalesce with any other
2430 * wakeup sources. For delays shorter than 10 us, don't even
2431 * bother setting up high-resolution timers and just busy-
2432 * loop.
2433 */
2434 if (us >= 10)
2435 usleep_range(us, us + 100);
2436 else
2437 udelay(us);
2438 }
2439
2440 /**
2441 * _regulator_check_status_enabled
2442 *
2443 * A helper function to check if the regulator status can be interpreted
2444 * as 'regulator is enabled'.
2445 * @rdev: the regulator device to check
2446 *
2447 * Return:
2448 * * 1 - if status shows regulator is in enabled state
2449 * * 0 - if not enabled state
2450 * * Error Value - as received from ops->get_status()
2451 */
2452 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2453 {
2454 int ret = rdev->desc->ops->get_status(rdev);
2455
2456 if (ret < 0) {
2457 rdev_info(rdev, "get_status returned error: %d\n", ret);
2458 return ret;
2459 }
2460
2461 switch (ret) {
2462 case REGULATOR_STATUS_OFF:
2463 case REGULATOR_STATUS_ERROR:
2464 case REGULATOR_STATUS_UNDEFINED:
2465 return 0;
2466 default:
2467 return 1;
2468 }
2469 }
2470
2471 static int _regulator_do_enable(struct regulator_dev *rdev)
2472 {
2473 int ret, delay;
2474
2475 /* Query before enabling in case configuration dependent. */
2476 ret = _regulator_get_enable_time(rdev);
2477 if (ret >= 0) {
2478 delay = ret;
2479 } else {
2480 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2481 delay = 0;
2482 }
2483
2484 trace_regulator_enable(rdev_get_name(rdev));
2485
2486 if (rdev->desc->off_on_delay) {
2487 /* if needed, keep a distance of off_on_delay from last time
2488 * this regulator was disabled.
2489 */
2490 unsigned long start_jiffy = jiffies;
2491 unsigned long intended, max_delay, remaining;
2492
2493 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2494 intended = rdev->last_off_jiffy + max_delay;
2495
2496 if (time_before(start_jiffy, intended)) {
2497 /* calc remaining jiffies to deal with one-time
2498 * timer wrapping.
2499 * in case of multiple timer wrapping, either it can be
2500 * detected by out-of-range remaining, or it cannot be
2501 * detected and we get a penalty of
2502 * _regulator_enable_delay().
2503 */
2504 remaining = intended - start_jiffy;
2505 if (remaining <= max_delay)
2506 _regulator_enable_delay(
2507 jiffies_to_usecs(remaining));
2508 }
2509 }
2510
2511 if (rdev->ena_pin) {
2512 if (!rdev->ena_gpio_state) {
2513 ret = regulator_ena_gpio_ctrl(rdev, true);
2514 if (ret < 0)
2515 return ret;
2516 rdev->ena_gpio_state = 1;
2517 }
2518 } else if (rdev->desc->ops->enable) {
2519 ret = rdev->desc->ops->enable(rdev);
2520 if (ret < 0)
2521 return ret;
2522 } else {
2523 return -EINVAL;
2524 }
2525
2526 /* Allow the regulator to ramp; it would be useful to extend
2527 * this for bulk operations so that the regulators can ramp
2528 * together. */
2529 trace_regulator_enable_delay(rdev_get_name(rdev));
2530
2531 /* If poll_enabled_time is set, poll upto the delay calculated
2532 * above, delaying poll_enabled_time uS to check if the regulator
2533 * actually got enabled.
2534 * If the regulator isn't enabled after enable_delay has
2535 * expired, return -ETIMEDOUT.
2536 */
2537 if (rdev->desc->poll_enabled_time) {
2538 unsigned int time_remaining = delay;
2539
2540 while (time_remaining > 0) {
2541 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2542
2543 if (rdev->desc->ops->get_status) {
2544 ret = _regulator_check_status_enabled(rdev);
2545 if (ret < 0)
2546 return ret;
2547 else if (ret)
2548 break;
2549 } else if (rdev->desc->ops->is_enabled(rdev))
2550 break;
2551
2552 time_remaining -= rdev->desc->poll_enabled_time;
2553 }
2554
2555 if (time_remaining <= 0) {
2556 rdev_err(rdev, "Enabled check timed out\n");
2557 return -ETIMEDOUT;
2558 }
2559 } else {
2560 _regulator_enable_delay(delay);
2561 }
2562
2563 trace_regulator_enable_complete(rdev_get_name(rdev));
2564
2565 return 0;
2566 }
2567
2568 /**
2569 * _regulator_handle_consumer_enable - handle that a consumer enabled
2570 * @regulator: regulator source
2571 *
2572 * Some things on a regulator consumer (like the contribution towards total
2573 * load on the regulator) only have an effect when the consumer wants the
2574 * regulator enabled. Explained in example with two consumers of the same
2575 * regulator:
2576 * consumer A: set_load(100); => total load = 0
2577 * consumer A: regulator_enable(); => total load = 100
2578 * consumer B: set_load(1000); => total load = 100
2579 * consumer B: regulator_enable(); => total load = 1100
2580 * consumer A: regulator_disable(); => total_load = 1000
2581 *
2582 * This function (together with _regulator_handle_consumer_disable) is
2583 * responsible for keeping track of the refcount for a given regulator consumer
2584 * and applying / unapplying these things.
2585 *
2586 * Returns 0 upon no error; -error upon error.
2587 */
2588 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2589 {
2590 struct regulator_dev *rdev = regulator->rdev;
2591
2592 lockdep_assert_held_once(&rdev->mutex.base);
2593
2594 regulator->enable_count++;
2595 if (regulator->uA_load && regulator->enable_count == 1)
2596 return drms_uA_update(rdev);
2597
2598 return 0;
2599 }
2600
2601 /**
2602 * _regulator_handle_consumer_disable - handle that a consumer disabled
2603 * @regulator: regulator source
2604 *
2605 * The opposite of _regulator_handle_consumer_enable().
2606 *
2607 * Returns 0 upon no error; -error upon error.
2608 */
2609 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2610 {
2611 struct regulator_dev *rdev = regulator->rdev;
2612
2613 lockdep_assert_held_once(&rdev->mutex.base);
2614
2615 if (!regulator->enable_count) {
2616 rdev_err(rdev, "Underflow of regulator enable count\n");
2617 return -EINVAL;
2618 }
2619
2620 regulator->enable_count--;
2621 if (regulator->uA_load && regulator->enable_count == 0)
2622 return drms_uA_update(rdev);
2623
2624 return 0;
2625 }
2626
2627 /* locks held by regulator_enable() */
2628 static int _regulator_enable(struct regulator *regulator)
2629 {
2630 struct regulator_dev *rdev = regulator->rdev;
2631 int ret;
2632
2633 lockdep_assert_held_once(&rdev->mutex.base);
2634
2635 if (rdev->use_count == 0 && rdev->supply) {
2636 ret = _regulator_enable(rdev->supply);
2637 if (ret < 0)
2638 return ret;
2639 }
2640
2641 /* balance only if there are regulators coupled */
2642 if (rdev->coupling_desc.n_coupled > 1) {
2643 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2644 if (ret < 0)
2645 goto err_disable_supply;
2646 }
2647
2648 ret = _regulator_handle_consumer_enable(regulator);
2649 if (ret < 0)
2650 goto err_disable_supply;
2651
2652 if (rdev->use_count == 0) {
2653 /* The regulator may on if it's not switchable or left on */
2654 ret = _regulator_is_enabled(rdev);
2655 if (ret == -EINVAL || ret == 0) {
2656 if (!regulator_ops_is_valid(rdev,
2657 REGULATOR_CHANGE_STATUS)) {
2658 ret = -EPERM;
2659 goto err_consumer_disable;
2660 }
2661
2662 ret = _regulator_do_enable(rdev);
2663 if (ret < 0)
2664 goto err_consumer_disable;
2665
2666 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2667 NULL);
2668 } else if (ret < 0) {
2669 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2670 goto err_consumer_disable;
2671 }
2672 /* Fallthrough on positive return values - already enabled */
2673 }
2674
2675 rdev->use_count++;
2676
2677 return 0;
2678
2679 err_consumer_disable:
2680 _regulator_handle_consumer_disable(regulator);
2681
2682 err_disable_supply:
2683 if (rdev->use_count == 0 && rdev->supply)
2684 _regulator_disable(rdev->supply);
2685
2686 return ret;
2687 }
2688
2689 /**
2690 * regulator_enable - enable regulator output
2691 * @regulator: regulator source
2692 *
2693 * Request that the regulator be enabled with the regulator output at
2694 * the predefined voltage or current value. Calls to regulator_enable()
2695 * must be balanced with calls to regulator_disable().
2696 *
2697 * NOTE: the output value can be set by other drivers, boot loader or may be
2698 * hardwired in the regulator.
2699 */
2700 int regulator_enable(struct regulator *regulator)
2701 {
2702 struct regulator_dev *rdev = regulator->rdev;
2703 struct ww_acquire_ctx ww_ctx;
2704 int ret;
2705
2706 regulator_lock_dependent(rdev, &ww_ctx);
2707 ret = _regulator_enable(regulator);
2708 regulator_unlock_dependent(rdev, &ww_ctx);
2709
2710 return ret;
2711 }
2712 EXPORT_SYMBOL_GPL(regulator_enable);
2713
2714 static int _regulator_do_disable(struct regulator_dev *rdev)
2715 {
2716 int ret;
2717
2718 trace_regulator_disable(rdev_get_name(rdev));
2719
2720 if (rdev->ena_pin) {
2721 if (rdev->ena_gpio_state) {
2722 ret = regulator_ena_gpio_ctrl(rdev, false);
2723 if (ret < 0)
2724 return ret;
2725 rdev->ena_gpio_state = 0;
2726 }
2727
2728 } else if (rdev->desc->ops->disable) {
2729 ret = rdev->desc->ops->disable(rdev);
2730 if (ret != 0)
2731 return ret;
2732 }
2733
2734 /* cares about last_off_jiffy only if off_on_delay is required by
2735 * device.
2736 */
2737 if (rdev->desc->off_on_delay)
2738 rdev->last_off_jiffy = jiffies;
2739
2740 trace_regulator_disable_complete(rdev_get_name(rdev));
2741
2742 return 0;
2743 }
2744
2745 /* locks held by regulator_disable() */
2746 static int _regulator_disable(struct regulator *regulator)
2747 {
2748 struct regulator_dev *rdev = regulator->rdev;
2749 int ret = 0;
2750
2751 lockdep_assert_held_once(&rdev->mutex.base);
2752
2753 if (WARN(rdev->use_count <= 0,
2754 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2755 return -EIO;
2756
2757 /* are we the last user and permitted to disable ? */
2758 if (rdev->use_count == 1 &&
2759 (rdev->constraints && !rdev->constraints->always_on)) {
2760
2761 /* we are last user */
2762 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2763 ret = _notifier_call_chain(rdev,
2764 REGULATOR_EVENT_PRE_DISABLE,
2765 NULL);
2766 if (ret & NOTIFY_STOP_MASK)
2767 return -EINVAL;
2768
2769 ret = _regulator_do_disable(rdev);
2770 if (ret < 0) {
2771 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2772 _notifier_call_chain(rdev,
2773 REGULATOR_EVENT_ABORT_DISABLE,
2774 NULL);
2775 return ret;
2776 }
2777 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2778 NULL);
2779 }
2780
2781 rdev->use_count = 0;
2782 } else if (rdev->use_count > 1) {
2783 rdev->use_count--;
2784 }
2785
2786 if (ret == 0)
2787 ret = _regulator_handle_consumer_disable(regulator);
2788
2789 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2790 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2791
2792 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2793 ret = _regulator_disable(rdev->supply);
2794
2795 return ret;
2796 }
2797
2798 /**
2799 * regulator_disable - disable regulator output
2800 * @regulator: regulator source
2801 *
2802 * Disable the regulator output voltage or current. Calls to
2803 * regulator_enable() must be balanced with calls to
2804 * regulator_disable().
2805 *
2806 * NOTE: this will only disable the regulator output if no other consumer
2807 * devices have it enabled, the regulator device supports disabling and
2808 * machine constraints permit this operation.
2809 */
2810 int regulator_disable(struct regulator *regulator)
2811 {
2812 struct regulator_dev *rdev = regulator->rdev;
2813 struct ww_acquire_ctx ww_ctx;
2814 int ret;
2815
2816 regulator_lock_dependent(rdev, &ww_ctx);
2817 ret = _regulator_disable(regulator);
2818 regulator_unlock_dependent(rdev, &ww_ctx);
2819
2820 return ret;
2821 }
2822 EXPORT_SYMBOL_GPL(regulator_disable);
2823
2824 /* locks held by regulator_force_disable() */
2825 static int _regulator_force_disable(struct regulator_dev *rdev)
2826 {
2827 int ret = 0;
2828
2829 lockdep_assert_held_once(&rdev->mutex.base);
2830
2831 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2832 REGULATOR_EVENT_PRE_DISABLE, NULL);
2833 if (ret & NOTIFY_STOP_MASK)
2834 return -EINVAL;
2835
2836 ret = _regulator_do_disable(rdev);
2837 if (ret < 0) {
2838 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2839 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2840 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2841 return ret;
2842 }
2843
2844 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2845 REGULATOR_EVENT_DISABLE, NULL);
2846
2847 return 0;
2848 }
2849
2850 /**
2851 * regulator_force_disable - force disable regulator output
2852 * @regulator: regulator source
2853 *
2854 * Forcibly disable the regulator output voltage or current.
2855 * NOTE: this *will* disable the regulator output even if other consumer
2856 * devices have it enabled. This should be used for situations when device
2857 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2858 */
2859 int regulator_force_disable(struct regulator *regulator)
2860 {
2861 struct regulator_dev *rdev = regulator->rdev;
2862 struct ww_acquire_ctx ww_ctx;
2863 int ret;
2864
2865 regulator_lock_dependent(rdev, &ww_ctx);
2866
2867 ret = _regulator_force_disable(regulator->rdev);
2868
2869 if (rdev->coupling_desc.n_coupled > 1)
2870 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2871
2872 if (regulator->uA_load) {
2873 regulator->uA_load = 0;
2874 ret = drms_uA_update(rdev);
2875 }
2876
2877 if (rdev->use_count != 0 && rdev->supply)
2878 _regulator_disable(rdev->supply);
2879
2880 regulator_unlock_dependent(rdev, &ww_ctx);
2881
2882 return ret;
2883 }
2884 EXPORT_SYMBOL_GPL(regulator_force_disable);
2885
2886 static void regulator_disable_work(struct work_struct *work)
2887 {
2888 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2889 disable_work.work);
2890 struct ww_acquire_ctx ww_ctx;
2891 int count, i, ret;
2892 struct regulator *regulator;
2893 int total_count = 0;
2894
2895 regulator_lock_dependent(rdev, &ww_ctx);
2896
2897 /*
2898 * Workqueue functions queue the new work instance while the previous
2899 * work instance is being processed. Cancel the queued work instance
2900 * as the work instance under processing does the job of the queued
2901 * work instance.
2902 */
2903 cancel_delayed_work(&rdev->disable_work);
2904
2905 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2906 count = regulator->deferred_disables;
2907
2908 if (!count)
2909 continue;
2910
2911 total_count += count;
2912 regulator->deferred_disables = 0;
2913
2914 for (i = 0; i < count; i++) {
2915 ret = _regulator_disable(regulator);
2916 if (ret != 0)
2917 rdev_err(rdev, "Deferred disable failed: %pe\n",
2918 ERR_PTR(ret));
2919 }
2920 }
2921 WARN_ON(!total_count);
2922
2923 if (rdev->coupling_desc.n_coupled > 1)
2924 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2925
2926 regulator_unlock_dependent(rdev, &ww_ctx);
2927 }
2928
2929 /**
2930 * regulator_disable_deferred - disable regulator output with delay
2931 * @regulator: regulator source
2932 * @ms: milliseconds until the regulator is disabled
2933 *
2934 * Execute regulator_disable() on the regulator after a delay. This
2935 * is intended for use with devices that require some time to quiesce.
2936 *
2937 * NOTE: this will only disable the regulator output if no other consumer
2938 * devices have it enabled, the regulator device supports disabling and
2939 * machine constraints permit this operation.
2940 */
2941 int regulator_disable_deferred(struct regulator *regulator, int ms)
2942 {
2943 struct regulator_dev *rdev = regulator->rdev;
2944
2945 if (!ms)
2946 return regulator_disable(regulator);
2947
2948 regulator_lock(rdev);
2949 regulator->deferred_disables++;
2950 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2951 msecs_to_jiffies(ms));
2952 regulator_unlock(rdev);
2953
2954 return 0;
2955 }
2956 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2957
2958 static int _regulator_is_enabled(struct regulator_dev *rdev)
2959 {
2960 /* A GPIO control always takes precedence */
2961 if (rdev->ena_pin)
2962 return rdev->ena_gpio_state;
2963
2964 /* If we don't know then assume that the regulator is always on */
2965 if (!rdev->desc->ops->is_enabled)
2966 return 1;
2967
2968 return rdev->desc->ops->is_enabled(rdev);
2969 }
2970
2971 static int _regulator_list_voltage(struct regulator_dev *rdev,
2972 unsigned selector, int lock)
2973 {
2974 const struct regulator_ops *ops = rdev->desc->ops;
2975 int ret;
2976
2977 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2978 return rdev->desc->fixed_uV;
2979
2980 if (ops->list_voltage) {
2981 if (selector >= rdev->desc->n_voltages)
2982 return -EINVAL;
2983 if (selector < rdev->desc->linear_min_sel)
2984 return 0;
2985 if (lock)
2986 regulator_lock(rdev);
2987 ret = ops->list_voltage(rdev, selector);
2988 if (lock)
2989 regulator_unlock(rdev);
2990 } else if (rdev->is_switch && rdev->supply) {
2991 ret = _regulator_list_voltage(rdev->supply->rdev,
2992 selector, lock);
2993 } else {
2994 return -EINVAL;
2995 }
2996
2997 if (ret > 0) {
2998 if (ret < rdev->constraints->min_uV)
2999 ret = 0;
3000 else if (ret > rdev->constraints->max_uV)
3001 ret = 0;
3002 }
3003
3004 return ret;
3005 }
3006
3007 /**
3008 * regulator_is_enabled - is the regulator output enabled
3009 * @regulator: regulator source
3010 *
3011 * Returns positive if the regulator driver backing the source/client
3012 * has requested that the device be enabled, zero if it hasn't, else a
3013 * negative errno code.
3014 *
3015 * Note that the device backing this regulator handle can have multiple
3016 * users, so it might be enabled even if regulator_enable() was never
3017 * called for this particular source.
3018 */
3019 int regulator_is_enabled(struct regulator *regulator)
3020 {
3021 int ret;
3022
3023 if (regulator->always_on)
3024 return 1;
3025
3026 regulator_lock(regulator->rdev);
3027 ret = _regulator_is_enabled(regulator->rdev);
3028 regulator_unlock(regulator->rdev);
3029
3030 return ret;
3031 }
3032 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3033
3034 /**
3035 * regulator_count_voltages - count regulator_list_voltage() selectors
3036 * @regulator: regulator source
3037 *
3038 * Returns number of selectors, or negative errno. Selectors are
3039 * numbered starting at zero, and typically correspond to bitfields
3040 * in hardware registers.
3041 */
3042 int regulator_count_voltages(struct regulator *regulator)
3043 {
3044 struct regulator_dev *rdev = regulator->rdev;
3045
3046 if (rdev->desc->n_voltages)
3047 return rdev->desc->n_voltages;
3048
3049 if (!rdev->is_switch || !rdev->supply)
3050 return -EINVAL;
3051
3052 return regulator_count_voltages(rdev->supply);
3053 }
3054 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3055
3056 /**
3057 * regulator_list_voltage - enumerate supported voltages
3058 * @regulator: regulator source
3059 * @selector: identify voltage to list
3060 * Context: can sleep
3061 *
3062 * Returns a voltage that can be passed to @regulator_set_voltage(),
3063 * zero if this selector code can't be used on this system, or a
3064 * negative errno.
3065 */
3066 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3067 {
3068 return _regulator_list_voltage(regulator->rdev, selector, 1);
3069 }
3070 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3071
3072 /**
3073 * regulator_get_regmap - get the regulator's register map
3074 * @regulator: regulator source
3075 *
3076 * Returns the register map for the given regulator, or an ERR_PTR value
3077 * if the regulator doesn't use regmap.
3078 */
3079 struct regmap *regulator_get_regmap(struct regulator *regulator)
3080 {
3081 struct regmap *map = regulator->rdev->regmap;
3082
3083 return map ? map : ERR_PTR(-EOPNOTSUPP);
3084 }
3085
3086 /**
3087 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3088 * @regulator: regulator source
3089 * @vsel_reg: voltage selector register, output parameter
3090 * @vsel_mask: mask for voltage selector bitfield, output parameter
3091 *
3092 * Returns the hardware register offset and bitmask used for setting the
3093 * regulator voltage. This might be useful when configuring voltage-scaling
3094 * hardware or firmware that can make I2C requests behind the kernel's back,
3095 * for example.
3096 *
3097 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3098 * and 0 is returned, otherwise a negative errno is returned.
3099 */
3100 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3101 unsigned *vsel_reg,
3102 unsigned *vsel_mask)
3103 {
3104 struct regulator_dev *rdev = regulator->rdev;
3105 const struct regulator_ops *ops = rdev->desc->ops;
3106
3107 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3108 return -EOPNOTSUPP;
3109
3110 *vsel_reg = rdev->desc->vsel_reg;
3111 *vsel_mask = rdev->desc->vsel_mask;
3112
3113 return 0;
3114 }
3115 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3116
3117 /**
3118 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3119 * @regulator: regulator source
3120 * @selector: identify voltage to list
3121 *
3122 * Converts the selector to a hardware-specific voltage selector that can be
3123 * directly written to the regulator registers. The address of the voltage
3124 * register can be determined by calling @regulator_get_hardware_vsel_register.
3125 *
3126 * On error a negative errno is returned.
3127 */
3128 int regulator_list_hardware_vsel(struct regulator *regulator,
3129 unsigned selector)
3130 {
3131 struct regulator_dev *rdev = regulator->rdev;
3132 const struct regulator_ops *ops = rdev->desc->ops;
3133
3134 if (selector >= rdev->desc->n_voltages)
3135 return -EINVAL;
3136 if (selector < rdev->desc->linear_min_sel)
3137 return 0;
3138 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3139 return -EOPNOTSUPP;
3140
3141 return selector;
3142 }
3143 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3144
3145 /**
3146 * regulator_get_linear_step - return the voltage step size between VSEL values
3147 * @regulator: regulator source
3148 *
3149 * Returns the voltage step size between VSEL values for linear
3150 * regulators, or return 0 if the regulator isn't a linear regulator.
3151 */
3152 unsigned int regulator_get_linear_step(struct regulator *regulator)
3153 {
3154 struct regulator_dev *rdev = regulator->rdev;
3155
3156 return rdev->desc->uV_step;
3157 }
3158 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3159
3160 /**
3161 * regulator_is_supported_voltage - check if a voltage range can be supported
3162 *
3163 * @regulator: Regulator to check.
3164 * @min_uV: Minimum required voltage in uV.
3165 * @max_uV: Maximum required voltage in uV.
3166 *
3167 * Returns a boolean.
3168 */
3169 int regulator_is_supported_voltage(struct regulator *regulator,
3170 int min_uV, int max_uV)
3171 {
3172 struct regulator_dev *rdev = regulator->rdev;
3173 int i, voltages, ret;
3174
3175 /* If we can't change voltage check the current voltage */
3176 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3177 ret = regulator_get_voltage(regulator);
3178 if (ret >= 0)
3179 return min_uV <= ret && ret <= max_uV;
3180 else
3181 return ret;
3182 }
3183
3184 /* Any voltage within constrains range is fine? */
3185 if (rdev->desc->continuous_voltage_range)
3186 return min_uV >= rdev->constraints->min_uV &&
3187 max_uV <= rdev->constraints->max_uV;
3188
3189 ret = regulator_count_voltages(regulator);
3190 if (ret < 0)
3191 return 0;
3192 voltages = ret;
3193
3194 for (i = 0; i < voltages; i++) {
3195 ret = regulator_list_voltage(regulator, i);
3196
3197 if (ret >= min_uV && ret <= max_uV)
3198 return 1;
3199 }
3200
3201 return 0;
3202 }
3203 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3204
3205 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3206 int max_uV)
3207 {
3208 const struct regulator_desc *desc = rdev->desc;
3209
3210 if (desc->ops->map_voltage)
3211 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3212
3213 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3214 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3215
3216 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3217 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3218
3219 if (desc->ops->list_voltage ==
3220 regulator_list_voltage_pickable_linear_range)
3221 return regulator_map_voltage_pickable_linear_range(rdev,
3222 min_uV, max_uV);
3223
3224 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3225 }
3226
3227 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3228 int min_uV, int max_uV,
3229 unsigned *selector)
3230 {
3231 struct pre_voltage_change_data data;
3232 int ret;
3233
3234 data.old_uV = regulator_get_voltage_rdev(rdev);
3235 data.min_uV = min_uV;
3236 data.max_uV = max_uV;
3237 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3238 &data);
3239 if (ret & NOTIFY_STOP_MASK)
3240 return -EINVAL;
3241
3242 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3243 if (ret >= 0)
3244 return ret;
3245
3246 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3247 (void *)data.old_uV);
3248
3249 return ret;
3250 }
3251
3252 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3253 int uV, unsigned selector)
3254 {
3255 struct pre_voltage_change_data data;
3256 int ret;
3257
3258 data.old_uV = regulator_get_voltage_rdev(rdev);
3259 data.min_uV = uV;
3260 data.max_uV = uV;
3261 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3262 &data);
3263 if (ret & NOTIFY_STOP_MASK)
3264 return -EINVAL;
3265
3266 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3267 if (ret >= 0)
3268 return ret;
3269
3270 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3271 (void *)data.old_uV);
3272
3273 return ret;
3274 }
3275
3276 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3277 int uV, int new_selector)
3278 {
3279 const struct regulator_ops *ops = rdev->desc->ops;
3280 int diff, old_sel, curr_sel, ret;
3281
3282 /* Stepping is only needed if the regulator is enabled. */
3283 if (!_regulator_is_enabled(rdev))
3284 goto final_set;
3285
3286 if (!ops->get_voltage_sel)
3287 return -EINVAL;
3288
3289 old_sel = ops->get_voltage_sel(rdev);
3290 if (old_sel < 0)
3291 return old_sel;
3292
3293 diff = new_selector - old_sel;
3294 if (diff == 0)
3295 return 0; /* No change needed. */
3296
3297 if (diff > 0) {
3298 /* Stepping up. */
3299 for (curr_sel = old_sel + rdev->desc->vsel_step;
3300 curr_sel < new_selector;
3301 curr_sel += rdev->desc->vsel_step) {
3302 /*
3303 * Call the callback directly instead of using
3304 * _regulator_call_set_voltage_sel() as we don't
3305 * want to notify anyone yet. Same in the branch
3306 * below.
3307 */
3308 ret = ops->set_voltage_sel(rdev, curr_sel);
3309 if (ret)
3310 goto try_revert;
3311 }
3312 } else {
3313 /* Stepping down. */
3314 for (curr_sel = old_sel - rdev->desc->vsel_step;
3315 curr_sel > new_selector;
3316 curr_sel -= rdev->desc->vsel_step) {
3317 ret = ops->set_voltage_sel(rdev, curr_sel);
3318 if (ret)
3319 goto try_revert;
3320 }
3321 }
3322
3323 final_set:
3324 /* The final selector will trigger the notifiers. */
3325 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3326
3327 try_revert:
3328 /*
3329 * At least try to return to the previous voltage if setting a new
3330 * one failed.
3331 */
3332 (void)ops->set_voltage_sel(rdev, old_sel);
3333 return ret;
3334 }
3335
3336 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3337 int old_uV, int new_uV)
3338 {
3339 unsigned int ramp_delay = 0;
3340
3341 if (rdev->constraints->ramp_delay)
3342 ramp_delay = rdev->constraints->ramp_delay;
3343 else if (rdev->desc->ramp_delay)
3344 ramp_delay = rdev->desc->ramp_delay;
3345 else if (rdev->constraints->settling_time)
3346 return rdev->constraints->settling_time;
3347 else if (rdev->constraints->settling_time_up &&
3348 (new_uV > old_uV))
3349 return rdev->constraints->settling_time_up;
3350 else if (rdev->constraints->settling_time_down &&
3351 (new_uV < old_uV))
3352 return rdev->constraints->settling_time_down;
3353
3354 if (ramp_delay == 0) {
3355 rdev_dbg(rdev, "ramp_delay not set\n");
3356 return 0;
3357 }
3358
3359 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3360 }
3361
3362 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3363 int min_uV, int max_uV)
3364 {
3365 int ret;
3366 int delay = 0;
3367 int best_val = 0;
3368 unsigned int selector;
3369 int old_selector = -1;
3370 const struct regulator_ops *ops = rdev->desc->ops;
3371 int old_uV = regulator_get_voltage_rdev(rdev);
3372
3373 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3374
3375 min_uV += rdev->constraints->uV_offset;
3376 max_uV += rdev->constraints->uV_offset;
3377
3378 /*
3379 * If we can't obtain the old selector there is not enough
3380 * info to call set_voltage_time_sel().
3381 */
3382 if (_regulator_is_enabled(rdev) &&
3383 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3384 old_selector = ops->get_voltage_sel(rdev);
3385 if (old_selector < 0)
3386 return old_selector;
3387 }
3388
3389 if (ops->set_voltage) {
3390 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3391 &selector);
3392
3393 if (ret >= 0) {
3394 if (ops->list_voltage)
3395 best_val = ops->list_voltage(rdev,
3396 selector);
3397 else
3398 best_val = regulator_get_voltage_rdev(rdev);
3399 }
3400
3401 } else if (ops->set_voltage_sel) {
3402 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3403 if (ret >= 0) {
3404 best_val = ops->list_voltage(rdev, ret);
3405 if (min_uV <= best_val && max_uV >= best_val) {
3406 selector = ret;
3407 if (old_selector == selector)
3408 ret = 0;
3409 else if (rdev->desc->vsel_step)
3410 ret = _regulator_set_voltage_sel_step(
3411 rdev, best_val, selector);
3412 else
3413 ret = _regulator_call_set_voltage_sel(
3414 rdev, best_val, selector);
3415 } else {
3416 ret = -EINVAL;
3417 }
3418 }
3419 } else {
3420 ret = -EINVAL;
3421 }
3422
3423 if (ret)
3424 goto out;
3425
3426 if (ops->set_voltage_time_sel) {
3427 /*
3428 * Call set_voltage_time_sel if successfully obtained
3429 * old_selector
3430 */
3431 if (old_selector >= 0 && old_selector != selector)
3432 delay = ops->set_voltage_time_sel(rdev, old_selector,
3433 selector);
3434 } else {
3435 if (old_uV != best_val) {
3436 if (ops->set_voltage_time)
3437 delay = ops->set_voltage_time(rdev, old_uV,
3438 best_val);
3439 else
3440 delay = _regulator_set_voltage_time(rdev,
3441 old_uV,
3442 best_val);
3443 }
3444 }
3445
3446 if (delay < 0) {
3447 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3448 delay = 0;
3449 }
3450
3451 /* Insert any necessary delays */
3452 if (delay >= 1000) {
3453 mdelay(delay / 1000);
3454 udelay(delay % 1000);
3455 } else if (delay) {
3456 udelay(delay);
3457 }
3458
3459 if (best_val >= 0) {
3460 unsigned long data = best_val;
3461
3462 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3463 (void *)data);
3464 }
3465
3466 out:
3467 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3468
3469 return ret;
3470 }
3471
3472 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3473 int min_uV, int max_uV, suspend_state_t state)
3474 {
3475 struct regulator_state *rstate;
3476 int uV, sel;
3477
3478 rstate = regulator_get_suspend_state(rdev, state);
3479 if (rstate == NULL)
3480 return -EINVAL;
3481
3482 if (min_uV < rstate->min_uV)
3483 min_uV = rstate->min_uV;
3484 if (max_uV > rstate->max_uV)
3485 max_uV = rstate->max_uV;
3486
3487 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3488 if (sel < 0)
3489 return sel;
3490
3491 uV = rdev->desc->ops->list_voltage(rdev, sel);
3492 if (uV >= min_uV && uV <= max_uV)
3493 rstate->uV = uV;
3494
3495 return 0;
3496 }
3497
3498 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3499 int min_uV, int max_uV,
3500 suspend_state_t state)
3501 {
3502 struct regulator_dev *rdev = regulator->rdev;
3503 struct regulator_voltage *voltage = &regulator->voltage[state];
3504 int ret = 0;
3505 int old_min_uV, old_max_uV;
3506 int current_uV;
3507
3508 /* If we're setting the same range as last time the change
3509 * should be a noop (some cpufreq implementations use the same
3510 * voltage for multiple frequencies, for example).
3511 */
3512 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3513 goto out;
3514
3515 /* If we're trying to set a range that overlaps the current voltage,
3516 * return successfully even though the regulator does not support
3517 * changing the voltage.
3518 */
3519 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3520 current_uV = regulator_get_voltage_rdev(rdev);
3521 if (min_uV <= current_uV && current_uV <= max_uV) {
3522 voltage->min_uV = min_uV;
3523 voltage->max_uV = max_uV;
3524 goto out;
3525 }
3526 }
3527
3528 /* sanity check */
3529 if (!rdev->desc->ops->set_voltage &&
3530 !rdev->desc->ops->set_voltage_sel) {
3531 ret = -EINVAL;
3532 goto out;
3533 }
3534
3535 /* constraints check */
3536 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3537 if (ret < 0)
3538 goto out;
3539
3540 /* restore original values in case of error */
3541 old_min_uV = voltage->min_uV;
3542 old_max_uV = voltage->max_uV;
3543 voltage->min_uV = min_uV;
3544 voltage->max_uV = max_uV;
3545
3546 /* for not coupled regulators this will just set the voltage */
3547 ret = regulator_balance_voltage(rdev, state);
3548 if (ret < 0) {
3549 voltage->min_uV = old_min_uV;
3550 voltage->max_uV = old_max_uV;
3551 }
3552
3553 out:
3554 return ret;
3555 }
3556
3557 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3558 int max_uV, suspend_state_t state)
3559 {
3560 int best_supply_uV = 0;
3561 int supply_change_uV = 0;
3562 int ret;
3563
3564 if (rdev->supply &&
3565 regulator_ops_is_valid(rdev->supply->rdev,
3566 REGULATOR_CHANGE_VOLTAGE) &&
3567 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3568 rdev->desc->ops->get_voltage_sel))) {
3569 int current_supply_uV;
3570 int selector;
3571
3572 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3573 if (selector < 0) {
3574 ret = selector;
3575 goto out;
3576 }
3577
3578 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3579 if (best_supply_uV < 0) {
3580 ret = best_supply_uV;
3581 goto out;
3582 }
3583
3584 best_supply_uV += rdev->desc->min_dropout_uV;
3585
3586 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3587 if (current_supply_uV < 0) {
3588 ret = current_supply_uV;
3589 goto out;
3590 }
3591
3592 supply_change_uV = best_supply_uV - current_supply_uV;
3593 }
3594
3595 if (supply_change_uV > 0) {
3596 ret = regulator_set_voltage_unlocked(rdev->supply,
3597 best_supply_uV, INT_MAX, state);
3598 if (ret) {
3599 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3600 ERR_PTR(ret));
3601 goto out;
3602 }
3603 }
3604
3605 if (state == PM_SUSPEND_ON)
3606 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3607 else
3608 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3609 max_uV, state);
3610 if (ret < 0)
3611 goto out;
3612
3613 if (supply_change_uV < 0) {
3614 ret = regulator_set_voltage_unlocked(rdev->supply,
3615 best_supply_uV, INT_MAX, state);
3616 if (ret)
3617 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3618 ERR_PTR(ret));
3619 /* No need to fail here */
3620 ret = 0;
3621 }
3622
3623 out:
3624 return ret;
3625 }
3626 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3627
3628 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3629 int *current_uV, int *min_uV)
3630 {
3631 struct regulation_constraints *constraints = rdev->constraints;
3632
3633 /* Limit voltage change only if necessary */
3634 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3635 return 1;
3636
3637 if (*current_uV < 0) {
3638 *current_uV = regulator_get_voltage_rdev(rdev);
3639
3640 if (*current_uV < 0)
3641 return *current_uV;
3642 }
3643
3644 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3645 return 1;
3646
3647 /* Clamp target voltage within the given step */
3648 if (*current_uV < *min_uV)
3649 *min_uV = min(*current_uV + constraints->max_uV_step,
3650 *min_uV);
3651 else
3652 *min_uV = max(*current_uV - constraints->max_uV_step,
3653 *min_uV);
3654
3655 return 0;
3656 }
3657
3658 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3659 int *current_uV,
3660 int *min_uV, int *max_uV,
3661 suspend_state_t state,
3662 int n_coupled)
3663 {
3664 struct coupling_desc *c_desc = &rdev->coupling_desc;
3665 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3666 struct regulation_constraints *constraints = rdev->constraints;
3667 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3668 int max_current_uV = 0, min_current_uV = INT_MAX;
3669 int highest_min_uV = 0, target_uV, possible_uV;
3670 int i, ret, max_spread;
3671 bool done;
3672
3673 *current_uV = -1;
3674
3675 /*
3676 * If there are no coupled regulators, simply set the voltage
3677 * demanded by consumers.
3678 */
3679 if (n_coupled == 1) {
3680 /*
3681 * If consumers don't provide any demands, set voltage
3682 * to min_uV
3683 */
3684 desired_min_uV = constraints->min_uV;
3685 desired_max_uV = constraints->max_uV;
3686
3687 ret = regulator_check_consumers(rdev,
3688 &desired_min_uV,
3689 &desired_max_uV, state);
3690 if (ret < 0)
3691 return ret;
3692
3693 possible_uV = desired_min_uV;
3694 done = true;
3695
3696 goto finish;
3697 }
3698
3699 /* Find highest min desired voltage */
3700 for (i = 0; i < n_coupled; i++) {
3701 int tmp_min = 0;
3702 int tmp_max = INT_MAX;
3703
3704 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3705
3706 ret = regulator_check_consumers(c_rdevs[i],
3707 &tmp_min,
3708 &tmp_max, state);
3709 if (ret < 0)
3710 return ret;
3711
3712 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3713 if (ret < 0)
3714 return ret;
3715
3716 highest_min_uV = max(highest_min_uV, tmp_min);
3717
3718 if (i == 0) {
3719 desired_min_uV = tmp_min;
3720 desired_max_uV = tmp_max;
3721 }
3722 }
3723
3724 max_spread = constraints->max_spread[0];
3725
3726 /*
3727 * Let target_uV be equal to the desired one if possible.
3728 * If not, set it to minimum voltage, allowed by other coupled
3729 * regulators.
3730 */
3731 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3732
3733 /*
3734 * Find min and max voltages, which currently aren't violating
3735 * max_spread.
3736 */
3737 for (i = 1; i < n_coupled; i++) {
3738 int tmp_act;
3739
3740 if (!_regulator_is_enabled(c_rdevs[i]))
3741 continue;
3742
3743 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3744 if (tmp_act < 0)
3745 return tmp_act;
3746
3747 min_current_uV = min(tmp_act, min_current_uV);
3748 max_current_uV = max(tmp_act, max_current_uV);
3749 }
3750
3751 /* There aren't any other regulators enabled */
3752 if (max_current_uV == 0) {
3753 possible_uV = target_uV;
3754 } else {
3755 /*
3756 * Correct target voltage, so as it currently isn't
3757 * violating max_spread
3758 */
3759 possible_uV = max(target_uV, max_current_uV - max_spread);
3760 possible_uV = min(possible_uV, min_current_uV + max_spread);
3761 }
3762
3763 if (possible_uV > desired_max_uV)
3764 return -EINVAL;
3765
3766 done = (possible_uV == target_uV);
3767 desired_min_uV = possible_uV;
3768
3769 finish:
3770 /* Apply max_uV_step constraint if necessary */
3771 if (state == PM_SUSPEND_ON) {
3772 ret = regulator_limit_voltage_step(rdev, current_uV,
3773 &desired_min_uV);
3774 if (ret < 0)
3775 return ret;
3776
3777 if (ret == 0)
3778 done = false;
3779 }
3780
3781 /* Set current_uV if wasn't done earlier in the code and if necessary */
3782 if (n_coupled > 1 && *current_uV == -1) {
3783
3784 if (_regulator_is_enabled(rdev)) {
3785 ret = regulator_get_voltage_rdev(rdev);
3786 if (ret < 0)
3787 return ret;
3788
3789 *current_uV = ret;
3790 } else {
3791 *current_uV = desired_min_uV;
3792 }
3793 }
3794
3795 *min_uV = desired_min_uV;
3796 *max_uV = desired_max_uV;
3797
3798 return done;
3799 }
3800
3801 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3802 suspend_state_t state, bool skip_coupled)
3803 {
3804 struct regulator_dev **c_rdevs;
3805 struct regulator_dev *best_rdev;
3806 struct coupling_desc *c_desc = &rdev->coupling_desc;
3807 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3808 unsigned int delta, best_delta;
3809 unsigned long c_rdev_done = 0;
3810 bool best_c_rdev_done;
3811
3812 c_rdevs = c_desc->coupled_rdevs;
3813 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3814
3815 /*
3816 * Find the best possible voltage change on each loop. Leave the loop
3817 * if there isn't any possible change.
3818 */
3819 do {
3820 best_c_rdev_done = false;
3821 best_delta = 0;
3822 best_min_uV = 0;
3823 best_max_uV = 0;
3824 best_c_rdev = 0;
3825 best_rdev = NULL;
3826
3827 /*
3828 * Find highest difference between optimal voltage
3829 * and current voltage.
3830 */
3831 for (i = 0; i < n_coupled; i++) {
3832 /*
3833 * optimal_uV is the best voltage that can be set for
3834 * i-th regulator at the moment without violating
3835 * max_spread constraint in order to balance
3836 * the coupled voltages.
3837 */
3838 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3839
3840 if (test_bit(i, &c_rdev_done))
3841 continue;
3842
3843 ret = regulator_get_optimal_voltage(c_rdevs[i],
3844 &current_uV,
3845 &optimal_uV,
3846 &optimal_max_uV,
3847 state, n_coupled);
3848 if (ret < 0)
3849 goto out;
3850
3851 delta = abs(optimal_uV - current_uV);
3852
3853 if (delta && best_delta <= delta) {
3854 best_c_rdev_done = ret;
3855 best_delta = delta;
3856 best_rdev = c_rdevs[i];
3857 best_min_uV = optimal_uV;
3858 best_max_uV = optimal_max_uV;
3859 best_c_rdev = i;
3860 }
3861 }
3862
3863 /* Nothing to change, return successfully */
3864 if (!best_rdev) {
3865 ret = 0;
3866 goto out;
3867 }
3868
3869 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3870 best_max_uV, state);
3871
3872 if (ret < 0)
3873 goto out;
3874
3875 if (best_c_rdev_done)
3876 set_bit(best_c_rdev, &c_rdev_done);
3877
3878 } while (n_coupled > 1);
3879
3880 out:
3881 return ret;
3882 }
3883
3884 static int regulator_balance_voltage(struct regulator_dev *rdev,
3885 suspend_state_t state)
3886 {
3887 struct coupling_desc *c_desc = &rdev->coupling_desc;
3888 struct regulator_coupler *coupler = c_desc->coupler;
3889 bool skip_coupled = false;
3890
3891 /*
3892 * If system is in a state other than PM_SUSPEND_ON, don't check
3893 * other coupled regulators.
3894 */
3895 if (state != PM_SUSPEND_ON)
3896 skip_coupled = true;
3897
3898 if (c_desc->n_resolved < c_desc->n_coupled) {
3899 rdev_err(rdev, "Not all coupled regulators registered\n");
3900 return -EPERM;
3901 }
3902
3903 /* Invoke custom balancer for customized couplers */
3904 if (coupler && coupler->balance_voltage)
3905 return coupler->balance_voltage(coupler, rdev, state);
3906
3907 return regulator_do_balance_voltage(rdev, state, skip_coupled);
3908 }
3909
3910 /**
3911 * regulator_set_voltage - set regulator output voltage
3912 * @regulator: regulator source
3913 * @min_uV: Minimum required voltage in uV
3914 * @max_uV: Maximum acceptable voltage in uV
3915 *
3916 * Sets a voltage regulator to the desired output voltage. This can be set
3917 * during any regulator state. IOW, regulator can be disabled or enabled.
3918 *
3919 * If the regulator is enabled then the voltage will change to the new value
3920 * immediately otherwise if the regulator is disabled the regulator will
3921 * output at the new voltage when enabled.
3922 *
3923 * NOTE: If the regulator is shared between several devices then the lowest
3924 * request voltage that meets the system constraints will be used.
3925 * Regulator system constraints must be set for this regulator before
3926 * calling this function otherwise this call will fail.
3927 */
3928 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3929 {
3930 struct ww_acquire_ctx ww_ctx;
3931 int ret;
3932
3933 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3934
3935 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3936 PM_SUSPEND_ON);
3937
3938 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3939
3940 return ret;
3941 }
3942 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3943
3944 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3945 suspend_state_t state, bool en)
3946 {
3947 struct regulator_state *rstate;
3948
3949 rstate = regulator_get_suspend_state(rdev, state);
3950 if (rstate == NULL)
3951 return -EINVAL;
3952
3953 if (!rstate->changeable)
3954 return -EPERM;
3955
3956 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3957
3958 return 0;
3959 }
3960
3961 int regulator_suspend_enable(struct regulator_dev *rdev,
3962 suspend_state_t state)
3963 {
3964 return regulator_suspend_toggle(rdev, state, true);
3965 }
3966 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3967
3968 int regulator_suspend_disable(struct regulator_dev *rdev,
3969 suspend_state_t state)
3970 {
3971 struct regulator *regulator;
3972 struct regulator_voltage *voltage;
3973
3974 /*
3975 * if any consumer wants this regulator device keeping on in
3976 * suspend states, don't set it as disabled.
3977 */
3978 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3979 voltage = &regulator->voltage[state];
3980 if (voltage->min_uV || voltage->max_uV)
3981 return 0;
3982 }
3983
3984 return regulator_suspend_toggle(rdev, state, false);
3985 }
3986 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3987
3988 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3989 int min_uV, int max_uV,
3990 suspend_state_t state)
3991 {
3992 struct regulator_dev *rdev = regulator->rdev;
3993 struct regulator_state *rstate;
3994
3995 rstate = regulator_get_suspend_state(rdev, state);
3996 if (rstate == NULL)
3997 return -EINVAL;
3998
3999 if (rstate->min_uV == rstate->max_uV) {
4000 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4001 return -EPERM;
4002 }
4003
4004 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4005 }
4006
4007 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4008 int max_uV, suspend_state_t state)
4009 {
4010 struct ww_acquire_ctx ww_ctx;
4011 int ret;
4012
4013 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4014 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4015 return -EINVAL;
4016
4017 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4018
4019 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4020 max_uV, state);
4021
4022 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4023
4024 return ret;
4025 }
4026 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4027
4028 /**
4029 * regulator_set_voltage_time - get raise/fall time
4030 * @regulator: regulator source
4031 * @old_uV: starting voltage in microvolts
4032 * @new_uV: target voltage in microvolts
4033 *
4034 * Provided with the starting and ending voltage, this function attempts to
4035 * calculate the time in microseconds required to rise or fall to this new
4036 * voltage.
4037 */
4038 int regulator_set_voltage_time(struct regulator *regulator,
4039 int old_uV, int new_uV)
4040 {
4041 struct regulator_dev *rdev = regulator->rdev;
4042 const struct regulator_ops *ops = rdev->desc->ops;
4043 int old_sel = -1;
4044 int new_sel = -1;
4045 int voltage;
4046 int i;
4047
4048 if (ops->set_voltage_time)
4049 return ops->set_voltage_time(rdev, old_uV, new_uV);
4050 else if (!ops->set_voltage_time_sel)
4051 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4052
4053 /* Currently requires operations to do this */
4054 if (!ops->list_voltage || !rdev->desc->n_voltages)
4055 return -EINVAL;
4056
4057 for (i = 0; i < rdev->desc->n_voltages; i++) {
4058 /* We only look for exact voltage matches here */
4059 if (i < rdev->desc->linear_min_sel)
4060 continue;
4061
4062 if (old_sel >= 0 && new_sel >= 0)
4063 break;
4064
4065 voltage = regulator_list_voltage(regulator, i);
4066 if (voltage < 0)
4067 return -EINVAL;
4068 if (voltage == 0)
4069 continue;
4070 if (voltage == old_uV)
4071 old_sel = i;
4072 if (voltage == new_uV)
4073 new_sel = i;
4074 }
4075
4076 if (old_sel < 0 || new_sel < 0)
4077 return -EINVAL;
4078
4079 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4080 }
4081 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4082
4083 /**
4084 * regulator_set_voltage_time_sel - get raise/fall time
4085 * @rdev: regulator source device
4086 * @old_selector: selector for starting voltage
4087 * @new_selector: selector for target voltage
4088 *
4089 * Provided with the starting and target voltage selectors, this function
4090 * returns time in microseconds required to rise or fall to this new voltage
4091 *
4092 * Drivers providing ramp_delay in regulation_constraints can use this as their
4093 * set_voltage_time_sel() operation.
4094 */
4095 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4096 unsigned int old_selector,
4097 unsigned int new_selector)
4098 {
4099 int old_volt, new_volt;
4100
4101 /* sanity check */
4102 if (!rdev->desc->ops->list_voltage)
4103 return -EINVAL;
4104
4105 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4106 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4107
4108 if (rdev->desc->ops->set_voltage_time)
4109 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4110 new_volt);
4111 else
4112 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4113 }
4114 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4115
4116 /**
4117 * regulator_sync_voltage - re-apply last regulator output voltage
4118 * @regulator: regulator source
4119 *
4120 * Re-apply the last configured voltage. This is intended to be used
4121 * where some external control source the consumer is cooperating with
4122 * has caused the configured voltage to change.
4123 */
4124 int regulator_sync_voltage(struct regulator *regulator)
4125 {
4126 struct regulator_dev *rdev = regulator->rdev;
4127 struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4128 int ret, min_uV, max_uV;
4129
4130 regulator_lock(rdev);
4131
4132 if (!rdev->desc->ops->set_voltage &&
4133 !rdev->desc->ops->set_voltage_sel) {
4134 ret = -EINVAL;
4135 goto out;
4136 }
4137
4138 /* This is only going to work if we've had a voltage configured. */
4139 if (!voltage->min_uV && !voltage->max_uV) {
4140 ret = -EINVAL;
4141 goto out;
4142 }
4143
4144 min_uV = voltage->min_uV;
4145 max_uV = voltage->max_uV;
4146
4147 /* This should be a paranoia check... */
4148 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4149 if (ret < 0)
4150 goto out;
4151
4152 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4153 if (ret < 0)
4154 goto out;
4155
4156 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4157
4158 out:
4159 regulator_unlock(rdev);
4160 return ret;
4161 }
4162 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4163
4164 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4165 {
4166 int sel, ret;
4167 bool bypassed;
4168
4169 if (rdev->desc->ops->get_bypass) {
4170 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4171 if (ret < 0)
4172 return ret;
4173 if (bypassed) {
4174 /* if bypassed the regulator must have a supply */
4175 if (!rdev->supply) {
4176 rdev_err(rdev,
4177 "bypassed regulator has no supply!\n");
4178 return -EPROBE_DEFER;
4179 }
4180
4181 return regulator_get_voltage_rdev(rdev->supply->rdev);
4182 }
4183 }
4184
4185 if (rdev->desc->ops->get_voltage_sel) {
4186 sel = rdev->desc->ops->get_voltage_sel(rdev);
4187 if (sel < 0)
4188 return sel;
4189 ret = rdev->desc->ops->list_voltage(rdev, sel);
4190 } else if (rdev->desc->ops->get_voltage) {
4191 ret = rdev->desc->ops->get_voltage(rdev);
4192 } else if (rdev->desc->ops->list_voltage) {
4193 ret = rdev->desc->ops->list_voltage(rdev, 0);
4194 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4195 ret = rdev->desc->fixed_uV;
4196 } else if (rdev->supply) {
4197 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4198 } else if (rdev->supply_name) {
4199 return -EPROBE_DEFER;
4200 } else {
4201 return -EINVAL;
4202 }
4203
4204 if (ret < 0)
4205 return ret;
4206 return ret - rdev->constraints->uV_offset;
4207 }
4208 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4209
4210 /**
4211 * regulator_get_voltage - get regulator output voltage
4212 * @regulator: regulator source
4213 *
4214 * This returns the current regulator voltage in uV.
4215 *
4216 * NOTE: If the regulator is disabled it will return the voltage value. This
4217 * function should not be used to determine regulator state.
4218 */
4219 int regulator_get_voltage(struct regulator *regulator)
4220 {
4221 struct ww_acquire_ctx ww_ctx;
4222 int ret;
4223
4224 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4225 ret = regulator_get_voltage_rdev(regulator->rdev);
4226 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4227
4228 return ret;
4229 }
4230 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4231
4232 /**
4233 * regulator_set_current_limit - set regulator output current limit
4234 * @regulator: regulator source
4235 * @min_uA: Minimum supported current in uA
4236 * @max_uA: Maximum supported current in uA
4237 *
4238 * Sets current sink to the desired output current. This can be set during
4239 * any regulator state. IOW, regulator can be disabled or enabled.
4240 *
4241 * If the regulator is enabled then the current will change to the new value
4242 * immediately otherwise if the regulator is disabled the regulator will
4243 * output at the new current when enabled.
4244 *
4245 * NOTE: Regulator system constraints must be set for this regulator before
4246 * calling this function otherwise this call will fail.
4247 */
4248 int regulator_set_current_limit(struct regulator *regulator,
4249 int min_uA, int max_uA)
4250 {
4251 struct regulator_dev *rdev = regulator->rdev;
4252 int ret;
4253
4254 regulator_lock(rdev);
4255
4256 /* sanity check */
4257 if (!rdev->desc->ops->set_current_limit) {
4258 ret = -EINVAL;
4259 goto out;
4260 }
4261
4262 /* constraints check */
4263 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4264 if (ret < 0)
4265 goto out;
4266
4267 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4268 out:
4269 regulator_unlock(rdev);
4270 return ret;
4271 }
4272 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4273
4274 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4275 {
4276 /* sanity check */
4277 if (!rdev->desc->ops->get_current_limit)
4278 return -EINVAL;
4279
4280 return rdev->desc->ops->get_current_limit(rdev);
4281 }
4282
4283 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4284 {
4285 int ret;
4286
4287 regulator_lock(rdev);
4288 ret = _regulator_get_current_limit_unlocked(rdev);
4289 regulator_unlock(rdev);
4290
4291 return ret;
4292 }
4293
4294 /**
4295 * regulator_get_current_limit - get regulator output current
4296 * @regulator: regulator source
4297 *
4298 * This returns the current supplied by the specified current sink in uA.
4299 *
4300 * NOTE: If the regulator is disabled it will return the current value. This
4301 * function should not be used to determine regulator state.
4302 */
4303 int regulator_get_current_limit(struct regulator *regulator)
4304 {
4305 return _regulator_get_current_limit(regulator->rdev);
4306 }
4307 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4308
4309 /**
4310 * regulator_set_mode - set regulator operating mode
4311 * @regulator: regulator source
4312 * @mode: operating mode - one of the REGULATOR_MODE constants
4313 *
4314 * Set regulator operating mode to increase regulator efficiency or improve
4315 * regulation performance.
4316 *
4317 * NOTE: Regulator system constraints must be set for this regulator before
4318 * calling this function otherwise this call will fail.
4319 */
4320 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4321 {
4322 struct regulator_dev *rdev = regulator->rdev;
4323 int ret;
4324 int regulator_curr_mode;
4325
4326 regulator_lock(rdev);
4327
4328 /* sanity check */
4329 if (!rdev->desc->ops->set_mode) {
4330 ret = -EINVAL;
4331 goto out;
4332 }
4333
4334 /* return if the same mode is requested */
4335 if (rdev->desc->ops->get_mode) {
4336 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4337 if (regulator_curr_mode == mode) {
4338 ret = 0;
4339 goto out;
4340 }
4341 }
4342
4343 /* constraints check */
4344 ret = regulator_mode_constrain(rdev, &mode);
4345 if (ret < 0)
4346 goto out;
4347
4348 ret = rdev->desc->ops->set_mode(rdev, mode);
4349 out:
4350 regulator_unlock(rdev);
4351 return ret;
4352 }
4353 EXPORT_SYMBOL_GPL(regulator_set_mode);
4354
4355 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4356 {
4357 /* sanity check */
4358 if (!rdev->desc->ops->get_mode)
4359 return -EINVAL;
4360
4361 return rdev->desc->ops->get_mode(rdev);
4362 }
4363
4364 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4365 {
4366 int ret;
4367
4368 regulator_lock(rdev);
4369 ret = _regulator_get_mode_unlocked(rdev);
4370 regulator_unlock(rdev);
4371
4372 return ret;
4373 }
4374
4375 /**
4376 * regulator_get_mode - get regulator operating mode
4377 * @regulator: regulator source
4378 *
4379 * Get the current regulator operating mode.
4380 */
4381 unsigned int regulator_get_mode(struct regulator *regulator)
4382 {
4383 return _regulator_get_mode(regulator->rdev);
4384 }
4385 EXPORT_SYMBOL_GPL(regulator_get_mode);
4386
4387 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4388 unsigned int *flags)
4389 {
4390 int ret;
4391
4392 regulator_lock(rdev);
4393
4394 /* sanity check */
4395 if (!rdev->desc->ops->get_error_flags) {
4396 ret = -EINVAL;
4397 goto out;
4398 }
4399
4400 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4401 out:
4402 regulator_unlock(rdev);
4403 return ret;
4404 }
4405
4406 /**
4407 * regulator_get_error_flags - get regulator error information
4408 * @regulator: regulator source
4409 * @flags: pointer to store error flags
4410 *
4411 * Get the current regulator error information.
4412 */
4413 int regulator_get_error_flags(struct regulator *regulator,
4414 unsigned int *flags)
4415 {
4416 return _regulator_get_error_flags(regulator->rdev, flags);
4417 }
4418 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4419
4420 /**
4421 * regulator_set_load - set regulator load
4422 * @regulator: regulator source
4423 * @uA_load: load current
4424 *
4425 * Notifies the regulator core of a new device load. This is then used by
4426 * DRMS (if enabled by constraints) to set the most efficient regulator
4427 * operating mode for the new regulator loading.
4428 *
4429 * Consumer devices notify their supply regulator of the maximum power
4430 * they will require (can be taken from device datasheet in the power
4431 * consumption tables) when they change operational status and hence power
4432 * state. Examples of operational state changes that can affect power
4433 * consumption are :-
4434 *
4435 * o Device is opened / closed.
4436 * o Device I/O is about to begin or has just finished.
4437 * o Device is idling in between work.
4438 *
4439 * This information is also exported via sysfs to userspace.
4440 *
4441 * DRMS will sum the total requested load on the regulator and change
4442 * to the most efficient operating mode if platform constraints allow.
4443 *
4444 * NOTE: when a regulator consumer requests to have a regulator
4445 * disabled then any load that consumer requested no longer counts
4446 * toward the total requested load. If the regulator is re-enabled
4447 * then the previously requested load will start counting again.
4448 *
4449 * If a regulator is an always-on regulator then an individual consumer's
4450 * load will still be removed if that consumer is fully disabled.
4451 *
4452 * On error a negative errno is returned.
4453 */
4454 int regulator_set_load(struct regulator *regulator, int uA_load)
4455 {
4456 struct regulator_dev *rdev = regulator->rdev;
4457 int old_uA_load;
4458 int ret = 0;
4459
4460 regulator_lock(rdev);
4461 old_uA_load = regulator->uA_load;
4462 regulator->uA_load = uA_load;
4463 if (regulator->enable_count && old_uA_load != uA_load) {
4464 ret = drms_uA_update(rdev);
4465 if (ret < 0)
4466 regulator->uA_load = old_uA_load;
4467 }
4468 regulator_unlock(rdev);
4469
4470 return ret;
4471 }
4472 EXPORT_SYMBOL_GPL(regulator_set_load);
4473
4474 /**
4475 * regulator_allow_bypass - allow the regulator to go into bypass mode
4476 *
4477 * @regulator: Regulator to configure
4478 * @enable: enable or disable bypass mode
4479 *
4480 * Allow the regulator to go into bypass mode if all other consumers
4481 * for the regulator also enable bypass mode and the machine
4482 * constraints allow this. Bypass mode means that the regulator is
4483 * simply passing the input directly to the output with no regulation.
4484 */
4485 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4486 {
4487 struct regulator_dev *rdev = regulator->rdev;
4488 const char *name = rdev_get_name(rdev);
4489 int ret = 0;
4490
4491 if (!rdev->desc->ops->set_bypass)
4492 return 0;
4493
4494 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4495 return 0;
4496
4497 regulator_lock(rdev);
4498
4499 if (enable && !regulator->bypass) {
4500 rdev->bypass_count++;
4501
4502 if (rdev->bypass_count == rdev->open_count) {
4503 trace_regulator_bypass_enable(name);
4504
4505 ret = rdev->desc->ops->set_bypass(rdev, enable);
4506 if (ret != 0)
4507 rdev->bypass_count--;
4508 else
4509 trace_regulator_bypass_enable_complete(name);
4510 }
4511
4512 } else if (!enable && regulator->bypass) {
4513 rdev->bypass_count--;
4514
4515 if (rdev->bypass_count != rdev->open_count) {
4516 trace_regulator_bypass_disable(name);
4517
4518 ret = rdev->desc->ops->set_bypass(rdev, enable);
4519 if (ret != 0)
4520 rdev->bypass_count++;
4521 else
4522 trace_regulator_bypass_disable_complete(name);
4523 }
4524 }
4525
4526 if (ret == 0)
4527 regulator->bypass = enable;
4528
4529 regulator_unlock(rdev);
4530
4531 return ret;
4532 }
4533 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4534
4535 /**
4536 * regulator_register_notifier - register regulator event notifier
4537 * @regulator: regulator source
4538 * @nb: notifier block
4539 *
4540 * Register notifier block to receive regulator events.
4541 */
4542 int regulator_register_notifier(struct regulator *regulator,
4543 struct notifier_block *nb)
4544 {
4545 return blocking_notifier_chain_register(&regulator->rdev->notifier,
4546 nb);
4547 }
4548 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4549
4550 /**
4551 * regulator_unregister_notifier - unregister regulator event notifier
4552 * @regulator: regulator source
4553 * @nb: notifier block
4554 *
4555 * Unregister regulator event notifier block.
4556 */
4557 int regulator_unregister_notifier(struct regulator *regulator,
4558 struct notifier_block *nb)
4559 {
4560 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4561 nb);
4562 }
4563 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4564
4565 /* notify regulator consumers and downstream regulator consumers.
4566 * Note mutex must be held by caller.
4567 */
4568 static int _notifier_call_chain(struct regulator_dev *rdev,
4569 unsigned long event, void *data)
4570 {
4571 /* call rdev chain first */
4572 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4573 }
4574
4575 /**
4576 * regulator_bulk_get - get multiple regulator consumers
4577 *
4578 * @dev: Device to supply
4579 * @num_consumers: Number of consumers to register
4580 * @consumers: Configuration of consumers; clients are stored here.
4581 *
4582 * @return 0 on success, an errno on failure.
4583 *
4584 * This helper function allows drivers to get several regulator
4585 * consumers in one operation. If any of the regulators cannot be
4586 * acquired then any regulators that were allocated will be freed
4587 * before returning to the caller.
4588 */
4589 int regulator_bulk_get(struct device *dev, int num_consumers,
4590 struct regulator_bulk_data *consumers)
4591 {
4592 int i;
4593 int ret;
4594
4595 for (i = 0; i < num_consumers; i++)
4596 consumers[i].consumer = NULL;
4597
4598 for (i = 0; i < num_consumers; i++) {
4599 consumers[i].consumer = regulator_get(dev,
4600 consumers[i].supply);
4601 if (IS_ERR(consumers[i].consumer)) {
4602 ret = PTR_ERR(consumers[i].consumer);
4603 consumers[i].consumer = NULL;
4604 goto err;
4605 }
4606 }
4607
4608 return 0;
4609
4610 err:
4611 if (ret != -EPROBE_DEFER)
4612 dev_err(dev, "Failed to get supply '%s': %pe\n",
4613 consumers[i].supply, ERR_PTR(ret));
4614 else
4615 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4616 consumers[i].supply);
4617
4618 while (--i >= 0)
4619 regulator_put(consumers[i].consumer);
4620
4621 return ret;
4622 }
4623 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4624
4625 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4626 {
4627 struct regulator_bulk_data *bulk = data;
4628
4629 bulk->ret = regulator_enable(bulk->consumer);
4630 }
4631
4632 /**
4633 * regulator_bulk_enable - enable multiple regulator consumers
4634 *
4635 * @num_consumers: Number of consumers
4636 * @consumers: Consumer data; clients are stored here.
4637 * @return 0 on success, an errno on failure
4638 *
4639 * This convenience API allows consumers to enable multiple regulator
4640 * clients in a single API call. If any consumers cannot be enabled
4641 * then any others that were enabled will be disabled again prior to
4642 * return.
4643 */
4644 int regulator_bulk_enable(int num_consumers,
4645 struct regulator_bulk_data *consumers)
4646 {
4647 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4648 int i;
4649 int ret = 0;
4650
4651 for (i = 0; i < num_consumers; i++) {
4652 async_schedule_domain(regulator_bulk_enable_async,
4653 &consumers[i], &async_domain);
4654 }
4655
4656 async_synchronize_full_domain(&async_domain);
4657
4658 /* If any consumer failed we need to unwind any that succeeded */
4659 for (i = 0; i < num_consumers; i++) {
4660 if (consumers[i].ret != 0) {
4661 ret = consumers[i].ret;
4662 goto err;
4663 }
4664 }
4665
4666 return 0;
4667
4668 err:
4669 for (i = 0; i < num_consumers; i++) {
4670 if (consumers[i].ret < 0)
4671 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4672 ERR_PTR(consumers[i].ret));
4673 else
4674 regulator_disable(consumers[i].consumer);
4675 }
4676
4677 return ret;
4678 }
4679 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4680
4681 /**
4682 * regulator_bulk_disable - disable multiple regulator consumers
4683 *
4684 * @num_consumers: Number of consumers
4685 * @consumers: Consumer data; clients are stored here.
4686 * @return 0 on success, an errno on failure
4687 *
4688 * This convenience API allows consumers to disable multiple regulator
4689 * clients in a single API call. If any consumers cannot be disabled
4690 * then any others that were disabled will be enabled again prior to
4691 * return.
4692 */
4693 int regulator_bulk_disable(int num_consumers,
4694 struct regulator_bulk_data *consumers)
4695 {
4696 int i;
4697 int ret, r;
4698
4699 for (i = num_consumers - 1; i >= 0; --i) {
4700 ret = regulator_disable(consumers[i].consumer);
4701 if (ret != 0)
4702 goto err;
4703 }
4704
4705 return 0;
4706
4707 err:
4708 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4709 for (++i; i < num_consumers; ++i) {
4710 r = regulator_enable(consumers[i].consumer);
4711 if (r != 0)
4712 pr_err("Failed to re-enable %s: %pe\n",
4713 consumers[i].supply, ERR_PTR(r));
4714 }
4715
4716 return ret;
4717 }
4718 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4719
4720 /**
4721 * regulator_bulk_force_disable - force disable multiple regulator consumers
4722 *
4723 * @num_consumers: Number of consumers
4724 * @consumers: Consumer data; clients are stored here.
4725 * @return 0 on success, an errno on failure
4726 *
4727 * This convenience API allows consumers to forcibly disable multiple regulator
4728 * clients in a single API call.
4729 * NOTE: This should be used for situations when device damage will
4730 * likely occur if the regulators are not disabled (e.g. over temp).
4731 * Although regulator_force_disable function call for some consumers can
4732 * return error numbers, the function is called for all consumers.
4733 */
4734 int regulator_bulk_force_disable(int num_consumers,
4735 struct regulator_bulk_data *consumers)
4736 {
4737 int i;
4738 int ret = 0;
4739
4740 for (i = 0; i < num_consumers; i++) {
4741 consumers[i].ret =
4742 regulator_force_disable(consumers[i].consumer);
4743
4744 /* Store first error for reporting */
4745 if (consumers[i].ret && !ret)
4746 ret = consumers[i].ret;
4747 }
4748
4749 return ret;
4750 }
4751 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4752
4753 /**
4754 * regulator_bulk_free - free multiple regulator consumers
4755 *
4756 * @num_consumers: Number of consumers
4757 * @consumers: Consumer data; clients are stored here.
4758 *
4759 * This convenience API allows consumers to free multiple regulator
4760 * clients in a single API call.
4761 */
4762 void regulator_bulk_free(int num_consumers,
4763 struct regulator_bulk_data *consumers)
4764 {
4765 int i;
4766
4767 for (i = 0; i < num_consumers; i++) {
4768 regulator_put(consumers[i].consumer);
4769 consumers[i].consumer = NULL;
4770 }
4771 }
4772 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4773
4774 /**
4775 * regulator_notifier_call_chain - call regulator event notifier
4776 * @rdev: regulator source
4777 * @event: notifier block
4778 * @data: callback-specific data.
4779 *
4780 * Called by regulator drivers to notify clients a regulator event has
4781 * occurred.
4782 */
4783 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4784 unsigned long event, void *data)
4785 {
4786 _notifier_call_chain(rdev, event, data);
4787 return NOTIFY_DONE;
4788
4789 }
4790 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4791
4792 /**
4793 * regulator_mode_to_status - convert a regulator mode into a status
4794 *
4795 * @mode: Mode to convert
4796 *
4797 * Convert a regulator mode into a status.
4798 */
4799 int regulator_mode_to_status(unsigned int mode)
4800 {
4801 switch (mode) {
4802 case REGULATOR_MODE_FAST:
4803 return REGULATOR_STATUS_FAST;
4804 case REGULATOR_MODE_NORMAL:
4805 return REGULATOR_STATUS_NORMAL;
4806 case REGULATOR_MODE_IDLE:
4807 return REGULATOR_STATUS_IDLE;
4808 case REGULATOR_MODE_STANDBY:
4809 return REGULATOR_STATUS_STANDBY;
4810 default:
4811 return REGULATOR_STATUS_UNDEFINED;
4812 }
4813 }
4814 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4815
4816 static struct attribute *regulator_dev_attrs[] = {
4817 &dev_attr_name.attr,
4818 &dev_attr_num_users.attr,
4819 &dev_attr_type.attr,
4820 &dev_attr_microvolts.attr,
4821 &dev_attr_microamps.attr,
4822 &dev_attr_opmode.attr,
4823 &dev_attr_state.attr,
4824 &dev_attr_status.attr,
4825 &dev_attr_bypass.attr,
4826 &dev_attr_requested_microamps.attr,
4827 &dev_attr_min_microvolts.attr,
4828 &dev_attr_max_microvolts.attr,
4829 &dev_attr_min_microamps.attr,
4830 &dev_attr_max_microamps.attr,
4831 &dev_attr_suspend_standby_state.attr,
4832 &dev_attr_suspend_mem_state.attr,
4833 &dev_attr_suspend_disk_state.attr,
4834 &dev_attr_suspend_standby_microvolts.attr,
4835 &dev_attr_suspend_mem_microvolts.attr,
4836 &dev_attr_suspend_disk_microvolts.attr,
4837 &dev_attr_suspend_standby_mode.attr,
4838 &dev_attr_suspend_mem_mode.attr,
4839 &dev_attr_suspend_disk_mode.attr,
4840 NULL
4841 };
4842
4843 /*
4844 * To avoid cluttering sysfs (and memory) with useless state, only
4845 * create attributes that can be meaningfully displayed.
4846 */
4847 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4848 struct attribute *attr, int idx)
4849 {
4850 struct device *dev = kobj_to_dev(kobj);
4851 struct regulator_dev *rdev = dev_to_rdev(dev);
4852 const struct regulator_ops *ops = rdev->desc->ops;
4853 umode_t mode = attr->mode;
4854
4855 /* these three are always present */
4856 if (attr == &dev_attr_name.attr ||
4857 attr == &dev_attr_num_users.attr ||
4858 attr == &dev_attr_type.attr)
4859 return mode;
4860
4861 /* some attributes need specific methods to be displayed */
4862 if (attr == &dev_attr_microvolts.attr) {
4863 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4864 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4865 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4866 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4867 return mode;
4868 return 0;
4869 }
4870
4871 if (attr == &dev_attr_microamps.attr)
4872 return ops->get_current_limit ? mode : 0;
4873
4874 if (attr == &dev_attr_opmode.attr)
4875 return ops->get_mode ? mode : 0;
4876
4877 if (attr == &dev_attr_state.attr)
4878 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4879
4880 if (attr == &dev_attr_status.attr)
4881 return ops->get_status ? mode : 0;
4882
4883 if (attr == &dev_attr_bypass.attr)
4884 return ops->get_bypass ? mode : 0;
4885
4886 /* constraints need specific supporting methods */
4887 if (attr == &dev_attr_min_microvolts.attr ||
4888 attr == &dev_attr_max_microvolts.attr)
4889 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4890
4891 if (attr == &dev_attr_min_microamps.attr ||
4892 attr == &dev_attr_max_microamps.attr)
4893 return ops->set_current_limit ? mode : 0;
4894
4895 if (attr == &dev_attr_suspend_standby_state.attr ||
4896 attr == &dev_attr_suspend_mem_state.attr ||
4897 attr == &dev_attr_suspend_disk_state.attr)
4898 return mode;
4899
4900 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4901 attr == &dev_attr_suspend_mem_microvolts.attr ||
4902 attr == &dev_attr_suspend_disk_microvolts.attr)
4903 return ops->set_suspend_voltage ? mode : 0;
4904
4905 if (attr == &dev_attr_suspend_standby_mode.attr ||
4906 attr == &dev_attr_suspend_mem_mode.attr ||
4907 attr == &dev_attr_suspend_disk_mode.attr)
4908 return ops->set_suspend_mode ? mode : 0;
4909
4910 return mode;
4911 }
4912
4913 static const struct attribute_group regulator_dev_group = {
4914 .attrs = regulator_dev_attrs,
4915 .is_visible = regulator_attr_is_visible,
4916 };
4917
4918 static const struct attribute_group *regulator_dev_groups[] = {
4919 &regulator_dev_group,
4920 NULL
4921 };
4922
4923 static void regulator_dev_release(struct device *dev)
4924 {
4925 struct regulator_dev *rdev = dev_get_drvdata(dev);
4926
4927 kfree(rdev->constraints);
4928 of_node_put(rdev->dev.of_node);
4929 kfree(rdev);
4930 }
4931
4932 static void rdev_init_debugfs(struct regulator_dev *rdev)
4933 {
4934 struct device *parent = rdev->dev.parent;
4935 const char *rname = rdev_get_name(rdev);
4936 char name[NAME_MAX];
4937
4938 /* Avoid duplicate debugfs directory names */
4939 if (parent && rname == rdev->desc->name) {
4940 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4941 rname);
4942 rname = name;
4943 }
4944
4945 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4946 if (!rdev->debugfs) {
4947 rdev_warn(rdev, "Failed to create debugfs directory\n");
4948 return;
4949 }
4950
4951 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4952 &rdev->use_count);
4953 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4954 &rdev->open_count);
4955 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4956 &rdev->bypass_count);
4957 }
4958
4959 static int regulator_register_resolve_supply(struct device *dev, void *data)
4960 {
4961 struct regulator_dev *rdev = dev_to_rdev(dev);
4962
4963 if (regulator_resolve_supply(rdev))
4964 rdev_dbg(rdev, "unable to resolve supply\n");
4965
4966 return 0;
4967 }
4968
4969 int regulator_coupler_register(struct regulator_coupler *coupler)
4970 {
4971 mutex_lock(&regulator_list_mutex);
4972 list_add_tail(&coupler->list, &regulator_coupler_list);
4973 mutex_unlock(&regulator_list_mutex);
4974
4975 return 0;
4976 }
4977
4978 static struct regulator_coupler *
4979 regulator_find_coupler(struct regulator_dev *rdev)
4980 {
4981 struct regulator_coupler *coupler;
4982 int err;
4983
4984 /*
4985 * Note that regulators are appended to the list and the generic
4986 * coupler is registered first, hence it will be attached at last
4987 * if nobody cared.
4988 */
4989 list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4990 err = coupler->attach_regulator(coupler, rdev);
4991 if (!err) {
4992 if (!coupler->balance_voltage &&
4993 rdev->coupling_desc.n_coupled > 2)
4994 goto err_unsupported;
4995
4996 return coupler;
4997 }
4998
4999 if (err < 0)
5000 return ERR_PTR(err);
5001
5002 if (err == 1)
5003 continue;
5004
5005 break;
5006 }
5007
5008 return ERR_PTR(-EINVAL);
5009
5010 err_unsupported:
5011 if (coupler->detach_regulator)
5012 coupler->detach_regulator(coupler, rdev);
5013
5014 rdev_err(rdev,
5015 "Voltage balancing for multiple regulator couples is unimplemented\n");
5016
5017 return ERR_PTR(-EPERM);
5018 }
5019
5020 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5021 {
5022 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5023 struct coupling_desc *c_desc = &rdev->coupling_desc;
5024 int n_coupled = c_desc->n_coupled;
5025 struct regulator_dev *c_rdev;
5026 int i;
5027
5028 for (i = 1; i < n_coupled; i++) {
5029 /* already resolved */
5030 if (c_desc->coupled_rdevs[i])
5031 continue;
5032
5033 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5034
5035 if (!c_rdev)
5036 continue;
5037
5038 if (c_rdev->coupling_desc.coupler != coupler) {
5039 rdev_err(rdev, "coupler mismatch with %s\n",
5040 rdev_get_name(c_rdev));
5041 return;
5042 }
5043
5044 c_desc->coupled_rdevs[i] = c_rdev;
5045 c_desc->n_resolved++;
5046
5047 regulator_resolve_coupling(c_rdev);
5048 }
5049 }
5050
5051 static void regulator_remove_coupling(struct regulator_dev *rdev)
5052 {
5053 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5054 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5055 struct regulator_dev *__c_rdev, *c_rdev;
5056 unsigned int __n_coupled, n_coupled;
5057 int i, k;
5058 int err;
5059
5060 n_coupled = c_desc->n_coupled;
5061
5062 for (i = 1; i < n_coupled; i++) {
5063 c_rdev = c_desc->coupled_rdevs[i];
5064
5065 if (!c_rdev)
5066 continue;
5067
5068 regulator_lock(c_rdev);
5069
5070 __c_desc = &c_rdev->coupling_desc;
5071 __n_coupled = __c_desc->n_coupled;
5072
5073 for (k = 1; k < __n_coupled; k++) {
5074 __c_rdev = __c_desc->coupled_rdevs[k];
5075
5076 if (__c_rdev == rdev) {
5077 __c_desc->coupled_rdevs[k] = NULL;
5078 __c_desc->n_resolved--;
5079 break;
5080 }
5081 }
5082
5083 regulator_unlock(c_rdev);
5084
5085 c_desc->coupled_rdevs[i] = NULL;
5086 c_desc->n_resolved--;
5087 }
5088
5089 if (coupler && coupler->detach_regulator) {
5090 err = coupler->detach_regulator(coupler, rdev);
5091 if (err)
5092 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5093 ERR_PTR(err));
5094 }
5095
5096 kfree(rdev->coupling_desc.coupled_rdevs);
5097 rdev->coupling_desc.coupled_rdevs = NULL;
5098 }
5099
5100 static int regulator_init_coupling(struct regulator_dev *rdev)
5101 {
5102 struct regulator_dev **coupled;
5103 int err, n_phandles;
5104
5105 if (!IS_ENABLED(CONFIG_OF))
5106 n_phandles = 0;
5107 else
5108 n_phandles = of_get_n_coupled(rdev);
5109
5110 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5111 if (!coupled)
5112 return -ENOMEM;
5113
5114 rdev->coupling_desc.coupled_rdevs = coupled;
5115
5116 /*
5117 * Every regulator should always have coupling descriptor filled with
5118 * at least pointer to itself.
5119 */
5120 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5121 rdev->coupling_desc.n_coupled = n_phandles + 1;
5122 rdev->coupling_desc.n_resolved++;
5123
5124 /* regulator isn't coupled */
5125 if (n_phandles == 0)
5126 return 0;
5127
5128 if (!of_check_coupling_data(rdev))
5129 return -EPERM;
5130
5131 mutex_lock(&regulator_list_mutex);
5132 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5133 mutex_unlock(&regulator_list_mutex);
5134
5135 if (IS_ERR(rdev->coupling_desc.coupler)) {
5136 err = PTR_ERR(rdev->coupling_desc.coupler);
5137 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5138 return err;
5139 }
5140
5141 return 0;
5142 }
5143
5144 static int generic_coupler_attach(struct regulator_coupler *coupler,
5145 struct regulator_dev *rdev)
5146 {
5147 if (rdev->coupling_desc.n_coupled > 2) {
5148 rdev_err(rdev,
5149 "Voltage balancing for multiple regulator couples is unimplemented\n");
5150 return -EPERM;
5151 }
5152
5153 if (!rdev->constraints->always_on) {
5154 rdev_err(rdev,
5155 "Coupling of a non always-on regulator is unimplemented\n");
5156 return -ENOTSUPP;
5157 }
5158
5159 return 0;
5160 }
5161
5162 static struct regulator_coupler generic_regulator_coupler = {
5163 .attach_regulator = generic_coupler_attach,
5164 };
5165
5166 /**
5167 * regulator_register - register regulator
5168 * @regulator_desc: regulator to register
5169 * @cfg: runtime configuration for regulator
5170 *
5171 * Called by regulator drivers to register a regulator.
5172 * Returns a valid pointer to struct regulator_dev on success
5173 * or an ERR_PTR() on error.
5174 */
5175 struct regulator_dev *
5176 regulator_register(const struct regulator_desc *regulator_desc,
5177 const struct regulator_config *cfg)
5178 {
5179 const struct regulator_init_data *init_data;
5180 struct regulator_config *config = NULL;
5181 static atomic_t regulator_no = ATOMIC_INIT(-1);
5182 struct regulator_dev *rdev;
5183 bool dangling_cfg_gpiod = false;
5184 bool dangling_of_gpiod = false;
5185 struct device *dev;
5186 int ret, i;
5187
5188 if (cfg == NULL)
5189 return ERR_PTR(-EINVAL);
5190 if (cfg->ena_gpiod)
5191 dangling_cfg_gpiod = true;
5192 if (regulator_desc == NULL) {
5193 ret = -EINVAL;
5194 goto rinse;
5195 }
5196
5197 dev = cfg->dev;
5198 WARN_ON(!dev);
5199
5200 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5201 ret = -EINVAL;
5202 goto rinse;
5203 }
5204
5205 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5206 regulator_desc->type != REGULATOR_CURRENT) {
5207 ret = -EINVAL;
5208 goto rinse;
5209 }
5210
5211 /* Only one of each should be implemented */
5212 WARN_ON(regulator_desc->ops->get_voltage &&
5213 regulator_desc->ops->get_voltage_sel);
5214 WARN_ON(regulator_desc->ops->set_voltage &&
5215 regulator_desc->ops->set_voltage_sel);
5216
5217 /* If we're using selectors we must implement list_voltage. */
5218 if (regulator_desc->ops->get_voltage_sel &&
5219 !regulator_desc->ops->list_voltage) {
5220 ret = -EINVAL;
5221 goto rinse;
5222 }
5223 if (regulator_desc->ops->set_voltage_sel &&
5224 !regulator_desc->ops->list_voltage) {
5225 ret = -EINVAL;
5226 goto rinse;
5227 }
5228
5229 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5230 if (rdev == NULL) {
5231 ret = -ENOMEM;
5232 goto rinse;
5233 }
5234 device_initialize(&rdev->dev);
5235
5236 /*
5237 * Duplicate the config so the driver could override it after
5238 * parsing init data.
5239 */
5240 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5241 if (config == NULL) {
5242 ret = -ENOMEM;
5243 goto clean;
5244 }
5245
5246 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5247 &rdev->dev.of_node);
5248
5249 /*
5250 * Sometimes not all resources are probed already so we need to take
5251 * that into account. This happens most the time if the ena_gpiod comes
5252 * from a gpio extender or something else.
5253 */
5254 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5255 ret = -EPROBE_DEFER;
5256 goto clean;
5257 }
5258
5259 /*
5260 * We need to keep track of any GPIO descriptor coming from the
5261 * device tree until we have handled it over to the core. If the
5262 * config that was passed in to this function DOES NOT contain
5263 * a descriptor, and the config after this call DOES contain
5264 * a descriptor, we definitely got one from parsing the device
5265 * tree.
5266 */
5267 if (!cfg->ena_gpiod && config->ena_gpiod)
5268 dangling_of_gpiod = true;
5269 if (!init_data) {
5270 init_data = config->init_data;
5271 rdev->dev.of_node = of_node_get(config->of_node);
5272 }
5273
5274 ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5275 rdev->reg_data = config->driver_data;
5276 rdev->owner = regulator_desc->owner;
5277 rdev->desc = regulator_desc;
5278 if (config->regmap)
5279 rdev->regmap = config->regmap;
5280 else if (dev_get_regmap(dev, NULL))
5281 rdev->regmap = dev_get_regmap(dev, NULL);
5282 else if (dev->parent)
5283 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5284 INIT_LIST_HEAD(&rdev->consumer_list);
5285 INIT_LIST_HEAD(&rdev->list);
5286 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5287 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5288
5289 /* preform any regulator specific init */
5290 if (init_data && init_data->regulator_init) {
5291 ret = init_data->regulator_init(rdev->reg_data);
5292 if (ret < 0)
5293 goto clean;
5294 }
5295
5296 if (config->ena_gpiod) {
5297 ret = regulator_ena_gpio_request(rdev, config);
5298 if (ret != 0) {
5299 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5300 ERR_PTR(ret));
5301 goto clean;
5302 }
5303 /* The regulator core took over the GPIO descriptor */
5304 dangling_cfg_gpiod = false;
5305 dangling_of_gpiod = false;
5306 }
5307
5308 /* register with sysfs */
5309 rdev->dev.class = &regulator_class;
5310 rdev->dev.parent = dev;
5311 dev_set_name(&rdev->dev, "regulator.%lu",
5312 (unsigned long) atomic_inc_return(&regulator_no));
5313 dev_set_drvdata(&rdev->dev, rdev);
5314
5315 /* set regulator constraints */
5316 if (init_data)
5317 rdev->constraints = kmemdup(&init_data->constraints,
5318 sizeof(*rdev->constraints),
5319 GFP_KERNEL);
5320 else
5321 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5322 GFP_KERNEL);
5323 if (!rdev->constraints) {
5324 ret = -ENOMEM;
5325 goto wash;
5326 }
5327
5328 if (init_data && init_data->supply_regulator)
5329 rdev->supply_name = init_data->supply_regulator;
5330 else if (regulator_desc->supply_name)
5331 rdev->supply_name = regulator_desc->supply_name;
5332
5333 ret = set_machine_constraints(rdev);
5334 if (ret == -EPROBE_DEFER) {
5335 /* Regulator might be in bypass mode and so needs its supply
5336 * to set the constraints */
5337 /* FIXME: this currently triggers a chicken-and-egg problem
5338 * when creating -SUPPLY symlink in sysfs to a regulator
5339 * that is just being created */
5340 rdev_dbg(rdev, "will resolve supply early: %s\n",
5341 rdev->supply_name);
5342 ret = regulator_resolve_supply(rdev);
5343 if (!ret)
5344 ret = set_machine_constraints(rdev);
5345 else
5346 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5347 ERR_PTR(ret));
5348 }
5349 if (ret < 0)
5350 goto wash;
5351
5352 ret = regulator_init_coupling(rdev);
5353 if (ret < 0)
5354 goto wash;
5355
5356 /* add consumers devices */
5357 if (init_data) {
5358 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5359 ret = set_consumer_device_supply(rdev,
5360 init_data->consumer_supplies[i].dev_name,
5361 init_data->consumer_supplies[i].supply);
5362 if (ret < 0) {
5363 dev_err(dev, "Failed to set supply %s\n",
5364 init_data->consumer_supplies[i].supply);
5365 goto unset_supplies;
5366 }
5367 }
5368 }
5369
5370 if (!rdev->desc->ops->get_voltage &&
5371 !rdev->desc->ops->list_voltage &&
5372 !rdev->desc->fixed_uV)
5373 rdev->is_switch = true;
5374
5375 ret = device_add(&rdev->dev);
5376 if (ret != 0)
5377 goto unset_supplies;
5378
5379 rdev_init_debugfs(rdev);
5380
5381 /* try to resolve regulators coupling since a new one was registered */
5382 mutex_lock(&regulator_list_mutex);
5383 regulator_resolve_coupling(rdev);
5384 mutex_unlock(&regulator_list_mutex);
5385
5386 /* try to resolve regulators supply since a new one was registered */
5387 class_for_each_device(&regulator_class, NULL, NULL,
5388 regulator_register_resolve_supply);
5389 kfree(config);
5390 return rdev;
5391
5392 unset_supplies:
5393 mutex_lock(&regulator_list_mutex);
5394 unset_regulator_supplies(rdev);
5395 regulator_remove_coupling(rdev);
5396 mutex_unlock(&regulator_list_mutex);
5397 wash:
5398 kfree(rdev->coupling_desc.coupled_rdevs);
5399 mutex_lock(&regulator_list_mutex);
5400 regulator_ena_gpio_free(rdev);
5401 mutex_unlock(&regulator_list_mutex);
5402 clean:
5403 if (dangling_of_gpiod)
5404 gpiod_put(config->ena_gpiod);
5405 kfree(config);
5406 put_device(&rdev->dev);
5407 rinse:
5408 if (dangling_cfg_gpiod)
5409 gpiod_put(cfg->ena_gpiod);
5410 return ERR_PTR(ret);
5411 }
5412 EXPORT_SYMBOL_GPL(regulator_register);
5413
5414 /**
5415 * regulator_unregister - unregister regulator
5416 * @rdev: regulator to unregister
5417 *
5418 * Called by regulator drivers to unregister a regulator.
5419 */
5420 void regulator_unregister(struct regulator_dev *rdev)
5421 {
5422 if (rdev == NULL)
5423 return;
5424
5425 if (rdev->supply) {
5426 while (rdev->use_count--)
5427 regulator_disable(rdev->supply);
5428 regulator_put(rdev->supply);
5429 }
5430
5431 flush_work(&rdev->disable_work.work);
5432
5433 mutex_lock(&regulator_list_mutex);
5434
5435 debugfs_remove_recursive(rdev->debugfs);
5436 WARN_ON(rdev->open_count);
5437 regulator_remove_coupling(rdev);
5438 unset_regulator_supplies(rdev);
5439 list_del(&rdev->list);
5440 regulator_ena_gpio_free(rdev);
5441 device_unregister(&rdev->dev);
5442
5443 mutex_unlock(&regulator_list_mutex);
5444 }
5445 EXPORT_SYMBOL_GPL(regulator_unregister);
5446
5447 #ifdef CONFIG_SUSPEND
5448 /**
5449 * regulator_suspend - prepare regulators for system wide suspend
5450 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5451 *
5452 * Configure each regulator with it's suspend operating parameters for state.
5453 */
5454 static int regulator_suspend(struct device *dev)
5455 {
5456 struct regulator_dev *rdev = dev_to_rdev(dev);
5457 suspend_state_t state = pm_suspend_target_state;
5458 int ret;
5459 const struct regulator_state *rstate;
5460
5461 rstate = regulator_get_suspend_state_check(rdev, state);
5462 if (!rstate)
5463 return 0;
5464
5465 regulator_lock(rdev);
5466 ret = __suspend_set_state(rdev, rstate);
5467 regulator_unlock(rdev);
5468
5469 return ret;
5470 }
5471
5472 static int regulator_resume(struct device *dev)
5473 {
5474 suspend_state_t state = pm_suspend_target_state;
5475 struct regulator_dev *rdev = dev_to_rdev(dev);
5476 struct regulator_state *rstate;
5477 int ret = 0;
5478
5479 rstate = regulator_get_suspend_state(rdev, state);
5480 if (rstate == NULL)
5481 return 0;
5482
5483 /* Avoid grabbing the lock if we don't need to */
5484 if (!rdev->desc->ops->resume)
5485 return 0;
5486
5487 regulator_lock(rdev);
5488
5489 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5490 rstate->enabled == DISABLE_IN_SUSPEND)
5491 ret = rdev->desc->ops->resume(rdev);
5492
5493 regulator_unlock(rdev);
5494
5495 return ret;
5496 }
5497 #else /* !CONFIG_SUSPEND */
5498
5499 #define regulator_suspend NULL
5500 #define regulator_resume NULL
5501
5502 #endif /* !CONFIG_SUSPEND */
5503
5504 #ifdef CONFIG_PM
5505 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5506 .suspend = regulator_suspend,
5507 .resume = regulator_resume,
5508 };
5509 #endif
5510
5511 struct class regulator_class = {
5512 .name = "regulator",
5513 .dev_release = regulator_dev_release,
5514 .dev_groups = regulator_dev_groups,
5515 #ifdef CONFIG_PM
5516 .pm = &regulator_pm_ops,
5517 #endif
5518 };
5519 /**
5520 * regulator_has_full_constraints - the system has fully specified constraints
5521 *
5522 * Calling this function will cause the regulator API to disable all
5523 * regulators which have a zero use count and don't have an always_on
5524 * constraint in a late_initcall.
5525 *
5526 * The intention is that this will become the default behaviour in a
5527 * future kernel release so users are encouraged to use this facility
5528 * now.
5529 */
5530 void regulator_has_full_constraints(void)
5531 {
5532 has_full_constraints = 1;
5533 }
5534 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5535
5536 /**
5537 * rdev_get_drvdata - get rdev regulator driver data
5538 * @rdev: regulator
5539 *
5540 * Get rdev regulator driver private data. This call can be used in the
5541 * regulator driver context.
5542 */
5543 void *rdev_get_drvdata(struct regulator_dev *rdev)
5544 {
5545 return rdev->reg_data;
5546 }
5547 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5548
5549 /**
5550 * regulator_get_drvdata - get regulator driver data
5551 * @regulator: regulator
5552 *
5553 * Get regulator driver private data. This call can be used in the consumer
5554 * driver context when non API regulator specific functions need to be called.
5555 */
5556 void *regulator_get_drvdata(struct regulator *regulator)
5557 {
5558 return regulator->rdev->reg_data;
5559 }
5560 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5561
5562 /**
5563 * regulator_set_drvdata - set regulator driver data
5564 * @regulator: regulator
5565 * @data: data
5566 */
5567 void regulator_set_drvdata(struct regulator *regulator, void *data)
5568 {
5569 regulator->rdev->reg_data = data;
5570 }
5571 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5572
5573 /**
5574 * rdev_get_id - get regulator ID
5575 * @rdev: regulator
5576 */
5577 int rdev_get_id(struct regulator_dev *rdev)
5578 {
5579 return rdev->desc->id;
5580 }
5581 EXPORT_SYMBOL_GPL(rdev_get_id);
5582
5583 struct device *rdev_get_dev(struct regulator_dev *rdev)
5584 {
5585 return &rdev->dev;
5586 }
5587 EXPORT_SYMBOL_GPL(rdev_get_dev);
5588
5589 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5590 {
5591 return rdev->regmap;
5592 }
5593 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5594
5595 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5596 {
5597 return reg_init_data->driver_data;
5598 }
5599 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5600
5601 #ifdef CONFIG_DEBUG_FS
5602 static int supply_map_show(struct seq_file *sf, void *data)
5603 {
5604 struct regulator_map *map;
5605
5606 list_for_each_entry(map, &regulator_map_list, list) {
5607 seq_printf(sf, "%s -> %s.%s\n",
5608 rdev_get_name(map->regulator), map->dev_name,
5609 map->supply);
5610 }
5611
5612 return 0;
5613 }
5614 DEFINE_SHOW_ATTRIBUTE(supply_map);
5615
5616 struct summary_data {
5617 struct seq_file *s;
5618 struct regulator_dev *parent;
5619 int level;
5620 };
5621
5622 static void regulator_summary_show_subtree(struct seq_file *s,
5623 struct regulator_dev *rdev,
5624 int level);
5625
5626 static int regulator_summary_show_children(struct device *dev, void *data)
5627 {
5628 struct regulator_dev *rdev = dev_to_rdev(dev);
5629 struct summary_data *summary_data = data;
5630
5631 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5632 regulator_summary_show_subtree(summary_data->s, rdev,
5633 summary_data->level + 1);
5634
5635 return 0;
5636 }
5637
5638 static void regulator_summary_show_subtree(struct seq_file *s,
5639 struct regulator_dev *rdev,
5640 int level)
5641 {
5642 struct regulation_constraints *c;
5643 struct regulator *consumer;
5644 struct summary_data summary_data;
5645 unsigned int opmode;
5646
5647 if (!rdev)
5648 return;
5649
5650 opmode = _regulator_get_mode_unlocked(rdev);
5651 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5652 level * 3 + 1, "",
5653 30 - level * 3, rdev_get_name(rdev),
5654 rdev->use_count, rdev->open_count, rdev->bypass_count,
5655 regulator_opmode_to_str(opmode));
5656
5657 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5658 seq_printf(s, "%5dmA ",
5659 _regulator_get_current_limit_unlocked(rdev) / 1000);
5660
5661 c = rdev->constraints;
5662 if (c) {
5663 switch (rdev->desc->type) {
5664 case REGULATOR_VOLTAGE:
5665 seq_printf(s, "%5dmV %5dmV ",
5666 c->min_uV / 1000, c->max_uV / 1000);
5667 break;
5668 case REGULATOR_CURRENT:
5669 seq_printf(s, "%5dmA %5dmA ",
5670 c->min_uA / 1000, c->max_uA / 1000);
5671 break;
5672 }
5673 }
5674
5675 seq_puts(s, "\n");
5676
5677 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5678 if (consumer->dev && consumer->dev->class == &regulator_class)
5679 continue;
5680
5681 seq_printf(s, "%*s%-*s ",
5682 (level + 1) * 3 + 1, "",
5683 30 - (level + 1) * 3,
5684 consumer->supply_name ? consumer->supply_name :
5685 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5686
5687 switch (rdev->desc->type) {
5688 case REGULATOR_VOLTAGE:
5689 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5690 consumer->enable_count,
5691 consumer->uA_load / 1000,
5692 consumer->uA_load && !consumer->enable_count ?
5693 '*' : ' ',
5694 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5695 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5696 break;
5697 case REGULATOR_CURRENT:
5698 break;
5699 }
5700
5701 seq_puts(s, "\n");
5702 }
5703
5704 summary_data.s = s;
5705 summary_data.level = level;
5706 summary_data.parent = rdev;
5707
5708 class_for_each_device(&regulator_class, NULL, &summary_data,
5709 regulator_summary_show_children);
5710 }
5711
5712 struct summary_lock_data {
5713 struct ww_acquire_ctx *ww_ctx;
5714 struct regulator_dev **new_contended_rdev;
5715 struct regulator_dev **old_contended_rdev;
5716 };
5717
5718 static int regulator_summary_lock_one(struct device *dev, void *data)
5719 {
5720 struct regulator_dev *rdev = dev_to_rdev(dev);
5721 struct summary_lock_data *lock_data = data;
5722 int ret = 0;
5723
5724 if (rdev != *lock_data->old_contended_rdev) {
5725 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5726
5727 if (ret == -EDEADLK)
5728 *lock_data->new_contended_rdev = rdev;
5729 else
5730 WARN_ON_ONCE(ret);
5731 } else {
5732 *lock_data->old_contended_rdev = NULL;
5733 }
5734
5735 return ret;
5736 }
5737
5738 static int regulator_summary_unlock_one(struct device *dev, void *data)
5739 {
5740 struct regulator_dev *rdev = dev_to_rdev(dev);
5741 struct summary_lock_data *lock_data = data;
5742
5743 if (lock_data) {
5744 if (rdev == *lock_data->new_contended_rdev)
5745 return -EDEADLK;
5746 }
5747
5748 regulator_unlock(rdev);
5749
5750 return 0;
5751 }
5752
5753 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5754 struct regulator_dev **new_contended_rdev,
5755 struct regulator_dev **old_contended_rdev)
5756 {
5757 struct summary_lock_data lock_data;
5758 int ret;
5759
5760 lock_data.ww_ctx = ww_ctx;
5761 lock_data.new_contended_rdev = new_contended_rdev;
5762 lock_data.old_contended_rdev = old_contended_rdev;
5763
5764 ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5765 regulator_summary_lock_one);
5766 if (ret)
5767 class_for_each_device(&regulator_class, NULL, &lock_data,
5768 regulator_summary_unlock_one);
5769
5770 return ret;
5771 }
5772
5773 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5774 {
5775 struct regulator_dev *new_contended_rdev = NULL;
5776 struct regulator_dev *old_contended_rdev = NULL;
5777 int err;
5778
5779 mutex_lock(&regulator_list_mutex);
5780
5781 ww_acquire_init(ww_ctx, &regulator_ww_class);
5782
5783 do {
5784 if (new_contended_rdev) {
5785 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5786 old_contended_rdev = new_contended_rdev;
5787 old_contended_rdev->ref_cnt++;
5788 }
5789
5790 err = regulator_summary_lock_all(ww_ctx,
5791 &new_contended_rdev,
5792 &old_contended_rdev);
5793
5794 if (old_contended_rdev)
5795 regulator_unlock(old_contended_rdev);
5796
5797 } while (err == -EDEADLK);
5798
5799 ww_acquire_done(ww_ctx);
5800 }
5801
5802 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5803 {
5804 class_for_each_device(&regulator_class, NULL, NULL,
5805 regulator_summary_unlock_one);
5806 ww_acquire_fini(ww_ctx);
5807
5808 mutex_unlock(&regulator_list_mutex);
5809 }
5810
5811 static int regulator_summary_show_roots(struct device *dev, void *data)
5812 {
5813 struct regulator_dev *rdev = dev_to_rdev(dev);
5814 struct seq_file *s = data;
5815
5816 if (!rdev->supply)
5817 regulator_summary_show_subtree(s, rdev, 0);
5818
5819 return 0;
5820 }
5821
5822 static int regulator_summary_show(struct seq_file *s, void *data)
5823 {
5824 struct ww_acquire_ctx ww_ctx;
5825
5826 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5827 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5828
5829 regulator_summary_lock(&ww_ctx);
5830
5831 class_for_each_device(&regulator_class, NULL, s,
5832 regulator_summary_show_roots);
5833
5834 regulator_summary_unlock(&ww_ctx);
5835
5836 return 0;
5837 }
5838 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5839 #endif /* CONFIG_DEBUG_FS */
5840
5841 static int __init regulator_init(void)
5842 {
5843 int ret;
5844
5845 ret = class_register(&regulator_class);
5846
5847 debugfs_root = debugfs_create_dir("regulator", NULL);
5848 if (!debugfs_root)
5849 pr_warn("regulator: Failed to create debugfs directory\n");
5850
5851 #ifdef CONFIG_DEBUG_FS
5852 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5853 &supply_map_fops);
5854
5855 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5856 NULL, &regulator_summary_fops);
5857 #endif
5858 regulator_dummy_init();
5859
5860 regulator_coupler_register(&generic_regulator_coupler);
5861
5862 return ret;
5863 }
5864
5865 /* init early to allow our consumers to complete system booting */
5866 core_initcall(regulator_init);
5867
5868 static int regulator_late_cleanup(struct device *dev, void *data)
5869 {
5870 struct regulator_dev *rdev = dev_to_rdev(dev);
5871 const struct regulator_ops *ops = rdev->desc->ops;
5872 struct regulation_constraints *c = rdev->constraints;
5873 int enabled, ret;
5874
5875 if (c && c->always_on)
5876 return 0;
5877
5878 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5879 return 0;
5880
5881 regulator_lock(rdev);
5882
5883 if (rdev->use_count)
5884 goto unlock;
5885
5886 /* If we can't read the status assume it's always on. */
5887 if (ops->is_enabled)
5888 enabled = ops->is_enabled(rdev);
5889 else
5890 enabled = 1;
5891
5892 /* But if reading the status failed, assume that it's off. */
5893 if (enabled <= 0)
5894 goto unlock;
5895
5896 if (have_full_constraints()) {
5897 /* We log since this may kill the system if it goes
5898 * wrong. */
5899 rdev_info(rdev, "disabling\n");
5900 ret = _regulator_do_disable(rdev);
5901 if (ret != 0)
5902 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5903 } else {
5904 /* The intention is that in future we will
5905 * assume that full constraints are provided
5906 * so warn even if we aren't going to do
5907 * anything here.
5908 */
5909 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5910 }
5911
5912 unlock:
5913 regulator_unlock(rdev);
5914
5915 return 0;
5916 }
5917
5918 static void regulator_init_complete_work_function(struct work_struct *work)
5919 {
5920 /*
5921 * Regulators may had failed to resolve their input supplies
5922 * when were registered, either because the input supply was
5923 * not registered yet or because its parent device was not
5924 * bound yet. So attempt to resolve the input supplies for
5925 * pending regulators before trying to disable unused ones.
5926 */
5927 class_for_each_device(&regulator_class, NULL, NULL,
5928 regulator_register_resolve_supply);
5929
5930 /* If we have a full configuration then disable any regulators
5931 * we have permission to change the status for and which are
5932 * not in use or always_on. This is effectively the default
5933 * for DT and ACPI as they have full constraints.
5934 */
5935 class_for_each_device(&regulator_class, NULL, NULL,
5936 regulator_late_cleanup);
5937 }
5938
5939 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5940 regulator_init_complete_work_function);
5941
5942 static int __init regulator_init_complete(void)
5943 {
5944 /*
5945 * Since DT doesn't provide an idiomatic mechanism for
5946 * enabling full constraints and since it's much more natural
5947 * with DT to provide them just assume that a DT enabled
5948 * system has full constraints.
5949 */
5950 if (of_have_populated_dt())
5951 has_full_constraints = true;
5952
5953 /*
5954 * We punt completion for an arbitrary amount of time since
5955 * systems like distros will load many drivers from userspace
5956 * so consumers might not always be ready yet, this is
5957 * particularly an issue with laptops where this might bounce
5958 * the display off then on. Ideally we'd get a notification
5959 * from userspace when this happens but we don't so just wait
5960 * a bit and hope we waited long enough. It'd be better if
5961 * we'd only do this on systems that need it, and a kernel
5962 * command line option might be useful.
5963 */
5964 schedule_delayed_work(&regulator_init_complete_work,
5965 msecs_to_jiffies(30000));
5966
5967 return 0;
5968 }
5969 late_initcall_sync(regulator_init_complete);