]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/regulator/qcom_spmi-regulator.c
Merge tag 'nfs-for-4.18-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[mirror_ubuntu-hirsute-kernel.git] / drivers / regulator / qcom_spmi-regulator.c
1 /*
2 * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 and
6 * only version 2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 #include <linux/module.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/kernel.h>
18 #include <linux/interrupt.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/platform_device.h>
24 #include <linux/ktime.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regmap.h>
27 #include <linux/list.h>
28 #include <linux/mfd/syscon.h>
29 #include <linux/io.h>
30
31 /* Pin control enable input pins. */
32 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_NONE 0x00
33 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN0 0x01
34 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN1 0x02
35 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN2 0x04
36 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN3 0x08
37 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT 0x10
38
39 /* Pin control high power mode input pins. */
40 #define SPMI_REGULATOR_PIN_CTRL_HPM_NONE 0x00
41 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN0 0x01
42 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN1 0x02
43 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN2 0x04
44 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN3 0x08
45 #define SPMI_REGULATOR_PIN_CTRL_HPM_SLEEP_B 0x10
46 #define SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT 0x20
47
48 /*
49 * Used with enable parameters to specify that hardware default register values
50 * should be left unaltered.
51 */
52 #define SPMI_REGULATOR_USE_HW_DEFAULT 2
53
54 /* Soft start strength of a voltage switch type regulator */
55 enum spmi_vs_soft_start_str {
56 SPMI_VS_SOFT_START_STR_0P05_UA = 0,
57 SPMI_VS_SOFT_START_STR_0P25_UA,
58 SPMI_VS_SOFT_START_STR_0P55_UA,
59 SPMI_VS_SOFT_START_STR_0P75_UA,
60 SPMI_VS_SOFT_START_STR_HW_DEFAULT,
61 };
62
63 /**
64 * struct spmi_regulator_init_data - spmi-regulator initialization data
65 * @pin_ctrl_enable: Bit mask specifying which hardware pins should be
66 * used to enable the regulator, if any
67 * Value should be an ORing of
68 * SPMI_REGULATOR_PIN_CTRL_ENABLE_* constants. If
69 * the bit specified by
70 * SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT is
71 * set, then pin control enable hardware registers
72 * will not be modified.
73 * @pin_ctrl_hpm: Bit mask specifying which hardware pins should be
74 * used to force the regulator into high power
75 * mode, if any
76 * Value should be an ORing of
77 * SPMI_REGULATOR_PIN_CTRL_HPM_* constants. If
78 * the bit specified by
79 * SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT is
80 * set, then pin control mode hardware registers
81 * will not be modified.
82 * @vs_soft_start_strength: This parameter sets the soft start strength for
83 * voltage switch type regulators. Its value
84 * should be one of SPMI_VS_SOFT_START_STR_*. If
85 * its value is SPMI_VS_SOFT_START_STR_HW_DEFAULT,
86 * then the soft start strength will be left at its
87 * default hardware value.
88 */
89 struct spmi_regulator_init_data {
90 unsigned pin_ctrl_enable;
91 unsigned pin_ctrl_hpm;
92 enum spmi_vs_soft_start_str vs_soft_start_strength;
93 };
94
95 /* These types correspond to unique register layouts. */
96 enum spmi_regulator_logical_type {
97 SPMI_REGULATOR_LOGICAL_TYPE_SMPS,
98 SPMI_REGULATOR_LOGICAL_TYPE_LDO,
99 SPMI_REGULATOR_LOGICAL_TYPE_VS,
100 SPMI_REGULATOR_LOGICAL_TYPE_BOOST,
101 SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS,
102 SPMI_REGULATOR_LOGICAL_TYPE_BOOST_BYP,
103 SPMI_REGULATOR_LOGICAL_TYPE_LN_LDO,
104 SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS,
105 SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS,
106 SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO,
107 };
108
109 enum spmi_regulator_type {
110 SPMI_REGULATOR_TYPE_BUCK = 0x03,
111 SPMI_REGULATOR_TYPE_LDO = 0x04,
112 SPMI_REGULATOR_TYPE_VS = 0x05,
113 SPMI_REGULATOR_TYPE_BOOST = 0x1b,
114 SPMI_REGULATOR_TYPE_FTS = 0x1c,
115 SPMI_REGULATOR_TYPE_BOOST_BYP = 0x1f,
116 SPMI_REGULATOR_TYPE_ULT_LDO = 0x21,
117 SPMI_REGULATOR_TYPE_ULT_BUCK = 0x22,
118 };
119
120 enum spmi_regulator_subtype {
121 SPMI_REGULATOR_SUBTYPE_GP_CTL = 0x08,
122 SPMI_REGULATOR_SUBTYPE_RF_CTL = 0x09,
123 SPMI_REGULATOR_SUBTYPE_N50 = 0x01,
124 SPMI_REGULATOR_SUBTYPE_N150 = 0x02,
125 SPMI_REGULATOR_SUBTYPE_N300 = 0x03,
126 SPMI_REGULATOR_SUBTYPE_N600 = 0x04,
127 SPMI_REGULATOR_SUBTYPE_N1200 = 0x05,
128 SPMI_REGULATOR_SUBTYPE_N600_ST = 0x06,
129 SPMI_REGULATOR_SUBTYPE_N1200_ST = 0x07,
130 SPMI_REGULATOR_SUBTYPE_N900_ST = 0x14,
131 SPMI_REGULATOR_SUBTYPE_N300_ST = 0x15,
132 SPMI_REGULATOR_SUBTYPE_P50 = 0x08,
133 SPMI_REGULATOR_SUBTYPE_P150 = 0x09,
134 SPMI_REGULATOR_SUBTYPE_P300 = 0x0a,
135 SPMI_REGULATOR_SUBTYPE_P600 = 0x0b,
136 SPMI_REGULATOR_SUBTYPE_P1200 = 0x0c,
137 SPMI_REGULATOR_SUBTYPE_LN = 0x10,
138 SPMI_REGULATOR_SUBTYPE_LV_P50 = 0x28,
139 SPMI_REGULATOR_SUBTYPE_LV_P150 = 0x29,
140 SPMI_REGULATOR_SUBTYPE_LV_P300 = 0x2a,
141 SPMI_REGULATOR_SUBTYPE_LV_P600 = 0x2b,
142 SPMI_REGULATOR_SUBTYPE_LV_P1200 = 0x2c,
143 SPMI_REGULATOR_SUBTYPE_LV_P450 = 0x2d,
144 SPMI_REGULATOR_SUBTYPE_LV100 = 0x01,
145 SPMI_REGULATOR_SUBTYPE_LV300 = 0x02,
146 SPMI_REGULATOR_SUBTYPE_MV300 = 0x08,
147 SPMI_REGULATOR_SUBTYPE_MV500 = 0x09,
148 SPMI_REGULATOR_SUBTYPE_HDMI = 0x10,
149 SPMI_REGULATOR_SUBTYPE_OTG = 0x11,
150 SPMI_REGULATOR_SUBTYPE_5V_BOOST = 0x01,
151 SPMI_REGULATOR_SUBTYPE_FTS_CTL = 0x08,
152 SPMI_REGULATOR_SUBTYPE_FTS2p5_CTL = 0x09,
153 SPMI_REGULATOR_SUBTYPE_BB_2A = 0x01,
154 SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL1 = 0x0d,
155 SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL2 = 0x0e,
156 SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL3 = 0x0f,
157 SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL4 = 0x10,
158 };
159
160 enum spmi_common_regulator_registers {
161 SPMI_COMMON_REG_DIG_MAJOR_REV = 0x01,
162 SPMI_COMMON_REG_TYPE = 0x04,
163 SPMI_COMMON_REG_SUBTYPE = 0x05,
164 SPMI_COMMON_REG_VOLTAGE_RANGE = 0x40,
165 SPMI_COMMON_REG_VOLTAGE_SET = 0x41,
166 SPMI_COMMON_REG_MODE = 0x45,
167 SPMI_COMMON_REG_ENABLE = 0x46,
168 SPMI_COMMON_REG_PULL_DOWN = 0x48,
169 SPMI_COMMON_REG_SOFT_START = 0x4c,
170 SPMI_COMMON_REG_STEP_CTRL = 0x61,
171 };
172
173 enum spmi_vs_registers {
174 SPMI_VS_REG_OCP = 0x4a,
175 SPMI_VS_REG_SOFT_START = 0x4c,
176 };
177
178 enum spmi_boost_registers {
179 SPMI_BOOST_REG_CURRENT_LIMIT = 0x4a,
180 };
181
182 enum spmi_boost_byp_registers {
183 SPMI_BOOST_BYP_REG_CURRENT_LIMIT = 0x4b,
184 };
185
186 enum spmi_saw3_registers {
187 SAW3_SECURE = 0x00,
188 SAW3_ID = 0x04,
189 SAW3_SPM_STS = 0x0C,
190 SAW3_AVS_STS = 0x10,
191 SAW3_PMIC_STS = 0x14,
192 SAW3_RST = 0x18,
193 SAW3_VCTL = 0x1C,
194 SAW3_AVS_CTL = 0x20,
195 SAW3_AVS_LIMIT = 0x24,
196 SAW3_AVS_DLY = 0x28,
197 SAW3_AVS_HYSTERESIS = 0x2C,
198 SAW3_SPM_STS2 = 0x38,
199 SAW3_SPM_PMIC_DATA_3 = 0x4C,
200 SAW3_VERSION = 0xFD0,
201 };
202
203 /* Used for indexing into ctrl_reg. These are offets from 0x40 */
204 enum spmi_common_control_register_index {
205 SPMI_COMMON_IDX_VOLTAGE_RANGE = 0,
206 SPMI_COMMON_IDX_VOLTAGE_SET = 1,
207 SPMI_COMMON_IDX_MODE = 5,
208 SPMI_COMMON_IDX_ENABLE = 6,
209 };
210
211 /* Common regulator control register layout */
212 #define SPMI_COMMON_ENABLE_MASK 0x80
213 #define SPMI_COMMON_ENABLE 0x80
214 #define SPMI_COMMON_DISABLE 0x00
215 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN3_MASK 0x08
216 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN2_MASK 0x04
217 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN1_MASK 0x02
218 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN0_MASK 0x01
219 #define SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK 0x0f
220
221 /* Common regulator mode register layout */
222 #define SPMI_COMMON_MODE_HPM_MASK 0x80
223 #define SPMI_COMMON_MODE_AUTO_MASK 0x40
224 #define SPMI_COMMON_MODE_BYPASS_MASK 0x20
225 #define SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK 0x10
226 #define SPMI_COMMON_MODE_FOLLOW_HW_EN3_MASK 0x08
227 #define SPMI_COMMON_MODE_FOLLOW_HW_EN2_MASK 0x04
228 #define SPMI_COMMON_MODE_FOLLOW_HW_EN1_MASK 0x02
229 #define SPMI_COMMON_MODE_FOLLOW_HW_EN0_MASK 0x01
230 #define SPMI_COMMON_MODE_FOLLOW_ALL_MASK 0x1f
231
232 /* Common regulator pull down control register layout */
233 #define SPMI_COMMON_PULL_DOWN_ENABLE_MASK 0x80
234
235 /* LDO regulator current limit control register layout */
236 #define SPMI_LDO_CURRENT_LIMIT_ENABLE_MASK 0x80
237
238 /* LDO regulator soft start control register layout */
239 #define SPMI_LDO_SOFT_START_ENABLE_MASK 0x80
240
241 /* VS regulator over current protection control register layout */
242 #define SPMI_VS_OCP_OVERRIDE 0x01
243 #define SPMI_VS_OCP_NO_OVERRIDE 0x00
244
245 /* VS regulator soft start control register layout */
246 #define SPMI_VS_SOFT_START_ENABLE_MASK 0x80
247 #define SPMI_VS_SOFT_START_SEL_MASK 0x03
248
249 /* Boost regulator current limit control register layout */
250 #define SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK 0x80
251 #define SPMI_BOOST_CURRENT_LIMIT_MASK 0x07
252
253 #define SPMI_VS_OCP_DEFAULT_MAX_RETRIES 10
254 #define SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS 30
255 #define SPMI_VS_OCP_FALL_DELAY_US 90
256 #define SPMI_VS_OCP_FAULT_DELAY_US 20000
257
258 #define SPMI_FTSMPS_STEP_CTRL_STEP_MASK 0x18
259 #define SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT 3
260 #define SPMI_FTSMPS_STEP_CTRL_DELAY_MASK 0x07
261 #define SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT 0
262
263 /* Clock rate in kHz of the FTSMPS regulator reference clock. */
264 #define SPMI_FTSMPS_CLOCK_RATE 19200
265
266 /* Minimum voltage stepper delay for each step. */
267 #define SPMI_FTSMPS_STEP_DELAY 8
268 #define SPMI_DEFAULT_STEP_DELAY 20
269
270 /*
271 * The ratio SPMI_FTSMPS_STEP_MARGIN_NUM/SPMI_FTSMPS_STEP_MARGIN_DEN is used to
272 * adjust the step rate in order to account for oscillator variance.
273 */
274 #define SPMI_FTSMPS_STEP_MARGIN_NUM 4
275 #define SPMI_FTSMPS_STEP_MARGIN_DEN 5
276
277 /* VSET value to decide the range of ULT SMPS */
278 #define ULT_SMPS_RANGE_SPLIT 0x60
279
280 /**
281 * struct spmi_voltage_range - regulator set point voltage mapping description
282 * @min_uV: Minimum programmable output voltage resulting from
283 * set point register value 0x00
284 * @max_uV: Maximum programmable output voltage
285 * @step_uV: Output voltage increase resulting from the set point
286 * register value increasing by 1
287 * @set_point_min_uV: Minimum allowed voltage
288 * @set_point_max_uV: Maximum allowed voltage. This may be tweaked in order
289 * to pick which range should be used in the case of
290 * overlapping set points.
291 * @n_voltages: Number of preferred voltage set points present in this
292 * range
293 * @range_sel: Voltage range register value corresponding to this range
294 *
295 * The following relationships must be true for the values used in this struct:
296 * (max_uV - min_uV) % step_uV == 0
297 * (set_point_min_uV - min_uV) % step_uV == 0*
298 * (set_point_max_uV - min_uV) % step_uV == 0*
299 * n_voltages = (set_point_max_uV - set_point_min_uV) / step_uV + 1
300 *
301 * *Note, set_point_min_uV == set_point_max_uV == 0 is allowed in order to
302 * specify that the voltage range has meaning, but is not preferred.
303 */
304 struct spmi_voltage_range {
305 int min_uV;
306 int max_uV;
307 int step_uV;
308 int set_point_min_uV;
309 int set_point_max_uV;
310 unsigned n_voltages;
311 u8 range_sel;
312 };
313
314 /*
315 * The ranges specified in the spmi_voltage_set_points struct must be listed
316 * so that range[i].set_point_max_uV < range[i+1].set_point_min_uV.
317 */
318 struct spmi_voltage_set_points {
319 struct spmi_voltage_range *range;
320 int count;
321 unsigned n_voltages;
322 };
323
324 struct spmi_regulator {
325 struct regulator_desc desc;
326 struct device *dev;
327 struct delayed_work ocp_work;
328 struct regmap *regmap;
329 struct spmi_voltage_set_points *set_points;
330 enum spmi_regulator_logical_type logical_type;
331 int ocp_irq;
332 int ocp_count;
333 int ocp_max_retries;
334 int ocp_retry_delay_ms;
335 int hpm_min_load;
336 int slew_rate;
337 ktime_t vs_enable_time;
338 u16 base;
339 struct list_head node;
340 };
341
342 struct spmi_regulator_mapping {
343 enum spmi_regulator_type type;
344 enum spmi_regulator_subtype subtype;
345 enum spmi_regulator_logical_type logical_type;
346 u32 revision_min;
347 u32 revision_max;
348 struct regulator_ops *ops;
349 struct spmi_voltage_set_points *set_points;
350 int hpm_min_load;
351 };
352
353 struct spmi_regulator_data {
354 const char *name;
355 u16 base;
356 const char *supply;
357 const char *ocp;
358 u16 force_type;
359 };
360
361 #define SPMI_VREG(_type, _subtype, _dig_major_min, _dig_major_max, \
362 _logical_type, _ops_val, _set_points_val, _hpm_min_load) \
363 { \
364 .type = SPMI_REGULATOR_TYPE_##_type, \
365 .subtype = SPMI_REGULATOR_SUBTYPE_##_subtype, \
366 .revision_min = _dig_major_min, \
367 .revision_max = _dig_major_max, \
368 .logical_type = SPMI_REGULATOR_LOGICAL_TYPE_##_logical_type, \
369 .ops = &spmi_##_ops_val##_ops, \
370 .set_points = &_set_points_val##_set_points, \
371 .hpm_min_load = _hpm_min_load, \
372 }
373
374 #define SPMI_VREG_VS(_subtype, _dig_major_min, _dig_major_max) \
375 { \
376 .type = SPMI_REGULATOR_TYPE_VS, \
377 .subtype = SPMI_REGULATOR_SUBTYPE_##_subtype, \
378 .revision_min = _dig_major_min, \
379 .revision_max = _dig_major_max, \
380 .logical_type = SPMI_REGULATOR_LOGICAL_TYPE_VS, \
381 .ops = &spmi_vs_ops, \
382 }
383
384 #define SPMI_VOLTAGE_RANGE(_range_sel, _min_uV, _set_point_min_uV, \
385 _set_point_max_uV, _max_uV, _step_uV) \
386 { \
387 .min_uV = _min_uV, \
388 .max_uV = _max_uV, \
389 .set_point_min_uV = _set_point_min_uV, \
390 .set_point_max_uV = _set_point_max_uV, \
391 .step_uV = _step_uV, \
392 .range_sel = _range_sel, \
393 }
394
395 #define DEFINE_SPMI_SET_POINTS(name) \
396 struct spmi_voltage_set_points name##_set_points = { \
397 .range = name##_ranges, \
398 .count = ARRAY_SIZE(name##_ranges), \
399 }
400
401 /*
402 * These tables contain the physically available PMIC regulator voltage setpoint
403 * ranges. Where two ranges overlap in hardware, one of the ranges is trimmed
404 * to ensure that the setpoints available to software are monotonically
405 * increasing and unique. The set_voltage callback functions expect these
406 * properties to hold.
407 */
408 static struct spmi_voltage_range pldo_ranges[] = {
409 SPMI_VOLTAGE_RANGE(2, 750000, 750000, 1537500, 1537500, 12500),
410 SPMI_VOLTAGE_RANGE(3, 1500000, 1550000, 3075000, 3075000, 25000),
411 SPMI_VOLTAGE_RANGE(4, 1750000, 3100000, 4900000, 4900000, 50000),
412 };
413
414 static struct spmi_voltage_range nldo1_ranges[] = {
415 SPMI_VOLTAGE_RANGE(2, 750000, 750000, 1537500, 1537500, 12500),
416 };
417
418 static struct spmi_voltage_range nldo2_ranges[] = {
419 SPMI_VOLTAGE_RANGE(0, 375000, 0, 0, 1537500, 12500),
420 SPMI_VOLTAGE_RANGE(1, 375000, 375000, 768750, 768750, 6250),
421 SPMI_VOLTAGE_RANGE(2, 750000, 775000, 1537500, 1537500, 12500),
422 };
423
424 static struct spmi_voltage_range nldo3_ranges[] = {
425 SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1537500, 1537500, 12500),
426 SPMI_VOLTAGE_RANGE(1, 375000, 0, 0, 1537500, 12500),
427 SPMI_VOLTAGE_RANGE(2, 750000, 0, 0, 1537500, 12500),
428 };
429
430 static struct spmi_voltage_range ln_ldo_ranges[] = {
431 SPMI_VOLTAGE_RANGE(1, 690000, 690000, 1110000, 1110000, 60000),
432 SPMI_VOLTAGE_RANGE(0, 1380000, 1380000, 2220000, 2220000, 120000),
433 };
434
435 static struct spmi_voltage_range smps_ranges[] = {
436 SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1562500, 1562500, 12500),
437 SPMI_VOLTAGE_RANGE(1, 1550000, 1575000, 3125000, 3125000, 25000),
438 };
439
440 static struct spmi_voltage_range ftsmps_ranges[] = {
441 SPMI_VOLTAGE_RANGE(0, 0, 350000, 1275000, 1275000, 5000),
442 SPMI_VOLTAGE_RANGE(1, 0, 1280000, 2040000, 2040000, 10000),
443 };
444
445 static struct spmi_voltage_range ftsmps2p5_ranges[] = {
446 SPMI_VOLTAGE_RANGE(0, 80000, 350000, 1355000, 1355000, 5000),
447 SPMI_VOLTAGE_RANGE(1, 160000, 1360000, 2200000, 2200000, 10000),
448 };
449
450 static struct spmi_voltage_range boost_ranges[] = {
451 SPMI_VOLTAGE_RANGE(0, 4000000, 4000000, 5550000, 5550000, 50000),
452 };
453
454 static struct spmi_voltage_range boost_byp_ranges[] = {
455 SPMI_VOLTAGE_RANGE(0, 2500000, 2500000, 5200000, 5650000, 50000),
456 };
457
458 static struct spmi_voltage_range ult_lo_smps_ranges[] = {
459 SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1562500, 1562500, 12500),
460 SPMI_VOLTAGE_RANGE(1, 750000, 0, 0, 1525000, 25000),
461 };
462
463 static struct spmi_voltage_range ult_ho_smps_ranges[] = {
464 SPMI_VOLTAGE_RANGE(0, 1550000, 1550000, 2325000, 2325000, 25000),
465 };
466
467 static struct spmi_voltage_range ult_nldo_ranges[] = {
468 SPMI_VOLTAGE_RANGE(0, 375000, 375000, 1537500, 1537500, 12500),
469 };
470
471 static struct spmi_voltage_range ult_pldo_ranges[] = {
472 SPMI_VOLTAGE_RANGE(0, 1750000, 1750000, 3337500, 3337500, 12500),
473 };
474
475 static DEFINE_SPMI_SET_POINTS(pldo);
476 static DEFINE_SPMI_SET_POINTS(nldo1);
477 static DEFINE_SPMI_SET_POINTS(nldo2);
478 static DEFINE_SPMI_SET_POINTS(nldo3);
479 static DEFINE_SPMI_SET_POINTS(ln_ldo);
480 static DEFINE_SPMI_SET_POINTS(smps);
481 static DEFINE_SPMI_SET_POINTS(ftsmps);
482 static DEFINE_SPMI_SET_POINTS(ftsmps2p5);
483 static DEFINE_SPMI_SET_POINTS(boost);
484 static DEFINE_SPMI_SET_POINTS(boost_byp);
485 static DEFINE_SPMI_SET_POINTS(ult_lo_smps);
486 static DEFINE_SPMI_SET_POINTS(ult_ho_smps);
487 static DEFINE_SPMI_SET_POINTS(ult_nldo);
488 static DEFINE_SPMI_SET_POINTS(ult_pldo);
489
490 static inline int spmi_vreg_read(struct spmi_regulator *vreg, u16 addr, u8 *buf,
491 int len)
492 {
493 return regmap_bulk_read(vreg->regmap, vreg->base + addr, buf, len);
494 }
495
496 static inline int spmi_vreg_write(struct spmi_regulator *vreg, u16 addr,
497 u8 *buf, int len)
498 {
499 return regmap_bulk_write(vreg->regmap, vreg->base + addr, buf, len);
500 }
501
502 static int spmi_vreg_update_bits(struct spmi_regulator *vreg, u16 addr, u8 val,
503 u8 mask)
504 {
505 return regmap_update_bits(vreg->regmap, vreg->base + addr, mask, val);
506 }
507
508 static int spmi_regulator_vs_enable(struct regulator_dev *rdev)
509 {
510 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
511
512 if (vreg->ocp_irq) {
513 vreg->ocp_count = 0;
514 vreg->vs_enable_time = ktime_get();
515 }
516
517 return regulator_enable_regmap(rdev);
518 }
519
520 static int spmi_regulator_vs_ocp(struct regulator_dev *rdev)
521 {
522 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
523 u8 reg = SPMI_VS_OCP_OVERRIDE;
524
525 return spmi_vreg_write(vreg, SPMI_VS_REG_OCP, &reg, 1);
526 }
527
528 static int spmi_regulator_select_voltage(struct spmi_regulator *vreg,
529 int min_uV, int max_uV)
530 {
531 const struct spmi_voltage_range *range;
532 int uV = min_uV;
533 int lim_min_uV, lim_max_uV, i, range_id, range_max_uV;
534 int selector, voltage_sel;
535
536 /* Check if request voltage is outside of physically settable range. */
537 lim_min_uV = vreg->set_points->range[0].set_point_min_uV;
538 lim_max_uV =
539 vreg->set_points->range[vreg->set_points->count - 1].set_point_max_uV;
540
541 if (uV < lim_min_uV && max_uV >= lim_min_uV)
542 uV = lim_min_uV;
543
544 if (uV < lim_min_uV || uV > lim_max_uV) {
545 dev_err(vreg->dev,
546 "request v=[%d, %d] is outside possible v=[%d, %d]\n",
547 min_uV, max_uV, lim_min_uV, lim_max_uV);
548 return -EINVAL;
549 }
550
551 /* Find the range which uV is inside of. */
552 for (i = vreg->set_points->count - 1; i > 0; i--) {
553 range_max_uV = vreg->set_points->range[i - 1].set_point_max_uV;
554 if (uV > range_max_uV && range_max_uV > 0)
555 break;
556 }
557
558 range_id = i;
559 range = &vreg->set_points->range[range_id];
560
561 /*
562 * Force uV to be an allowed set point by applying a ceiling function to
563 * the uV value.
564 */
565 voltage_sel = DIV_ROUND_UP(uV - range->min_uV, range->step_uV);
566 uV = voltage_sel * range->step_uV + range->min_uV;
567
568 if (uV > max_uV) {
569 dev_err(vreg->dev,
570 "request v=[%d, %d] cannot be met by any set point; "
571 "next set point: %d\n",
572 min_uV, max_uV, uV);
573 return -EINVAL;
574 }
575
576 selector = 0;
577 for (i = 0; i < range_id; i++)
578 selector += vreg->set_points->range[i].n_voltages;
579 selector += (uV - range->set_point_min_uV) / range->step_uV;
580
581 return selector;
582 }
583
584 static int spmi_sw_selector_to_hw(struct spmi_regulator *vreg,
585 unsigned selector, u8 *range_sel,
586 u8 *voltage_sel)
587 {
588 const struct spmi_voltage_range *range, *end;
589 unsigned offset;
590
591 range = vreg->set_points->range;
592 end = range + vreg->set_points->count;
593
594 for (; range < end; range++) {
595 if (selector < range->n_voltages) {
596 /*
597 * hardware selectors between set point min and real
598 * min are invalid so we ignore them
599 */
600 offset = range->set_point_min_uV - range->min_uV;
601 offset /= range->step_uV;
602 *voltage_sel = selector + offset;
603 *range_sel = range->range_sel;
604 return 0;
605 }
606
607 selector -= range->n_voltages;
608 }
609
610 return -EINVAL;
611 }
612
613 static int spmi_hw_selector_to_sw(struct spmi_regulator *vreg, u8 hw_sel,
614 const struct spmi_voltage_range *range)
615 {
616 unsigned sw_sel = 0;
617 unsigned offset, max_hw_sel;
618 const struct spmi_voltage_range *r = vreg->set_points->range;
619 const struct spmi_voltage_range *end = r + vreg->set_points->count;
620
621 for (; r < end; r++) {
622 if (r == range && range->n_voltages) {
623 /*
624 * hardware selectors between set point min and real
625 * min and between set point max and real max are
626 * invalid so we return an error if they're
627 * programmed into the hardware
628 */
629 offset = range->set_point_min_uV - range->min_uV;
630 offset /= range->step_uV;
631 if (hw_sel < offset)
632 return -EINVAL;
633
634 max_hw_sel = range->set_point_max_uV - range->min_uV;
635 max_hw_sel /= range->step_uV;
636 if (hw_sel > max_hw_sel)
637 return -EINVAL;
638
639 return sw_sel + hw_sel - offset;
640 }
641 sw_sel += r->n_voltages;
642 }
643
644 return -EINVAL;
645 }
646
647 static const struct spmi_voltage_range *
648 spmi_regulator_find_range(struct spmi_regulator *vreg)
649 {
650 u8 range_sel;
651 const struct spmi_voltage_range *range, *end;
652
653 range = vreg->set_points->range;
654 end = range + vreg->set_points->count;
655
656 spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, &range_sel, 1);
657
658 for (; range < end; range++)
659 if (range->range_sel == range_sel)
660 return range;
661
662 return NULL;
663 }
664
665 static int spmi_regulator_select_voltage_same_range(struct spmi_regulator *vreg,
666 int min_uV, int max_uV)
667 {
668 const struct spmi_voltage_range *range;
669 int uV = min_uV;
670 int i, selector;
671
672 range = spmi_regulator_find_range(vreg);
673 if (!range)
674 goto different_range;
675
676 if (uV < range->min_uV && max_uV >= range->min_uV)
677 uV = range->min_uV;
678
679 if (uV < range->min_uV || uV > range->max_uV) {
680 /* Current range doesn't support the requested voltage. */
681 goto different_range;
682 }
683
684 /*
685 * Force uV to be an allowed set point by applying a ceiling function to
686 * the uV value.
687 */
688 uV = DIV_ROUND_UP(uV - range->min_uV, range->step_uV);
689 uV = uV * range->step_uV + range->min_uV;
690
691 if (uV > max_uV) {
692 /*
693 * No set point in the current voltage range is within the
694 * requested min_uV to max_uV range.
695 */
696 goto different_range;
697 }
698
699 selector = 0;
700 for (i = 0; i < vreg->set_points->count; i++) {
701 if (uV >= vreg->set_points->range[i].set_point_min_uV
702 && uV <= vreg->set_points->range[i].set_point_max_uV) {
703 selector +=
704 (uV - vreg->set_points->range[i].set_point_min_uV)
705 / vreg->set_points->range[i].step_uV;
706 break;
707 }
708
709 selector += vreg->set_points->range[i].n_voltages;
710 }
711
712 if (selector >= vreg->set_points->n_voltages)
713 goto different_range;
714
715 return selector;
716
717 different_range:
718 return spmi_regulator_select_voltage(vreg, min_uV, max_uV);
719 }
720
721 static int spmi_regulator_common_map_voltage(struct regulator_dev *rdev,
722 int min_uV, int max_uV)
723 {
724 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
725
726 /*
727 * Favor staying in the current voltage range if possible. This avoids
728 * voltage spikes that occur when changing the voltage range.
729 */
730 return spmi_regulator_select_voltage_same_range(vreg, min_uV, max_uV);
731 }
732
733 static int
734 spmi_regulator_common_set_voltage(struct regulator_dev *rdev, unsigned selector)
735 {
736 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
737 int ret;
738 u8 buf[2];
739 u8 range_sel, voltage_sel;
740
741 ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
742 if (ret)
743 return ret;
744
745 buf[0] = range_sel;
746 buf[1] = voltage_sel;
747 return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, buf, 2);
748 }
749
750 static int spmi_regulator_set_voltage_time_sel(struct regulator_dev *rdev,
751 unsigned int old_selector, unsigned int new_selector)
752 {
753 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
754 const struct spmi_voltage_range *range;
755 int diff_uV;
756
757 range = spmi_regulator_find_range(vreg);
758 if (!range)
759 return -EINVAL;
760
761 diff_uV = abs(new_selector - old_selector) * range->step_uV;
762
763 return DIV_ROUND_UP(diff_uV, vreg->slew_rate);
764 }
765
766 static int spmi_regulator_common_get_voltage(struct regulator_dev *rdev)
767 {
768 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
769 const struct spmi_voltage_range *range;
770 u8 voltage_sel;
771
772 spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1);
773
774 range = spmi_regulator_find_range(vreg);
775 if (!range)
776 return -EINVAL;
777
778 return spmi_hw_selector_to_sw(vreg, voltage_sel, range);
779 }
780
781 static int spmi_regulator_single_map_voltage(struct regulator_dev *rdev,
782 int min_uV, int max_uV)
783 {
784 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
785
786 return spmi_regulator_select_voltage(vreg, min_uV, max_uV);
787 }
788
789 static int spmi_regulator_single_range_set_voltage(struct regulator_dev *rdev,
790 unsigned selector)
791 {
792 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
793 u8 sel = selector;
794
795 /*
796 * Certain types of regulators do not have a range select register so
797 * only voltage set register needs to be written.
798 */
799 return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &sel, 1);
800 }
801
802 static int spmi_regulator_single_range_get_voltage(struct regulator_dev *rdev)
803 {
804 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
805 u8 selector;
806 int ret;
807
808 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &selector, 1);
809 if (ret)
810 return ret;
811
812 return selector;
813 }
814
815 static int spmi_regulator_ult_lo_smps_set_voltage(struct regulator_dev *rdev,
816 unsigned selector)
817 {
818 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
819 int ret;
820 u8 range_sel, voltage_sel;
821
822 ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
823 if (ret)
824 return ret;
825
826 /*
827 * Calculate VSET based on range
828 * In case of range 0: voltage_sel is a 7 bit value, can be written
829 * witout any modification.
830 * In case of range 1: voltage_sel is a 5 bit value, bits[7-5] set to
831 * [011].
832 */
833 if (range_sel == 1)
834 voltage_sel |= ULT_SMPS_RANGE_SPLIT;
835
836 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_VOLTAGE_SET,
837 voltage_sel, 0xff);
838 }
839
840 static int spmi_regulator_ult_lo_smps_get_voltage(struct regulator_dev *rdev)
841 {
842 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
843 const struct spmi_voltage_range *range;
844 u8 voltage_sel;
845
846 spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1);
847
848 range = spmi_regulator_find_range(vreg);
849 if (!range)
850 return -EINVAL;
851
852 if (range->range_sel == 1)
853 voltage_sel &= ~ULT_SMPS_RANGE_SPLIT;
854
855 return spmi_hw_selector_to_sw(vreg, voltage_sel, range);
856 }
857
858 static int spmi_regulator_common_list_voltage(struct regulator_dev *rdev,
859 unsigned selector)
860 {
861 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
862 int uV = 0;
863 int i;
864
865 if (selector >= vreg->set_points->n_voltages)
866 return 0;
867
868 for (i = 0; i < vreg->set_points->count; i++) {
869 if (selector < vreg->set_points->range[i].n_voltages) {
870 uV = selector * vreg->set_points->range[i].step_uV
871 + vreg->set_points->range[i].set_point_min_uV;
872 break;
873 }
874
875 selector -= vreg->set_points->range[i].n_voltages;
876 }
877
878 return uV;
879 }
880
881 static int
882 spmi_regulator_common_set_bypass(struct regulator_dev *rdev, bool enable)
883 {
884 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
885 u8 mask = SPMI_COMMON_MODE_BYPASS_MASK;
886 u8 val = 0;
887
888 if (enable)
889 val = mask;
890
891 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask);
892 }
893
894 static int
895 spmi_regulator_common_get_bypass(struct regulator_dev *rdev, bool *enable)
896 {
897 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
898 u8 val;
899 int ret;
900
901 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, &val, 1);
902 *enable = val & SPMI_COMMON_MODE_BYPASS_MASK;
903
904 return ret;
905 }
906
907 static unsigned int spmi_regulator_common_get_mode(struct regulator_dev *rdev)
908 {
909 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
910 u8 reg;
911
912 spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, &reg, 1);
913
914 if (reg & SPMI_COMMON_MODE_HPM_MASK)
915 return REGULATOR_MODE_NORMAL;
916
917 if (reg & SPMI_COMMON_MODE_AUTO_MASK)
918 return REGULATOR_MODE_FAST;
919
920 return REGULATOR_MODE_IDLE;
921 }
922
923 static int
924 spmi_regulator_common_set_mode(struct regulator_dev *rdev, unsigned int mode)
925 {
926 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
927 u8 mask = SPMI_COMMON_MODE_HPM_MASK | SPMI_COMMON_MODE_AUTO_MASK;
928 u8 val = 0;
929
930 if (mode == REGULATOR_MODE_NORMAL)
931 val = SPMI_COMMON_MODE_HPM_MASK;
932 else if (mode == REGULATOR_MODE_FAST)
933 val = SPMI_COMMON_MODE_AUTO_MASK;
934
935 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask);
936 }
937
938 static int
939 spmi_regulator_common_set_load(struct regulator_dev *rdev, int load_uA)
940 {
941 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
942 unsigned int mode;
943
944 if (load_uA >= vreg->hpm_min_load)
945 mode = REGULATOR_MODE_NORMAL;
946 else
947 mode = REGULATOR_MODE_IDLE;
948
949 return spmi_regulator_common_set_mode(rdev, mode);
950 }
951
952 static int spmi_regulator_common_set_pull_down(struct regulator_dev *rdev)
953 {
954 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
955 unsigned int mask = SPMI_COMMON_PULL_DOWN_ENABLE_MASK;
956
957 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_PULL_DOWN,
958 mask, mask);
959 }
960
961 static int spmi_regulator_common_set_soft_start(struct regulator_dev *rdev)
962 {
963 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
964 unsigned int mask = SPMI_LDO_SOFT_START_ENABLE_MASK;
965
966 return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_SOFT_START,
967 mask, mask);
968 }
969
970 static int spmi_regulator_set_ilim(struct regulator_dev *rdev, int ilim_uA)
971 {
972 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
973 enum spmi_regulator_logical_type type = vreg->logical_type;
974 unsigned int current_reg;
975 u8 reg;
976 u8 mask = SPMI_BOOST_CURRENT_LIMIT_MASK |
977 SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK;
978 int max = (SPMI_BOOST_CURRENT_LIMIT_MASK + 1) * 500;
979
980 if (type == SPMI_REGULATOR_LOGICAL_TYPE_BOOST)
981 current_reg = SPMI_BOOST_REG_CURRENT_LIMIT;
982 else
983 current_reg = SPMI_BOOST_BYP_REG_CURRENT_LIMIT;
984
985 if (ilim_uA > max || ilim_uA <= 0)
986 return -EINVAL;
987
988 reg = (ilim_uA - 1) / 500;
989 reg |= SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK;
990
991 return spmi_vreg_update_bits(vreg, current_reg, reg, mask);
992 }
993
994 static int spmi_regulator_vs_clear_ocp(struct spmi_regulator *vreg)
995 {
996 int ret;
997
998 ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE,
999 SPMI_COMMON_DISABLE, SPMI_COMMON_ENABLE_MASK);
1000
1001 vreg->vs_enable_time = ktime_get();
1002
1003 ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE,
1004 SPMI_COMMON_ENABLE, SPMI_COMMON_ENABLE_MASK);
1005
1006 return ret;
1007 }
1008
1009 static void spmi_regulator_vs_ocp_work(struct work_struct *work)
1010 {
1011 struct delayed_work *dwork = to_delayed_work(work);
1012 struct spmi_regulator *vreg
1013 = container_of(dwork, struct spmi_regulator, ocp_work);
1014
1015 spmi_regulator_vs_clear_ocp(vreg);
1016 }
1017
1018 static irqreturn_t spmi_regulator_vs_ocp_isr(int irq, void *data)
1019 {
1020 struct spmi_regulator *vreg = data;
1021 ktime_t ocp_irq_time;
1022 s64 ocp_trigger_delay_us;
1023
1024 ocp_irq_time = ktime_get();
1025 ocp_trigger_delay_us = ktime_us_delta(ocp_irq_time,
1026 vreg->vs_enable_time);
1027
1028 /*
1029 * Reset the OCP count if there is a large delay between switch enable
1030 * and when OCP triggers. This is indicative of a hotplug event as
1031 * opposed to a fault.
1032 */
1033 if (ocp_trigger_delay_us > SPMI_VS_OCP_FAULT_DELAY_US)
1034 vreg->ocp_count = 0;
1035
1036 /* Wait for switch output to settle back to 0 V after OCP triggered. */
1037 udelay(SPMI_VS_OCP_FALL_DELAY_US);
1038
1039 vreg->ocp_count++;
1040
1041 if (vreg->ocp_count == 1) {
1042 /* Immediately clear the over current condition. */
1043 spmi_regulator_vs_clear_ocp(vreg);
1044 } else if (vreg->ocp_count <= vreg->ocp_max_retries) {
1045 /* Schedule the over current clear task to run later. */
1046 schedule_delayed_work(&vreg->ocp_work,
1047 msecs_to_jiffies(vreg->ocp_retry_delay_ms) + 1);
1048 } else {
1049 dev_err(vreg->dev,
1050 "OCP triggered %d times; no further retries\n",
1051 vreg->ocp_count);
1052 }
1053
1054 return IRQ_HANDLED;
1055 }
1056
1057 #define SAW3_VCTL_DATA_MASK 0xFF
1058 #define SAW3_VCTL_CLEAR_MASK 0x700FF
1059 #define SAW3_AVS_CTL_EN_MASK 0x1
1060 #define SAW3_AVS_CTL_TGGL_MASK 0x8000000
1061 #define SAW3_AVS_CTL_CLEAR_MASK 0x7efc00
1062
1063 static struct regmap *saw_regmap = NULL;
1064
1065 static void spmi_saw_set_vdd(void *data)
1066 {
1067 u32 vctl, data3, avs_ctl, pmic_sts;
1068 bool avs_enabled = false;
1069 unsigned long timeout;
1070 u8 voltage_sel = *(u8 *)data;
1071
1072 regmap_read(saw_regmap, SAW3_AVS_CTL, &avs_ctl);
1073 regmap_read(saw_regmap, SAW3_VCTL, &vctl);
1074 regmap_read(saw_regmap, SAW3_SPM_PMIC_DATA_3, &data3);
1075
1076 /* select the band */
1077 vctl &= ~SAW3_VCTL_CLEAR_MASK;
1078 vctl |= (u32)voltage_sel;
1079
1080 data3 &= ~SAW3_VCTL_CLEAR_MASK;
1081 data3 |= (u32)voltage_sel;
1082
1083 /* If AVS is enabled, switch it off during the voltage change */
1084 avs_enabled = SAW3_AVS_CTL_EN_MASK & avs_ctl;
1085 if (avs_enabled) {
1086 avs_ctl &= ~SAW3_AVS_CTL_TGGL_MASK;
1087 regmap_write(saw_regmap, SAW3_AVS_CTL, avs_ctl);
1088 }
1089
1090 regmap_write(saw_regmap, SAW3_RST, 1);
1091 regmap_write(saw_regmap, SAW3_VCTL, vctl);
1092 regmap_write(saw_regmap, SAW3_SPM_PMIC_DATA_3, data3);
1093
1094 timeout = jiffies + usecs_to_jiffies(100);
1095 do {
1096 regmap_read(saw_regmap, SAW3_PMIC_STS, &pmic_sts);
1097 pmic_sts &= SAW3_VCTL_DATA_MASK;
1098 if (pmic_sts == (u32)voltage_sel)
1099 break;
1100
1101 cpu_relax();
1102
1103 } while (time_before(jiffies, timeout));
1104
1105 /* After successful voltage change, switch the AVS back on */
1106 if (avs_enabled) {
1107 pmic_sts &= 0x3f;
1108 avs_ctl &= ~SAW3_AVS_CTL_CLEAR_MASK;
1109 avs_ctl |= ((pmic_sts - 4) << 10);
1110 avs_ctl |= (pmic_sts << 17);
1111 avs_ctl |= SAW3_AVS_CTL_TGGL_MASK;
1112 regmap_write(saw_regmap, SAW3_AVS_CTL, avs_ctl);
1113 }
1114 }
1115
1116 static int
1117 spmi_regulator_saw_set_voltage(struct regulator_dev *rdev, unsigned selector)
1118 {
1119 struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1120 int ret;
1121 u8 range_sel, voltage_sel;
1122
1123 ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
1124 if (ret)
1125 return ret;
1126
1127 if (0 != range_sel) {
1128 dev_dbg(&rdev->dev, "range_sel = %02X voltage_sel = %02X", \
1129 range_sel, voltage_sel);
1130 return -EINVAL;
1131 }
1132
1133 /* Always do the SAW register writes on the first CPU */
1134 return smp_call_function_single(0, spmi_saw_set_vdd, \
1135 &voltage_sel, true);
1136 }
1137
1138 static struct regulator_ops spmi_saw_ops = {};
1139
1140 static struct regulator_ops spmi_smps_ops = {
1141 .enable = regulator_enable_regmap,
1142 .disable = regulator_disable_regmap,
1143 .is_enabled = regulator_is_enabled_regmap,
1144 .set_voltage_sel = spmi_regulator_common_set_voltage,
1145 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
1146 .get_voltage_sel = spmi_regulator_common_get_voltage,
1147 .map_voltage = spmi_regulator_common_map_voltage,
1148 .list_voltage = spmi_regulator_common_list_voltage,
1149 .set_mode = spmi_regulator_common_set_mode,
1150 .get_mode = spmi_regulator_common_get_mode,
1151 .set_load = spmi_regulator_common_set_load,
1152 .set_pull_down = spmi_regulator_common_set_pull_down,
1153 };
1154
1155 static struct regulator_ops spmi_ldo_ops = {
1156 .enable = regulator_enable_regmap,
1157 .disable = regulator_disable_regmap,
1158 .is_enabled = regulator_is_enabled_regmap,
1159 .set_voltage_sel = spmi_regulator_common_set_voltage,
1160 .get_voltage_sel = spmi_regulator_common_get_voltage,
1161 .map_voltage = spmi_regulator_common_map_voltage,
1162 .list_voltage = spmi_regulator_common_list_voltage,
1163 .set_mode = spmi_regulator_common_set_mode,
1164 .get_mode = spmi_regulator_common_get_mode,
1165 .set_load = spmi_regulator_common_set_load,
1166 .set_bypass = spmi_regulator_common_set_bypass,
1167 .get_bypass = spmi_regulator_common_get_bypass,
1168 .set_pull_down = spmi_regulator_common_set_pull_down,
1169 .set_soft_start = spmi_regulator_common_set_soft_start,
1170 };
1171
1172 static struct regulator_ops spmi_ln_ldo_ops = {
1173 .enable = regulator_enable_regmap,
1174 .disable = regulator_disable_regmap,
1175 .is_enabled = regulator_is_enabled_regmap,
1176 .set_voltage_sel = spmi_regulator_common_set_voltage,
1177 .get_voltage_sel = spmi_regulator_common_get_voltage,
1178 .map_voltage = spmi_regulator_common_map_voltage,
1179 .list_voltage = spmi_regulator_common_list_voltage,
1180 .set_bypass = spmi_regulator_common_set_bypass,
1181 .get_bypass = spmi_regulator_common_get_bypass,
1182 };
1183
1184 static struct regulator_ops spmi_vs_ops = {
1185 .enable = spmi_regulator_vs_enable,
1186 .disable = regulator_disable_regmap,
1187 .is_enabled = regulator_is_enabled_regmap,
1188 .set_pull_down = spmi_regulator_common_set_pull_down,
1189 .set_soft_start = spmi_regulator_common_set_soft_start,
1190 .set_over_current_protection = spmi_regulator_vs_ocp,
1191 .set_mode = spmi_regulator_common_set_mode,
1192 .get_mode = spmi_regulator_common_get_mode,
1193 };
1194
1195 static struct regulator_ops spmi_boost_ops = {
1196 .enable = regulator_enable_regmap,
1197 .disable = regulator_disable_regmap,
1198 .is_enabled = regulator_is_enabled_regmap,
1199 .set_voltage_sel = spmi_regulator_single_range_set_voltage,
1200 .get_voltage_sel = spmi_regulator_single_range_get_voltage,
1201 .map_voltage = spmi_regulator_single_map_voltage,
1202 .list_voltage = spmi_regulator_common_list_voltage,
1203 .set_input_current_limit = spmi_regulator_set_ilim,
1204 };
1205
1206 static struct regulator_ops spmi_ftsmps_ops = {
1207 .enable = regulator_enable_regmap,
1208 .disable = regulator_disable_regmap,
1209 .is_enabled = regulator_is_enabled_regmap,
1210 .set_voltage_sel = spmi_regulator_common_set_voltage,
1211 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
1212 .get_voltage_sel = spmi_regulator_common_get_voltage,
1213 .map_voltage = spmi_regulator_common_map_voltage,
1214 .list_voltage = spmi_regulator_common_list_voltage,
1215 .set_mode = spmi_regulator_common_set_mode,
1216 .get_mode = spmi_regulator_common_get_mode,
1217 .set_load = spmi_regulator_common_set_load,
1218 .set_pull_down = spmi_regulator_common_set_pull_down,
1219 };
1220
1221 static struct regulator_ops spmi_ult_lo_smps_ops = {
1222 .enable = regulator_enable_regmap,
1223 .disable = regulator_disable_regmap,
1224 .is_enabled = regulator_is_enabled_regmap,
1225 .set_voltage_sel = spmi_regulator_ult_lo_smps_set_voltage,
1226 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
1227 .get_voltage_sel = spmi_regulator_ult_lo_smps_get_voltage,
1228 .list_voltage = spmi_regulator_common_list_voltage,
1229 .set_mode = spmi_regulator_common_set_mode,
1230 .get_mode = spmi_regulator_common_get_mode,
1231 .set_load = spmi_regulator_common_set_load,
1232 .set_pull_down = spmi_regulator_common_set_pull_down,
1233 };
1234
1235 static struct regulator_ops spmi_ult_ho_smps_ops = {
1236 .enable = regulator_enable_regmap,
1237 .disable = regulator_disable_regmap,
1238 .is_enabled = regulator_is_enabled_regmap,
1239 .set_voltage_sel = spmi_regulator_single_range_set_voltage,
1240 .set_voltage_time_sel = spmi_regulator_set_voltage_time_sel,
1241 .get_voltage_sel = spmi_regulator_single_range_get_voltage,
1242 .map_voltage = spmi_regulator_single_map_voltage,
1243 .list_voltage = spmi_regulator_common_list_voltage,
1244 .set_mode = spmi_regulator_common_set_mode,
1245 .get_mode = spmi_regulator_common_get_mode,
1246 .set_load = spmi_regulator_common_set_load,
1247 .set_pull_down = spmi_regulator_common_set_pull_down,
1248 };
1249
1250 static struct regulator_ops spmi_ult_ldo_ops = {
1251 .enable = regulator_enable_regmap,
1252 .disable = regulator_disable_regmap,
1253 .is_enabled = regulator_is_enabled_regmap,
1254 .set_voltage_sel = spmi_regulator_single_range_set_voltage,
1255 .get_voltage_sel = spmi_regulator_single_range_get_voltage,
1256 .map_voltage = spmi_regulator_single_map_voltage,
1257 .list_voltage = spmi_regulator_common_list_voltage,
1258 .set_mode = spmi_regulator_common_set_mode,
1259 .get_mode = spmi_regulator_common_get_mode,
1260 .set_load = spmi_regulator_common_set_load,
1261 .set_bypass = spmi_regulator_common_set_bypass,
1262 .get_bypass = spmi_regulator_common_get_bypass,
1263 .set_pull_down = spmi_regulator_common_set_pull_down,
1264 .set_soft_start = spmi_regulator_common_set_soft_start,
1265 };
1266
1267 /* Maximum possible digital major revision value */
1268 #define INF 0xFF
1269
1270 static const struct spmi_regulator_mapping supported_regulators[] = {
1271 /* type subtype dig_min dig_max ltype ops setpoints hpm_min */
1272 SPMI_VREG(BUCK, GP_CTL, 0, INF, SMPS, smps, smps, 100000),
1273 SPMI_VREG(LDO, N300, 0, INF, LDO, ldo, nldo1, 10000),
1274 SPMI_VREG(LDO, N600, 0, 0, LDO, ldo, nldo2, 10000),
1275 SPMI_VREG(LDO, N1200, 0, 0, LDO, ldo, nldo2, 10000),
1276 SPMI_VREG(LDO, N600, 1, INF, LDO, ldo, nldo3, 10000),
1277 SPMI_VREG(LDO, N1200, 1, INF, LDO, ldo, nldo3, 10000),
1278 SPMI_VREG(LDO, N600_ST, 0, 0, LDO, ldo, nldo2, 10000),
1279 SPMI_VREG(LDO, N1200_ST, 0, 0, LDO, ldo, nldo2, 10000),
1280 SPMI_VREG(LDO, N600_ST, 1, INF, LDO, ldo, nldo3, 10000),
1281 SPMI_VREG(LDO, N1200_ST, 1, INF, LDO, ldo, nldo3, 10000),
1282 SPMI_VREG(LDO, P50, 0, INF, LDO, ldo, pldo, 5000),
1283 SPMI_VREG(LDO, P150, 0, INF, LDO, ldo, pldo, 10000),
1284 SPMI_VREG(LDO, P300, 0, INF, LDO, ldo, pldo, 10000),
1285 SPMI_VREG(LDO, P600, 0, INF, LDO, ldo, pldo, 10000),
1286 SPMI_VREG(LDO, P1200, 0, INF, LDO, ldo, pldo, 10000),
1287 SPMI_VREG(LDO, LN, 0, INF, LN_LDO, ln_ldo, ln_ldo, 0),
1288 SPMI_VREG(LDO, LV_P50, 0, INF, LDO, ldo, pldo, 5000),
1289 SPMI_VREG(LDO, LV_P150, 0, INF, LDO, ldo, pldo, 10000),
1290 SPMI_VREG(LDO, LV_P300, 0, INF, LDO, ldo, pldo, 10000),
1291 SPMI_VREG(LDO, LV_P600, 0, INF, LDO, ldo, pldo, 10000),
1292 SPMI_VREG(LDO, LV_P1200, 0, INF, LDO, ldo, pldo, 10000),
1293 SPMI_VREG_VS(LV100, 0, INF),
1294 SPMI_VREG_VS(LV300, 0, INF),
1295 SPMI_VREG_VS(MV300, 0, INF),
1296 SPMI_VREG_VS(MV500, 0, INF),
1297 SPMI_VREG_VS(HDMI, 0, INF),
1298 SPMI_VREG_VS(OTG, 0, INF),
1299 SPMI_VREG(BOOST, 5V_BOOST, 0, INF, BOOST, boost, boost, 0),
1300 SPMI_VREG(FTS, FTS_CTL, 0, INF, FTSMPS, ftsmps, ftsmps, 100000),
1301 SPMI_VREG(FTS, FTS2p5_CTL, 0, INF, FTSMPS, ftsmps, ftsmps2p5, 100000),
1302 SPMI_VREG(BOOST_BYP, BB_2A, 0, INF, BOOST_BYP, boost, boost_byp, 0),
1303 SPMI_VREG(ULT_BUCK, ULT_HF_CTL1, 0, INF, ULT_LO_SMPS, ult_lo_smps,
1304 ult_lo_smps, 100000),
1305 SPMI_VREG(ULT_BUCK, ULT_HF_CTL2, 0, INF, ULT_LO_SMPS, ult_lo_smps,
1306 ult_lo_smps, 100000),
1307 SPMI_VREG(ULT_BUCK, ULT_HF_CTL3, 0, INF, ULT_LO_SMPS, ult_lo_smps,
1308 ult_lo_smps, 100000),
1309 SPMI_VREG(ULT_BUCK, ULT_HF_CTL4, 0, INF, ULT_HO_SMPS, ult_ho_smps,
1310 ult_ho_smps, 100000),
1311 SPMI_VREG(ULT_LDO, N300_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1312 SPMI_VREG(ULT_LDO, N600_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1313 SPMI_VREG(ULT_LDO, N900_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1314 SPMI_VREG(ULT_LDO, N1200_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1315 SPMI_VREG(ULT_LDO, LV_P150, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1316 SPMI_VREG(ULT_LDO, LV_P300, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1317 SPMI_VREG(ULT_LDO, LV_P450, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1318 SPMI_VREG(ULT_LDO, P600, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1319 SPMI_VREG(ULT_LDO, P150, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1320 SPMI_VREG(ULT_LDO, P50, 0, INF, ULT_LDO, ult_ldo, ult_pldo, 5000),
1321 };
1322
1323 static void spmi_calculate_num_voltages(struct spmi_voltage_set_points *points)
1324 {
1325 unsigned int n;
1326 struct spmi_voltage_range *range = points->range;
1327
1328 for (; range < points->range + points->count; range++) {
1329 n = 0;
1330 if (range->set_point_max_uV) {
1331 n = range->set_point_max_uV - range->set_point_min_uV;
1332 n = (n / range->step_uV) + 1;
1333 }
1334 range->n_voltages = n;
1335 points->n_voltages += n;
1336 }
1337 }
1338
1339 static int spmi_regulator_match(struct spmi_regulator *vreg, u16 force_type)
1340 {
1341 const struct spmi_regulator_mapping *mapping;
1342 int ret, i;
1343 u32 dig_major_rev;
1344 u8 version[SPMI_COMMON_REG_SUBTYPE - SPMI_COMMON_REG_DIG_MAJOR_REV + 1];
1345 u8 type, subtype;
1346
1347 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_DIG_MAJOR_REV, version,
1348 ARRAY_SIZE(version));
1349 if (ret) {
1350 dev_dbg(vreg->dev, "could not read version registers\n");
1351 return ret;
1352 }
1353 dig_major_rev = version[SPMI_COMMON_REG_DIG_MAJOR_REV
1354 - SPMI_COMMON_REG_DIG_MAJOR_REV];
1355
1356 if (!force_type) {
1357 type = version[SPMI_COMMON_REG_TYPE -
1358 SPMI_COMMON_REG_DIG_MAJOR_REV];
1359 subtype = version[SPMI_COMMON_REG_SUBTYPE -
1360 SPMI_COMMON_REG_DIG_MAJOR_REV];
1361 } else {
1362 type = force_type >> 8;
1363 subtype = force_type;
1364 }
1365
1366 for (i = 0; i < ARRAY_SIZE(supported_regulators); i++) {
1367 mapping = &supported_regulators[i];
1368 if (mapping->type == type && mapping->subtype == subtype
1369 && mapping->revision_min <= dig_major_rev
1370 && mapping->revision_max >= dig_major_rev)
1371 goto found;
1372 }
1373
1374 dev_err(vreg->dev,
1375 "unsupported regulator: name=%s type=0x%02X, subtype=0x%02X, dig major rev=0x%02X\n",
1376 vreg->desc.name, type, subtype, dig_major_rev);
1377
1378 return -ENODEV;
1379
1380 found:
1381 vreg->logical_type = mapping->logical_type;
1382 vreg->set_points = mapping->set_points;
1383 vreg->hpm_min_load = mapping->hpm_min_load;
1384 vreg->desc.ops = mapping->ops;
1385
1386 if (mapping->set_points) {
1387 if (!mapping->set_points->n_voltages)
1388 spmi_calculate_num_voltages(mapping->set_points);
1389 vreg->desc.n_voltages = mapping->set_points->n_voltages;
1390 }
1391
1392 return 0;
1393 }
1394
1395 static int spmi_regulator_init_slew_rate(struct spmi_regulator *vreg)
1396 {
1397 int ret;
1398 u8 reg = 0;
1399 int step, delay, slew_rate, step_delay;
1400 const struct spmi_voltage_range *range;
1401
1402 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_STEP_CTRL, &reg, 1);
1403 if (ret) {
1404 dev_err(vreg->dev, "spmi read failed, ret=%d\n", ret);
1405 return ret;
1406 }
1407
1408 range = spmi_regulator_find_range(vreg);
1409 if (!range)
1410 return -EINVAL;
1411
1412 switch (vreg->logical_type) {
1413 case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS:
1414 step_delay = SPMI_FTSMPS_STEP_DELAY;
1415 break;
1416 default:
1417 step_delay = SPMI_DEFAULT_STEP_DELAY;
1418 break;
1419 }
1420
1421 step = reg & SPMI_FTSMPS_STEP_CTRL_STEP_MASK;
1422 step >>= SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT;
1423
1424 delay = reg & SPMI_FTSMPS_STEP_CTRL_DELAY_MASK;
1425 delay >>= SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT;
1426
1427 /* slew_rate has units of uV/us */
1428 slew_rate = SPMI_FTSMPS_CLOCK_RATE * range->step_uV * (1 << step);
1429 slew_rate /= 1000 * (step_delay << delay);
1430 slew_rate *= SPMI_FTSMPS_STEP_MARGIN_NUM;
1431 slew_rate /= SPMI_FTSMPS_STEP_MARGIN_DEN;
1432
1433 /* Ensure that the slew rate is greater than 0 */
1434 vreg->slew_rate = max(slew_rate, 1);
1435
1436 return ret;
1437 }
1438
1439 static int spmi_regulator_init_registers(struct spmi_regulator *vreg,
1440 const struct spmi_regulator_init_data *data)
1441 {
1442 int ret;
1443 enum spmi_regulator_logical_type type;
1444 u8 ctrl_reg[8], reg, mask;
1445
1446 type = vreg->logical_type;
1447
1448 ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8);
1449 if (ret)
1450 return ret;
1451
1452 /* Set up enable pin control. */
1453 if ((type == SPMI_REGULATOR_LOGICAL_TYPE_SMPS
1454 || type == SPMI_REGULATOR_LOGICAL_TYPE_LDO
1455 || type == SPMI_REGULATOR_LOGICAL_TYPE_VS)
1456 && !(data->pin_ctrl_enable
1457 & SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT)) {
1458 ctrl_reg[SPMI_COMMON_IDX_ENABLE] &=
1459 ~SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK;
1460 ctrl_reg[SPMI_COMMON_IDX_ENABLE] |=
1461 data->pin_ctrl_enable & SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK;
1462 }
1463
1464 /* Set up mode pin control. */
1465 if ((type == SPMI_REGULATOR_LOGICAL_TYPE_SMPS
1466 || type == SPMI_REGULATOR_LOGICAL_TYPE_LDO)
1467 && !(data->pin_ctrl_hpm
1468 & SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
1469 ctrl_reg[SPMI_COMMON_IDX_MODE] &=
1470 ~SPMI_COMMON_MODE_FOLLOW_ALL_MASK;
1471 ctrl_reg[SPMI_COMMON_IDX_MODE] |=
1472 data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_ALL_MASK;
1473 }
1474
1475 if (type == SPMI_REGULATOR_LOGICAL_TYPE_VS
1476 && !(data->pin_ctrl_hpm & SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
1477 ctrl_reg[SPMI_COMMON_IDX_MODE] &=
1478 ~SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1479 ctrl_reg[SPMI_COMMON_IDX_MODE] |=
1480 data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1481 }
1482
1483 if ((type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS
1484 || type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS
1485 || type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO)
1486 && !(data->pin_ctrl_hpm
1487 & SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
1488 ctrl_reg[SPMI_COMMON_IDX_MODE] &=
1489 ~SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1490 ctrl_reg[SPMI_COMMON_IDX_MODE] |=
1491 data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1492 }
1493
1494 /* Write back any control register values that were modified. */
1495 ret = spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8);
1496 if (ret)
1497 return ret;
1498
1499 /* Set soft start strength and over current protection for VS. */
1500 if (type == SPMI_REGULATOR_LOGICAL_TYPE_VS) {
1501 if (data->vs_soft_start_strength
1502 != SPMI_VS_SOFT_START_STR_HW_DEFAULT) {
1503 reg = data->vs_soft_start_strength
1504 & SPMI_VS_SOFT_START_SEL_MASK;
1505 mask = SPMI_VS_SOFT_START_SEL_MASK;
1506 return spmi_vreg_update_bits(vreg,
1507 SPMI_VS_REG_SOFT_START,
1508 reg, mask);
1509 }
1510 }
1511
1512 return 0;
1513 }
1514
1515 static void spmi_regulator_get_dt_config(struct spmi_regulator *vreg,
1516 struct device_node *node, struct spmi_regulator_init_data *data)
1517 {
1518 /*
1519 * Initialize configuration parameters to use hardware default in case
1520 * no value is specified via device tree.
1521 */
1522 data->pin_ctrl_enable = SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT;
1523 data->pin_ctrl_hpm = SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT;
1524 data->vs_soft_start_strength = SPMI_VS_SOFT_START_STR_HW_DEFAULT;
1525
1526 /* These bindings are optional, so it is okay if they aren't found. */
1527 of_property_read_u32(node, "qcom,ocp-max-retries",
1528 &vreg->ocp_max_retries);
1529 of_property_read_u32(node, "qcom,ocp-retry-delay",
1530 &vreg->ocp_retry_delay_ms);
1531 of_property_read_u32(node, "qcom,pin-ctrl-enable",
1532 &data->pin_ctrl_enable);
1533 of_property_read_u32(node, "qcom,pin-ctrl-hpm", &data->pin_ctrl_hpm);
1534 of_property_read_u32(node, "qcom,vs-soft-start-strength",
1535 &data->vs_soft_start_strength);
1536 }
1537
1538 static unsigned int spmi_regulator_of_map_mode(unsigned int mode)
1539 {
1540 if (mode == 1)
1541 return REGULATOR_MODE_NORMAL;
1542 if (mode == 2)
1543 return REGULATOR_MODE_FAST;
1544
1545 return REGULATOR_MODE_IDLE;
1546 }
1547
1548 static int spmi_regulator_of_parse(struct device_node *node,
1549 const struct regulator_desc *desc,
1550 struct regulator_config *config)
1551 {
1552 struct spmi_regulator_init_data data = { };
1553 struct spmi_regulator *vreg = config->driver_data;
1554 struct device *dev = config->dev;
1555 int ret;
1556
1557 spmi_regulator_get_dt_config(vreg, node, &data);
1558
1559 if (!vreg->ocp_max_retries)
1560 vreg->ocp_max_retries = SPMI_VS_OCP_DEFAULT_MAX_RETRIES;
1561 if (!vreg->ocp_retry_delay_ms)
1562 vreg->ocp_retry_delay_ms = SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS;
1563
1564 ret = spmi_regulator_init_registers(vreg, &data);
1565 if (ret) {
1566 dev_err(dev, "common initialization failed, ret=%d\n", ret);
1567 return ret;
1568 }
1569
1570 switch (vreg->logical_type) {
1571 case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS:
1572 case SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS:
1573 case SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS:
1574 case SPMI_REGULATOR_LOGICAL_TYPE_SMPS:
1575 ret = spmi_regulator_init_slew_rate(vreg);
1576 if (ret)
1577 return ret;
1578 default:
1579 break;
1580 }
1581
1582 if (vreg->logical_type != SPMI_REGULATOR_LOGICAL_TYPE_VS)
1583 vreg->ocp_irq = 0;
1584
1585 if (vreg->ocp_irq) {
1586 ret = devm_request_irq(dev, vreg->ocp_irq,
1587 spmi_regulator_vs_ocp_isr, IRQF_TRIGGER_RISING, "ocp",
1588 vreg);
1589 if (ret < 0) {
1590 dev_err(dev, "failed to request irq %d, ret=%d\n",
1591 vreg->ocp_irq, ret);
1592 return ret;
1593 }
1594
1595 INIT_DELAYED_WORK(&vreg->ocp_work, spmi_regulator_vs_ocp_work);
1596 }
1597
1598 return 0;
1599 }
1600
1601 static const struct spmi_regulator_data pm8941_regulators[] = {
1602 { "s1", 0x1400, "vdd_s1", },
1603 { "s2", 0x1700, "vdd_s2", },
1604 { "s3", 0x1a00, "vdd_s3", },
1605 { "s4", 0xa000, },
1606 { "l1", 0x4000, "vdd_l1_l3", },
1607 { "l2", 0x4100, "vdd_l2_lvs_1_2_3", },
1608 { "l3", 0x4200, "vdd_l1_l3", },
1609 { "l4", 0x4300, "vdd_l4_l11", },
1610 { "l5", 0x4400, "vdd_l5_l7", NULL, 0x0410 },
1611 { "l6", 0x4500, "vdd_l6_l12_l14_l15", },
1612 { "l7", 0x4600, "vdd_l5_l7", NULL, 0x0410 },
1613 { "l8", 0x4700, "vdd_l8_l16_l18_19", },
1614 { "l9", 0x4800, "vdd_l9_l10_l17_l22", },
1615 { "l10", 0x4900, "vdd_l9_l10_l17_l22", },
1616 { "l11", 0x4a00, "vdd_l4_l11", },
1617 { "l12", 0x4b00, "vdd_l6_l12_l14_l15", },
1618 { "l13", 0x4c00, "vdd_l13_l20_l23_l24", },
1619 { "l14", 0x4d00, "vdd_l6_l12_l14_l15", },
1620 { "l15", 0x4e00, "vdd_l6_l12_l14_l15", },
1621 { "l16", 0x4f00, "vdd_l8_l16_l18_19", },
1622 { "l17", 0x5000, "vdd_l9_l10_l17_l22", },
1623 { "l18", 0x5100, "vdd_l8_l16_l18_19", },
1624 { "l19", 0x5200, "vdd_l8_l16_l18_19", },
1625 { "l20", 0x5300, "vdd_l13_l20_l23_l24", },
1626 { "l21", 0x5400, "vdd_l21", },
1627 { "l22", 0x5500, "vdd_l9_l10_l17_l22", },
1628 { "l23", 0x5600, "vdd_l13_l20_l23_l24", },
1629 { "l24", 0x5700, "vdd_l13_l20_l23_l24", },
1630 { "lvs1", 0x8000, "vdd_l2_lvs_1_2_3", },
1631 { "lvs2", 0x8100, "vdd_l2_lvs_1_2_3", },
1632 { "lvs3", 0x8200, "vdd_l2_lvs_1_2_3", },
1633 { "5vs1", 0x8300, "vin_5vs", "ocp-5vs1", },
1634 { "5vs2", 0x8400, "vin_5vs", "ocp-5vs2", },
1635 { }
1636 };
1637
1638 static const struct spmi_regulator_data pm8841_regulators[] = {
1639 { "s1", 0x1400, "vdd_s1", },
1640 { "s2", 0x1700, "vdd_s2", NULL, 0x1c08 },
1641 { "s3", 0x1a00, "vdd_s3", },
1642 { "s4", 0x1d00, "vdd_s4", NULL, 0x1c08 },
1643 { "s5", 0x2000, "vdd_s5", NULL, 0x1c08 },
1644 { "s6", 0x2300, "vdd_s6", NULL, 0x1c08 },
1645 { "s7", 0x2600, "vdd_s7", NULL, 0x1c08 },
1646 { "s8", 0x2900, "vdd_s8", NULL, 0x1c08 },
1647 { }
1648 };
1649
1650 static const struct spmi_regulator_data pm8916_regulators[] = {
1651 { "s1", 0x1400, "vdd_s1", },
1652 { "s2", 0x1700, "vdd_s2", },
1653 { "s3", 0x1a00, "vdd_s3", },
1654 { "s4", 0x1d00, "vdd_s4", },
1655 { "l1", 0x4000, "vdd_l1_l3", },
1656 { "l2", 0x4100, "vdd_l2", },
1657 { "l3", 0x4200, "vdd_l1_l3", },
1658 { "l4", 0x4300, "vdd_l4_l5_l6", },
1659 { "l5", 0x4400, "vdd_l4_l5_l6", },
1660 { "l6", 0x4500, "vdd_l4_l5_l6", },
1661 { "l7", 0x4600, "vdd_l7", },
1662 { "l8", 0x4700, "vdd_l8_l11_l14_l15_l16", },
1663 { "l9", 0x4800, "vdd_l9_l10_l12_l13_l17_l18", },
1664 { "l10", 0x4900, "vdd_l9_l10_l12_l13_l17_l18", },
1665 { "l11", 0x4a00, "vdd_l8_l11_l14_l15_l16", },
1666 { "l12", 0x4b00, "vdd_l9_l10_l12_l13_l17_l18", },
1667 { "l13", 0x4c00, "vdd_l9_l10_l12_l13_l17_l18", },
1668 { "l14", 0x4d00, "vdd_l8_l11_l14_l15_l16", },
1669 { "l15", 0x4e00, "vdd_l8_l11_l14_l15_l16", },
1670 { "l16", 0x4f00, "vdd_l8_l11_l14_l15_l16", },
1671 { "l17", 0x5000, "vdd_l9_l10_l12_l13_l17_l18", },
1672 { "l18", 0x5100, "vdd_l9_l10_l12_l13_l17_l18", },
1673 { }
1674 };
1675
1676 static const struct spmi_regulator_data pm8994_regulators[] = {
1677 { "s1", 0x1400, "vdd_s1", },
1678 { "s2", 0x1700, "vdd_s2", },
1679 { "s3", 0x1a00, "vdd_s3", },
1680 { "s4", 0x1d00, "vdd_s4", },
1681 { "s5", 0x2000, "vdd_s5", },
1682 { "s6", 0x2300, "vdd_s6", },
1683 { "s7", 0x2600, "vdd_s7", },
1684 { "s8", 0x2900, "vdd_s8", },
1685 { "s9", 0x2c00, "vdd_s9", },
1686 { "s10", 0x2f00, "vdd_s10", },
1687 { "s11", 0x3200, "vdd_s11", },
1688 { "s12", 0x3500, "vdd_s12", },
1689 { "l1", 0x4000, "vdd_l1", },
1690 { "l2", 0x4100, "vdd_l2_l26_l28", },
1691 { "l3", 0x4200, "vdd_l3_l11", },
1692 { "l4", 0x4300, "vdd_l4_l27_l31", },
1693 { "l5", 0x4400, "vdd_l5_l7", },
1694 { "l6", 0x4500, "vdd_l6_l12_l32", },
1695 { "l7", 0x4600, "vdd_l5_l7", },
1696 { "l8", 0x4700, "vdd_l8_l16_l30", },
1697 { "l9", 0x4800, "vdd_l9_l10_l18_l22", },
1698 { "l10", 0x4900, "vdd_l9_l10_l18_l22", },
1699 { "l11", 0x4a00, "vdd_l3_l11", },
1700 { "l12", 0x4b00, "vdd_l6_l12_l32", },
1701 { "l13", 0x4c00, "vdd_l13_l19_l23_l24", },
1702 { "l14", 0x4d00, "vdd_l14_l15", },
1703 { "l15", 0x4e00, "vdd_l14_l15", },
1704 { "l16", 0x4f00, "vdd_l8_l16_l30", },
1705 { "l17", 0x5000, "vdd_l17_l29", },
1706 { "l18", 0x5100, "vdd_l9_l10_l18_l22", },
1707 { "l19", 0x5200, "vdd_l13_l19_l23_l24", },
1708 { "l20", 0x5300, "vdd_l20_l21", },
1709 { "l21", 0x5400, "vdd_l20_l21", },
1710 { "l22", 0x5500, "vdd_l9_l10_l18_l22", },
1711 { "l23", 0x5600, "vdd_l13_l19_l23_l24", },
1712 { "l24", 0x5700, "vdd_l13_l19_l23_l24", },
1713 { "l25", 0x5800, "vdd_l25", },
1714 { "l26", 0x5900, "vdd_l2_l26_l28", },
1715 { "l27", 0x5a00, "vdd_l4_l27_l31", },
1716 { "l28", 0x5b00, "vdd_l2_l26_l28", },
1717 { "l29", 0x5c00, "vdd_l17_l29", },
1718 { "l30", 0x5d00, "vdd_l8_l16_l30", },
1719 { "l31", 0x5e00, "vdd_l4_l27_l31", },
1720 { "l32", 0x5f00, "vdd_l6_l12_l32", },
1721 { "lvs1", 0x8000, "vdd_lvs_1_2", },
1722 { "lvs2", 0x8100, "vdd_lvs_1_2", },
1723 { }
1724 };
1725
1726 static const struct spmi_regulator_data pmi8994_regulators[] = {
1727 { "s1", 0x1400, "vdd_s1", },
1728 { "s2", 0x1700, "vdd_s2", },
1729 { "s3", 0x1a00, "vdd_s3", },
1730 { "l1", 0x4000, "vdd_l1", },
1731 { }
1732 };
1733
1734 static const struct of_device_id qcom_spmi_regulator_match[] = {
1735 { .compatible = "qcom,pm8841-regulators", .data = &pm8841_regulators },
1736 { .compatible = "qcom,pm8916-regulators", .data = &pm8916_regulators },
1737 { .compatible = "qcom,pm8941-regulators", .data = &pm8941_regulators },
1738 { .compatible = "qcom,pm8994-regulators", .data = &pm8994_regulators },
1739 { .compatible = "qcom,pmi8994-regulators", .data = &pmi8994_regulators },
1740 { }
1741 };
1742 MODULE_DEVICE_TABLE(of, qcom_spmi_regulator_match);
1743
1744 static int qcom_spmi_regulator_probe(struct platform_device *pdev)
1745 {
1746 const struct spmi_regulator_data *reg;
1747 const struct of_device_id *match;
1748 struct regulator_config config = { };
1749 struct regulator_dev *rdev;
1750 struct spmi_regulator *vreg;
1751 struct regmap *regmap;
1752 const char *name;
1753 struct device *dev = &pdev->dev;
1754 struct device_node *node = pdev->dev.of_node;
1755 struct device_node *syscon;
1756 int ret, lenp;
1757 struct list_head *vreg_list;
1758
1759 vreg_list = devm_kzalloc(dev, sizeof(*vreg_list), GFP_KERNEL);
1760 if (!vreg_list)
1761 return -ENOMEM;
1762 INIT_LIST_HEAD(vreg_list);
1763 platform_set_drvdata(pdev, vreg_list);
1764
1765 regmap = dev_get_regmap(dev->parent, NULL);
1766 if (!regmap)
1767 return -ENODEV;
1768
1769 match = of_match_device(qcom_spmi_regulator_match, &pdev->dev);
1770 if (!match)
1771 return -ENODEV;
1772
1773 if (of_find_property(node, "qcom,saw-reg", &lenp)) {
1774 syscon = of_parse_phandle(node, "qcom,saw-reg", 0);
1775 saw_regmap = syscon_node_to_regmap(syscon);
1776 of_node_put(syscon);
1777 if (IS_ERR(regmap))
1778 dev_err(dev, "ERROR reading SAW regmap\n");
1779 }
1780
1781 for (reg = match->data; reg->name; reg++) {
1782
1783 if (saw_regmap && \
1784 of_find_property(of_find_node_by_name(node, reg->name), \
1785 "qcom,saw-slave", &lenp)) {
1786 continue;
1787 }
1788
1789 vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
1790 if (!vreg)
1791 return -ENOMEM;
1792
1793 vreg->dev = dev;
1794 vreg->base = reg->base;
1795 vreg->regmap = regmap;
1796 if (reg->ocp) {
1797 vreg->ocp_irq = platform_get_irq_byname(pdev, reg->ocp);
1798 if (vreg->ocp_irq < 0) {
1799 ret = vreg->ocp_irq;
1800 goto err;
1801 }
1802 }
1803 vreg->desc.id = -1;
1804 vreg->desc.owner = THIS_MODULE;
1805 vreg->desc.type = REGULATOR_VOLTAGE;
1806 vreg->desc.enable_reg = reg->base + SPMI_COMMON_REG_ENABLE;
1807 vreg->desc.enable_mask = SPMI_COMMON_ENABLE_MASK;
1808 vreg->desc.enable_val = SPMI_COMMON_ENABLE;
1809 vreg->desc.name = name = reg->name;
1810 vreg->desc.supply_name = reg->supply;
1811 vreg->desc.of_match = reg->name;
1812 vreg->desc.of_parse_cb = spmi_regulator_of_parse;
1813 vreg->desc.of_map_mode = spmi_regulator_of_map_mode;
1814
1815 ret = spmi_regulator_match(vreg, reg->force_type);
1816 if (ret)
1817 continue;
1818
1819 if (saw_regmap && \
1820 of_find_property(of_find_node_by_name(node, reg->name), \
1821 "qcom,saw-leader", &lenp)) {
1822 spmi_saw_ops = *(vreg->desc.ops);
1823 spmi_saw_ops.set_voltage_sel = \
1824 spmi_regulator_saw_set_voltage;
1825 vreg->desc.ops = &spmi_saw_ops;
1826 }
1827
1828 config.dev = dev;
1829 config.driver_data = vreg;
1830 config.regmap = regmap;
1831 rdev = devm_regulator_register(dev, &vreg->desc, &config);
1832 if (IS_ERR(rdev)) {
1833 dev_err(dev, "failed to register %s\n", name);
1834 ret = PTR_ERR(rdev);
1835 goto err;
1836 }
1837
1838 INIT_LIST_HEAD(&vreg->node);
1839 list_add(&vreg->node, vreg_list);
1840 }
1841
1842 return 0;
1843
1844 err:
1845 list_for_each_entry(vreg, vreg_list, node)
1846 if (vreg->ocp_irq)
1847 cancel_delayed_work_sync(&vreg->ocp_work);
1848 return ret;
1849 }
1850
1851 static int qcom_spmi_regulator_remove(struct platform_device *pdev)
1852 {
1853 struct spmi_regulator *vreg;
1854 struct list_head *vreg_list = platform_get_drvdata(pdev);
1855
1856 list_for_each_entry(vreg, vreg_list, node)
1857 if (vreg->ocp_irq)
1858 cancel_delayed_work_sync(&vreg->ocp_work);
1859
1860 return 0;
1861 }
1862
1863 static struct platform_driver qcom_spmi_regulator_driver = {
1864 .driver = {
1865 .name = "qcom-spmi-regulator",
1866 .of_match_table = qcom_spmi_regulator_match,
1867 },
1868 .probe = qcom_spmi_regulator_probe,
1869 .remove = qcom_spmi_regulator_remove,
1870 };
1871 module_platform_driver(qcom_spmi_regulator_driver);
1872
1873 MODULE_DESCRIPTION("Qualcomm SPMI PMIC regulator driver");
1874 MODULE_LICENSE("GPL v2");
1875 MODULE_ALIAS("platform:qcom-spmi-regulator");