]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/regulator/qcom-labibb-regulator.c
Merge tag 'sunxi-dt-for-5.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / drivers / regulator / qcom-labibb-regulator.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 // Copyright (c) 2020, The Linux Foundation. All rights reserved.
3
4 #include <linux/module.h>
5 #include <linux/of_irq.h>
6 #include <linux/of.h>
7 #include <linux/of_device.h>
8 #include <linux/platform_device.h>
9 #include <linux/regmap.h>
10 #include <linux/regulator/driver.h>
11 #include <linux/regulator/of_regulator.h>
12
13 #define REG_PERPH_TYPE 0x04
14
15 #define QCOM_LAB_TYPE 0x24
16 #define QCOM_IBB_TYPE 0x20
17
18 #define PMI8998_LAB_REG_BASE 0xde00
19 #define PMI8998_IBB_REG_BASE 0xdc00
20 #define PMI8998_IBB_LAB_REG_OFFSET 0x200
21
22 #define REG_LABIBB_STATUS1 0x08
23 #define LABIBB_STATUS1_SC_BIT BIT(6)
24 #define LABIBB_STATUS1_VREG_OK_BIT BIT(7)
25
26 #define REG_LABIBB_INT_SET_TYPE 0x11
27 #define REG_LABIBB_INT_POLARITY_HIGH 0x12
28 #define REG_LABIBB_INT_POLARITY_LOW 0x13
29 #define REG_LABIBB_INT_LATCHED_CLR 0x14
30 #define REG_LABIBB_INT_EN_SET 0x15
31 #define REG_LABIBB_INT_EN_CLR 0x16
32 #define LABIBB_INT_VREG_OK BIT(0)
33 #define LABIBB_INT_VREG_TYPE_LEVEL 0
34
35 #define REG_LABIBB_VOLTAGE 0x41
36 #define LABIBB_VOLTAGE_OVERRIDE_EN BIT(7)
37 #define LAB_VOLTAGE_SET_MASK GENMASK(3, 0)
38 #define IBB_VOLTAGE_SET_MASK GENMASK(5, 0)
39
40 #define REG_LABIBB_ENABLE_CTL 0x46
41 #define LABIBB_CONTROL_ENABLE BIT(7)
42
43 #define REG_LABIBB_PD_CTL 0x47
44 #define LAB_PD_CTL_MASK GENMASK(1, 0)
45 #define IBB_PD_CTL_MASK (BIT(0) | BIT(7))
46 #define LAB_PD_CTL_STRONG_PULL BIT(0)
47 #define IBB_PD_CTL_HALF_STRENGTH BIT(0)
48 #define IBB_PD_CTL_EN BIT(7)
49
50 #define REG_LABIBB_CURRENT_LIMIT 0x4b
51 #define LAB_CURRENT_LIMIT_MASK GENMASK(2, 0)
52 #define IBB_CURRENT_LIMIT_MASK GENMASK(4, 0)
53 #define LAB_CURRENT_LIMIT_OVERRIDE_EN BIT(3)
54 #define LABIBB_CURRENT_LIMIT_EN BIT(7)
55
56 #define REG_IBB_PWRUP_PWRDN_CTL_1 0x58
57 #define IBB_CTL_1_DISCHARGE_EN BIT(2)
58
59 #define REG_LABIBB_SOFT_START_CTL 0x5f
60 #define REG_LABIBB_SEC_ACCESS 0xd0
61 #define LABIBB_SEC_UNLOCK_CODE 0xa5
62
63 #define LAB_ENABLE_CTL_MASK BIT(7)
64 #define IBB_ENABLE_CTL_MASK (BIT(7) | BIT(6))
65
66 #define LABIBB_OFF_ON_DELAY 1000
67 #define LAB_ENABLE_TIME (LABIBB_OFF_ON_DELAY * 2)
68 #define IBB_ENABLE_TIME (LABIBB_OFF_ON_DELAY * 10)
69 #define LABIBB_POLL_ENABLED_TIME 1000
70 #define OCP_RECOVERY_INTERVAL_MS 500
71 #define SC_RECOVERY_INTERVAL_MS 250
72 #define LABIBB_MAX_OCP_COUNT 4
73 #define LABIBB_MAX_SC_COUNT 3
74 #define LABIBB_MAX_FATAL_COUNT 2
75
76 struct labibb_current_limits {
77 u32 uA_min;
78 u32 uA_step;
79 u8 ovr_val;
80 };
81
82 struct labibb_regulator {
83 struct regulator_desc desc;
84 struct device *dev;
85 struct regmap *regmap;
86 struct regulator_dev *rdev;
87 struct labibb_current_limits uA_limits;
88 struct delayed_work ocp_recovery_work;
89 struct delayed_work sc_recovery_work;
90 u16 base;
91 u8 type;
92 u8 dischg_sel;
93 u8 soft_start_sel;
94 int sc_irq;
95 int sc_count;
96 int ocp_irq;
97 int ocp_irq_count;
98 int fatal_count;
99 };
100
101 struct labibb_regulator_data {
102 const char *name;
103 u8 type;
104 u16 base;
105 const struct regulator_desc *desc;
106 };
107
108 static int qcom_labibb_ocp_hw_enable(struct regulator_dev *rdev)
109 {
110 struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
111 int ret;
112
113 /* Clear irq latch status to avoid spurious event */
114 ret = regmap_update_bits(rdev->regmap,
115 vreg->base + REG_LABIBB_INT_LATCHED_CLR,
116 LABIBB_INT_VREG_OK, 1);
117 if (ret)
118 return ret;
119
120 /* Enable OCP HW interrupt */
121 return regmap_update_bits(rdev->regmap,
122 vreg->base + REG_LABIBB_INT_EN_SET,
123 LABIBB_INT_VREG_OK, 1);
124 }
125
126 static int qcom_labibb_ocp_hw_disable(struct regulator_dev *rdev)
127 {
128 struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
129
130 return regmap_update_bits(rdev->regmap,
131 vreg->base + REG_LABIBB_INT_EN_CLR,
132 LABIBB_INT_VREG_OK, 1);
133 }
134
135 /**
136 * qcom_labibb_check_ocp_status - Check the Over-Current Protection status
137 * @vreg: Main driver structure
138 *
139 * This function checks the STATUS1 register for the VREG_OK bit: if it is
140 * set, then there is no Over-Current event.
141 *
142 * Returns: Zero if there is no over-current, 1 if in over-current or
143 * negative number for error
144 */
145 static int qcom_labibb_check_ocp_status(struct labibb_regulator *vreg)
146 {
147 u32 cur_status;
148 int ret;
149
150 ret = regmap_read(vreg->rdev->regmap, vreg->base + REG_LABIBB_STATUS1,
151 &cur_status);
152 if (ret)
153 return ret;
154
155 return !(cur_status & LABIBB_STATUS1_VREG_OK_BIT);
156 }
157
158 /**
159 * qcom_labibb_ocp_recovery_worker - Handle OCP event
160 * @work: OCP work structure
161 *
162 * This is the worker function to handle the Over Current Protection
163 * hardware event; This will check if the hardware is still
164 * signaling an over-current condition and will eventually stop
165 * the regulator if such condition is still signaled after
166 * LABIBB_MAX_OCP_COUNT times.
167 *
168 * If the driver that is consuming the regulator did not take action
169 * for the OCP condition, or the hardware did not stabilize, a cut
170 * of the LAB and IBB regulators will be forced (regulators will be
171 * disabled).
172 *
173 * As last, if the writes to shut down the LAB/IBB regulators fail
174 * for more than LABIBB_MAX_FATAL_COUNT, then a kernel panic will be
175 * triggered, as a last resort to protect the hardware from burning;
176 * this, however, is expected to never happen, but this is kept to
177 * try to further ensure that we protect the hardware at all costs.
178 */
179 static void qcom_labibb_ocp_recovery_worker(struct work_struct *work)
180 {
181 struct labibb_regulator *vreg;
182 const struct regulator_ops *ops;
183 int ret;
184
185 vreg = container_of(work, struct labibb_regulator,
186 ocp_recovery_work.work);
187 ops = vreg->rdev->desc->ops;
188
189 if (vreg->ocp_irq_count >= LABIBB_MAX_OCP_COUNT) {
190 /*
191 * If we tried to disable the regulator multiple times but
192 * we kept failing, there's only one last hope to save our
193 * hardware from the death: raise a kernel bug, reboot and
194 * hope that the bootloader kindly saves us. This, though
195 * is done only as paranoid checking, because failing the
196 * regmap write to disable the vreg is almost impossible,
197 * since we got here after multiple regmap R/W.
198 */
199 BUG_ON(vreg->fatal_count > LABIBB_MAX_FATAL_COUNT);
200 dev_err(&vreg->rdev->dev, "LABIBB: CRITICAL: Disabling regulator\n");
201
202 /* Disable the regulator immediately to avoid damage */
203 ret = ops->disable(vreg->rdev);
204 if (ret) {
205 vreg->fatal_count++;
206 goto reschedule;
207 }
208 enable_irq(vreg->ocp_irq);
209 vreg->fatal_count = 0;
210 return;
211 }
212
213 ret = qcom_labibb_check_ocp_status(vreg);
214 if (ret != 0) {
215 vreg->ocp_irq_count++;
216 goto reschedule;
217 }
218
219 ret = qcom_labibb_ocp_hw_enable(vreg->rdev);
220 if (ret) {
221 /* We cannot trust it without OCP enabled. */
222 dev_err(vreg->dev, "Cannot enable OCP IRQ\n");
223 vreg->ocp_irq_count++;
224 goto reschedule;
225 }
226
227 enable_irq(vreg->ocp_irq);
228 /* Everything went fine: reset the OCP count! */
229 vreg->ocp_irq_count = 0;
230 return;
231
232 reschedule:
233 mod_delayed_work(system_wq, &vreg->ocp_recovery_work,
234 msecs_to_jiffies(OCP_RECOVERY_INTERVAL_MS));
235 }
236
237 /**
238 * qcom_labibb_ocp_isr - Interrupt routine for OverCurrent Protection
239 * @irq: Interrupt number
240 * @chip: Main driver structure
241 *
242 * Over Current Protection (OCP) will signal to the client driver
243 * that an over-current event has happened and then will schedule
244 * a recovery worker.
245 *
246 * Disabling and eventually re-enabling the regulator is expected
247 * to be done by the driver, as some hardware may be triggering an
248 * over-current condition only at first initialization or it may
249 * be expected only for a very brief amount of time, after which
250 * the attached hardware may be expected to stabilize its current
251 * draw.
252 *
253 * Returns: IRQ_HANDLED for success or IRQ_NONE for failure.
254 */
255 static irqreturn_t qcom_labibb_ocp_isr(int irq, void *chip)
256 {
257 struct labibb_regulator *vreg = chip;
258 const struct regulator_ops *ops = vreg->rdev->desc->ops;
259 int ret;
260
261 /* If the regulator is not enabled, this is a fake event */
262 if (!ops->is_enabled(vreg->rdev))
263 return 0;
264
265 /* If we tried to recover for too many times it's not getting better */
266 if (vreg->ocp_irq_count > LABIBB_MAX_OCP_COUNT)
267 return IRQ_NONE;
268
269 /*
270 * If we (unlikely) can't read this register, to prevent hardware
271 * damage at all costs, we assume that the overcurrent event was
272 * real; Moreover, if the status register is not signaling OCP,
273 * it was a spurious event, so it's all ok.
274 */
275 ret = qcom_labibb_check_ocp_status(vreg);
276 if (ret == 0) {
277 vreg->ocp_irq_count = 0;
278 goto end;
279 }
280 vreg->ocp_irq_count++;
281
282 /*
283 * Disable the interrupt temporarily, or it will fire continuously;
284 * we will re-enable it in the recovery worker function.
285 */
286 disable_irq_nosync(irq);
287
288 /* Warn the user for overcurrent */
289 dev_warn(vreg->dev, "Over-Current interrupt fired!\n");
290
291 /* Disable the interrupt to avoid hogging */
292 ret = qcom_labibb_ocp_hw_disable(vreg->rdev);
293 if (ret)
294 goto end;
295
296 /* Signal overcurrent event to drivers */
297 regulator_notifier_call_chain(vreg->rdev,
298 REGULATOR_EVENT_OVER_CURRENT, NULL);
299
300 end:
301 /* Schedule the recovery work */
302 schedule_delayed_work(&vreg->ocp_recovery_work,
303 msecs_to_jiffies(OCP_RECOVERY_INTERVAL_MS));
304 if (ret)
305 return IRQ_NONE;
306
307 return IRQ_HANDLED;
308 }
309
310 static int qcom_labibb_set_ocp(struct regulator_dev *rdev, int lim,
311 int severity, bool enable)
312 {
313 struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
314 char *ocp_irq_name;
315 u32 irq_flags = IRQF_ONESHOT;
316 int irq_trig_low, ret;
317
318 /*
319 * labibb supports only protection - and does not support setting
320 * limit. Furthermore, we don't support disabling protection.
321 */
322 if (lim || severity != REGULATOR_SEVERITY_PROT || !enable)
323 return -EINVAL;
324
325 /* If there is no OCP interrupt, there's nothing to set */
326 if (vreg->ocp_irq <= 0)
327 return -EINVAL;
328
329 ocp_irq_name = devm_kasprintf(vreg->dev, GFP_KERNEL, "%s-over-current",
330 vreg->desc.name);
331 if (!ocp_irq_name)
332 return -ENOMEM;
333
334 /* IRQ polarities - LAB: trigger-low, IBB: trigger-high */
335 switch (vreg->type) {
336 case QCOM_LAB_TYPE:
337 irq_flags |= IRQF_TRIGGER_LOW;
338 irq_trig_low = 1;
339 break;
340 case QCOM_IBB_TYPE:
341 irq_flags |= IRQF_TRIGGER_HIGH;
342 irq_trig_low = 0;
343 break;
344 default:
345 return -EINVAL;
346 }
347
348 /* Activate OCP HW level interrupt */
349 ret = regmap_update_bits(rdev->regmap,
350 vreg->base + REG_LABIBB_INT_SET_TYPE,
351 LABIBB_INT_VREG_OK,
352 LABIBB_INT_VREG_TYPE_LEVEL);
353 if (ret)
354 return ret;
355
356 /* Set OCP interrupt polarity */
357 ret = regmap_update_bits(rdev->regmap,
358 vreg->base + REG_LABIBB_INT_POLARITY_HIGH,
359 LABIBB_INT_VREG_OK, !irq_trig_low);
360 if (ret)
361 return ret;
362 ret = regmap_update_bits(rdev->regmap,
363 vreg->base + REG_LABIBB_INT_POLARITY_LOW,
364 LABIBB_INT_VREG_OK, irq_trig_low);
365 if (ret)
366 return ret;
367
368 ret = qcom_labibb_ocp_hw_enable(rdev);
369 if (ret)
370 return ret;
371
372 return devm_request_threaded_irq(vreg->dev, vreg->ocp_irq, NULL,
373 qcom_labibb_ocp_isr, irq_flags,
374 ocp_irq_name, vreg);
375 }
376
377 /**
378 * qcom_labibb_check_sc_status - Check the Short Circuit Protection status
379 * @vreg: Main driver structure
380 *
381 * This function checks the STATUS1 register on both LAB and IBB regulators
382 * for the ShortCircuit bit: if it is set on *any* of them, then we have
383 * experienced a short-circuit event.
384 *
385 * Returns: Zero if there is no short-circuit, 1 if in short-circuit or
386 * negative number for error
387 */
388 static int qcom_labibb_check_sc_status(struct labibb_regulator *vreg)
389 {
390 u32 ibb_status, ibb_reg, lab_status, lab_reg;
391 int ret;
392
393 /* We have to work on both regulators due to PBS... */
394 lab_reg = ibb_reg = vreg->base + REG_LABIBB_STATUS1;
395 if (vreg->type == QCOM_LAB_TYPE)
396 ibb_reg -= PMI8998_IBB_LAB_REG_OFFSET;
397 else
398 lab_reg += PMI8998_IBB_LAB_REG_OFFSET;
399
400 ret = regmap_read(vreg->rdev->regmap, lab_reg, &lab_status);
401 if (ret)
402 return ret;
403 ret = regmap_read(vreg->rdev->regmap, ibb_reg, &ibb_status);
404 if (ret)
405 return ret;
406
407 return !!(lab_status & LABIBB_STATUS1_SC_BIT) ||
408 !!(ibb_status & LABIBB_STATUS1_SC_BIT);
409 }
410
411 /**
412 * qcom_labibb_sc_recovery_worker - Handle Short Circuit event
413 * @work: SC work structure
414 *
415 * This is the worker function to handle the Short Circuit Protection
416 * hardware event; This will check if the hardware is still
417 * signaling a short-circuit condition and will eventually never
418 * re-enable the regulator if such condition is still signaled after
419 * LABIBB_MAX_SC_COUNT times.
420 *
421 * If the driver that is consuming the regulator did not take action
422 * for the SC condition, or the hardware did not stabilize, this
423 * worker will stop rescheduling, leaving the regulators disabled
424 * as already done by the Portable Batch System (PBS).
425 *
426 * Returns: IRQ_HANDLED for success or IRQ_NONE for failure.
427 */
428 static void qcom_labibb_sc_recovery_worker(struct work_struct *work)
429 {
430 struct labibb_regulator *vreg;
431 const struct regulator_ops *ops;
432 u32 lab_reg, ibb_reg, lab_val, ibb_val, val;
433 bool pbs_cut = false;
434 int i, sc, ret;
435
436 vreg = container_of(work, struct labibb_regulator,
437 sc_recovery_work.work);
438 ops = vreg->rdev->desc->ops;
439
440 /*
441 * If we tried to check the regulator status multiple times but we
442 * kept failing, then just bail out, as the Portable Batch System
443 * (PBS) will disable the vregs for us, preventing hardware damage.
444 */
445 if (vreg->fatal_count > LABIBB_MAX_FATAL_COUNT)
446 return;
447
448 /* Too many short-circuit events. Throw in the towel. */
449 if (vreg->sc_count > LABIBB_MAX_SC_COUNT)
450 return;
451
452 /*
453 * The Portable Batch System (PBS) automatically disables LAB
454 * and IBB when a short-circuit event is detected, so we have to
455 * check and work on both of them at the same time.
456 */
457 lab_reg = ibb_reg = vreg->base + REG_LABIBB_ENABLE_CTL;
458 if (vreg->type == QCOM_LAB_TYPE)
459 ibb_reg -= PMI8998_IBB_LAB_REG_OFFSET;
460 else
461 lab_reg += PMI8998_IBB_LAB_REG_OFFSET;
462
463 sc = qcom_labibb_check_sc_status(vreg);
464 if (sc)
465 goto reschedule;
466
467 for (i = 0; i < LABIBB_MAX_SC_COUNT; i++) {
468 ret = regmap_read(vreg->regmap, lab_reg, &lab_val);
469 if (ret) {
470 vreg->fatal_count++;
471 goto reschedule;
472 }
473
474 ret = regmap_read(vreg->regmap, ibb_reg, &ibb_val);
475 if (ret) {
476 vreg->fatal_count++;
477 goto reschedule;
478 }
479 val = lab_val & ibb_val;
480
481 if (!(val & LABIBB_CONTROL_ENABLE)) {
482 pbs_cut = true;
483 break;
484 }
485 usleep_range(5000, 6000);
486 }
487 if (pbs_cut)
488 goto reschedule;
489
490
491 /*
492 * If we have reached this point, we either have successfully
493 * recovered from the SC condition or we had a spurious SC IRQ,
494 * which means that we can re-enable the regulators, if they
495 * have ever been disabled by the PBS.
496 */
497 ret = ops->enable(vreg->rdev);
498 if (ret)
499 goto reschedule;
500
501 /* Everything went fine: reset the OCP count! */
502 vreg->sc_count = 0;
503 enable_irq(vreg->sc_irq);
504 return;
505
506 reschedule:
507 /*
508 * Now that we have done basic handling of the short-circuit,
509 * reschedule this worker in the regular system workqueue, as
510 * taking action is not truly urgent anymore.
511 */
512 vreg->sc_count++;
513 mod_delayed_work(system_wq, &vreg->sc_recovery_work,
514 msecs_to_jiffies(SC_RECOVERY_INTERVAL_MS));
515 }
516
517 /**
518 * qcom_labibb_sc_isr - Interrupt routine for Short Circuit Protection
519 * @irq: Interrupt number
520 * @chip: Main driver structure
521 *
522 * Short Circuit Protection (SCP) will signal to the client driver
523 * that a regulation-out event has happened and then will schedule
524 * a recovery worker.
525 *
526 * The LAB and IBB regulators will be automatically disabled by the
527 * Portable Batch System (PBS) and they will be enabled again by
528 * the worker function if the hardware stops signaling the short
529 * circuit event.
530 *
531 * Returns: IRQ_HANDLED for success or IRQ_NONE for failure.
532 */
533 static irqreturn_t qcom_labibb_sc_isr(int irq, void *chip)
534 {
535 struct labibb_regulator *vreg = chip;
536
537 if (vreg->sc_count > LABIBB_MAX_SC_COUNT)
538 return IRQ_NONE;
539
540 /* Warn the user for short circuit */
541 dev_warn(vreg->dev, "Short-Circuit interrupt fired!\n");
542
543 /*
544 * Disable the interrupt temporarily, or it will fire continuously;
545 * we will re-enable it in the recovery worker function.
546 */
547 disable_irq_nosync(irq);
548
549 /* Signal out of regulation event to drivers */
550 regulator_notifier_call_chain(vreg->rdev,
551 REGULATOR_EVENT_REGULATION_OUT, NULL);
552
553 /* Schedule the short-circuit handling as high-priority work */
554 mod_delayed_work(system_highpri_wq, &vreg->sc_recovery_work,
555 msecs_to_jiffies(SC_RECOVERY_INTERVAL_MS));
556 return IRQ_HANDLED;
557 }
558
559
560 static int qcom_labibb_set_current_limit(struct regulator_dev *rdev,
561 int min_uA, int max_uA)
562 {
563 struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
564 struct regulator_desc *desc = &vreg->desc;
565 struct labibb_current_limits *lim = &vreg->uA_limits;
566 u32 mask, val;
567 int i, ret, sel = -1;
568
569 if (min_uA < lim->uA_min || max_uA < lim->uA_min)
570 return -EINVAL;
571
572 for (i = 0; i < desc->n_current_limits; i++) {
573 int uA_limit = (lim->uA_step * i) + lim->uA_min;
574
575 if (max_uA >= uA_limit && min_uA <= uA_limit)
576 sel = i;
577 }
578 if (sel < 0)
579 return -EINVAL;
580
581 /* Current limit setting needs secure access */
582 ret = regmap_write(vreg->regmap, vreg->base + REG_LABIBB_SEC_ACCESS,
583 LABIBB_SEC_UNLOCK_CODE);
584 if (ret)
585 return ret;
586
587 mask = desc->csel_mask | lim->ovr_val;
588 mask |= LABIBB_CURRENT_LIMIT_EN;
589 val = (u32)sel | lim->ovr_val;
590 val |= LABIBB_CURRENT_LIMIT_EN;
591
592 return regmap_update_bits(vreg->regmap, desc->csel_reg, mask, val);
593 }
594
595 static int qcom_labibb_get_current_limit(struct regulator_dev *rdev)
596 {
597 struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
598 struct regulator_desc *desc = &vreg->desc;
599 struct labibb_current_limits *lim = &vreg->uA_limits;
600 unsigned int cur_step;
601 int ret;
602
603 ret = regmap_read(vreg->regmap, desc->csel_reg, &cur_step);
604 if (ret)
605 return ret;
606 cur_step &= desc->csel_mask;
607
608 return (cur_step * lim->uA_step) + lim->uA_min;
609 }
610
611 static int qcom_labibb_set_soft_start(struct regulator_dev *rdev)
612 {
613 struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
614 u32 val = 0;
615
616 if (vreg->type == QCOM_IBB_TYPE)
617 val = vreg->dischg_sel;
618 else
619 val = vreg->soft_start_sel;
620
621 return regmap_write(rdev->regmap, rdev->desc->soft_start_reg, val);
622 }
623
624 static int qcom_labibb_get_table_sel(const int *table, int sz, u32 value)
625 {
626 int i;
627
628 for (i = 0; i < sz; i++)
629 if (table[i] == value)
630 return i;
631 return -EINVAL;
632 }
633
634 /* IBB discharge resistor values in KOhms */
635 static const int dischg_resistor_values[] = { 300, 64, 32, 16 };
636
637 /* Soft start time in microseconds */
638 static const int soft_start_values[] = { 200, 400, 600, 800 };
639
640 static int qcom_labibb_of_parse_cb(struct device_node *np,
641 const struct regulator_desc *desc,
642 struct regulator_config *config)
643 {
644 struct labibb_regulator *vreg = config->driver_data;
645 u32 dischg_kohms, soft_start_time;
646 int ret;
647
648 ret = of_property_read_u32(np, "qcom,discharge-resistor-kohms",
649 &dischg_kohms);
650 if (ret)
651 dischg_kohms = 300;
652
653 ret = qcom_labibb_get_table_sel(dischg_resistor_values,
654 ARRAY_SIZE(dischg_resistor_values),
655 dischg_kohms);
656 if (ret < 0)
657 return ret;
658 vreg->dischg_sel = (u8)ret;
659
660 ret = of_property_read_u32(np, "qcom,soft-start-us",
661 &soft_start_time);
662 if (ret)
663 soft_start_time = 200;
664
665 ret = qcom_labibb_get_table_sel(soft_start_values,
666 ARRAY_SIZE(soft_start_values),
667 soft_start_time);
668 if (ret < 0)
669 return ret;
670 vreg->soft_start_sel = (u8)ret;
671
672 return 0;
673 }
674
675 static const struct regulator_ops qcom_labibb_ops = {
676 .enable = regulator_enable_regmap,
677 .disable = regulator_disable_regmap,
678 .is_enabled = regulator_is_enabled_regmap,
679 .set_voltage_sel = regulator_set_voltage_sel_regmap,
680 .get_voltage_sel = regulator_get_voltage_sel_regmap,
681 .list_voltage = regulator_list_voltage_linear,
682 .map_voltage = regulator_map_voltage_linear,
683 .set_active_discharge = regulator_set_active_discharge_regmap,
684 .set_pull_down = regulator_set_pull_down_regmap,
685 .set_current_limit = qcom_labibb_set_current_limit,
686 .get_current_limit = qcom_labibb_get_current_limit,
687 .set_soft_start = qcom_labibb_set_soft_start,
688 .set_over_current_protection = qcom_labibb_set_ocp,
689 };
690
691 static const struct regulator_desc pmi8998_lab_desc = {
692 .enable_mask = LAB_ENABLE_CTL_MASK,
693 .enable_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_ENABLE_CTL),
694 .enable_val = LABIBB_CONTROL_ENABLE,
695 .enable_time = LAB_ENABLE_TIME,
696 .poll_enabled_time = LABIBB_POLL_ENABLED_TIME,
697 .soft_start_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_SOFT_START_CTL),
698 .pull_down_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_PD_CTL),
699 .pull_down_mask = LAB_PD_CTL_MASK,
700 .pull_down_val_on = LAB_PD_CTL_STRONG_PULL,
701 .vsel_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_VOLTAGE),
702 .vsel_mask = LAB_VOLTAGE_SET_MASK,
703 .apply_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_VOLTAGE),
704 .apply_bit = LABIBB_VOLTAGE_OVERRIDE_EN,
705 .csel_reg = (PMI8998_LAB_REG_BASE + REG_LABIBB_CURRENT_LIMIT),
706 .csel_mask = LAB_CURRENT_LIMIT_MASK,
707 .n_current_limits = 8,
708 .off_on_delay = LABIBB_OFF_ON_DELAY,
709 .owner = THIS_MODULE,
710 .type = REGULATOR_VOLTAGE,
711 .min_uV = 4600000,
712 .uV_step = 100000,
713 .n_voltages = 16,
714 .ops = &qcom_labibb_ops,
715 .of_parse_cb = qcom_labibb_of_parse_cb,
716 };
717
718 static const struct regulator_desc pmi8998_ibb_desc = {
719 .enable_mask = IBB_ENABLE_CTL_MASK,
720 .enable_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_ENABLE_CTL),
721 .enable_val = LABIBB_CONTROL_ENABLE,
722 .enable_time = IBB_ENABLE_TIME,
723 .poll_enabled_time = LABIBB_POLL_ENABLED_TIME,
724 .soft_start_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_SOFT_START_CTL),
725 .active_discharge_off = 0,
726 .active_discharge_on = IBB_CTL_1_DISCHARGE_EN,
727 .active_discharge_mask = IBB_CTL_1_DISCHARGE_EN,
728 .active_discharge_reg = (PMI8998_IBB_REG_BASE + REG_IBB_PWRUP_PWRDN_CTL_1),
729 .pull_down_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_PD_CTL),
730 .pull_down_mask = IBB_PD_CTL_MASK,
731 .pull_down_val_on = IBB_PD_CTL_HALF_STRENGTH | IBB_PD_CTL_EN,
732 .vsel_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_VOLTAGE),
733 .vsel_mask = IBB_VOLTAGE_SET_MASK,
734 .apply_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_VOLTAGE),
735 .apply_bit = LABIBB_VOLTAGE_OVERRIDE_EN,
736 .csel_reg = (PMI8998_IBB_REG_BASE + REG_LABIBB_CURRENT_LIMIT),
737 .csel_mask = IBB_CURRENT_LIMIT_MASK,
738 .n_current_limits = 32,
739 .off_on_delay = LABIBB_OFF_ON_DELAY,
740 .owner = THIS_MODULE,
741 .type = REGULATOR_VOLTAGE,
742 .min_uV = 1400000,
743 .uV_step = 100000,
744 .n_voltages = 64,
745 .ops = &qcom_labibb_ops,
746 .of_parse_cb = qcom_labibb_of_parse_cb,
747 };
748
749 static const struct labibb_regulator_data pmi8998_labibb_data[] = {
750 {"lab", QCOM_LAB_TYPE, PMI8998_LAB_REG_BASE, &pmi8998_lab_desc},
751 {"ibb", QCOM_IBB_TYPE, PMI8998_IBB_REG_BASE, &pmi8998_ibb_desc},
752 { },
753 };
754
755 static const struct of_device_id qcom_labibb_match[] = {
756 { .compatible = "qcom,pmi8998-lab-ibb", .data = &pmi8998_labibb_data},
757 { },
758 };
759 MODULE_DEVICE_TABLE(of, qcom_labibb_match);
760
761 static int qcom_labibb_regulator_probe(struct platform_device *pdev)
762 {
763 struct labibb_regulator *vreg;
764 struct device *dev = &pdev->dev;
765 struct regulator_config cfg = {};
766 struct device_node *reg_node;
767 const struct of_device_id *match;
768 const struct labibb_regulator_data *reg_data;
769 struct regmap *reg_regmap;
770 unsigned int type;
771 int ret;
772
773 reg_regmap = dev_get_regmap(pdev->dev.parent, NULL);
774 if (!reg_regmap) {
775 dev_err(&pdev->dev, "Couldn't get parent's regmap\n");
776 return -ENODEV;
777 }
778
779 match = of_match_device(qcom_labibb_match, &pdev->dev);
780 if (!match)
781 return -ENODEV;
782
783 for (reg_data = match->data; reg_data->name; reg_data++) {
784 char *sc_irq_name;
785 int irq = 0;
786
787 /* Validate if the type of regulator is indeed
788 * what's mentioned in DT.
789 */
790 ret = regmap_read(reg_regmap, reg_data->base + REG_PERPH_TYPE,
791 &type);
792 if (ret < 0) {
793 dev_err(dev,
794 "Peripheral type read failed ret=%d\n",
795 ret);
796 return -EINVAL;
797 }
798
799 if (WARN_ON((type != QCOM_LAB_TYPE) && (type != QCOM_IBB_TYPE)) ||
800 WARN_ON(type != reg_data->type))
801 return -EINVAL;
802
803 vreg = devm_kzalloc(&pdev->dev, sizeof(*vreg),
804 GFP_KERNEL);
805 if (!vreg)
806 return -ENOMEM;
807
808 sc_irq_name = devm_kasprintf(dev, GFP_KERNEL,
809 "%s-short-circuit",
810 reg_data->name);
811 if (!sc_irq_name)
812 return -ENOMEM;
813
814 reg_node = of_get_child_by_name(pdev->dev.of_node,
815 reg_data->name);
816 if (!reg_node)
817 return -EINVAL;
818
819 /* The Short Circuit interrupt is critical */
820 irq = of_irq_get_byname(reg_node, "sc-err");
821 if (irq <= 0) {
822 if (irq == 0)
823 irq = -EINVAL;
824
825 return dev_err_probe(vreg->dev, irq,
826 "Short-circuit irq not found.\n");
827 }
828 vreg->sc_irq = irq;
829
830 /* OverCurrent Protection IRQ is optional */
831 irq = of_irq_get_byname(reg_node, "ocp");
832 vreg->ocp_irq = irq;
833 vreg->ocp_irq_count = 0;
834 of_node_put(reg_node);
835
836 vreg->regmap = reg_regmap;
837 vreg->dev = dev;
838 vreg->base = reg_data->base;
839 vreg->type = reg_data->type;
840 INIT_DELAYED_WORK(&vreg->sc_recovery_work,
841 qcom_labibb_sc_recovery_worker);
842
843 if (vreg->ocp_irq > 0)
844 INIT_DELAYED_WORK(&vreg->ocp_recovery_work,
845 qcom_labibb_ocp_recovery_worker);
846
847 switch (vreg->type) {
848 case QCOM_LAB_TYPE:
849 /* LAB Limits: 200-1600mA */
850 vreg->uA_limits.uA_min = 200000;
851 vreg->uA_limits.uA_step = 200000;
852 vreg->uA_limits.ovr_val = LAB_CURRENT_LIMIT_OVERRIDE_EN;
853 break;
854 case QCOM_IBB_TYPE:
855 /* IBB Limits: 0-1550mA */
856 vreg->uA_limits.uA_min = 0;
857 vreg->uA_limits.uA_step = 50000;
858 vreg->uA_limits.ovr_val = 0; /* No override bit */
859 break;
860 default:
861 return -EINVAL;
862 }
863
864 memcpy(&vreg->desc, reg_data->desc, sizeof(vreg->desc));
865 vreg->desc.of_match = reg_data->name;
866 vreg->desc.name = reg_data->name;
867
868 cfg.dev = vreg->dev;
869 cfg.driver_data = vreg;
870 cfg.regmap = vreg->regmap;
871
872 vreg->rdev = devm_regulator_register(vreg->dev, &vreg->desc,
873 &cfg);
874
875 if (IS_ERR(vreg->rdev)) {
876 dev_err(dev, "qcom_labibb: error registering %s : %d\n",
877 reg_data->name, ret);
878 return PTR_ERR(vreg->rdev);
879 }
880
881 ret = devm_request_threaded_irq(vreg->dev, vreg->sc_irq, NULL,
882 qcom_labibb_sc_isr,
883 IRQF_ONESHOT |
884 IRQF_TRIGGER_RISING,
885 sc_irq_name, vreg);
886 if (ret)
887 return ret;
888 }
889
890 return 0;
891 }
892
893 static struct platform_driver qcom_labibb_regulator_driver = {
894 .driver = {
895 .name = "qcom-lab-ibb-regulator",
896 .of_match_table = qcom_labibb_match,
897 },
898 .probe = qcom_labibb_regulator_probe,
899 };
900 module_platform_driver(qcom_labibb_regulator_driver);
901
902 MODULE_DESCRIPTION("Qualcomm labibb driver");
903 MODULE_AUTHOR("Nisha Kumari <nishakumari@codeaurora.org>");
904 MODULE_AUTHOR("Sumit Semwal <sumit.semwal@linaro.org>");
905 MODULE_LICENSE("GPL v2");