]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/remoteproc/omap_remoteproc.c
Merge tag 'amd-drm-fixes-5.11-2021-01-06' of https://gitlab.freedesktop.org/agd5f...
[mirror_ubuntu-jammy-kernel.git] / drivers / remoteproc / omap_remoteproc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * OMAP Remote Processor driver
4 *
5 * Copyright (C) 2011-2020 Texas Instruments Incorporated - http://www.ti.com/
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Mark Grosen <mgrosen@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Hari Kanigeri <h-kanigeri2@ti.com>
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/clk.h>
19 #include <linux/clk/ti.h>
20 #include <linux/err.h>
21 #include <linux/io.h>
22 #include <linux/of_device.h>
23 #include <linux/of_reserved_mem.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/interrupt.h>
28 #include <linux/remoteproc.h>
29 #include <linux/mailbox_client.h>
30 #include <linux/omap-iommu.h>
31 #include <linux/omap-mailbox.h>
32 #include <linux/regmap.h>
33 #include <linux/mfd/syscon.h>
34 #include <linux/reset.h>
35 #include <clocksource/timer-ti-dm.h>
36
37 #include <linux/platform_data/dmtimer-omap.h>
38
39 #include "omap_remoteproc.h"
40 #include "remoteproc_internal.h"
41
42 /* default auto-suspend delay (ms) */
43 #define DEFAULT_AUTOSUSPEND_DELAY 10000
44
45 /**
46 * struct omap_rproc_boot_data - boot data structure for the DSP omap rprocs
47 * @syscon: regmap handle for the system control configuration module
48 * @boot_reg: boot register offset within the @syscon regmap
49 * @boot_reg_shift: bit-field shift required for the boot address value in
50 * @boot_reg
51 */
52 struct omap_rproc_boot_data {
53 struct regmap *syscon;
54 unsigned int boot_reg;
55 unsigned int boot_reg_shift;
56 };
57
58 /**
59 * struct omap_rproc_mem - internal memory structure
60 * @cpu_addr: MPU virtual address of the memory region
61 * @bus_addr: bus address used to access the memory region
62 * @dev_addr: device address of the memory region from DSP view
63 * @size: size of the memory region
64 */
65 struct omap_rproc_mem {
66 void __iomem *cpu_addr;
67 phys_addr_t bus_addr;
68 u32 dev_addr;
69 size_t size;
70 };
71
72 /**
73 * struct omap_rproc_timer - data structure for a timer used by a omap rproc
74 * @odt: timer pointer
75 * @timer_ops: OMAP dmtimer ops for @odt timer
76 * @irq: timer irq
77 */
78 struct omap_rproc_timer {
79 struct omap_dm_timer *odt;
80 const struct omap_dm_timer_ops *timer_ops;
81 int irq;
82 };
83
84 /**
85 * struct omap_rproc - omap remote processor state
86 * @mbox: mailbox channel handle
87 * @client: mailbox client to request the mailbox channel
88 * @boot_data: boot data structure for setting processor boot address
89 * @mem: internal memory regions data
90 * @num_mems: number of internal memory regions
91 * @num_timers: number of rproc timer(s)
92 * @num_wd_timers: number of rproc watchdog timers
93 * @timers: timer(s) info used by rproc
94 * @autosuspend_delay: auto-suspend delay value to be used for runtime pm
95 * @need_resume: if true a resume is needed in the system resume callback
96 * @rproc: rproc handle
97 * @reset: reset handle
98 * @pm_comp: completion primitive to sync for suspend response
99 * @fck: functional clock for the remoteproc
100 * @suspend_acked: state machine flag to store the suspend request ack
101 */
102 struct omap_rproc {
103 struct mbox_chan *mbox;
104 struct mbox_client client;
105 struct omap_rproc_boot_data *boot_data;
106 struct omap_rproc_mem *mem;
107 int num_mems;
108 int num_timers;
109 int num_wd_timers;
110 struct omap_rproc_timer *timers;
111 int autosuspend_delay;
112 bool need_resume;
113 struct rproc *rproc;
114 struct reset_control *reset;
115 struct completion pm_comp;
116 struct clk *fck;
117 bool suspend_acked;
118 };
119
120 /**
121 * struct omap_rproc_mem_data - memory definitions for an omap remote processor
122 * @name: name for this memory entry
123 * @dev_addr: device address for the memory entry
124 */
125 struct omap_rproc_mem_data {
126 const char *name;
127 const u32 dev_addr;
128 };
129
130 /**
131 * struct omap_rproc_dev_data - device data for the omap remote processor
132 * @device_name: device name of the remote processor
133 * @mems: memory definitions for this remote processor
134 */
135 struct omap_rproc_dev_data {
136 const char *device_name;
137 const struct omap_rproc_mem_data *mems;
138 };
139
140 /**
141 * omap_rproc_request_timer() - request a timer for a remoteproc
142 * @dev: device requesting the timer
143 * @np: device node pointer to the desired timer
144 * @timer: handle to a struct omap_rproc_timer to return the timer handle
145 *
146 * This helper function is used primarily to request a timer associated with
147 * a remoteproc. The returned handle is stored in the .odt field of the
148 * @timer structure passed in, and is used to invoke other timer specific
149 * ops (like starting a timer either during device initialization or during
150 * a resume operation, or for stopping/freeing a timer).
151 *
152 * Return: 0 on success, otherwise an appropriate failure
153 */
154 static int omap_rproc_request_timer(struct device *dev, struct device_node *np,
155 struct omap_rproc_timer *timer)
156 {
157 int ret;
158
159 timer->odt = timer->timer_ops->request_by_node(np);
160 if (!timer->odt) {
161 dev_err(dev, "request for timer node %p failed\n", np);
162 return -EBUSY;
163 }
164
165 ret = timer->timer_ops->set_source(timer->odt, OMAP_TIMER_SRC_SYS_CLK);
166 if (ret) {
167 dev_err(dev, "error setting OMAP_TIMER_SRC_SYS_CLK as source for timer node %p\n",
168 np);
169 timer->timer_ops->free(timer->odt);
170 return ret;
171 }
172
173 /* clean counter, remoteproc code will set the value */
174 timer->timer_ops->set_load(timer->odt, 0);
175
176 return 0;
177 }
178
179 /**
180 * omap_rproc_start_timer() - start a timer for a remoteproc
181 * @timer: handle to a OMAP rproc timer
182 *
183 * This helper function is used to start a timer associated with a remoteproc,
184 * obtained using the request_timer ops. The helper function needs to be
185 * invoked by the driver to start the timer (during device initialization)
186 * or to just resume the timer.
187 *
188 * Return: 0 on success, otherwise a failure as returned by DMTimer ops
189 */
190 static inline int omap_rproc_start_timer(struct omap_rproc_timer *timer)
191 {
192 return timer->timer_ops->start(timer->odt);
193 }
194
195 /**
196 * omap_rproc_stop_timer() - stop a timer for a remoteproc
197 * @timer: handle to a OMAP rproc timer
198 *
199 * This helper function is used to disable a timer associated with a
200 * remoteproc, and needs to be called either during a device shutdown
201 * or suspend operation. The separate helper function allows the driver
202 * to just stop a timer without having to release the timer during a
203 * suspend operation.
204 *
205 * Return: 0 on success, otherwise a failure as returned by DMTimer ops
206 */
207 static inline int omap_rproc_stop_timer(struct omap_rproc_timer *timer)
208 {
209 return timer->timer_ops->stop(timer->odt);
210 }
211
212 /**
213 * omap_rproc_release_timer() - release a timer for a remoteproc
214 * @timer: handle to a OMAP rproc timer
215 *
216 * This helper function is used primarily to release a timer associated
217 * with a remoteproc. The dmtimer will be available for other clients to
218 * use once released.
219 *
220 * Return: 0 on success, otherwise a failure as returned by DMTimer ops
221 */
222 static inline int omap_rproc_release_timer(struct omap_rproc_timer *timer)
223 {
224 return timer->timer_ops->free(timer->odt);
225 }
226
227 /**
228 * omap_rproc_get_timer_irq() - get the irq for a timer
229 * @timer: handle to a OMAP rproc timer
230 *
231 * This function is used to get the irq associated with a watchdog timer. The
232 * function is called by the OMAP remoteproc driver to register a interrupt
233 * handler to handle watchdog events on the remote processor.
234 *
235 * Return: irq id on success, otherwise a failure as returned by DMTimer ops
236 */
237 static inline int omap_rproc_get_timer_irq(struct omap_rproc_timer *timer)
238 {
239 return timer->timer_ops->get_irq(timer->odt);
240 }
241
242 /**
243 * omap_rproc_ack_timer_irq() - acknowledge a timer irq
244 * @timer: handle to a OMAP rproc timer
245 *
246 * This function is used to clear the irq associated with a watchdog timer. The
247 * The function is called by the OMAP remoteproc upon a watchdog event on the
248 * remote processor to clear the interrupt status of the watchdog timer.
249 */
250 static inline void omap_rproc_ack_timer_irq(struct omap_rproc_timer *timer)
251 {
252 timer->timer_ops->write_status(timer->odt, OMAP_TIMER_INT_OVERFLOW);
253 }
254
255 /**
256 * omap_rproc_watchdog_isr() - Watchdog ISR handler for remoteproc device
257 * @irq: IRQ number associated with a watchdog timer
258 * @data: IRQ handler data
259 *
260 * This ISR routine executes the required necessary low-level code to
261 * acknowledge a watchdog timer interrupt. There can be multiple watchdog
262 * timers associated with a rproc (like IPUs which have 2 watchdog timers,
263 * one per Cortex M3/M4 core), so a lookup has to be performed to identify
264 * the timer to acknowledge its interrupt.
265 *
266 * The function also invokes rproc_report_crash to report the watchdog event
267 * to the remoteproc driver core, to trigger a recovery.
268 *
269 * Return: IRQ_HANDLED on success, otherwise IRQ_NONE
270 */
271 static irqreturn_t omap_rproc_watchdog_isr(int irq, void *data)
272 {
273 struct rproc *rproc = data;
274 struct omap_rproc *oproc = rproc->priv;
275 struct device *dev = rproc->dev.parent;
276 struct omap_rproc_timer *timers = oproc->timers;
277 struct omap_rproc_timer *wd_timer = NULL;
278 int num_timers = oproc->num_timers + oproc->num_wd_timers;
279 int i;
280
281 for (i = oproc->num_timers; i < num_timers; i++) {
282 if (timers[i].irq > 0 && irq == timers[i].irq) {
283 wd_timer = &timers[i];
284 break;
285 }
286 }
287
288 if (!wd_timer) {
289 dev_err(dev, "invalid timer\n");
290 return IRQ_NONE;
291 }
292
293 omap_rproc_ack_timer_irq(wd_timer);
294
295 rproc_report_crash(rproc, RPROC_WATCHDOG);
296
297 return IRQ_HANDLED;
298 }
299
300 /**
301 * omap_rproc_enable_timers() - enable the timers for a remoteproc
302 * @rproc: handle of a remote processor
303 * @configure: boolean flag used to acquire and configure the timer handle
304 *
305 * This function is used primarily to enable the timers associated with
306 * a remoteproc. The configure flag is provided to allow the driver to
307 * to either acquire and start a timer (during device initialization) or
308 * to just start a timer (during a resume operation).
309 *
310 * Return: 0 on success, otherwise an appropriate failure
311 */
312 static int omap_rproc_enable_timers(struct rproc *rproc, bool configure)
313 {
314 int i;
315 int ret = 0;
316 struct platform_device *tpdev;
317 struct dmtimer_platform_data *tpdata;
318 const struct omap_dm_timer_ops *timer_ops;
319 struct omap_rproc *oproc = rproc->priv;
320 struct omap_rproc_timer *timers = oproc->timers;
321 struct device *dev = rproc->dev.parent;
322 struct device_node *np = NULL;
323 int num_timers = oproc->num_timers + oproc->num_wd_timers;
324
325 if (!num_timers)
326 return 0;
327
328 if (!configure)
329 goto start_timers;
330
331 for (i = 0; i < num_timers; i++) {
332 if (i < oproc->num_timers)
333 np = of_parse_phandle(dev->of_node, "ti,timers", i);
334 else
335 np = of_parse_phandle(dev->of_node,
336 "ti,watchdog-timers",
337 (i - oproc->num_timers));
338 if (!np) {
339 ret = -ENXIO;
340 dev_err(dev, "device node lookup for timer at index %d failed: %d\n",
341 i < oproc->num_timers ? i :
342 i - oproc->num_timers, ret);
343 goto free_timers;
344 }
345
346 tpdev = of_find_device_by_node(np);
347 if (!tpdev) {
348 ret = -ENODEV;
349 dev_err(dev, "could not get timer platform device\n");
350 goto put_node;
351 }
352
353 tpdata = dev_get_platdata(&tpdev->dev);
354 put_device(&tpdev->dev);
355 if (!tpdata) {
356 ret = -EINVAL;
357 dev_err(dev, "dmtimer pdata structure NULL\n");
358 goto put_node;
359 }
360
361 timer_ops = tpdata->timer_ops;
362 if (!timer_ops || !timer_ops->request_by_node ||
363 !timer_ops->set_source || !timer_ops->set_load ||
364 !timer_ops->free || !timer_ops->start ||
365 !timer_ops->stop || !timer_ops->get_irq ||
366 !timer_ops->write_status) {
367 ret = -EINVAL;
368 dev_err(dev, "device does not have required timer ops\n");
369 goto put_node;
370 }
371
372 timers[i].irq = -1;
373 timers[i].timer_ops = timer_ops;
374 ret = omap_rproc_request_timer(dev, np, &timers[i]);
375 if (ret) {
376 dev_err(dev, "request for timer %p failed: %d\n", np,
377 ret);
378 goto put_node;
379 }
380 of_node_put(np);
381
382 if (i >= oproc->num_timers) {
383 timers[i].irq = omap_rproc_get_timer_irq(&timers[i]);
384 if (timers[i].irq < 0) {
385 dev_err(dev, "get_irq for timer %p failed: %d\n",
386 np, timers[i].irq);
387 ret = -EBUSY;
388 goto free_timers;
389 }
390
391 ret = request_irq(timers[i].irq,
392 omap_rproc_watchdog_isr, IRQF_SHARED,
393 "rproc-wdt", rproc);
394 if (ret) {
395 dev_err(dev, "error requesting irq for timer %p\n",
396 np);
397 omap_rproc_release_timer(&timers[i]);
398 timers[i].odt = NULL;
399 timers[i].timer_ops = NULL;
400 timers[i].irq = -1;
401 goto free_timers;
402 }
403 }
404 }
405
406 start_timers:
407 for (i = 0; i < num_timers; i++) {
408 ret = omap_rproc_start_timer(&timers[i]);
409 if (ret) {
410 dev_err(dev, "start timer %p failed failed: %d\n", np,
411 ret);
412 break;
413 }
414 }
415 if (ret) {
416 while (i >= 0) {
417 omap_rproc_stop_timer(&timers[i]);
418 i--;
419 }
420 goto put_node;
421 }
422 return 0;
423
424 put_node:
425 if (configure)
426 of_node_put(np);
427 free_timers:
428 while (i--) {
429 if (i >= oproc->num_timers)
430 free_irq(timers[i].irq, rproc);
431 omap_rproc_release_timer(&timers[i]);
432 timers[i].odt = NULL;
433 timers[i].timer_ops = NULL;
434 timers[i].irq = -1;
435 }
436
437 return ret;
438 }
439
440 /**
441 * omap_rproc_disable_timers() - disable the timers for a remoteproc
442 * @rproc: handle of a remote processor
443 * @configure: boolean flag used to release the timer handle
444 *
445 * This function is used primarily to disable the timers associated with
446 * a remoteproc. The configure flag is provided to allow the driver to
447 * to either stop and release a timer (during device shutdown) or to just
448 * stop a timer (during a suspend operation).
449 *
450 * Return: 0 on success or no timers
451 */
452 static int omap_rproc_disable_timers(struct rproc *rproc, bool configure)
453 {
454 int i;
455 struct omap_rproc *oproc = rproc->priv;
456 struct omap_rproc_timer *timers = oproc->timers;
457 int num_timers = oproc->num_timers + oproc->num_wd_timers;
458
459 if (!num_timers)
460 return 0;
461
462 for (i = 0; i < num_timers; i++) {
463 omap_rproc_stop_timer(&timers[i]);
464 if (configure) {
465 if (i >= oproc->num_timers)
466 free_irq(timers[i].irq, rproc);
467 omap_rproc_release_timer(&timers[i]);
468 timers[i].odt = NULL;
469 timers[i].timer_ops = NULL;
470 timers[i].irq = -1;
471 }
472 }
473
474 return 0;
475 }
476
477 /**
478 * omap_rproc_mbox_callback() - inbound mailbox message handler
479 * @client: mailbox client pointer used for requesting the mailbox channel
480 * @data: mailbox payload
481 *
482 * This handler is invoked by omap's mailbox driver whenever a mailbox
483 * message is received. Usually, the mailbox payload simply contains
484 * the index of the virtqueue that is kicked by the remote processor,
485 * and we let remoteproc core handle it.
486 *
487 * In addition to virtqueue indices, we also have some out-of-band values
488 * that indicates different events. Those values are deliberately very
489 * big so they don't coincide with virtqueue indices.
490 */
491 static void omap_rproc_mbox_callback(struct mbox_client *client, void *data)
492 {
493 struct omap_rproc *oproc = container_of(client, struct omap_rproc,
494 client);
495 struct device *dev = oproc->rproc->dev.parent;
496 const char *name = oproc->rproc->name;
497 u32 msg = (u32)data;
498
499 dev_dbg(dev, "mbox msg: 0x%x\n", msg);
500
501 switch (msg) {
502 case RP_MBOX_CRASH:
503 /*
504 * remoteproc detected an exception, notify the rproc core.
505 * The remoteproc core will handle the recovery.
506 */
507 dev_err(dev, "omap rproc %s crashed\n", name);
508 rproc_report_crash(oproc->rproc, RPROC_FATAL_ERROR);
509 break;
510 case RP_MBOX_ECHO_REPLY:
511 dev_info(dev, "received echo reply from %s\n", name);
512 break;
513 case RP_MBOX_SUSPEND_ACK:
514 case RP_MBOX_SUSPEND_CANCEL:
515 oproc->suspend_acked = msg == RP_MBOX_SUSPEND_ACK;
516 complete(&oproc->pm_comp);
517 break;
518 default:
519 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
520 return;
521 if (msg > oproc->rproc->max_notifyid) {
522 dev_dbg(dev, "dropping unknown message 0x%x", msg);
523 return;
524 }
525 /* msg contains the index of the triggered vring */
526 if (rproc_vq_interrupt(oproc->rproc, msg) == IRQ_NONE)
527 dev_dbg(dev, "no message was found in vqid %d\n", msg);
528 }
529 }
530
531 /* kick a virtqueue */
532 static void omap_rproc_kick(struct rproc *rproc, int vqid)
533 {
534 struct omap_rproc *oproc = rproc->priv;
535 struct device *dev = rproc->dev.parent;
536 int ret;
537
538 /* wake up the rproc before kicking it */
539 ret = pm_runtime_get_sync(dev);
540 if (WARN_ON(ret < 0)) {
541 dev_err(dev, "pm_runtime_get_sync() failed during kick, ret = %d\n",
542 ret);
543 pm_runtime_put_noidle(dev);
544 return;
545 }
546
547 /* send the index of the triggered virtqueue in the mailbox payload */
548 ret = mbox_send_message(oproc->mbox, (void *)vqid);
549 if (ret < 0)
550 dev_err(dev, "failed to send mailbox message, status = %d\n",
551 ret);
552
553 pm_runtime_mark_last_busy(dev);
554 pm_runtime_put_autosuspend(dev);
555 }
556
557 /**
558 * omap_rproc_write_dsp_boot_addr() - set boot address for DSP remote processor
559 * @rproc: handle of a remote processor
560 *
561 * Set boot address for a supported DSP remote processor.
562 *
563 * Return: 0 on success, or -EINVAL if boot address is not aligned properly
564 */
565 static int omap_rproc_write_dsp_boot_addr(struct rproc *rproc)
566 {
567 struct device *dev = rproc->dev.parent;
568 struct omap_rproc *oproc = rproc->priv;
569 struct omap_rproc_boot_data *bdata = oproc->boot_data;
570 u32 offset = bdata->boot_reg;
571 u32 value;
572 u32 mask;
573
574 if (rproc->bootaddr & (SZ_1K - 1)) {
575 dev_err(dev, "invalid boot address 0x%llx, must be aligned on a 1KB boundary\n",
576 rproc->bootaddr);
577 return -EINVAL;
578 }
579
580 value = rproc->bootaddr >> bdata->boot_reg_shift;
581 mask = ~(SZ_1K - 1) >> bdata->boot_reg_shift;
582
583 return regmap_update_bits(bdata->syscon, offset, mask, value);
584 }
585
586 /*
587 * Power up the remote processor.
588 *
589 * This function will be invoked only after the firmware for this rproc
590 * was loaded, parsed successfully, and all of its resource requirements
591 * were met.
592 */
593 static int omap_rproc_start(struct rproc *rproc)
594 {
595 struct omap_rproc *oproc = rproc->priv;
596 struct device *dev = rproc->dev.parent;
597 int ret;
598 struct mbox_client *client = &oproc->client;
599
600 if (oproc->boot_data) {
601 ret = omap_rproc_write_dsp_boot_addr(rproc);
602 if (ret)
603 return ret;
604 }
605
606 client->dev = dev;
607 client->tx_done = NULL;
608 client->rx_callback = omap_rproc_mbox_callback;
609 client->tx_block = false;
610 client->knows_txdone = false;
611
612 oproc->mbox = mbox_request_channel(client, 0);
613 if (IS_ERR(oproc->mbox)) {
614 ret = -EBUSY;
615 dev_err(dev, "mbox_request_channel failed: %ld\n",
616 PTR_ERR(oproc->mbox));
617 return ret;
618 }
619
620 /*
621 * Ping the remote processor. this is only for sanity-sake;
622 * there is no functional effect whatsoever.
623 *
624 * Note that the reply will _not_ arrive immediately: this message
625 * will wait in the mailbox fifo until the remote processor is booted.
626 */
627 ret = mbox_send_message(oproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
628 if (ret < 0) {
629 dev_err(dev, "mbox_send_message failed: %d\n", ret);
630 goto put_mbox;
631 }
632
633 ret = omap_rproc_enable_timers(rproc, true);
634 if (ret) {
635 dev_err(dev, "omap_rproc_enable_timers failed: %d\n", ret);
636 goto put_mbox;
637 }
638
639 ret = reset_control_deassert(oproc->reset);
640 if (ret) {
641 dev_err(dev, "reset control deassert failed: %d\n", ret);
642 goto disable_timers;
643 }
644
645 /*
646 * remote processor is up, so update the runtime pm status and
647 * enable the auto-suspend. The device usage count is incremented
648 * manually for balancing it for auto-suspend
649 */
650 pm_runtime_set_active(dev);
651 pm_runtime_use_autosuspend(dev);
652 pm_runtime_get_noresume(dev);
653 pm_runtime_enable(dev);
654 pm_runtime_mark_last_busy(dev);
655 pm_runtime_put_autosuspend(dev);
656
657 return 0;
658
659 disable_timers:
660 omap_rproc_disable_timers(rproc, true);
661 put_mbox:
662 mbox_free_channel(oproc->mbox);
663 return ret;
664 }
665
666 /* power off the remote processor */
667 static int omap_rproc_stop(struct rproc *rproc)
668 {
669 struct device *dev = rproc->dev.parent;
670 struct omap_rproc *oproc = rproc->priv;
671 int ret;
672
673 /*
674 * cancel any possible scheduled runtime suspend by incrementing
675 * the device usage count, and resuming the device. The remoteproc
676 * also needs to be woken up if suspended, to avoid the remoteproc
677 * OS to continue to remember any context that it has saved, and
678 * avoid potential issues in misindentifying a subsequent device
679 * reboot as a power restore boot
680 */
681 ret = pm_runtime_get_sync(dev);
682 if (ret < 0) {
683 pm_runtime_put_noidle(dev);
684 return ret;
685 }
686
687 ret = reset_control_assert(oproc->reset);
688 if (ret)
689 goto out;
690
691 ret = omap_rproc_disable_timers(rproc, true);
692 if (ret)
693 goto enable_device;
694
695 mbox_free_channel(oproc->mbox);
696
697 /*
698 * update the runtime pm states and status now that the remoteproc
699 * has stopped
700 */
701 pm_runtime_disable(dev);
702 pm_runtime_dont_use_autosuspend(dev);
703 pm_runtime_put_noidle(dev);
704 pm_runtime_set_suspended(dev);
705
706 return 0;
707
708 enable_device:
709 reset_control_deassert(oproc->reset);
710 out:
711 /* schedule the next auto-suspend */
712 pm_runtime_mark_last_busy(dev);
713 pm_runtime_put_autosuspend(dev);
714 return ret;
715 }
716
717 /**
718 * omap_rproc_da_to_va() - internal memory translation helper
719 * @rproc: remote processor to apply the address translation for
720 * @da: device address to translate
721 * @len: length of the memory buffer
722 *
723 * Custom function implementing the rproc .da_to_va ops to provide address
724 * translation (device address to kernel virtual address) for internal RAMs
725 * present in a DSP or IPU device). The translated addresses can be used
726 * either by the remoteproc core for loading, or by any rpmsg bus drivers.
727 *
728 * Return: translated virtual address in kernel memory space on success,
729 * or NULL on failure.
730 */
731 static void *omap_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
732 {
733 struct omap_rproc *oproc = rproc->priv;
734 int i;
735 u32 offset;
736
737 if (len <= 0)
738 return NULL;
739
740 if (!oproc->num_mems)
741 return NULL;
742
743 for (i = 0; i < oproc->num_mems; i++) {
744 if (da >= oproc->mem[i].dev_addr && da + len <=
745 oproc->mem[i].dev_addr + oproc->mem[i].size) {
746 offset = da - oproc->mem[i].dev_addr;
747 /* __force to make sparse happy with type conversion */
748 return (__force void *)(oproc->mem[i].cpu_addr +
749 offset);
750 }
751 }
752
753 return NULL;
754 }
755
756 static const struct rproc_ops omap_rproc_ops = {
757 .start = omap_rproc_start,
758 .stop = omap_rproc_stop,
759 .kick = omap_rproc_kick,
760 .da_to_va = omap_rproc_da_to_va,
761 };
762
763 #ifdef CONFIG_PM
764 static bool _is_rproc_in_standby(struct omap_rproc *oproc)
765 {
766 return ti_clk_is_in_standby(oproc->fck);
767 }
768
769 /* 1 sec is long enough time to let the remoteproc side suspend the device */
770 #define DEF_SUSPEND_TIMEOUT 1000
771 static int _omap_rproc_suspend(struct rproc *rproc, bool auto_suspend)
772 {
773 struct device *dev = rproc->dev.parent;
774 struct omap_rproc *oproc = rproc->priv;
775 unsigned long to = msecs_to_jiffies(DEF_SUSPEND_TIMEOUT);
776 unsigned long ta = jiffies + to;
777 u32 suspend_msg = auto_suspend ?
778 RP_MBOX_SUSPEND_AUTO : RP_MBOX_SUSPEND_SYSTEM;
779 int ret;
780
781 reinit_completion(&oproc->pm_comp);
782 oproc->suspend_acked = false;
783 ret = mbox_send_message(oproc->mbox, (void *)suspend_msg);
784 if (ret < 0) {
785 dev_err(dev, "PM mbox_send_message failed: %d\n", ret);
786 return ret;
787 }
788
789 ret = wait_for_completion_timeout(&oproc->pm_comp, to);
790 if (!oproc->suspend_acked)
791 return -EBUSY;
792
793 /*
794 * The remoteproc side is returning the ACK message before saving the
795 * context, because the context saving is performed within a SYS/BIOS
796 * function, and it cannot have any inter-dependencies against the IPC
797 * layer. Also, as the SYS/BIOS needs to preserve properly the processor
798 * register set, sending this ACK or signalling the completion of the
799 * context save through a shared memory variable can never be the
800 * absolute last thing to be executed on the remoteproc side, and the
801 * MPU cannot use the ACK message as a sync point to put the remoteproc
802 * into reset. The only way to ensure that the remote processor has
803 * completed saving the context is to check that the module has reached
804 * STANDBY state (after saving the context, the SYS/BIOS executes the
805 * appropriate target-specific WFI instruction causing the module to
806 * enter STANDBY).
807 */
808 while (!_is_rproc_in_standby(oproc)) {
809 if (time_after(jiffies, ta))
810 return -ETIME;
811 schedule();
812 }
813
814 ret = reset_control_assert(oproc->reset);
815 if (ret) {
816 dev_err(dev, "reset assert during suspend failed %d\n", ret);
817 return ret;
818 }
819
820 ret = omap_rproc_disable_timers(rproc, false);
821 if (ret) {
822 dev_err(dev, "disabling timers during suspend failed %d\n",
823 ret);
824 goto enable_device;
825 }
826
827 /*
828 * IOMMUs would have to be disabled specifically for runtime suspend.
829 * They are handled automatically through System PM callbacks for
830 * regular system suspend
831 */
832 if (auto_suspend) {
833 ret = omap_iommu_domain_deactivate(rproc->domain);
834 if (ret) {
835 dev_err(dev, "iommu domain deactivate failed %d\n",
836 ret);
837 goto enable_timers;
838 }
839 }
840
841 return 0;
842
843 enable_timers:
844 /* ignore errors on re-enabling code */
845 omap_rproc_enable_timers(rproc, false);
846 enable_device:
847 reset_control_deassert(oproc->reset);
848 return ret;
849 }
850
851 static int _omap_rproc_resume(struct rproc *rproc, bool auto_suspend)
852 {
853 struct device *dev = rproc->dev.parent;
854 struct omap_rproc *oproc = rproc->priv;
855 int ret;
856
857 /*
858 * IOMMUs would have to be enabled specifically for runtime resume.
859 * They would have been already enabled automatically through System
860 * PM callbacks for regular system resume
861 */
862 if (auto_suspend) {
863 ret = omap_iommu_domain_activate(rproc->domain);
864 if (ret) {
865 dev_err(dev, "omap_iommu activate failed %d\n", ret);
866 goto out;
867 }
868 }
869
870 /* boot address could be lost after suspend, so restore it */
871 if (oproc->boot_data) {
872 ret = omap_rproc_write_dsp_boot_addr(rproc);
873 if (ret) {
874 dev_err(dev, "boot address restore failed %d\n", ret);
875 goto suspend_iommu;
876 }
877 }
878
879 ret = omap_rproc_enable_timers(rproc, false);
880 if (ret) {
881 dev_err(dev, "enabling timers during resume failed %d\n", ret);
882 goto suspend_iommu;
883 }
884
885 ret = reset_control_deassert(oproc->reset);
886 if (ret) {
887 dev_err(dev, "reset deassert during resume failed %d\n", ret);
888 goto disable_timers;
889 }
890
891 return 0;
892
893 disable_timers:
894 omap_rproc_disable_timers(rproc, false);
895 suspend_iommu:
896 if (auto_suspend)
897 omap_iommu_domain_deactivate(rproc->domain);
898 out:
899 return ret;
900 }
901
902 static int __maybe_unused omap_rproc_suspend(struct device *dev)
903 {
904 struct platform_device *pdev = to_platform_device(dev);
905 struct rproc *rproc = platform_get_drvdata(pdev);
906 struct omap_rproc *oproc = rproc->priv;
907 int ret = 0;
908
909 mutex_lock(&rproc->lock);
910 if (rproc->state == RPROC_OFFLINE)
911 goto out;
912
913 if (rproc->state == RPROC_SUSPENDED)
914 goto out;
915
916 if (rproc->state != RPROC_RUNNING) {
917 ret = -EBUSY;
918 goto out;
919 }
920
921 ret = _omap_rproc_suspend(rproc, false);
922 if (ret) {
923 dev_err(dev, "suspend failed %d\n", ret);
924 goto out;
925 }
926
927 /*
928 * remoteproc is running at the time of system suspend, so remember
929 * it so as to wake it up during system resume
930 */
931 oproc->need_resume = true;
932 rproc->state = RPROC_SUSPENDED;
933
934 out:
935 mutex_unlock(&rproc->lock);
936 return ret;
937 }
938
939 static int __maybe_unused omap_rproc_resume(struct device *dev)
940 {
941 struct platform_device *pdev = to_platform_device(dev);
942 struct rproc *rproc = platform_get_drvdata(pdev);
943 struct omap_rproc *oproc = rproc->priv;
944 int ret = 0;
945
946 mutex_lock(&rproc->lock);
947 if (rproc->state == RPROC_OFFLINE)
948 goto out;
949
950 if (rproc->state != RPROC_SUSPENDED) {
951 ret = -EBUSY;
952 goto out;
953 }
954
955 /*
956 * remoteproc was auto-suspended at the time of system suspend,
957 * so no need to wake-up the processor (leave it in suspended
958 * state, will be woken up during a subsequent runtime_resume)
959 */
960 if (!oproc->need_resume)
961 goto out;
962
963 ret = _omap_rproc_resume(rproc, false);
964 if (ret) {
965 dev_err(dev, "resume failed %d\n", ret);
966 goto out;
967 }
968
969 oproc->need_resume = false;
970 rproc->state = RPROC_RUNNING;
971
972 pm_runtime_mark_last_busy(dev);
973 out:
974 mutex_unlock(&rproc->lock);
975 return ret;
976 }
977
978 static int omap_rproc_runtime_suspend(struct device *dev)
979 {
980 struct rproc *rproc = dev_get_drvdata(dev);
981 struct omap_rproc *oproc = rproc->priv;
982 int ret;
983
984 mutex_lock(&rproc->lock);
985 if (rproc->state == RPROC_CRASHED) {
986 dev_dbg(dev, "rproc cannot be runtime suspended when crashed!\n");
987 ret = -EBUSY;
988 goto out;
989 }
990
991 if (WARN_ON(rproc->state != RPROC_RUNNING)) {
992 dev_err(dev, "rproc cannot be runtime suspended when not running!\n");
993 ret = -EBUSY;
994 goto out;
995 }
996
997 /*
998 * do not even attempt suspend if the remote processor is not
999 * idled for runtime auto-suspend
1000 */
1001 if (!_is_rproc_in_standby(oproc)) {
1002 ret = -EBUSY;
1003 goto abort;
1004 }
1005
1006 ret = _omap_rproc_suspend(rproc, true);
1007 if (ret)
1008 goto abort;
1009
1010 rproc->state = RPROC_SUSPENDED;
1011 mutex_unlock(&rproc->lock);
1012 return 0;
1013
1014 abort:
1015 pm_runtime_mark_last_busy(dev);
1016 out:
1017 mutex_unlock(&rproc->lock);
1018 return ret;
1019 }
1020
1021 static int omap_rproc_runtime_resume(struct device *dev)
1022 {
1023 struct rproc *rproc = dev_get_drvdata(dev);
1024 int ret;
1025
1026 mutex_lock(&rproc->lock);
1027 if (WARN_ON(rproc->state != RPROC_SUSPENDED)) {
1028 dev_err(dev, "rproc cannot be runtime resumed if not suspended! state=%d\n",
1029 rproc->state);
1030 ret = -EBUSY;
1031 goto out;
1032 }
1033
1034 ret = _omap_rproc_resume(rproc, true);
1035 if (ret) {
1036 dev_err(dev, "runtime resume failed %d\n", ret);
1037 goto out;
1038 }
1039
1040 rproc->state = RPROC_RUNNING;
1041 out:
1042 mutex_unlock(&rproc->lock);
1043 return ret;
1044 }
1045 #endif /* CONFIG_PM */
1046
1047 static const struct omap_rproc_mem_data ipu_mems[] = {
1048 { .name = "l2ram", .dev_addr = 0x20000000 },
1049 { },
1050 };
1051
1052 static const struct omap_rproc_mem_data dra7_dsp_mems[] = {
1053 { .name = "l2ram", .dev_addr = 0x800000 },
1054 { .name = "l1pram", .dev_addr = 0xe00000 },
1055 { .name = "l1dram", .dev_addr = 0xf00000 },
1056 { },
1057 };
1058
1059 static const struct omap_rproc_dev_data omap4_dsp_dev_data = {
1060 .device_name = "dsp",
1061 };
1062
1063 static const struct omap_rproc_dev_data omap4_ipu_dev_data = {
1064 .device_name = "ipu",
1065 .mems = ipu_mems,
1066 };
1067
1068 static const struct omap_rproc_dev_data omap5_dsp_dev_data = {
1069 .device_name = "dsp",
1070 };
1071
1072 static const struct omap_rproc_dev_data omap5_ipu_dev_data = {
1073 .device_name = "ipu",
1074 .mems = ipu_mems,
1075 };
1076
1077 static const struct omap_rproc_dev_data dra7_dsp_dev_data = {
1078 .device_name = "dsp",
1079 .mems = dra7_dsp_mems,
1080 };
1081
1082 static const struct omap_rproc_dev_data dra7_ipu_dev_data = {
1083 .device_name = "ipu",
1084 .mems = ipu_mems,
1085 };
1086
1087 static const struct of_device_id omap_rproc_of_match[] = {
1088 {
1089 .compatible = "ti,omap4-dsp",
1090 .data = &omap4_dsp_dev_data,
1091 },
1092 {
1093 .compatible = "ti,omap4-ipu",
1094 .data = &omap4_ipu_dev_data,
1095 },
1096 {
1097 .compatible = "ti,omap5-dsp",
1098 .data = &omap5_dsp_dev_data,
1099 },
1100 {
1101 .compatible = "ti,omap5-ipu",
1102 .data = &omap5_ipu_dev_data,
1103 },
1104 {
1105 .compatible = "ti,dra7-dsp",
1106 .data = &dra7_dsp_dev_data,
1107 },
1108 {
1109 .compatible = "ti,dra7-ipu",
1110 .data = &dra7_ipu_dev_data,
1111 },
1112 {
1113 /* end */
1114 },
1115 };
1116 MODULE_DEVICE_TABLE(of, omap_rproc_of_match);
1117
1118 static const char *omap_rproc_get_firmware(struct platform_device *pdev)
1119 {
1120 const char *fw_name;
1121 int ret;
1122
1123 ret = of_property_read_string(pdev->dev.of_node, "firmware-name",
1124 &fw_name);
1125 if (ret)
1126 return ERR_PTR(ret);
1127
1128 return fw_name;
1129 }
1130
1131 static int omap_rproc_get_boot_data(struct platform_device *pdev,
1132 struct rproc *rproc)
1133 {
1134 struct device_node *np = pdev->dev.of_node;
1135 struct omap_rproc *oproc = rproc->priv;
1136 const struct omap_rproc_dev_data *data;
1137 int ret;
1138
1139 data = of_device_get_match_data(&pdev->dev);
1140 if (!data)
1141 return -ENODEV;
1142
1143 if (!of_property_read_bool(np, "ti,bootreg"))
1144 return 0;
1145
1146 oproc->boot_data = devm_kzalloc(&pdev->dev, sizeof(*oproc->boot_data),
1147 GFP_KERNEL);
1148 if (!oproc->boot_data)
1149 return -ENOMEM;
1150
1151 oproc->boot_data->syscon =
1152 syscon_regmap_lookup_by_phandle(np, "ti,bootreg");
1153 if (IS_ERR(oproc->boot_data->syscon)) {
1154 ret = PTR_ERR(oproc->boot_data->syscon);
1155 return ret;
1156 }
1157
1158 if (of_property_read_u32_index(np, "ti,bootreg", 1,
1159 &oproc->boot_data->boot_reg)) {
1160 dev_err(&pdev->dev, "couldn't get the boot register\n");
1161 return -EINVAL;
1162 }
1163
1164 of_property_read_u32_index(np, "ti,bootreg", 2,
1165 &oproc->boot_data->boot_reg_shift);
1166
1167 return 0;
1168 }
1169
1170 static int omap_rproc_of_get_internal_memories(struct platform_device *pdev,
1171 struct rproc *rproc)
1172 {
1173 struct omap_rproc *oproc = rproc->priv;
1174 struct device *dev = &pdev->dev;
1175 const struct omap_rproc_dev_data *data;
1176 struct resource *res;
1177 int num_mems;
1178 int i;
1179
1180 data = of_device_get_match_data(dev);
1181 if (!data)
1182 return -ENODEV;
1183
1184 if (!data->mems)
1185 return 0;
1186
1187 num_mems = of_property_count_elems_of_size(dev->of_node, "reg",
1188 sizeof(u32)) / 2;
1189
1190 oproc->mem = devm_kcalloc(dev, num_mems, sizeof(*oproc->mem),
1191 GFP_KERNEL);
1192 if (!oproc->mem)
1193 return -ENOMEM;
1194
1195 for (i = 0; data->mems[i].name; i++) {
1196 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1197 data->mems[i].name);
1198 if (!res) {
1199 dev_err(dev, "no memory defined for %s\n",
1200 data->mems[i].name);
1201 return -ENOMEM;
1202 }
1203 oproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res);
1204 if (IS_ERR(oproc->mem[i].cpu_addr)) {
1205 dev_err(dev, "failed to parse and map %s memory\n",
1206 data->mems[i].name);
1207 return PTR_ERR(oproc->mem[i].cpu_addr);
1208 }
1209 oproc->mem[i].bus_addr = res->start;
1210 oproc->mem[i].dev_addr = data->mems[i].dev_addr;
1211 oproc->mem[i].size = resource_size(res);
1212
1213 dev_dbg(dev, "memory %8s: bus addr %pa size 0x%x va %pK da 0x%x\n",
1214 data->mems[i].name, &oproc->mem[i].bus_addr,
1215 oproc->mem[i].size, oproc->mem[i].cpu_addr,
1216 oproc->mem[i].dev_addr);
1217 }
1218 oproc->num_mems = num_mems;
1219
1220 return 0;
1221 }
1222
1223 #ifdef CONFIG_OMAP_REMOTEPROC_WATCHDOG
1224 static int omap_rproc_count_wdog_timers(struct device *dev)
1225 {
1226 struct device_node *np = dev->of_node;
1227 int ret;
1228
1229 ret = of_count_phandle_with_args(np, "ti,watchdog-timers", NULL);
1230 if (ret <= 0) {
1231 dev_dbg(dev, "device does not have watchdog timers, status = %d\n",
1232 ret);
1233 ret = 0;
1234 }
1235
1236 return ret;
1237 }
1238 #else
1239 static int omap_rproc_count_wdog_timers(struct device *dev)
1240 {
1241 return 0;
1242 }
1243 #endif
1244
1245 static int omap_rproc_of_get_timers(struct platform_device *pdev,
1246 struct rproc *rproc)
1247 {
1248 struct device_node *np = pdev->dev.of_node;
1249 struct omap_rproc *oproc = rproc->priv;
1250 struct device *dev = &pdev->dev;
1251 int num_timers;
1252
1253 /*
1254 * Timer nodes are directly used in client nodes as phandles, so
1255 * retrieve the count using appropriate size
1256 */
1257 oproc->num_timers = of_count_phandle_with_args(np, "ti,timers", NULL);
1258 if (oproc->num_timers <= 0) {
1259 dev_dbg(dev, "device does not have timers, status = %d\n",
1260 oproc->num_timers);
1261 oproc->num_timers = 0;
1262 }
1263
1264 oproc->num_wd_timers = omap_rproc_count_wdog_timers(dev);
1265
1266 num_timers = oproc->num_timers + oproc->num_wd_timers;
1267 if (num_timers) {
1268 oproc->timers = devm_kcalloc(dev, num_timers,
1269 sizeof(*oproc->timers),
1270 GFP_KERNEL);
1271 if (!oproc->timers)
1272 return -ENOMEM;
1273
1274 dev_dbg(dev, "device has %d tick timers and %d watchdog timers\n",
1275 oproc->num_timers, oproc->num_wd_timers);
1276 }
1277
1278 return 0;
1279 }
1280
1281 static int omap_rproc_probe(struct platform_device *pdev)
1282 {
1283 struct device_node *np = pdev->dev.of_node;
1284 struct omap_rproc *oproc;
1285 struct rproc *rproc;
1286 const char *firmware;
1287 int ret;
1288 struct reset_control *reset;
1289
1290 if (!np) {
1291 dev_err(&pdev->dev, "only DT-based devices are supported\n");
1292 return -ENODEV;
1293 }
1294
1295 reset = devm_reset_control_array_get_exclusive(&pdev->dev);
1296 if (IS_ERR(reset))
1297 return PTR_ERR(reset);
1298
1299 firmware = omap_rproc_get_firmware(pdev);
1300 if (IS_ERR(firmware))
1301 return PTR_ERR(firmware);
1302
1303 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1304 if (ret) {
1305 dev_err(&pdev->dev, "dma_set_coherent_mask: %d\n", ret);
1306 return ret;
1307 }
1308
1309 rproc = rproc_alloc(&pdev->dev, dev_name(&pdev->dev), &omap_rproc_ops,
1310 firmware, sizeof(*oproc));
1311 if (!rproc)
1312 return -ENOMEM;
1313
1314 oproc = rproc->priv;
1315 oproc->rproc = rproc;
1316 oproc->reset = reset;
1317 /* All existing OMAP IPU and DSP processors have an MMU */
1318 rproc->has_iommu = true;
1319
1320 ret = omap_rproc_of_get_internal_memories(pdev, rproc);
1321 if (ret)
1322 goto free_rproc;
1323
1324 ret = omap_rproc_get_boot_data(pdev, rproc);
1325 if (ret)
1326 goto free_rproc;
1327
1328 ret = omap_rproc_of_get_timers(pdev, rproc);
1329 if (ret)
1330 goto free_rproc;
1331
1332 init_completion(&oproc->pm_comp);
1333 oproc->autosuspend_delay = DEFAULT_AUTOSUSPEND_DELAY;
1334
1335 of_property_read_u32(pdev->dev.of_node, "ti,autosuspend-delay-ms",
1336 &oproc->autosuspend_delay);
1337
1338 pm_runtime_set_autosuspend_delay(&pdev->dev, oproc->autosuspend_delay);
1339
1340 oproc->fck = devm_clk_get(&pdev->dev, 0);
1341 if (IS_ERR(oproc->fck)) {
1342 ret = PTR_ERR(oproc->fck);
1343 goto free_rproc;
1344 }
1345
1346 ret = of_reserved_mem_device_init(&pdev->dev);
1347 if (ret) {
1348 dev_warn(&pdev->dev, "device does not have specific CMA pool.\n");
1349 dev_warn(&pdev->dev, "Typically this should be provided,\n");
1350 dev_warn(&pdev->dev, "only omit if you know what you are doing.\n");
1351 }
1352
1353 platform_set_drvdata(pdev, rproc);
1354
1355 ret = rproc_add(rproc);
1356 if (ret)
1357 goto release_mem;
1358
1359 return 0;
1360
1361 release_mem:
1362 of_reserved_mem_device_release(&pdev->dev);
1363 free_rproc:
1364 rproc_free(rproc);
1365 return ret;
1366 }
1367
1368 static int omap_rproc_remove(struct platform_device *pdev)
1369 {
1370 struct rproc *rproc = platform_get_drvdata(pdev);
1371
1372 rproc_del(rproc);
1373 rproc_free(rproc);
1374 of_reserved_mem_device_release(&pdev->dev);
1375
1376 return 0;
1377 }
1378
1379 static const struct dev_pm_ops omap_rproc_pm_ops = {
1380 SET_SYSTEM_SLEEP_PM_OPS(omap_rproc_suspend, omap_rproc_resume)
1381 SET_RUNTIME_PM_OPS(omap_rproc_runtime_suspend,
1382 omap_rproc_runtime_resume, NULL)
1383 };
1384
1385 static struct platform_driver omap_rproc_driver = {
1386 .probe = omap_rproc_probe,
1387 .remove = omap_rproc_remove,
1388 .driver = {
1389 .name = "omap-rproc",
1390 .pm = &omap_rproc_pm_ops,
1391 .of_match_table = omap_rproc_of_match,
1392 },
1393 };
1394
1395 module_platform_driver(omap_rproc_driver);
1396
1397 MODULE_LICENSE("GPL v2");
1398 MODULE_DESCRIPTION("OMAP Remote Processor control driver");