]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/regulator/qcom_spmi-regulator.c
drm/i915: Use the correct IRQ during resume
[mirror_ubuntu-jammy-kernel.git] / drivers / regulator / qcom_spmi-regulator.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
4 */
5
6 #include <linux/module.h>
7 #include <linux/delay.h>
8 #include <linux/devm-helpers.h>
9 #include <linux/err.h>
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/bitops.h>
13 #include <linux/slab.h>
14 #include <linux/of.h>
15 #include <linux/of_device.h>
16 #include <linux/platform_device.h>
17 #include <linux/ktime.h>
18 #include <linux/regulator/driver.h>
19 #include <linux/regmap.h>
20 #include <linux/list.h>
21 #include <linux/mfd/syscon.h>
22 #include <linux/io.h>
23
24 /* Pin control enable input pins. */
25 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_NONE 0x00
26 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN0 0x01
27 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN1 0x02
28 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN2 0x04
29 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN3 0x08
30 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT 0x10
31
32 /* Pin control high power mode input pins. */
33 #define SPMI_REGULATOR_PIN_CTRL_HPM_NONE 0x00
34 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN0 0x01
35 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN1 0x02
36 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN2 0x04
37 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN3 0x08
38 #define SPMI_REGULATOR_PIN_CTRL_HPM_SLEEP_B 0x10
39 #define SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT 0x20
40
41 /*
42 * Used with enable parameters to specify that hardware default register values
43 * should be left unaltered.
44 */
45 #define SPMI_REGULATOR_USE_HW_DEFAULT 2
46
47 /* Soft start strength of a voltage switch type regulator */
48 enum spmi_vs_soft_start_str {
49 SPMI_VS_SOFT_START_STR_0P05_UA = 0,
50 SPMI_VS_SOFT_START_STR_0P25_UA,
51 SPMI_VS_SOFT_START_STR_0P55_UA,
52 SPMI_VS_SOFT_START_STR_0P75_UA,
53 SPMI_VS_SOFT_START_STR_HW_DEFAULT,
54 };
55
56 /**
57 * struct spmi_regulator_init_data - spmi-regulator initialization data
58 * @pin_ctrl_enable: Bit mask specifying which hardware pins should be
59 * used to enable the regulator, if any
60 * Value should be an ORing of
61 * SPMI_REGULATOR_PIN_CTRL_ENABLE_* constants. If
62 * the bit specified by
63 * SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT is
64 * set, then pin control enable hardware registers
65 * will not be modified.
66 * @pin_ctrl_hpm: Bit mask specifying which hardware pins should be
67 * used to force the regulator into high power
68 * mode, if any
69 * Value should be an ORing of
70 * SPMI_REGULATOR_PIN_CTRL_HPM_* constants. If
71 * the bit specified by
72 * SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT is
73 * set, then pin control mode hardware registers
74 * will not be modified.
75 * @vs_soft_start_strength: This parameter sets the soft start strength for
76 * voltage switch type regulators. Its value
77 * should be one of SPMI_VS_SOFT_START_STR_*. If
78 * its value is SPMI_VS_SOFT_START_STR_HW_DEFAULT,
79 * then the soft start strength will be left at its
80 * default hardware value.
81 */
82 struct spmi_regulator_init_data {
83 unsigned pin_ctrl_enable;
84 unsigned pin_ctrl_hpm;
85 enum spmi_vs_soft_start_str vs_soft_start_strength;
86 };
87
88 /* These types correspond to unique register layouts. */
89 enum spmi_regulator_logical_type {
90 SPMI_REGULATOR_LOGICAL_TYPE_SMPS,
91 SPMI_REGULATOR_LOGICAL_TYPE_LDO,
92 SPMI_REGULATOR_LOGICAL_TYPE_VS,
93 SPMI_REGULATOR_LOGICAL_TYPE_BOOST,
94 SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS,
95 SPMI_REGULATOR_LOGICAL_TYPE_BOOST_BYP,
96 SPMI_REGULATOR_LOGICAL_TYPE_LN_LDO,
97 SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS,
98 SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS,
99 SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO,
100 SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS426,
101 SPMI_REGULATOR_LOGICAL_TYPE_HFS430,
102 };
103
104 enum spmi_regulator_type {
105 SPMI_REGULATOR_TYPE_BUCK = 0x03,
106 SPMI_REGULATOR_TYPE_LDO = 0x04,
107 SPMI_REGULATOR_TYPE_VS = 0x05,
108 SPMI_REGULATOR_TYPE_BOOST = 0x1b,
109 SPMI_REGULATOR_TYPE_FTS = 0x1c,
110 SPMI_REGULATOR_TYPE_BOOST_BYP = 0x1f,
111 SPMI_REGULATOR_TYPE_ULT_LDO = 0x21,
112 SPMI_REGULATOR_TYPE_ULT_BUCK = 0x22,
113 };
114
115 enum spmi_regulator_subtype {
116 SPMI_REGULATOR_SUBTYPE_GP_CTL = 0x08,
117 SPMI_REGULATOR_SUBTYPE_RF_CTL = 0x09,
118 SPMI_REGULATOR_SUBTYPE_N50 = 0x01,
119 SPMI_REGULATOR_SUBTYPE_N150 = 0x02,
120 SPMI_REGULATOR_SUBTYPE_N300 = 0x03,
121 SPMI_REGULATOR_SUBTYPE_N600 = 0x04,
122 SPMI_REGULATOR_SUBTYPE_N1200 = 0x05,
123 SPMI_REGULATOR_SUBTYPE_N600_ST = 0x06,
124 SPMI_REGULATOR_SUBTYPE_N1200_ST = 0x07,
125 SPMI_REGULATOR_SUBTYPE_N900_ST = 0x14,
126 SPMI_REGULATOR_SUBTYPE_N300_ST = 0x15,
127 SPMI_REGULATOR_SUBTYPE_P50 = 0x08,
128 SPMI_REGULATOR_SUBTYPE_P150 = 0x09,
129 SPMI_REGULATOR_SUBTYPE_P300 = 0x0a,
130 SPMI_REGULATOR_SUBTYPE_P600 = 0x0b,
131 SPMI_REGULATOR_SUBTYPE_P1200 = 0x0c,
132 SPMI_REGULATOR_SUBTYPE_LN = 0x10,
133 SPMI_REGULATOR_SUBTYPE_LV_P50 = 0x28,
134 SPMI_REGULATOR_SUBTYPE_LV_P150 = 0x29,
135 SPMI_REGULATOR_SUBTYPE_LV_P300 = 0x2a,
136 SPMI_REGULATOR_SUBTYPE_LV_P600 = 0x2b,
137 SPMI_REGULATOR_SUBTYPE_LV_P1200 = 0x2c,
138 SPMI_REGULATOR_SUBTYPE_LV_P450 = 0x2d,
139 SPMI_REGULATOR_SUBTYPE_HT_N300_ST = 0x30,
140 SPMI_REGULATOR_SUBTYPE_HT_N600_ST = 0x31,
141 SPMI_REGULATOR_SUBTYPE_HT_N1200_ST = 0x32,
142 SPMI_REGULATOR_SUBTYPE_HT_LVP150 = 0x3b,
143 SPMI_REGULATOR_SUBTYPE_HT_LVP300 = 0x3c,
144 SPMI_REGULATOR_SUBTYPE_L660_N300_ST = 0x42,
145 SPMI_REGULATOR_SUBTYPE_L660_N600_ST = 0x43,
146 SPMI_REGULATOR_SUBTYPE_L660_P50 = 0x46,
147 SPMI_REGULATOR_SUBTYPE_L660_P150 = 0x47,
148 SPMI_REGULATOR_SUBTYPE_L660_P600 = 0x49,
149 SPMI_REGULATOR_SUBTYPE_L660_LVP150 = 0x4d,
150 SPMI_REGULATOR_SUBTYPE_L660_LVP600 = 0x4f,
151 SPMI_REGULATOR_SUBTYPE_LV100 = 0x01,
152 SPMI_REGULATOR_SUBTYPE_LV300 = 0x02,
153 SPMI_REGULATOR_SUBTYPE_MV300 = 0x08,
154 SPMI_REGULATOR_SUBTYPE_MV500 = 0x09,
155 SPMI_REGULATOR_SUBTYPE_HDMI = 0x10,
156 SPMI_REGULATOR_SUBTYPE_OTG = 0x11,
157 SPMI_REGULATOR_SUBTYPE_5V_BOOST = 0x01,
158 SPMI_REGULATOR_SUBTYPE_FTS_CTL = 0x08,
159 SPMI_REGULATOR_SUBTYPE_FTS2p5_CTL = 0x09,
160 SPMI_REGULATOR_SUBTYPE_FTS426_CTL = 0x0a,
161 SPMI_REGULATOR_SUBTYPE_BB_2A = 0x01,
162 SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL1 = 0x0d,
163 SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL2 = 0x0e,
164 SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL3 = 0x0f,
165 SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL4 = 0x10,
166 SPMI_REGULATOR_SUBTYPE_HFS430 = 0x0a,
167 };
168
169 enum spmi_common_regulator_registers {
170 SPMI_COMMON_REG_DIG_MAJOR_REV = 0x01,
171 SPMI_COMMON_REG_TYPE = 0x04,
172 SPMI_COMMON_REG_SUBTYPE = 0x05,
173 SPMI_COMMON_REG_VOLTAGE_RANGE = 0x40,
174 SPMI_COMMON_REG_VOLTAGE_SET = 0x41,
175 SPMI_COMMON_REG_MODE = 0x45,
176 SPMI_COMMON_REG_ENABLE = 0x46,
177 SPMI_COMMON_REG_PULL_DOWN = 0x48,
178 SPMI_COMMON_REG_SOFT_START = 0x4c,
179 SPMI_COMMON_REG_STEP_CTRL = 0x61,
180 };
181
182 /*
183 * Second common register layout used by newer devices starting with ftsmps426
184 * Note that some of the registers from the first common layout remain
185 * unchanged and their definition is not duplicated.
186 */
187 enum spmi_ftsmps426_regulator_registers {
188 SPMI_FTSMPS426_REG_VOLTAGE_LSB = 0x40,
189 SPMI_FTSMPS426_REG_VOLTAGE_MSB = 0x41,
190 SPMI_FTSMPS426_REG_VOLTAGE_ULS_LSB = 0x68,
191 SPMI_FTSMPS426_REG_VOLTAGE_ULS_MSB = 0x69,
192 };
193
194 enum spmi_vs_registers {
195 SPMI_VS_REG_OCP = 0x4a,
196 SPMI_VS_REG_SOFT_START = 0x4c,
197 };
198
199 enum spmi_boost_registers {
200 SPMI_BOOST_REG_CURRENT_LIMIT = 0x4a,
201 };
202
203 enum spmi_boost_byp_registers {
204 SPMI_BOOST_BYP_REG_CURRENT_LIMIT = 0x4b,
205 };
206
207 enum spmi_saw3_registers {
208 SAW3_SECURE = 0x00,
209 SAW3_ID = 0x04,
210 SAW3_SPM_STS = 0x0C,
211 SAW3_AVS_STS = 0x10,
212 SAW3_PMIC_STS = 0x14,
213 SAW3_RST = 0x18,
214 SAW3_VCTL = 0x1C,
215 SAW3_AVS_CTL = 0x20,
216 SAW3_AVS_LIMIT = 0x24,
217 SAW3_AVS_DLY = 0x28,
218 SAW3_AVS_HYSTERESIS = 0x2C,
219 SAW3_SPM_STS2 = 0x38,
220 SAW3_SPM_PMIC_DATA_3 = 0x4C,
221 SAW3_VERSION = 0xFD0,
222 };
223
224 /* Used for indexing into ctrl_reg. These are offets from 0x40 */
225 enum spmi_common_control_register_index {
226 SPMI_COMMON_IDX_VOLTAGE_RANGE = 0,
227 SPMI_COMMON_IDX_VOLTAGE_SET = 1,
228 SPMI_COMMON_IDX_MODE = 5,
229 SPMI_COMMON_IDX_ENABLE = 6,
230 };
231
232 /* Common regulator control register layout */
233 #define SPMI_COMMON_ENABLE_MASK 0x80
234 #define SPMI_COMMON_ENABLE 0x80
235 #define SPMI_COMMON_DISABLE 0x00
236 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN3_MASK 0x08
237 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN2_MASK 0x04
238 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN1_MASK 0x02
239 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN0_MASK 0x01
240 #define SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK 0x0f
241
242 /* Common regulator mode register layout */
243 #define SPMI_COMMON_MODE_HPM_MASK 0x80
244 #define SPMI_COMMON_MODE_AUTO_MASK 0x40
245 #define SPMI_COMMON_MODE_BYPASS_MASK 0x20
246 #define SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK 0x10
247 #define SPMI_COMMON_MODE_FOLLOW_HW_EN3_MASK 0x08
248 #define SPMI_COMMON_MODE_FOLLOW_HW_EN2_MASK 0x04
249 #define SPMI_COMMON_MODE_FOLLOW_HW_EN1_MASK 0x02
250 #define SPMI_COMMON_MODE_FOLLOW_HW_EN0_MASK 0x01
251 #define SPMI_COMMON_MODE_FOLLOW_ALL_MASK 0x1f
252
253 #define SPMI_FTSMPS426_MODE_BYPASS_MASK 3
254 #define SPMI_FTSMPS426_MODE_RETENTION_MASK 4
255 #define SPMI_FTSMPS426_MODE_LPM_MASK 5
256 #define SPMI_FTSMPS426_MODE_AUTO_MASK 6
257 #define SPMI_FTSMPS426_MODE_HPM_MASK 7
258
259 #define SPMI_FTSMPS426_MODE_MASK 0x07
260
261 /* Common regulator pull down control register layout */
262 #define SPMI_COMMON_PULL_DOWN_ENABLE_MASK 0x80
263
264 /* LDO regulator current limit control register layout */
265 #define SPMI_LDO_CURRENT_LIMIT_ENABLE_MASK 0x80
266
267 /* LDO regulator soft start control register layout */
268 #define SPMI_LDO_SOFT_START_ENABLE_MASK 0x80
269
270 /* VS regulator over current protection control register layout */
271 #define SPMI_VS_OCP_OVERRIDE 0x01
272 #define SPMI_VS_OCP_NO_OVERRIDE 0x00
273
274 /* VS regulator soft start control register layout */
275 #define SPMI_VS_SOFT_START_ENABLE_MASK 0x80
276 #define SPMI_VS_SOFT_START_SEL_MASK 0x03
277
278 /* Boost regulator current limit control register layout */
279 #define SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK 0x80
280 #define SPMI_BOOST_CURRENT_LIMIT_MASK 0x07
281
282 #define SPMI_VS_OCP_DEFAULT_MAX_RETRIES 10
283 #define SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS 30
284 #define SPMI_VS_OCP_FALL_DELAY_US 90
285 #define SPMI_VS_OCP_FAULT_DELAY_US 20000
286
287 #define SPMI_FTSMPS_STEP_CTRL_STEP_MASK 0x18
288 #define SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT 3
289 #define SPMI_FTSMPS_STEP_CTRL_DELAY_MASK 0x07
290 #define SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT 0
291
292 /* Clock rate in kHz of the FTSMPS regulator reference clock. */
293 #define SPMI_FTSMPS_CLOCK_RATE 19200
294
295 /* Minimum voltage stepper delay for each step. */
296 #define SPMI_FTSMPS_STEP_DELAY 8
297 #define SPMI_DEFAULT_STEP_DELAY 20
298
299 /*
300 * The ratio SPMI_FTSMPS_STEP_MARGIN_NUM/SPMI_FTSMPS_STEP_MARGIN_DEN is used to
301 * adjust the step rate in order to account for oscillator variance.
302 */
303 #define SPMI_FTSMPS_STEP_MARGIN_NUM 4
304 #define SPMI_FTSMPS_STEP_MARGIN_DEN 5
305
306 #define SPMI_FTSMPS426_STEP_CTRL_DELAY_MASK 0x03
307 #define SPMI_FTSMPS426_STEP_CTRL_DELAY_SHIFT 0
308
309 /* Clock rate in kHz of the FTSMPS426 regulator reference clock. */
310 #define SPMI_FTSMPS426_CLOCK_RATE 4800
311
312 #define SPMI_HFS430_CLOCK_RATE 1600
313
314 /* Minimum voltage stepper delay for each step. */
315 #define SPMI_FTSMPS426_STEP_DELAY 2
316
317 /*
318 * The ratio SPMI_FTSMPS426_STEP_MARGIN_NUM/SPMI_FTSMPS426_STEP_MARGIN_DEN is
319 * used to adjust the step rate in order to account for oscillator variance.
320 */
321 #define SPMI_FTSMPS426_STEP_MARGIN_NUM 10
322 #define SPMI_FTSMPS426_STEP_MARGIN_DEN 11
323
324
325 /* VSET value to decide the range of ULT SMPS */
326 #define ULT_SMPS_RANGE_SPLIT 0x60
327
328 /**
329 * struct spmi_voltage_range - regulator set point voltage mapping description
330 * @min_uV: Minimum programmable output voltage resulting from
331 * set point register value 0x00
332 * @max_uV: Maximum programmable output voltage
333 * @step_uV: Output voltage increase resulting from the set point
334 * register value increasing by 1
335 * @set_point_min_uV: Minimum allowed voltage
336 * @set_point_max_uV: Maximum allowed voltage. This may be tweaked in order
337 * to pick which range should be used in the case of
338 * overlapping set points.
339 * @n_voltages: Number of preferred voltage set points present in this
340 * range
341 * @range_sel: Voltage range register value corresponding to this range
342 *
343 * The following relationships must be true for the values used in this struct:
344 * (max_uV - min_uV) % step_uV == 0
345 * (set_point_min_uV - min_uV) % step_uV == 0*
346 * (set_point_max_uV - min_uV) % step_uV == 0*
347 * n_voltages = (set_point_max_uV - set_point_min_uV) / step_uV + 1
348 *
349 * *Note, set_point_min_uV == set_point_max_uV == 0 is allowed in order to
350 * specify that the voltage range has meaning, but is not preferred.
351 */
352 struct spmi_voltage_range {
353 int min_uV;
354 int max_uV;
355 int step_uV;
356 int set_point_min_uV;
357 int set_point_max_uV;
358 unsigned n_voltages;
359 u8 range_sel;
360 };
361
362 /*
363 * The ranges specified in the spmi_voltage_set_points struct must be listed
364 * so that range[i].set_point_max_uV < range[i+1].set_point_min_uV.
365 */
366 struct spmi_voltage_set_points {
367 struct spmi_voltage_range *range;
368 int count;
369 unsigned n_voltages;
370 };
371
372 struct spmi_regulator {
373 struct regulator_desc desc;
374 struct device *dev;
375 struct delayed_work ocp_work;
376 struct regmap *regmap;
377 struct spmi_voltage_set_points *set_points;
378 enum spmi_regulator_logical_type logical_type;
379 int ocp_irq;
380 int ocp_count;
381 int ocp_max_retries;
382 int ocp_retry_delay_ms;
383 int hpm_min_load;
384 int slew_rate;
385 ktime_t vs_enable_time;
386 u16 base;
387 struct list_head node;
388 };
389
390 struct spmi_regulator_mapping {
391 enum spmi_regulator_type type;
392 enum spmi_regulator_subtype subtype;
393 enum spmi_regulator_logical_type logical_type;
394 u32 revision_min;
395 u32 revision_max;
396 const struct regulator_ops *ops;
397 struct spmi_voltage_set_points *set_points;
398 int hpm_min_load;
399 };
400
401 struct spmi_regulator_data {
402 const char *name;
403 u16 base;
404 const char *supply;
405 const char *ocp;
406 u16 force_type;
407 };
408
409 #define SPMI_VREG(_type, _subtype, _dig_major_min, _dig_major_max, \
410 _logical_type, _ops_val, _set_points_val, _hpm_min_load) \
411 { \
412 .type = SPMI_REGULATOR_TYPE_##_type, \
413 .subtype = SPMI_REGULATOR_SUBTYPE_##_subtype, \
414 .revision_min = _dig_major_min, \
415 .revision_max = _dig_major_max, \
416 .logical_type = SPMI_REGULATOR_LOGICAL_TYPE_##_logical_type, \
417 .ops = &spmi_##_ops_val##_ops, \
418 .set_points = &_set_points_val##_set_points, \
419 .hpm_min_load = _hpm_min_load, \
420 }
421
422 #define SPMI_VREG_VS(_subtype, _dig_major_min, _dig_major_max) \
423 { \
424 .type = SPMI_REGULATOR_TYPE_VS, \
425 .subtype = SPMI_REGULATOR_SUBTYPE_##_subtype, \
426 .revision_min = _dig_major_min, \
427 .revision_max = _dig_major_max, \
428 .logical_type = SPMI_REGULATOR_LOGICAL_TYPE_VS, \
429 .ops = &spmi_vs_ops, \
430 }
431
432 #define SPMI_VOLTAGE_RANGE(_range_sel, _min_uV, _set_point_min_uV, \
433 _set_point_max_uV, _max_uV, _step_uV) \
434 { \
435 .min_uV = _min_uV, \
436 .max_uV = _max_uV, \
437 .set_point_min_uV = _set_point_min_uV, \
438 .set_point_max_uV = _set_point_max_uV, \
439 .step_uV = _step_uV, \
440 .range_sel = _range_sel, \
441 }
442
443 #define DEFINE_SPMI_SET_POINTS(name) \
444 struct spmi_voltage_set_points name##_set_points = { \
445 .range = name##_ranges, \
446 .count = ARRAY_SIZE(name##_ranges), \
447 }
448
449 /*
450 * These tables contain the physically available PMIC regulator voltage setpoint
451 * ranges. Where two ranges overlap in hardware, one of the ranges is trimmed
452 * to ensure that the setpoints available to software are monotonically
453 * increasing and unique. The set_voltage callback functions expect these
454 * properties to hold.
455 */
456 static struct spmi_voltage_range pldo_ranges[] = {
457 SPMI_VOLTAGE_RANGE(2, 750000, 750000, 1537500, 1537500, 12500),
458 SPMI_VOLTAGE_RANGE(3, 1500000, 1550000, 3075000, 3075000, 25000),
459 SPMI_VOLTAGE_RANGE(4, 1750000, 3100000, 4900000, 4900000, 50000),
460 };
461
462 static struct spmi_voltage_range nldo1_ranges[] = {
463 SPMI_VOLTAGE_RANGE(2, 750000, 750000, 1537500, 1537500, 12500),
464 };
465
466 static struct spmi_voltage_range nldo2_ranges[] = {
467 SPMI_VOLTAGE_RANGE(0, 375000, 0, 0, 1537500, 12500),
468 SPMI_VOLTAGE_RANGE(1, 375000, 375000, 768750, 768750, 6250),
469 SPMI_VOLTAGE_RANGE(2, 750000, 775000, 1537500, 1537500, 12500),
470 };
471
472 static struct spmi_voltage_range nldo3_ranges[] = {
473 SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1537500, 1537500, 12500),
474 SPMI_VOLTAGE_RANGE(1, 375000, 0, 0, 1537500, 12500),
475 SPMI_VOLTAGE_RANGE(2, 750000, 0, 0, 1537500, 12500),
476 };
477
478 static struct spmi_voltage_range ln_ldo_ranges[] = {
479 SPMI_VOLTAGE_RANGE(1, 690000, 690000, 1110000, 1110000, 60000),
480 SPMI_VOLTAGE_RANGE(0, 1380000, 1380000, 2220000, 2220000, 120000),
481 };
482
483 static struct spmi_voltage_range smps_ranges[] = {
484 SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1562500, 1562500, 12500),
485 SPMI_VOLTAGE_RANGE(1, 1550000, 1575000, 3125000, 3125000, 25000),
486 };
487
488 static struct spmi_voltage_range ftsmps_ranges[] = {
489 SPMI_VOLTAGE_RANGE(0, 0, 350000, 1275000, 1275000, 5000),
490 SPMI_VOLTAGE_RANGE(1, 0, 1280000, 2040000, 2040000, 10000),
491 };
492
493 static struct spmi_voltage_range ftsmps2p5_ranges[] = {
494 SPMI_VOLTAGE_RANGE(0, 80000, 350000, 1355000, 1355000, 5000),
495 SPMI_VOLTAGE_RANGE(1, 160000, 1360000, 2200000, 2200000, 10000),
496 };
497
498 static struct spmi_voltage_range ftsmps426_ranges[] = {
499 SPMI_VOLTAGE_RANGE(0, 0, 320000, 1352000, 1352000, 4000),
500 };
501
502 static struct spmi_voltage_range boost_ranges[] = {
503 SPMI_VOLTAGE_RANGE(0, 4000000, 4000000, 5550000, 5550000, 50000),
504 };
505
506 static struct spmi_voltage_range boost_byp_ranges[] = {
507 SPMI_VOLTAGE_RANGE(0, 2500000, 2500000, 5200000, 5650000, 50000),
508 };
509
510 static struct spmi_voltage_range ult_lo_smps_ranges[] = {
511 SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1562500, 1562500, 12500),
512 SPMI_VOLTAGE_RANGE(1, 750000, 0, 0, 1525000, 25000),
513 };
514
515 static struct spmi_voltage_range ult_ho_smps_ranges[] = {
516 SPMI_VOLTAGE_RANGE(0, 1550000, 1550000, 2325000, 2325000, 25000),
517 };
518
519 static struct spmi_voltage_range ult_nldo_ranges[] = {
520 SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1537500, 1537500, 12500),
521 };
522
523 static struct spmi_voltage_range ult_pldo_ranges[] = {
524 SPMI_VOLTAGE_RANGE(0, 1750000, 1750000, 3337500, 3337500, 12500),
525 };
526
527 static struct spmi_voltage_range pldo660_ranges[] = {
528 SPMI_VOLTAGE_RANGE(0, 1504000, 1504000, 3544000, 3544000, 8000),
529 };
530
531 static struct spmi_voltage_range nldo660_ranges[] = {
532 SPMI_VOLTAGE_RANGE(0, 320000, 320000, 1304000, 1304000, 8000),
533 };
534
535 static struct spmi_voltage_range ht_lvpldo_ranges[] = {
536 SPMI_VOLTAGE_RANGE(0, 1504000, 1504000, 2000000, 2000000, 8000),
537 };
538
539 static struct spmi_voltage_range ht_nldo_ranges[] = {
540 SPMI_VOLTAGE_RANGE(0, 312000, 312000, 1304000, 1304000, 8000),
541 };
542
543 static struct spmi_voltage_range hfs430_ranges[] = {
544 SPMI_VOLTAGE_RANGE(0, 320000, 320000, 2040000, 2040000, 8000),
545 };
546
547 static DEFINE_SPMI_SET_POINTS(pldo);
548 static DEFINE_SPMI_SET_POINTS(nldo1);
549 static DEFINE_SPMI_SET_POINTS(nldo2);
550 static DEFINE_SPMI_SET_POINTS(nldo3);
551 static DEFINE_SPMI_SET_POINTS(ln_ldo);
552 static DEFINE_SPMI_SET_POINTS(smps);
553 static DEFINE_SPMI_SET_POINTS(ftsmps);
554 static DEFINE_SPMI_SET_POINTS(ftsmps2p5);
555 static DEFINE_SPMI_SET_POINTS(ftsmps426);
556 static DEFINE_SPMI_SET_POINTS(boost);
557 static DEFINE_SPMI_SET_POINTS(boost_byp);
558 static DEFINE_SPMI_SET_POINTS(ult_lo_smps);
559 static DEFINE_SPMI_SET_POINTS(ult_ho_smps);
560 static DEFINE_SPMI_SET_POINTS(ult_nldo);
561 static DEFINE_SPMI_SET_POINTS(ult_pldo);
562 static DEFINE_SPMI_SET_POINTS(pldo660);
563 static DEFINE_SPMI_SET_POINTS(nldo660);
564 static DEFINE_SPMI_SET_POINTS(ht_lvpldo);
565 static DEFINE_SPMI_SET_POINTS(ht_nldo);
566 static DEFINE_SPMI_SET_POINTS(hfs430);
567
568 static inline int spmi_vreg_read(struct spmi_regulator *vreg, u16 addr, u8 *buf,
569 int len)
570 {
571 return regmap_bulk_read(vreg->regmap, vreg->base + addr, buf, len);
572 }
573
574 static inline int spmi_vreg_write(struct spmi_regulator *vreg, u16 addr,
575 u8 *buf, int len)
576 {
577 return regmap_bulk_write(vreg->regmap, vreg->base + addr, buf, len);
578 }
579
580 static int spmi_vreg_update_bits(struct spmi_regulator *vreg, u16 addr, u8 val,
581 u8 mask)
582 {
583 return regmap_update_bits(vreg->regmap, vreg->base + addr, mask, val);
584 }
585
586 static int spmi_regulator_vs_enable(struct regulator_dev *rdev)
587 {
588 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
589
590 if (vreg->ocp_irq) {
591 vreg->ocp_count = 0;
592 vreg->vs_enable_time = ktime_get();
593 }
594
595 return regulator_enable_regmap(rdev);
596 }
597
598 static int spmi_regulator_vs_ocp(struct regulator_dev *rdev)
599 {
600 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
601 u8 reg = SPMI_VS_OCP_OVERRIDE;
602
603 return spmi_vreg_write(vreg, SPMI_VS_REG_OCP, &reg, 1);
604 }
605
606 static int spmi_regulator_select_voltage(struct spmi_regulator *vreg,
607 int min_uV, int max_uV)
608 {
609 const struct spmi_voltage_range *range;
610 int uV = min_uV;
611 int lim_min_uV, lim_max_uV, i, range_id, range_max_uV;
612 int selector, voltage_sel;
613
614 /* Check if request voltage is outside of physically settable range. */
615 lim_min_uV = vreg->set_points->range[0].set_point_min_uV;
616 lim_max_uV =
617 vreg->set_points->range[vreg->set_points->count - 1].set_point_max_uV;
618
619 if (uV < lim_min_uV && max_uV >= lim_min_uV)
620 uV = lim_min_uV;
621
622 if (uV < lim_min_uV || uV > lim_max_uV) {
623 dev_err(vreg->dev,
624 "request v=[%d, %d] is outside possible v=[%d, %d]\n",
625 min_uV, max_uV, lim_min_uV, lim_max_uV);
626 return -EINVAL;
627 }
628
629 /* Find the range which uV is inside of. */
630 for (i = vreg->set_points->count - 1; i > 0; i--) {
631 range_max_uV = vreg->set_points->range[i - 1].set_point_max_uV;
632 if (uV > range_max_uV && range_max_uV > 0)
633 break;
634 }
635
636 range_id = i;
637 range = &vreg->set_points->range[range_id];
638
639 /*
640 * Force uV to be an allowed set point by applying a ceiling function to
641 * the uV value.
642 */
643 voltage_sel = DIV_ROUND_UP(uV - range->min_uV, range->step_uV);
644 uV = voltage_sel * range->step_uV + range->min_uV;
645
646 if (uV > max_uV) {
647 dev_err(vreg->dev,
648 "request v=[%d, %d] cannot be met by any set point; "
649 "next set point: %d\n",
650 min_uV, max_uV, uV);
651 return -EINVAL;
652 }
653
654 selector = 0;
655 for (i = 0; i < range_id; i++)
656 selector += vreg->set_points->range[i].n_voltages;
657 selector += (uV - range->set_point_min_uV) / range->step_uV;
658
659 return selector;
660 }
661
662 static int spmi_sw_selector_to_hw(struct spmi_regulator *vreg,
663 unsigned selector, u8 *range_sel,
664 u8 *voltage_sel)
665 {
666 const struct spmi_voltage_range *range, *end;
667 unsigned offset;
668
669 range = vreg->set_points->range;
670 end = range + vreg->set_points->count;
671
672 for (; range < end; range++) {
673 if (selector < range->n_voltages) {
674 /*
675 * hardware selectors between set point min and real
676 * min are invalid so we ignore them
677 */
678 offset = range->set_point_min_uV - range->min_uV;
679 offset /= range->step_uV;
680 *voltage_sel = selector + offset;
681 *range_sel = range->range_sel;
682 return 0;
683 }
684
685 selector -= range->n_voltages;
686 }
687
688 return -EINVAL;
689 }
690
691 static int spmi_hw_selector_to_sw(struct spmi_regulator *vreg, u8 hw_sel,
692 const struct spmi_voltage_range *range)
693 {
694 unsigned sw_sel = 0;
695 unsigned offset, max_hw_sel;
696 const struct spmi_voltage_range *r = vreg->set_points->range;
697 const struct spmi_voltage_range *end = r + vreg->set_points->count;
698
699 for (; r < end; r++) {
700 if (r == range && range->n_voltages) {
701 /*
702 * hardware selectors between set point min and real
703 * min and between set point max and real max are
704 * invalid so we return an error if they're
705 * programmed into the hardware
706 */
707 offset = range->set_point_min_uV - range->min_uV;
708 offset /= range->step_uV;
709 if (hw_sel < offset)
710 return -EINVAL;
711
712 max_hw_sel = range->set_point_max_uV - range->min_uV;
713 max_hw_sel /= range->step_uV;
714 if (hw_sel > max_hw_sel)
715 return -EINVAL;
716
717 return sw_sel + hw_sel - offset;
718 }
719 sw_sel += r->n_voltages;
720 }
721
722 return -EINVAL;
723 }
724
725 static const struct spmi_voltage_range *
726 spmi_regulator_find_range(struct spmi_regulator *vreg)
727 {
728 u8 range_sel;
729 const struct spmi_voltage_range *range, *end;
730
731 range = vreg->set_points->range;
732 end = range + vreg->set_points->count;
733
734 spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, &range_sel, 1);
735
736 for (; range < end; range++)
737 if (range->range_sel == range_sel)
738 return range;
739
740 return NULL;
741 }
742
743 static int spmi_regulator_select_voltage_same_range(struct spmi_regulator *vreg,
744 int min_uV, int max_uV)
745 {
746 const struct spmi_voltage_range *range;
747 int uV = min_uV;
748 int i, selector;
749
750 range = spmi_regulator_find_range(vreg);
751 if (!range)
752 goto different_range;
753
754 if (uV < range->min_uV && max_uV >= range->min_uV)
755 uV = range->min_uV;
756
757 if (uV < range->min_uV || uV > range->max_uV) {
758 /* Current range doesn't support the requested voltage. */
759 goto different_range;
760 }
761
762 /*
763 * Force uV to be an allowed set point by applying a ceiling function to
764 * the uV value.
765 */
766 uV = DIV_ROUND_UP(uV - range->min_uV, range->step_uV);
767 uV = uV * range->step_uV + range->min_uV;
768
769 if (uV > max_uV) {
770 /*
771 * No set point in the current voltage range is within the
772 * requested min_uV to max_uV range.
773 */
774 goto different_range;
775 }
776
777 selector = 0;
778 for (i = 0; i < vreg->set_points->count; i++) {
779 if (uV >= vreg->set_points->range[i].set_point_min_uV
780 && uV <= vreg->set_points->range[i].set_point_max_uV) {
781 selector +=
782 (uV - vreg->set_points->range[i].set_point_min_uV)
783 / vreg->set_points->range[i].step_uV;
784 break;
785 }
786
787 selector += vreg->set_points->range[i].n_voltages;
788 }
789
790 if (selector >= vreg->set_points->n_voltages)
791 goto different_range;
792
793 return selector;
794
795 different_range:
796 return spmi_regulator_select_voltage(vreg, min_uV, max_uV);
797 }
798
799 static int spmi_regulator_common_map_voltage(struct regulator_dev *rdev,
800 int min_uV, int max_uV)
801 {
802 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
803
804 /*
805 * Favor staying in the current voltage range if possible. This avoids
806 * voltage spikes that occur when changing the voltage range.
807 */
808 return spmi_regulator_select_voltage_same_range(vreg, min_uV, max_uV);
809 }
810
811 static int
812 spmi_regulator_common_set_voltage(struct regulator_dev *rdev, unsigned selector)
813 {
814 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
815 int ret;
816 u8 buf[2];
817 u8 range_sel, voltage_sel;
818
819 ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
820 if (ret)
821 return ret;
822
823 buf[0] = range_sel;
824 buf[1] = voltage_sel;
825 return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, buf, 2);
826 }
827
828 static int spmi_regulator_common_list_voltage(struct regulator_dev *rdev,
829 unsigned selector);
830
831 static int spmi_regulator_ftsmps426_set_voltage(struct regulator_dev *rdev,
832 unsigned selector)
833 {
834 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
835 u8 buf[2];
836 int mV;
837
838 mV = spmi_regulator_common_list_voltage(rdev, selector) / 1000;
839
840 buf[0] = mV & 0xff;
841 buf[1] = mV >> 8;
842 return spmi_vreg_write(vreg, SPMI_FTSMPS426_REG_VOLTAGE_LSB, buf, 2);
843 }
844
845 static int spmi_regulator_set_voltage_time_sel(struct regulator_dev *rdev,
846 unsigned int old_selector, unsigned int new_selector)
847 {
848 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
849 int diff_uV;
850
851 diff_uV = abs(spmi_regulator_common_list_voltage(rdev, new_selector) -
852 spmi_regulator_common_list_voltage(rdev, old_selector));
853
854 return DIV_ROUND_UP(diff_uV, vreg->slew_rate);
855 }
856
857 static int spmi_regulator_common_get_voltage(struct regulator_dev *rdev)
858 {
859 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
860 const struct spmi_voltage_range *range;
861 u8 voltage_sel;
862
863 spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1);
864
865 range = spmi_regulator_find_range(vreg);
866 if (!range)
867 return -EINVAL;
868
869 return spmi_hw_selector_to_sw(vreg, voltage_sel, range);
870 }
871
872 static int spmi_regulator_ftsmps426_get_voltage(struct regulator_dev *rdev)
873 {
874 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
875 const struct spmi_voltage_range *range;
876 u8 buf[2];
877 int uV;
878
879 spmi_vreg_read(vreg, SPMI_FTSMPS426_REG_VOLTAGE_LSB, buf, 2);
880
881 uV = (((unsigned int)buf[1] << 8) | (unsigned int)buf[0]) * 1000;
882 range = vreg->set_points->range;
883
884 return (uV - range->set_point_min_uV) / range->step_uV;
885 }
886
887 static int spmi_regulator_single_map_voltage(struct regulator_dev *rdev,
888 int min_uV, int max_uV)
889 {
890 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
891
892 return spmi_regulator_select_voltage(vreg, min_uV, max_uV);
893 }
894
895 static int spmi_regulator_single_range_set_voltage(struct regulator_dev *rdev,
896 unsigned selector)
897 {
898 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
899 u8 sel = selector;
900
901 /*
902 * Certain types of regulators do not have a range select register so
903 * only voltage set register needs to be written.
904 */
905 return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &sel, 1);
906 }
907
908 static int spmi_regulator_single_range_get_voltage(struct regulator_dev *rdev)
909 {
910 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
911 u8 selector;
912 int ret;
913
914 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &selector, 1);
915 if (ret)
916 return ret;
917
918 return selector;
919 }
920
921 static int spmi_regulator_ult_lo_smps_set_voltage(struct regulator_dev *rdev,
922 unsigned selector)
923 {
924 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
925 int ret;
926 u8 range_sel, voltage_sel;
927
928 ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
929 if (ret)
930 return ret;
931
932 /*
933 * Calculate VSET based on range
934 * In case of range 0: voltage_sel is a 7 bit value, can be written
935 * witout any modification.
936 * In case of range 1: voltage_sel is a 5 bit value, bits[7-5] set to
937 * [011].
938 */
939 if (range_sel == 1)
940 voltage_sel |= ULT_SMPS_RANGE_SPLIT;
941
942 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_VOLTAGE_SET,
943 voltage_sel, 0xff);
944 }
945
946 static int spmi_regulator_ult_lo_smps_get_voltage(struct regulator_dev *rdev)
947 {
948 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
949 const struct spmi_voltage_range *range;
950 u8 voltage_sel;
951
952 spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1);
953
954 range = spmi_regulator_find_range(vreg);
955 if (!range)
956 return -EINVAL;
957
958 if (range->range_sel == 1)
959 voltage_sel &= ~ULT_SMPS_RANGE_SPLIT;
960
961 return spmi_hw_selector_to_sw(vreg, voltage_sel, range);
962 }
963
964 static int spmi_regulator_common_list_voltage(struct regulator_dev *rdev,
965 unsigned selector)
966 {
967 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
968 int uV = 0;
969 int i;
970
971 if (selector >= vreg->set_points->n_voltages)
972 return 0;
973
974 for (i = 0; i < vreg->set_points->count; i++) {
975 if (selector < vreg->set_points->range[i].n_voltages) {
976 uV = selector * vreg->set_points->range[i].step_uV
977 + vreg->set_points->range[i].set_point_min_uV;
978 break;
979 }
980
981 selector -= vreg->set_points->range[i].n_voltages;
982 }
983
984 return uV;
985 }
986
987 static int
988 spmi_regulator_common_set_bypass(struct regulator_dev *rdev, bool enable)
989 {
990 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
991 u8 mask = SPMI_COMMON_MODE_BYPASS_MASK;
992 u8 val = 0;
993
994 if (enable)
995 val = mask;
996
997 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask);
998 }
999
1000 static int
1001 spmi_regulator_common_get_bypass(struct regulator_dev *rdev, bool *enable)
1002 {
1003 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1004 u8 val;
1005 int ret;
1006
1007 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, &val, 1);
1008 *enable = val & SPMI_COMMON_MODE_BYPASS_MASK;
1009
1010 return ret;
1011 }
1012
1013 static unsigned int spmi_regulator_common_get_mode(struct regulator_dev *rdev)
1014 {
1015 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1016 u8 reg;
1017
1018 spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, &reg, 1);
1019
1020 reg &= SPMI_COMMON_MODE_HPM_MASK | SPMI_COMMON_MODE_AUTO_MASK;
1021
1022 switch (reg) {
1023 case SPMI_COMMON_MODE_HPM_MASK:
1024 return REGULATOR_MODE_NORMAL;
1025 case SPMI_COMMON_MODE_AUTO_MASK:
1026 return REGULATOR_MODE_FAST;
1027 default:
1028 return REGULATOR_MODE_IDLE;
1029 }
1030 }
1031
1032 static unsigned int spmi_regulator_ftsmps426_get_mode(struct regulator_dev *rdev)
1033 {
1034 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1035 u8 reg;
1036
1037 spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, &reg, 1);
1038
1039 switch (reg) {
1040 case SPMI_FTSMPS426_MODE_HPM_MASK:
1041 return REGULATOR_MODE_NORMAL;
1042 case SPMI_FTSMPS426_MODE_AUTO_MASK:
1043 return REGULATOR_MODE_FAST;
1044 default:
1045 return REGULATOR_MODE_IDLE;
1046 }
1047 }
1048
1049 static int
1050 spmi_regulator_common_set_mode(struct regulator_dev *rdev, unsigned int mode)
1051 {
1052 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1053 u8 mask = SPMI_COMMON_MODE_HPM_MASK | SPMI_COMMON_MODE_AUTO_MASK;
1054 u8 val;
1055
1056 switch (mode) {
1057 case REGULATOR_MODE_NORMAL:
1058 val = SPMI_COMMON_MODE_HPM_MASK;
1059 break;
1060 case REGULATOR_MODE_FAST:
1061 val = SPMI_COMMON_MODE_AUTO_MASK;
1062 break;
1063 default:
1064 val = 0;
1065 break;
1066 }
1067
1068 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask);
1069 }
1070
1071 static int
1072 spmi_regulator_ftsmps426_set_mode(struct regulator_dev *rdev, unsigned int mode)
1073 {
1074 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1075 u8 mask = SPMI_FTSMPS426_MODE_MASK;
1076 u8 val;
1077
1078 switch (mode) {
1079 case REGULATOR_MODE_NORMAL:
1080 val = SPMI_FTSMPS426_MODE_HPM_MASK;
1081 break;
1082 case REGULATOR_MODE_FAST:
1083 val = SPMI_FTSMPS426_MODE_AUTO_MASK;
1084 break;
1085 case REGULATOR_MODE_IDLE:
1086 val = SPMI_FTSMPS426_MODE_LPM_MASK;
1087 break;
1088 default:
1089 return -EINVAL;
1090 }
1091
1092 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask);
1093 }
1094
1095 static int
1096 spmi_regulator_common_set_load(struct regulator_dev *rdev, int load_uA)
1097 {
1098 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1099 unsigned int mode;
1100
1101 if (load_uA >= vreg->hpm_min_load)
1102 mode = REGULATOR_MODE_NORMAL;
1103 else
1104 mode = REGULATOR_MODE_IDLE;
1105
1106 return spmi_regulator_common_set_mode(rdev, mode);
1107 }
1108
1109 static int spmi_regulator_common_set_pull_down(struct regulator_dev *rdev)
1110 {
1111 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1112 unsigned int mask = SPMI_COMMON_PULL_DOWN_ENABLE_MASK;
1113
1114 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_PULL_DOWN,
1115 mask, mask);
1116 }
1117
1118 static int spmi_regulator_common_set_soft_start(struct regulator_dev *rdev)
1119 {
1120 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1121 unsigned int mask = SPMI_LDO_SOFT_START_ENABLE_MASK;
1122
1123 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_SOFT_START,
1124 mask, mask);
1125 }
1126
1127 static int spmi_regulator_set_ilim(struct regulator_dev *rdev, int ilim_uA)
1128 {
1129 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1130 enum spmi_regulator_logical_type type = vreg->logical_type;
1131 unsigned int current_reg;
1132 u8 reg;
1133 u8 mask = SPMI_BOOST_CURRENT_LIMIT_MASK |
1134 SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK;
1135 int max = (SPMI_BOOST_CURRENT_LIMIT_MASK + 1) * 500;
1136
1137 if (type == SPMI_REGULATOR_LOGICAL_TYPE_BOOST)
1138 current_reg = SPMI_BOOST_REG_CURRENT_LIMIT;
1139 else
1140 current_reg = SPMI_BOOST_BYP_REG_CURRENT_LIMIT;
1141
1142 if (ilim_uA > max || ilim_uA <= 0)
1143 return -EINVAL;
1144
1145 reg = (ilim_uA - 1) / 500;
1146 reg |= SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK;
1147
1148 return spmi_vreg_update_bits(vreg, current_reg, reg, mask);
1149 }
1150
1151 static int spmi_regulator_vs_clear_ocp(struct spmi_regulator *vreg)
1152 {
1153 int ret;
1154
1155 ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE,
1156 SPMI_COMMON_DISABLE, SPMI_COMMON_ENABLE_MASK);
1157
1158 vreg->vs_enable_time = ktime_get();
1159
1160 ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE,
1161 SPMI_COMMON_ENABLE, SPMI_COMMON_ENABLE_MASK);
1162
1163 return ret;
1164 }
1165
1166 static void spmi_regulator_vs_ocp_work(struct work_struct *work)
1167 {
1168 struct delayed_work *dwork = to_delayed_work(work);
1169 struct spmi_regulator *vreg
1170 = container_of(dwork, struct spmi_regulator, ocp_work);
1171
1172 spmi_regulator_vs_clear_ocp(vreg);
1173 }
1174
1175 static irqreturn_t spmi_regulator_vs_ocp_isr(int irq, void *data)
1176 {
1177 struct spmi_regulator *vreg = data;
1178 ktime_t ocp_irq_time;
1179 s64 ocp_trigger_delay_us;
1180
1181 ocp_irq_time = ktime_get();
1182 ocp_trigger_delay_us = ktime_us_delta(ocp_irq_time,
1183 vreg->vs_enable_time);
1184
1185 /*
1186 * Reset the OCP count if there is a large delay between switch enable
1187 * and when OCP triggers. This is indicative of a hotplug event as
1188 * opposed to a fault.
1189 */
1190 if (ocp_trigger_delay_us > SPMI_VS_OCP_FAULT_DELAY_US)
1191 vreg->ocp_count = 0;
1192
1193 /* Wait for switch output to settle back to 0 V after OCP triggered. */
1194 udelay(SPMI_VS_OCP_FALL_DELAY_US);
1195
1196 vreg->ocp_count++;
1197
1198 if (vreg->ocp_count == 1) {
1199 /* Immediately clear the over current condition. */
1200 spmi_regulator_vs_clear_ocp(vreg);
1201 } else if (vreg->ocp_count <= vreg->ocp_max_retries) {
1202 /* Schedule the over current clear task to run later. */
1203 schedule_delayed_work(&vreg->ocp_work,
1204 msecs_to_jiffies(vreg->ocp_retry_delay_ms) + 1);
1205 } else {
1206 dev_err(vreg->dev,
1207 "OCP triggered %d times; no further retries\n",
1208 vreg->ocp_count);
1209 }
1210
1211 return IRQ_HANDLED;
1212 }
1213
1214 #define SAW3_VCTL_DATA_MASK 0xFF
1215 #define SAW3_VCTL_CLEAR_MASK 0x700FF
1216 #define SAW3_AVS_CTL_EN_MASK 0x1
1217 #define SAW3_AVS_CTL_TGGL_MASK 0x8000000
1218 #define SAW3_AVS_CTL_CLEAR_MASK 0x7efc00
1219
1220 static struct regmap *saw_regmap;
1221
1222 static void spmi_saw_set_vdd(void *data)
1223 {
1224 u32 vctl, data3, avs_ctl, pmic_sts;
1225 bool avs_enabled = false;
1226 unsigned long timeout;
1227 u8 voltage_sel = *(u8 *)data;
1228
1229 regmap_read(saw_regmap, SAW3_AVS_CTL, &avs_ctl);
1230 regmap_read(saw_regmap, SAW3_VCTL, &vctl);
1231 regmap_read(saw_regmap, SAW3_SPM_PMIC_DATA_3, &data3);
1232
1233 /* select the band */
1234 vctl &= ~SAW3_VCTL_CLEAR_MASK;
1235 vctl |= (u32)voltage_sel;
1236
1237 data3 &= ~SAW3_VCTL_CLEAR_MASK;
1238 data3 |= (u32)voltage_sel;
1239
1240 /* If AVS is enabled, switch it off during the voltage change */
1241 avs_enabled = SAW3_AVS_CTL_EN_MASK & avs_ctl;
1242 if (avs_enabled) {
1243 avs_ctl &= ~SAW3_AVS_CTL_TGGL_MASK;
1244 regmap_write(saw_regmap, SAW3_AVS_CTL, avs_ctl);
1245 }
1246
1247 regmap_write(saw_regmap, SAW3_RST, 1);
1248 regmap_write(saw_regmap, SAW3_VCTL, vctl);
1249 regmap_write(saw_regmap, SAW3_SPM_PMIC_DATA_3, data3);
1250
1251 timeout = jiffies + usecs_to_jiffies(100);
1252 do {
1253 regmap_read(saw_regmap, SAW3_PMIC_STS, &pmic_sts);
1254 pmic_sts &= SAW3_VCTL_DATA_MASK;
1255 if (pmic_sts == (u32)voltage_sel)
1256 break;
1257
1258 cpu_relax();
1259
1260 } while (time_before(jiffies, timeout));
1261
1262 /* After successful voltage change, switch the AVS back on */
1263 if (avs_enabled) {
1264 pmic_sts &= 0x3f;
1265 avs_ctl &= ~SAW3_AVS_CTL_CLEAR_MASK;
1266 avs_ctl |= ((pmic_sts - 4) << 10);
1267 avs_ctl |= (pmic_sts << 17);
1268 avs_ctl |= SAW3_AVS_CTL_TGGL_MASK;
1269 regmap_write(saw_regmap, SAW3_AVS_CTL, avs_ctl);
1270 }
1271 }
1272
1273 static int
1274 spmi_regulator_saw_set_voltage(struct regulator_dev *rdev, unsigned selector)
1275 {
1276 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1277 int ret;
1278 u8 range_sel, voltage_sel;
1279
1280 ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
1281 if (ret)
1282 return ret;
1283
1284 if (0 != range_sel) {
1285 dev_dbg(&rdev->dev, "range_sel = %02X voltage_sel = %02X", \
1286 range_sel, voltage_sel);
1287 return -EINVAL;
1288 }
1289
1290 /* Always do the SAW register writes on the first CPU */
1291 return smp_call_function_single(0, spmi_saw_set_vdd, \
1292 &voltage_sel, true);
1293 }
1294
1295 static struct regulator_ops spmi_saw_ops = {};
1296
1297 static const struct regulator_ops spmi_smps_ops = {
1298 .enable = regulator_enable_regmap,
1299 .disable = regulator_disable_regmap,
1300 .is_enabled = regulator_is_enabled_regmap,
1301 .set_voltage_sel = spmi_regulator_common_set_voltage,
1302 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
1303 .get_voltage_sel = spmi_regulator_common_get_voltage,
1304 .map_voltage = spmi_regulator_common_map_voltage,
1305 .list_voltage = spmi_regulator_common_list_voltage,
1306 .set_mode = spmi_regulator_common_set_mode,
1307 .get_mode = spmi_regulator_common_get_mode,
1308 .set_load = spmi_regulator_common_set_load,
1309 .set_pull_down = spmi_regulator_common_set_pull_down,
1310 };
1311
1312 static const struct regulator_ops spmi_ldo_ops = {
1313 .enable = regulator_enable_regmap,
1314 .disable = regulator_disable_regmap,
1315 .is_enabled = regulator_is_enabled_regmap,
1316 .set_voltage_sel = spmi_regulator_common_set_voltage,
1317 .get_voltage_sel = spmi_regulator_common_get_voltage,
1318 .map_voltage = spmi_regulator_common_map_voltage,
1319 .list_voltage = spmi_regulator_common_list_voltage,
1320 .set_mode = spmi_regulator_common_set_mode,
1321 .get_mode = spmi_regulator_common_get_mode,
1322 .set_load = spmi_regulator_common_set_load,
1323 .set_bypass = spmi_regulator_common_set_bypass,
1324 .get_bypass = spmi_regulator_common_get_bypass,
1325 .set_pull_down = spmi_regulator_common_set_pull_down,
1326 .set_soft_start = spmi_regulator_common_set_soft_start,
1327 };
1328
1329 static const struct regulator_ops spmi_ln_ldo_ops = {
1330 .enable = regulator_enable_regmap,
1331 .disable = regulator_disable_regmap,
1332 .is_enabled = regulator_is_enabled_regmap,
1333 .set_voltage_sel = spmi_regulator_common_set_voltage,
1334 .get_voltage_sel = spmi_regulator_common_get_voltage,
1335 .map_voltage = spmi_regulator_common_map_voltage,
1336 .list_voltage = spmi_regulator_common_list_voltage,
1337 .set_bypass = spmi_regulator_common_set_bypass,
1338 .get_bypass = spmi_regulator_common_get_bypass,
1339 };
1340
1341 static const struct regulator_ops spmi_vs_ops = {
1342 .enable = spmi_regulator_vs_enable,
1343 .disable = regulator_disable_regmap,
1344 .is_enabled = regulator_is_enabled_regmap,
1345 .set_pull_down = spmi_regulator_common_set_pull_down,
1346 .set_soft_start = spmi_regulator_common_set_soft_start,
1347 .set_over_current_protection = spmi_regulator_vs_ocp,
1348 .set_mode = spmi_regulator_common_set_mode,
1349 .get_mode = spmi_regulator_common_get_mode,
1350 };
1351
1352 static const struct regulator_ops spmi_boost_ops = {
1353 .enable = regulator_enable_regmap,
1354 .disable = regulator_disable_regmap,
1355 .is_enabled = regulator_is_enabled_regmap,
1356 .set_voltage_sel = spmi_regulator_single_range_set_voltage,
1357 .get_voltage_sel = spmi_regulator_single_range_get_voltage,
1358 .map_voltage = spmi_regulator_single_map_voltage,
1359 .list_voltage = spmi_regulator_common_list_voltage,
1360 .set_input_current_limit = spmi_regulator_set_ilim,
1361 };
1362
1363 static const struct regulator_ops spmi_ftsmps_ops = {
1364 .enable = regulator_enable_regmap,
1365 .disable = regulator_disable_regmap,
1366 .is_enabled = regulator_is_enabled_regmap,
1367 .set_voltage_sel = spmi_regulator_common_set_voltage,
1368 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
1369 .get_voltage_sel = spmi_regulator_common_get_voltage,
1370 .map_voltage = spmi_regulator_common_map_voltage,
1371 .list_voltage = spmi_regulator_common_list_voltage,
1372 .set_mode = spmi_regulator_common_set_mode,
1373 .get_mode = spmi_regulator_common_get_mode,
1374 .set_load = spmi_regulator_common_set_load,
1375 .set_pull_down = spmi_regulator_common_set_pull_down,
1376 };
1377
1378 static const struct regulator_ops spmi_ult_lo_smps_ops = {
1379 .enable = regulator_enable_regmap,
1380 .disable = regulator_disable_regmap,
1381 .is_enabled = regulator_is_enabled_regmap,
1382 .set_voltage_sel = spmi_regulator_ult_lo_smps_set_voltage,
1383 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
1384 .get_voltage_sel = spmi_regulator_ult_lo_smps_get_voltage,
1385 .list_voltage = spmi_regulator_common_list_voltage,
1386 .set_mode = spmi_regulator_common_set_mode,
1387 .get_mode = spmi_regulator_common_get_mode,
1388 .set_load = spmi_regulator_common_set_load,
1389 .set_pull_down = spmi_regulator_common_set_pull_down,
1390 };
1391
1392 static const struct regulator_ops spmi_ult_ho_smps_ops = {
1393 .enable = regulator_enable_regmap,
1394 .disable = regulator_disable_regmap,
1395 .is_enabled = regulator_is_enabled_regmap,
1396 .set_voltage_sel = spmi_regulator_single_range_set_voltage,
1397 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
1398 .get_voltage_sel = spmi_regulator_single_range_get_voltage,
1399 .map_voltage = spmi_regulator_single_map_voltage,
1400 .list_voltage = spmi_regulator_common_list_voltage,
1401 .set_mode = spmi_regulator_common_set_mode,
1402 .get_mode = spmi_regulator_common_get_mode,
1403 .set_load = spmi_regulator_common_set_load,
1404 .set_pull_down = spmi_regulator_common_set_pull_down,
1405 };
1406
1407 static const struct regulator_ops spmi_ult_ldo_ops = {
1408 .enable = regulator_enable_regmap,
1409 .disable = regulator_disable_regmap,
1410 .is_enabled = regulator_is_enabled_regmap,
1411 .set_voltage_sel = spmi_regulator_single_range_set_voltage,
1412 .get_voltage_sel = spmi_regulator_single_range_get_voltage,
1413 .map_voltage = spmi_regulator_single_map_voltage,
1414 .list_voltage = spmi_regulator_common_list_voltage,
1415 .set_mode = spmi_regulator_common_set_mode,
1416 .get_mode = spmi_regulator_common_get_mode,
1417 .set_load = spmi_regulator_common_set_load,
1418 .set_bypass = spmi_regulator_common_set_bypass,
1419 .get_bypass = spmi_regulator_common_get_bypass,
1420 .set_pull_down = spmi_regulator_common_set_pull_down,
1421 .set_soft_start = spmi_regulator_common_set_soft_start,
1422 };
1423
1424 static const struct regulator_ops spmi_ftsmps426_ops = {
1425 .enable = regulator_enable_regmap,
1426 .disable = regulator_disable_regmap,
1427 .is_enabled = regulator_is_enabled_regmap,
1428 .set_voltage_sel = spmi_regulator_ftsmps426_set_voltage,
1429 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
1430 .get_voltage_sel = spmi_regulator_ftsmps426_get_voltage,
1431 .map_voltage = spmi_regulator_single_map_voltage,
1432 .list_voltage = spmi_regulator_common_list_voltage,
1433 .set_mode = spmi_regulator_ftsmps426_set_mode,
1434 .get_mode = spmi_regulator_ftsmps426_get_mode,
1435 .set_load = spmi_regulator_common_set_load,
1436 .set_pull_down = spmi_regulator_common_set_pull_down,
1437 };
1438
1439 static const struct regulator_ops spmi_hfs430_ops = {
1440 .enable = regulator_enable_regmap,
1441 .disable = regulator_disable_regmap,
1442 .is_enabled = regulator_is_enabled_regmap,
1443 .set_voltage_sel = spmi_regulator_ftsmps426_set_voltage,
1444 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
1445 .get_voltage_sel = spmi_regulator_ftsmps426_get_voltage,
1446 .map_voltage = spmi_regulator_single_map_voltage,
1447 .list_voltage = spmi_regulator_common_list_voltage,
1448 .set_mode = spmi_regulator_ftsmps426_set_mode,
1449 .get_mode = spmi_regulator_ftsmps426_get_mode,
1450 };
1451
1452 /* Maximum possible digital major revision value */
1453 #define INF 0xFF
1454
1455 static const struct spmi_regulator_mapping supported_regulators[] = {
1456 /* type subtype dig_min dig_max ltype ops setpoints hpm_min */
1457 SPMI_VREG(BUCK, GP_CTL, 0, INF, SMPS, smps, smps, 100000),
1458 SPMI_VREG(BUCK, HFS430, 0, INF, HFS430, hfs430, hfs430, 10000),
1459 SPMI_VREG(LDO, N300, 0, INF, LDO, ldo, nldo1, 10000),
1460 SPMI_VREG(LDO, N600, 0, 0, LDO, ldo, nldo2, 10000),
1461 SPMI_VREG(LDO, N1200, 0, 0, LDO, ldo, nldo2, 10000),
1462 SPMI_VREG(LDO, N600, 1, INF, LDO, ldo, nldo3, 10000),
1463 SPMI_VREG(LDO, N1200, 1, INF, LDO, ldo, nldo3, 10000),
1464 SPMI_VREG(LDO, N600_ST, 0, 0, LDO, ldo, nldo2, 10000),
1465 SPMI_VREG(LDO, N1200_ST, 0, 0, LDO, ldo, nldo2, 10000),
1466 SPMI_VREG(LDO, N600_ST, 1, INF, LDO, ldo, nldo3, 10000),
1467 SPMI_VREG(LDO, N1200_ST, 1, INF, LDO, ldo, nldo3, 10000),
1468 SPMI_VREG(LDO, P50, 0, INF, LDO, ldo, pldo, 5000),
1469 SPMI_VREG(LDO, P150, 0, INF, LDO, ldo, pldo, 10000),
1470 SPMI_VREG(LDO, P300, 0, INF, LDO, ldo, pldo, 10000),
1471 SPMI_VREG(LDO, P600, 0, INF, LDO, ldo, pldo, 10000),
1472 SPMI_VREG(LDO, P1200, 0, INF, LDO, ldo, pldo, 10000),
1473 SPMI_VREG(LDO, LN, 0, INF, LN_LDO, ln_ldo, ln_ldo, 0),
1474 SPMI_VREG(LDO, LV_P50, 0, INF, LDO, ldo, pldo, 5000),
1475 SPMI_VREG(LDO, LV_P150, 0, INF, LDO, ldo, pldo, 10000),
1476 SPMI_VREG(LDO, LV_P300, 0, INF, LDO, ldo, pldo, 10000),
1477 SPMI_VREG(LDO, LV_P600, 0, INF, LDO, ldo, pldo, 10000),
1478 SPMI_VREG(LDO, LV_P1200, 0, INF, LDO, ldo, pldo, 10000),
1479 SPMI_VREG(LDO, HT_N300_ST, 0, INF, FTSMPS426, ftsmps426,
1480 ht_nldo, 30000),
1481 SPMI_VREG(LDO, HT_N600_ST, 0, INF, FTSMPS426, ftsmps426,
1482 ht_nldo, 30000),
1483 SPMI_VREG(LDO, HT_N1200_ST, 0, INF, FTSMPS426, ftsmps426,
1484 ht_nldo, 30000),
1485 SPMI_VREG(LDO, HT_LVP150, 0, INF, FTSMPS426, ftsmps426,
1486 ht_lvpldo, 10000),
1487 SPMI_VREG(LDO, HT_LVP300, 0, INF, FTSMPS426, ftsmps426,
1488 ht_lvpldo, 10000),
1489 SPMI_VREG(LDO, L660_N300_ST, 0, INF, FTSMPS426, ftsmps426,
1490 nldo660, 10000),
1491 SPMI_VREG(LDO, L660_N600_ST, 0, INF, FTSMPS426, ftsmps426,
1492 nldo660, 10000),
1493 SPMI_VREG(LDO, L660_P50, 0, INF, FTSMPS426, ftsmps426,
1494 pldo660, 10000),
1495 SPMI_VREG(LDO, L660_P150, 0, INF, FTSMPS426, ftsmps426,
1496 pldo660, 10000),
1497 SPMI_VREG(LDO, L660_P600, 0, INF, FTSMPS426, ftsmps426,
1498 pldo660, 10000),
1499 SPMI_VREG(LDO, L660_LVP150, 0, INF, FTSMPS426, ftsmps426,
1500 ht_lvpldo, 10000),
1501 SPMI_VREG(LDO, L660_LVP600, 0, INF, FTSMPS426, ftsmps426,
1502 ht_lvpldo, 10000),
1503 SPMI_VREG_VS(LV100, 0, INF),
1504 SPMI_VREG_VS(LV300, 0, INF),
1505 SPMI_VREG_VS(MV300, 0, INF),
1506 SPMI_VREG_VS(MV500, 0, INF),
1507 SPMI_VREG_VS(HDMI, 0, INF),
1508 SPMI_VREG_VS(OTG, 0, INF),
1509 SPMI_VREG(BOOST, 5V_BOOST, 0, INF, BOOST, boost, boost, 0),
1510 SPMI_VREG(FTS, FTS_CTL, 0, INF, FTSMPS, ftsmps, ftsmps, 100000),
1511 SPMI_VREG(FTS, FTS2p5_CTL, 0, INF, FTSMPS, ftsmps, ftsmps2p5, 100000),
1512 SPMI_VREG(FTS, FTS426_CTL, 0, INF, FTSMPS426, ftsmps426, ftsmps426, 100000),
1513 SPMI_VREG(BOOST_BYP, BB_2A, 0, INF, BOOST_BYP, boost, boost_byp, 0),
1514 SPMI_VREG(ULT_BUCK, ULT_HF_CTL1, 0, INF, ULT_LO_SMPS, ult_lo_smps,
1515 ult_lo_smps, 100000),
1516 SPMI_VREG(ULT_BUCK, ULT_HF_CTL2, 0, INF, ULT_LO_SMPS, ult_lo_smps,
1517 ult_lo_smps, 100000),
1518 SPMI_VREG(ULT_BUCK, ULT_HF_CTL3, 0, INF, ULT_LO_SMPS, ult_lo_smps,
1519 ult_lo_smps, 100000),
1520 SPMI_VREG(ULT_BUCK, ULT_HF_CTL4, 0, INF, ULT_HO_SMPS, ult_ho_smps,
1521 ult_ho_smps, 100000),
1522 SPMI_VREG(ULT_LDO, N300_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1523 SPMI_VREG(ULT_LDO, N600_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1524 SPMI_VREG(ULT_LDO, N900_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1525 SPMI_VREG(ULT_LDO, N1200_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1526 SPMI_VREG(ULT_LDO, LV_P50, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1527 SPMI_VREG(ULT_LDO, LV_P150, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1528 SPMI_VREG(ULT_LDO, LV_P300, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1529 SPMI_VREG(ULT_LDO, LV_P450, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1530 SPMI_VREG(ULT_LDO, P600, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1531 SPMI_VREG(ULT_LDO, P300, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1532 SPMI_VREG(ULT_LDO, P150, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1533 SPMI_VREG(ULT_LDO, P50, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 5000),
1534 };
1535
1536 static void spmi_calculate_num_voltages(struct spmi_voltage_set_points *points)
1537 {
1538 unsigned int n;
1539 struct spmi_voltage_range *range = points->range;
1540
1541 for (; range < points->range + points->count; range++) {
1542 n = 0;
1543 if (range->set_point_max_uV) {
1544 n = range->set_point_max_uV - range->set_point_min_uV;
1545 n = (n / range->step_uV) + 1;
1546 }
1547 range->n_voltages = n;
1548 points->n_voltages += n;
1549 }
1550 }
1551
1552 static int spmi_regulator_match(struct spmi_regulator *vreg, u16 force_type)
1553 {
1554 const struct spmi_regulator_mapping *mapping;
1555 int ret, i;
1556 u32 dig_major_rev;
1557 u8 version[SPMI_COMMON_REG_SUBTYPE - SPMI_COMMON_REG_DIG_MAJOR_REV + 1];
1558 u8 type, subtype;
1559
1560 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_DIG_MAJOR_REV, version,
1561 ARRAY_SIZE(version));
1562 if (ret) {
1563 dev_dbg(vreg->dev, "could not read version registers\n");
1564 return ret;
1565 }
1566 dig_major_rev = version[SPMI_COMMON_REG_DIG_MAJOR_REV
1567 - SPMI_COMMON_REG_DIG_MAJOR_REV];
1568
1569 if (!force_type) {
1570 type = version[SPMI_COMMON_REG_TYPE -
1571 SPMI_COMMON_REG_DIG_MAJOR_REV];
1572 subtype = version[SPMI_COMMON_REG_SUBTYPE -
1573 SPMI_COMMON_REG_DIG_MAJOR_REV];
1574 } else {
1575 type = force_type >> 8;
1576 subtype = force_type;
1577 }
1578
1579 for (i = 0; i < ARRAY_SIZE(supported_regulators); i++) {
1580 mapping = &supported_regulators[i];
1581 if (mapping->type == type && mapping->subtype == subtype
1582 && mapping->revision_min <= dig_major_rev
1583 && mapping->revision_max >= dig_major_rev)
1584 goto found;
1585 }
1586
1587 dev_err(vreg->dev,
1588 "unsupported regulator: name=%s type=0x%02X, subtype=0x%02X, dig major rev=0x%02X\n",
1589 vreg->desc.name, type, subtype, dig_major_rev);
1590
1591 return -ENODEV;
1592
1593 found:
1594 vreg->logical_type = mapping->logical_type;
1595 vreg->set_points = mapping->set_points;
1596 vreg->hpm_min_load = mapping->hpm_min_load;
1597 vreg->desc.ops = mapping->ops;
1598
1599 if (mapping->set_points) {
1600 if (!mapping->set_points->n_voltages)
1601 spmi_calculate_num_voltages(mapping->set_points);
1602 vreg->desc.n_voltages = mapping->set_points->n_voltages;
1603 }
1604
1605 return 0;
1606 }
1607
1608 static int spmi_regulator_init_slew_rate(struct spmi_regulator *vreg)
1609 {
1610 int ret;
1611 u8 reg = 0;
1612 int step, delay, slew_rate, step_delay;
1613 const struct spmi_voltage_range *range;
1614
1615 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_STEP_CTRL, &reg, 1);
1616 if (ret) {
1617 dev_err(vreg->dev, "spmi read failed, ret=%d\n", ret);
1618 return ret;
1619 }
1620
1621 range = spmi_regulator_find_range(vreg);
1622 if (!range)
1623 return -EINVAL;
1624
1625 switch (vreg->logical_type) {
1626 case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS:
1627 step_delay = SPMI_FTSMPS_STEP_DELAY;
1628 break;
1629 default:
1630 step_delay = SPMI_DEFAULT_STEP_DELAY;
1631 break;
1632 }
1633
1634 step = reg & SPMI_FTSMPS_STEP_CTRL_STEP_MASK;
1635 step >>= SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT;
1636
1637 delay = reg & SPMI_FTSMPS_STEP_CTRL_DELAY_MASK;
1638 delay >>= SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT;
1639
1640 /* slew_rate has units of uV/us */
1641 slew_rate = SPMI_FTSMPS_CLOCK_RATE * range->step_uV * (1 << step);
1642 slew_rate /= 1000 * (step_delay << delay);
1643 slew_rate *= SPMI_FTSMPS_STEP_MARGIN_NUM;
1644 slew_rate /= SPMI_FTSMPS_STEP_MARGIN_DEN;
1645
1646 /* Ensure that the slew rate is greater than 0 */
1647 vreg->slew_rate = max(slew_rate, 1);
1648
1649 return ret;
1650 }
1651
1652 static int spmi_regulator_init_slew_rate_ftsmps426(struct spmi_regulator *vreg,
1653 int clock_rate)
1654 {
1655 int ret;
1656 u8 reg = 0;
1657 int delay, slew_rate;
1658 const struct spmi_voltage_range *range = &vreg->set_points->range[0];
1659
1660 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_STEP_CTRL, &reg, 1);
1661 if (ret) {
1662 dev_err(vreg->dev, "spmi read failed, ret=%d\n", ret);
1663 return ret;
1664 }
1665
1666 delay = reg & SPMI_FTSMPS426_STEP_CTRL_DELAY_MASK;
1667 delay >>= SPMI_FTSMPS426_STEP_CTRL_DELAY_SHIFT;
1668
1669 /* slew_rate has units of uV/us */
1670 slew_rate = clock_rate * range->step_uV;
1671 slew_rate /= 1000 * (SPMI_FTSMPS426_STEP_DELAY << delay);
1672 slew_rate *= SPMI_FTSMPS426_STEP_MARGIN_NUM;
1673 slew_rate /= SPMI_FTSMPS426_STEP_MARGIN_DEN;
1674
1675 /* Ensure that the slew rate is greater than 0 */
1676 vreg->slew_rate = max(slew_rate, 1);
1677
1678 return ret;
1679 }
1680
1681 static int spmi_regulator_init_registers(struct spmi_regulator *vreg,
1682 const struct spmi_regulator_init_data *data)
1683 {
1684 int ret;
1685 enum spmi_regulator_logical_type type;
1686 u8 ctrl_reg[8], reg, mask;
1687
1688 type = vreg->logical_type;
1689
1690 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8);
1691 if (ret)
1692 return ret;
1693
1694 /* Set up enable pin control. */
1695 if (!(data->pin_ctrl_enable & SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT)) {
1696 switch (type) {
1697 case SPMI_REGULATOR_LOGICAL_TYPE_SMPS:
1698 case SPMI_REGULATOR_LOGICAL_TYPE_LDO:
1699 case SPMI_REGULATOR_LOGICAL_TYPE_VS:
1700 ctrl_reg[SPMI_COMMON_IDX_ENABLE] &=
1701 ~SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK;
1702 ctrl_reg[SPMI_COMMON_IDX_ENABLE] |=
1703 data->pin_ctrl_enable & SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK;
1704 break;
1705 default:
1706 break;
1707 }
1708 }
1709
1710 /* Set up mode pin control. */
1711 if (!(data->pin_ctrl_hpm & SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
1712 switch (type) {
1713 case SPMI_REGULATOR_LOGICAL_TYPE_SMPS:
1714 case SPMI_REGULATOR_LOGICAL_TYPE_LDO:
1715 ctrl_reg[SPMI_COMMON_IDX_MODE] &=
1716 ~SPMI_COMMON_MODE_FOLLOW_ALL_MASK;
1717 ctrl_reg[SPMI_COMMON_IDX_MODE] |=
1718 data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_ALL_MASK;
1719 break;
1720 case SPMI_REGULATOR_LOGICAL_TYPE_VS:
1721 case SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS:
1722 case SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS:
1723 case SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO:
1724 ctrl_reg[SPMI_COMMON_IDX_MODE] &=
1725 ~SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1726 ctrl_reg[SPMI_COMMON_IDX_MODE] |=
1727 data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1728 break;
1729 default:
1730 break;
1731 }
1732 }
1733
1734 /* Write back any control register values that were modified. */
1735 ret = spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8);
1736 if (ret)
1737 return ret;
1738
1739 /* Set soft start strength and over current protection for VS. */
1740 if (type == SPMI_REGULATOR_LOGICAL_TYPE_VS) {
1741 if (data->vs_soft_start_strength
1742 != SPMI_VS_SOFT_START_STR_HW_DEFAULT) {
1743 reg = data->vs_soft_start_strength
1744 & SPMI_VS_SOFT_START_SEL_MASK;
1745 mask = SPMI_VS_SOFT_START_SEL_MASK;
1746 return spmi_vreg_update_bits(vreg,
1747 SPMI_VS_REG_SOFT_START,
1748 reg, mask);
1749 }
1750 }
1751
1752 return 0;
1753 }
1754
1755 static void spmi_regulator_get_dt_config(struct spmi_regulator *vreg,
1756 struct device_node *node, struct spmi_regulator_init_data *data)
1757 {
1758 /*
1759 * Initialize configuration parameters to use hardware default in case
1760 * no value is specified via device tree.
1761 */
1762 data->pin_ctrl_enable = SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT;
1763 data->pin_ctrl_hpm = SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT;
1764 data->vs_soft_start_strength = SPMI_VS_SOFT_START_STR_HW_DEFAULT;
1765
1766 /* These bindings are optional, so it is okay if they aren't found. */
1767 of_property_read_u32(node, "qcom,ocp-max-retries",
1768 &vreg->ocp_max_retries);
1769 of_property_read_u32(node, "qcom,ocp-retry-delay",
1770 &vreg->ocp_retry_delay_ms);
1771 of_property_read_u32(node, "qcom,pin-ctrl-enable",
1772 &data->pin_ctrl_enable);
1773 of_property_read_u32(node, "qcom,pin-ctrl-hpm", &data->pin_ctrl_hpm);
1774 of_property_read_u32(node, "qcom,vs-soft-start-strength",
1775 &data->vs_soft_start_strength);
1776 }
1777
1778 static unsigned int spmi_regulator_of_map_mode(unsigned int mode)
1779 {
1780 if (mode == 1)
1781 return REGULATOR_MODE_NORMAL;
1782 if (mode == 2)
1783 return REGULATOR_MODE_FAST;
1784
1785 return REGULATOR_MODE_IDLE;
1786 }
1787
1788 static int spmi_regulator_of_parse(struct device_node *node,
1789 const struct regulator_desc *desc,
1790 struct regulator_config *config)
1791 {
1792 struct spmi_regulator_init_data data = { };
1793 struct spmi_regulator *vreg = config->driver_data;
1794 struct device *dev = config->dev;
1795 int ret;
1796
1797 spmi_regulator_get_dt_config(vreg, node, &data);
1798
1799 if (!vreg->ocp_max_retries)
1800 vreg->ocp_max_retries = SPMI_VS_OCP_DEFAULT_MAX_RETRIES;
1801 if (!vreg->ocp_retry_delay_ms)
1802 vreg->ocp_retry_delay_ms = SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS;
1803
1804 ret = spmi_regulator_init_registers(vreg, &data);
1805 if (ret) {
1806 dev_err(dev, "common initialization failed, ret=%d\n", ret);
1807 return ret;
1808 }
1809
1810 switch (vreg->logical_type) {
1811 case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS:
1812 case SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS:
1813 case SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS:
1814 case SPMI_REGULATOR_LOGICAL_TYPE_SMPS:
1815 ret = spmi_regulator_init_slew_rate(vreg);
1816 if (ret)
1817 return ret;
1818 break;
1819 case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS426:
1820 ret = spmi_regulator_init_slew_rate_ftsmps426(vreg,
1821 SPMI_FTSMPS426_CLOCK_RATE);
1822 if (ret)
1823 return ret;
1824 break;
1825 case SPMI_REGULATOR_LOGICAL_TYPE_HFS430:
1826 ret = spmi_regulator_init_slew_rate_ftsmps426(vreg,
1827 SPMI_HFS430_CLOCK_RATE);
1828 if (ret)
1829 return ret;
1830 break;
1831 default:
1832 break;
1833 }
1834
1835 if (vreg->logical_type != SPMI_REGULATOR_LOGICAL_TYPE_VS)
1836 vreg->ocp_irq = 0;
1837
1838 if (vreg->ocp_irq) {
1839 ret = devm_request_irq(dev, vreg->ocp_irq,
1840 spmi_regulator_vs_ocp_isr, IRQF_TRIGGER_RISING, "ocp",
1841 vreg);
1842 if (ret < 0) {
1843 dev_err(dev, "failed to request irq %d, ret=%d\n",
1844 vreg->ocp_irq, ret);
1845 return ret;
1846 }
1847
1848 ret = devm_delayed_work_autocancel(dev, &vreg->ocp_work,
1849 spmi_regulator_vs_ocp_work);
1850 if (ret)
1851 return ret;
1852 }
1853
1854 return 0;
1855 }
1856
1857 static const struct spmi_regulator_data pm8941_regulators[] = {
1858 { "s1", 0x1400, "vdd_s1", },
1859 { "s2", 0x1700, "vdd_s2", },
1860 { "s3", 0x1a00, "vdd_s3", },
1861 { "s4", 0xa000, },
1862 { "l1", 0x4000, "vdd_l1_l3", },
1863 { "l2", 0x4100, "vdd_l2_lvs_1_2_3", },
1864 { "l3", 0x4200, "vdd_l1_l3", },
1865 { "l4", 0x4300, "vdd_l4_l11", },
1866 { "l5", 0x4400, "vdd_l5_l7", NULL, 0x0410 },
1867 { "l6", 0x4500, "vdd_l6_l12_l14_l15", },
1868 { "l7", 0x4600, "vdd_l5_l7", NULL, 0x0410 },
1869 { "l8", 0x4700, "vdd_l8_l16_l18_19", },
1870 { "l9", 0x4800, "vdd_l9_l10_l17_l22", },
1871 { "l10", 0x4900, "vdd_l9_l10_l17_l22", },
1872 { "l11", 0x4a00, "vdd_l4_l11", },
1873 { "l12", 0x4b00, "vdd_l6_l12_l14_l15", },
1874 { "l13", 0x4c00, "vdd_l13_l20_l23_l24", },
1875 { "l14", 0x4d00, "vdd_l6_l12_l14_l15", },
1876 { "l15", 0x4e00, "vdd_l6_l12_l14_l15", },
1877 { "l16", 0x4f00, "vdd_l8_l16_l18_19", },
1878 { "l17", 0x5000, "vdd_l9_l10_l17_l22", },
1879 { "l18", 0x5100, "vdd_l8_l16_l18_19", },
1880 { "l19", 0x5200, "vdd_l8_l16_l18_19", },
1881 { "l20", 0x5300, "vdd_l13_l20_l23_l24", },
1882 { "l21", 0x5400, "vdd_l21", },
1883 { "l22", 0x5500, "vdd_l9_l10_l17_l22", },
1884 { "l23", 0x5600, "vdd_l13_l20_l23_l24", },
1885 { "l24", 0x5700, "vdd_l13_l20_l23_l24", },
1886 { "lvs1", 0x8000, "vdd_l2_lvs_1_2_3", },
1887 { "lvs2", 0x8100, "vdd_l2_lvs_1_2_3", },
1888 { "lvs3", 0x8200, "vdd_l2_lvs_1_2_3", },
1889 { "5vs1", 0x8300, "vin_5vs", "ocp-5vs1", },
1890 { "5vs2", 0x8400, "vin_5vs", "ocp-5vs2", },
1891 { }
1892 };
1893
1894 static const struct spmi_regulator_data pm8841_regulators[] = {
1895 { "s1", 0x1400, "vdd_s1", },
1896 { "s2", 0x1700, "vdd_s2", NULL, 0x1c08 },
1897 { "s3", 0x1a00, "vdd_s3", },
1898 { "s4", 0x1d00, "vdd_s4", NULL, 0x1c08 },
1899 { "s5", 0x2000, "vdd_s5", NULL, 0x1c08 },
1900 { "s6", 0x2300, "vdd_s6", NULL, 0x1c08 },
1901 { "s7", 0x2600, "vdd_s7", NULL, 0x1c08 },
1902 { "s8", 0x2900, "vdd_s8", NULL, 0x1c08 },
1903 { }
1904 };
1905
1906 static const struct spmi_regulator_data pm8916_regulators[] = {
1907 { "s1", 0x1400, "vdd_s1", },
1908 { "s2", 0x1700, "vdd_s2", },
1909 { "s3", 0x1a00, "vdd_s3", },
1910 { "s4", 0x1d00, "vdd_s4", },
1911 { "l1", 0x4000, "vdd_l1_l3", },
1912 { "l2", 0x4100, "vdd_l2", },
1913 { "l3", 0x4200, "vdd_l1_l3", },
1914 { "l4", 0x4300, "vdd_l4_l5_l6", },
1915 { "l5", 0x4400, "vdd_l4_l5_l6", },
1916 { "l6", 0x4500, "vdd_l4_l5_l6", },
1917 { "l7", 0x4600, "vdd_l7", },
1918 { "l8", 0x4700, "vdd_l8_l11_l14_l15_l16", },
1919 { "l9", 0x4800, "vdd_l9_l10_l12_l13_l17_l18", },
1920 { "l10", 0x4900, "vdd_l9_l10_l12_l13_l17_l18", },
1921 { "l11", 0x4a00, "vdd_l8_l11_l14_l15_l16", },
1922 { "l12", 0x4b00, "vdd_l9_l10_l12_l13_l17_l18", },
1923 { "l13", 0x4c00, "vdd_l9_l10_l12_l13_l17_l18", },
1924 { "l14", 0x4d00, "vdd_l8_l11_l14_l15_l16", },
1925 { "l15", 0x4e00, "vdd_l8_l11_l14_l15_l16", },
1926 { "l16", 0x4f00, "vdd_l8_l11_l14_l15_l16", },
1927 { "l17", 0x5000, "vdd_l9_l10_l12_l13_l17_l18", },
1928 { "l18", 0x5100, "vdd_l9_l10_l12_l13_l17_l18", },
1929 { }
1930 };
1931
1932 static const struct spmi_regulator_data pm8950_regulators[] = {
1933 { "s1", 0x1400, "vdd_s1", },
1934 { "s2", 0x1700, "vdd_s2", },
1935 { "s3", 0x1a00, "vdd_s3", },
1936 { "s4", 0x1d00, "vdd_s4", },
1937 { "s5", 0x2000, "vdd_s5", },
1938 { "s6", 0x2300, "vdd_s6", },
1939 { "l1", 0x4000, "vdd_l1_l19", },
1940 { "l2", 0x4100, "vdd_l2_l23", },
1941 { "l3", 0x4200, "vdd_l3", },
1942 { "l4", 0x4300, "vdd_l4_l5_l6_l7_l16", },
1943 { "l5", 0x4400, "vdd_l4_l5_l6_l7_l16", },
1944 { "l6", 0x4500, "vdd_l4_l5_l6_l7_l16", },
1945 { "l7", 0x4600, "vdd_l4_l5_l6_l7_l16", },
1946 { "l8", 0x4700, "vdd_l8_l11_l12_l17_l22", },
1947 { "l9", 0x4800, "vdd_l9_l10_l13_l14_l15_l18", },
1948 { "l10", 0x4900, "vdd_l9_l10_l13_l14_l15_l18", },
1949 { "l11", 0x4a00, "vdd_l8_l11_l12_l17_l22", },
1950 { "l12", 0x4b00, "vdd_l8_l11_l12_l17_l22", },
1951 { "l13", 0x4c00, "vdd_l9_l10_l13_l14_l15_l18", },
1952 { "l14", 0x4d00, "vdd_l9_l10_l13_l14_l15_l18", },
1953 { "l15", 0x4e00, "vdd_l9_l10_l13_l14_l15_l18", },
1954 { "l16", 0x4f00, "vdd_l4_l5_l6_l7_l16", },
1955 { "l17", 0x5000, "vdd_l8_l11_l12_l17_l22", },
1956 { "l18", 0x5100, "vdd_l9_l10_l13_l14_l15_l18", },
1957 { "l19", 0x5200, "vdd_l1_l19", },
1958 { "l20", 0x5300, "vdd_l20", },
1959 { "l21", 0x5400, "vdd_l21", },
1960 { "l22", 0x5500, "vdd_l8_l11_l12_l17_l22", },
1961 { "l23", 0x5600, "vdd_l2_l23", },
1962 { }
1963 };
1964
1965 static const struct spmi_regulator_data pm8994_regulators[] = {
1966 { "s1", 0x1400, "vdd_s1", },
1967 { "s2", 0x1700, "vdd_s2", },
1968 { "s3", 0x1a00, "vdd_s3", },
1969 { "s4", 0x1d00, "vdd_s4", },
1970 { "s5", 0x2000, "vdd_s5", },
1971 { "s6", 0x2300, "vdd_s6", },
1972 { "s7", 0x2600, "vdd_s7", },
1973 { "s8", 0x2900, "vdd_s8", },
1974 { "s9", 0x2c00, "vdd_s9", },
1975 { "s10", 0x2f00, "vdd_s10", },
1976 { "s11", 0x3200, "vdd_s11", },
1977 { "s12", 0x3500, "vdd_s12", },
1978 { "l1", 0x4000, "vdd_l1", },
1979 { "l2", 0x4100, "vdd_l2_l26_l28", },
1980 { "l3", 0x4200, "vdd_l3_l11", },
1981 { "l4", 0x4300, "vdd_l4_l27_l31", },
1982 { "l5", 0x4400, "vdd_l5_l7", },
1983 { "l6", 0x4500, "vdd_l6_l12_l32", },
1984 { "l7", 0x4600, "vdd_l5_l7", },
1985 { "l8", 0x4700, "vdd_l8_l16_l30", },
1986 { "l9", 0x4800, "vdd_l9_l10_l18_l22", },
1987 { "l10", 0x4900, "vdd_l9_l10_l18_l22", },
1988 { "l11", 0x4a00, "vdd_l3_l11", },
1989 { "l12", 0x4b00, "vdd_l6_l12_l32", },
1990 { "l13", 0x4c00, "vdd_l13_l19_l23_l24", },
1991 { "l14", 0x4d00, "vdd_l14_l15", },
1992 { "l15", 0x4e00, "vdd_l14_l15", },
1993 { "l16", 0x4f00, "vdd_l8_l16_l30", },
1994 { "l17", 0x5000, "vdd_l17_l29", },
1995 { "l18", 0x5100, "vdd_l9_l10_l18_l22", },
1996 { "l19", 0x5200, "vdd_l13_l19_l23_l24", },
1997 { "l20", 0x5300, "vdd_l20_l21", },
1998 { "l21", 0x5400, "vdd_l20_l21", },
1999 { "l22", 0x5500, "vdd_l9_l10_l18_l22", },
2000 { "l23", 0x5600, "vdd_l13_l19_l23_l24", },
2001 { "l24", 0x5700, "vdd_l13_l19_l23_l24", },
2002 { "l25", 0x5800, "vdd_l25", },
2003 { "l26", 0x5900, "vdd_l2_l26_l28", },
2004 { "l27", 0x5a00, "vdd_l4_l27_l31", },
2005 { "l28", 0x5b00, "vdd_l2_l26_l28", },
2006 { "l29", 0x5c00, "vdd_l17_l29", },
2007 { "l30", 0x5d00, "vdd_l8_l16_l30", },
2008 { "l31", 0x5e00, "vdd_l4_l27_l31", },
2009 { "l32", 0x5f00, "vdd_l6_l12_l32", },
2010 { "lvs1", 0x8000, "vdd_lvs_1_2", },
2011 { "lvs2", 0x8100, "vdd_lvs_1_2", },
2012 { }
2013 };
2014
2015 static const struct spmi_regulator_data pmi8994_regulators[] = {
2016 { "s1", 0x1400, "vdd_s1", },
2017 { "s2", 0x1700, "vdd_s2", },
2018 { "s3", 0x1a00, "vdd_s3", },
2019 { "l1", 0x4000, "vdd_l1", },
2020 { }
2021 };
2022
2023 static const struct spmi_regulator_data pm660_regulators[] = {
2024 { "s1", 0x1400, "vdd_s1", },
2025 { "s2", 0x1700, "vdd_s2", },
2026 { "s3", 0x1a00, "vdd_s3", },
2027 { "s4", 0x1d00, "vdd_s3", },
2028 { "s5", 0x2000, "vdd_s5", },
2029 { "s6", 0x2300, "vdd_s6", },
2030 { "l1", 0x4000, "vdd_l1_l6_l7", },
2031 { "l2", 0x4100, "vdd_l2_l3", },
2032 { "l3", 0x4200, "vdd_l2_l3", },
2033 /* l4 is unaccessible on PM660 */
2034 { "l5", 0x4400, "vdd_l5", },
2035 { "l6", 0x4500, "vdd_l1_l6_l7", },
2036 { "l7", 0x4600, "vdd_l1_l6_l7", },
2037 { "l8", 0x4700, "vdd_l8_l9_l10_l11_l12_l13_l14", },
2038 { "l9", 0x4800, "vdd_l8_l9_l10_l11_l12_l13_l14", },
2039 { "l10", 0x4900, "vdd_l8_l9_l10_l11_l12_l13_l14", },
2040 { "l11", 0x4a00, "vdd_l8_l9_l10_l11_l12_l13_l14", },
2041 { "l12", 0x4b00, "vdd_l8_l9_l10_l11_l12_l13_l14", },
2042 { "l13", 0x4c00, "vdd_l8_l9_l10_l11_l12_l13_l14", },
2043 { "l14", 0x4d00, "vdd_l8_l9_l10_l11_l12_l13_l14", },
2044 { "l15", 0x4e00, "vdd_l15_l16_l17_l18_l19", },
2045 { "l16", 0x4f00, "vdd_l15_l16_l17_l18_l19", },
2046 { "l17", 0x5000, "vdd_l15_l16_l17_l18_l19", },
2047 { "l18", 0x5100, "vdd_l15_l16_l17_l18_l19", },
2048 { "l19", 0x5200, "vdd_l15_l16_l17_l18_l19", },
2049 { }
2050 };
2051
2052 static const struct spmi_regulator_data pm660l_regulators[] = {
2053 { "s1", 0x1400, "vdd_s1", },
2054 { "s2", 0x1700, "vdd_s2", },
2055 { "s3", 0x1a00, "vdd_s3", },
2056 { "s4", 0x1d00, "vdd_s4", },
2057 { "s5", 0x2000, "vdd_s5", },
2058 { "l1", 0x4000, "vdd_l1_l9_l10", },
2059 { "l2", 0x4100, "vdd_l2", },
2060 { "l3", 0x4200, "vdd_l3_l5_l7_l8", },
2061 { "l4", 0x4300, "vdd_l4_l6", },
2062 { "l5", 0x4400, "vdd_l3_l5_l7_l8", },
2063 { "l6", 0x4500, "vdd_l4_l6", },
2064 { "l7", 0x4600, "vdd_l3_l5_l7_l8", },
2065 { "l8", 0x4700, "vdd_l3_l5_l7_l8", },
2066 { "l9", 0x4800, "vdd_l1_l9_l10", },
2067 { "l10", 0x4900, "vdd_l1_l9_l10", },
2068 { }
2069 };
2070
2071
2072 static const struct spmi_regulator_data pm8004_regulators[] = {
2073 { "s2", 0x1700, "vdd_s2", },
2074 { "s5", 0x2000, "vdd_s5", },
2075 { }
2076 };
2077
2078 static const struct spmi_regulator_data pm8005_regulators[] = {
2079 { "s1", 0x1400, "vdd_s1", },
2080 { "s2", 0x1700, "vdd_s2", },
2081 { "s3", 0x1a00, "vdd_s3", },
2082 { "s4", 0x1d00, "vdd_s4", },
2083 { }
2084 };
2085
2086 static const struct spmi_regulator_data pms405_regulators[] = {
2087 { "s3", 0x1a00, "vdd_s3"},
2088 { }
2089 };
2090
2091 static const struct of_device_id qcom_spmi_regulator_match[] = {
2092 { .compatible = "qcom,pm8004-regulators", .data = &pm8004_regulators },
2093 { .compatible = "qcom,pm8005-regulators", .data = &pm8005_regulators },
2094 { .compatible = "qcom,pm8841-regulators", .data = &pm8841_regulators },
2095 { .compatible = "qcom,pm8916-regulators", .data = &pm8916_regulators },
2096 { .compatible = "qcom,pm8941-regulators", .data = &pm8941_regulators },
2097 { .compatible = "qcom,pm8950-regulators", .data = &pm8950_regulators },
2098 { .compatible = "qcom,pm8994-regulators", .data = &pm8994_regulators },
2099 { .compatible = "qcom,pmi8994-regulators", .data = &pmi8994_regulators },
2100 { .compatible = "qcom,pm660-regulators", .data = &pm660_regulators },
2101 { .compatible = "qcom,pm660l-regulators", .data = &pm660l_regulators },
2102 { .compatible = "qcom,pms405-regulators", .data = &pms405_regulators },
2103 { }
2104 };
2105 MODULE_DEVICE_TABLE(of, qcom_spmi_regulator_match);
2106
2107 static int qcom_spmi_regulator_probe(struct platform_device *pdev)
2108 {
2109 const struct spmi_regulator_data *reg;
2110 const struct spmi_voltage_range *range;
2111 const struct of_device_id *match;
2112 struct regulator_config config = { };
2113 struct regulator_dev *rdev;
2114 struct spmi_regulator *vreg;
2115 struct regmap *regmap;
2116 const char *name;
2117 struct device *dev = &pdev->dev;
2118 struct device_node *node = pdev->dev.of_node;
2119 struct device_node *syscon, *reg_node;
2120 struct property *reg_prop;
2121 int ret, lenp;
2122 struct list_head *vreg_list;
2123
2124 vreg_list = devm_kzalloc(dev, sizeof(*vreg_list), GFP_KERNEL);
2125 if (!vreg_list)
2126 return -ENOMEM;
2127 INIT_LIST_HEAD(vreg_list);
2128 platform_set_drvdata(pdev, vreg_list);
2129
2130 regmap = dev_get_regmap(dev->parent, NULL);
2131 if (!regmap)
2132 return -ENODEV;
2133
2134 match = of_match_device(qcom_spmi_regulator_match, &pdev->dev);
2135 if (!match)
2136 return -ENODEV;
2137
2138 if (of_find_property(node, "qcom,saw-reg", &lenp)) {
2139 syscon = of_parse_phandle(node, "qcom,saw-reg", 0);
2140 saw_regmap = syscon_node_to_regmap(syscon);
2141 of_node_put(syscon);
2142 if (IS_ERR(saw_regmap))
2143 dev_err(dev, "ERROR reading SAW regmap\n");
2144 }
2145
2146 for (reg = match->data; reg->name; reg++) {
2147
2148 if (saw_regmap) {
2149 reg_node = of_get_child_by_name(node, reg->name);
2150 reg_prop = of_find_property(reg_node, "qcom,saw-slave",
2151 &lenp);
2152 of_node_put(reg_node);
2153 if (reg_prop)
2154 continue;
2155 }
2156
2157 vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
2158 if (!vreg)
2159 return -ENOMEM;
2160
2161 vreg->dev = dev;
2162 vreg->base = reg->base;
2163 vreg->regmap = regmap;
2164 if (reg->ocp) {
2165 vreg->ocp_irq = platform_get_irq_byname(pdev, reg->ocp);
2166 if (vreg->ocp_irq < 0)
2167 return vreg->ocp_irq;
2168 }
2169 vreg->desc.id = -1;
2170 vreg->desc.owner = THIS_MODULE;
2171 vreg->desc.type = REGULATOR_VOLTAGE;
2172 vreg->desc.enable_reg = reg->base + SPMI_COMMON_REG_ENABLE;
2173 vreg->desc.enable_mask = SPMI_COMMON_ENABLE_MASK;
2174 vreg->desc.enable_val = SPMI_COMMON_ENABLE;
2175 vreg->desc.name = name = reg->name;
2176 vreg->desc.supply_name = reg->supply;
2177 vreg->desc.of_match = reg->name;
2178 vreg->desc.of_parse_cb = spmi_regulator_of_parse;
2179 vreg->desc.of_map_mode = spmi_regulator_of_map_mode;
2180
2181 ret = spmi_regulator_match(vreg, reg->force_type);
2182 if (ret)
2183 continue;
2184
2185 if (saw_regmap) {
2186 reg_node = of_get_child_by_name(node, reg->name);
2187 reg_prop = of_find_property(reg_node, "qcom,saw-leader",
2188 &lenp);
2189 of_node_put(reg_node);
2190 if (reg_prop) {
2191 spmi_saw_ops = *(vreg->desc.ops);
2192 spmi_saw_ops.set_voltage_sel =
2193 spmi_regulator_saw_set_voltage;
2194 vreg->desc.ops = &spmi_saw_ops;
2195 }
2196 }
2197
2198 if (vreg->set_points && vreg->set_points->count == 1) {
2199 /* since there is only one range */
2200 range = vreg->set_points->range;
2201 vreg->desc.uV_step = range->step_uV;
2202 }
2203
2204 config.dev = dev;
2205 config.driver_data = vreg;
2206 config.regmap = regmap;
2207 rdev = devm_regulator_register(dev, &vreg->desc, &config);
2208 if (IS_ERR(rdev)) {
2209 dev_err(dev, "failed to register %s\n", name);
2210 return PTR_ERR(rdev);
2211 }
2212
2213 INIT_LIST_HEAD(&vreg->node);
2214 list_add(&vreg->node, vreg_list);
2215 }
2216
2217 return 0;
2218 }
2219
2220 static struct platform_driver qcom_spmi_regulator_driver = {
2221 .driver = {
2222 .name = "qcom-spmi-regulator",
2223 .of_match_table = qcom_spmi_regulator_match,
2224 },
2225 .probe = qcom_spmi_regulator_probe,
2226 };
2227 module_platform_driver(qcom_spmi_regulator_driver);
2228
2229 MODULE_DESCRIPTION("Qualcomm SPMI PMIC regulator driver");
2230 MODULE_LICENSE("GPL v2");
2231 MODULE_ALIAS("platform:qcom-spmi-regulator");