]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/remoteproc/pru_rproc.c
1777a01fa84e1755902c2ee388344125e822250d
[mirror_ubuntu-jammy-kernel.git] / drivers / remoteproc / pru_rproc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * PRU-ICSS remoteproc driver for various TI SoCs
4 *
5 * Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/
6 *
7 * Author(s):
8 * Suman Anna <s-anna@ti.com>
9 * Andrew F. Davis <afd@ti.com>
10 * Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
11 */
12
13 #include <linux/bitops.h>
14 #include <linux/debugfs.h>
15 #include <linux/irqdomain.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/of_irq.h>
19 #include <linux/pruss_driver.h>
20 #include <linux/remoteproc.h>
21
22 #include "remoteproc_internal.h"
23 #include "remoteproc_elf_helpers.h"
24 #include "pru_rproc.h"
25
26 /* PRU_ICSS_PRU_CTRL registers */
27 #define PRU_CTRL_CTRL 0x0000
28 #define PRU_CTRL_STS 0x0004
29 #define PRU_CTRL_WAKEUP_EN 0x0008
30 #define PRU_CTRL_CYCLE 0x000C
31 #define PRU_CTRL_STALL 0x0010
32 #define PRU_CTRL_CTBIR0 0x0020
33 #define PRU_CTRL_CTBIR1 0x0024
34 #define PRU_CTRL_CTPPR0 0x0028
35 #define PRU_CTRL_CTPPR1 0x002C
36
37 /* CTRL register bit-fields */
38 #define CTRL_CTRL_SOFT_RST_N BIT(0)
39 #define CTRL_CTRL_EN BIT(1)
40 #define CTRL_CTRL_SLEEPING BIT(2)
41 #define CTRL_CTRL_CTR_EN BIT(3)
42 #define CTRL_CTRL_SINGLE_STEP BIT(8)
43 #define CTRL_CTRL_RUNSTATE BIT(15)
44
45 /* PRU_ICSS_PRU_DEBUG registers */
46 #define PRU_DEBUG_GPREG(x) (0x0000 + (x) * 4)
47 #define PRU_DEBUG_CT_REG(x) (0x0080 + (x) * 4)
48
49 /* PRU/RTU/Tx_PRU Core IRAM address masks */
50 #define PRU_IRAM_ADDR_MASK 0x3ffff
51 #define PRU0_IRAM_ADDR_MASK 0x34000
52 #define PRU1_IRAM_ADDR_MASK 0x38000
53 #define RTU0_IRAM_ADDR_MASK 0x4000
54 #define RTU1_IRAM_ADDR_MASK 0x6000
55 #define TX_PRU0_IRAM_ADDR_MASK 0xa000
56 #define TX_PRU1_IRAM_ADDR_MASK 0xc000
57
58 /* PRU device addresses for various type of PRU RAMs */
59 #define PRU_IRAM_DA 0 /* Instruction RAM */
60 #define PRU_PDRAM_DA 0 /* Primary Data RAM */
61 #define PRU_SDRAM_DA 0x2000 /* Secondary Data RAM */
62 #define PRU_SHRDRAM_DA 0x10000 /* Shared Data RAM */
63
64 #define MAX_PRU_SYS_EVENTS 160
65
66 /**
67 * enum pru_iomem - PRU core memory/register range identifiers
68 *
69 * @PRU_IOMEM_IRAM: PRU Instruction RAM range
70 * @PRU_IOMEM_CTRL: PRU Control register range
71 * @PRU_IOMEM_DEBUG: PRU Debug register range
72 * @PRU_IOMEM_MAX: just keep this one at the end
73 */
74 enum pru_iomem {
75 PRU_IOMEM_IRAM = 0,
76 PRU_IOMEM_CTRL,
77 PRU_IOMEM_DEBUG,
78 PRU_IOMEM_MAX,
79 };
80
81 /**
82 * enum pru_type - PRU core type identifier
83 *
84 * @PRU_TYPE_PRU: Programmable Real-time Unit
85 * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit
86 * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit
87 * @PRU_TYPE_MAX: just keep this one at the end
88 */
89 enum pru_type {
90 PRU_TYPE_PRU = 0,
91 PRU_TYPE_RTU,
92 PRU_TYPE_TX_PRU,
93 PRU_TYPE_MAX,
94 };
95
96 /**
97 * struct pru_private_data - device data for a PRU core
98 * @type: type of the PRU core (PRU, RTU, Tx_PRU)
99 * @is_k3: flag used to identify the need for special load handling
100 */
101 struct pru_private_data {
102 enum pru_type type;
103 unsigned int is_k3 : 1;
104 };
105
106 /**
107 * struct pru_rproc - PRU remoteproc structure
108 * @id: id of the PRU core within the PRUSS
109 * @dev: PRU core device pointer
110 * @pruss: back-reference to parent PRUSS structure
111 * @rproc: remoteproc pointer for this PRU core
112 * @data: PRU core specific data
113 * @mem_regions: data for each of the PRU memory regions
114 * @fw_name: name of firmware image used during loading
115 * @mapped_irq: virtual interrupt numbers of created fw specific mapping
116 * @pru_interrupt_map: pointer to interrupt mapping description (firmware)
117 * @pru_interrupt_map_sz: pru_interrupt_map size
118 * @dbg_single_step: debug state variable to set PRU into single step mode
119 * @dbg_continuous: debug state variable to restore PRU execution mode
120 * @evt_count: number of mapped events
121 */
122 struct pru_rproc {
123 int id;
124 struct device *dev;
125 struct pruss *pruss;
126 struct rproc *rproc;
127 const struct pru_private_data *data;
128 struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
129 const char *fw_name;
130 unsigned int *mapped_irq;
131 struct pru_irq_rsc *pru_interrupt_map;
132 size_t pru_interrupt_map_sz;
133 u32 dbg_single_step;
134 u32 dbg_continuous;
135 u8 evt_count;
136 };
137
138 static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
139 {
140 return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
141 }
142
143 static inline
144 void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
145 {
146 writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
147 }
148
149 static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
150 {
151 return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
152 }
153
154 static int regs_show(struct seq_file *s, void *data)
155 {
156 struct rproc *rproc = s->private;
157 struct pru_rproc *pru = rproc->priv;
158 int i, nregs = 32;
159 u32 pru_sts;
160 int pru_is_running;
161
162 seq_puts(s, "============== Control Registers ==============\n");
163 seq_printf(s, "CTRL := 0x%08x\n",
164 pru_control_read_reg(pru, PRU_CTRL_CTRL));
165 pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
166 seq_printf(s, "STS (PC) := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
167 seq_printf(s, "WAKEUP_EN := 0x%08x\n",
168 pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
169 seq_printf(s, "CYCLE := 0x%08x\n",
170 pru_control_read_reg(pru, PRU_CTRL_CYCLE));
171 seq_printf(s, "STALL := 0x%08x\n",
172 pru_control_read_reg(pru, PRU_CTRL_STALL));
173 seq_printf(s, "CTBIR0 := 0x%08x\n",
174 pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
175 seq_printf(s, "CTBIR1 := 0x%08x\n",
176 pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
177 seq_printf(s, "CTPPR0 := 0x%08x\n",
178 pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
179 seq_printf(s, "CTPPR1 := 0x%08x\n",
180 pru_control_read_reg(pru, PRU_CTRL_CTPPR1));
181
182 seq_puts(s, "=============== Debug Registers ===============\n");
183 pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
184 CTRL_CTRL_RUNSTATE;
185 if (pru_is_running) {
186 seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
187 return 0;
188 }
189
190 for (i = 0; i < nregs; i++) {
191 seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
192 i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
193 i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
194 }
195
196 return 0;
197 }
198 DEFINE_SHOW_ATTRIBUTE(regs);
199
200 /*
201 * Control PRU single-step mode
202 *
203 * This is a debug helper function used for controlling the single-step
204 * mode of the PRU. The PRU Debug registers are not accessible when the
205 * PRU is in RUNNING state.
206 *
207 * Writing a non-zero value sets the PRU into single-step mode irrespective
208 * of its previous state. The PRU mode is saved only on the first set into
209 * a single-step mode. Writing a zero value will restore the PRU into its
210 * original mode.
211 */
212 static int pru_rproc_debug_ss_set(void *data, u64 val)
213 {
214 struct rproc *rproc = data;
215 struct pru_rproc *pru = rproc->priv;
216 u32 reg_val;
217
218 val = val ? 1 : 0;
219 if (!val && !pru->dbg_single_step)
220 return 0;
221
222 reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
223
224 if (val && !pru->dbg_single_step)
225 pru->dbg_continuous = reg_val;
226
227 if (val)
228 reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
229 else
230 reg_val = pru->dbg_continuous;
231
232 pru->dbg_single_step = val;
233 pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);
234
235 return 0;
236 }
237
238 static int pru_rproc_debug_ss_get(void *data, u64 *val)
239 {
240 struct rproc *rproc = data;
241 struct pru_rproc *pru = rproc->priv;
242
243 *val = pru->dbg_single_step;
244
245 return 0;
246 }
247 DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
248 pru_rproc_debug_ss_set, "%llu\n");
249
250 /*
251 * Create PRU-specific debugfs entries
252 *
253 * The entries are created only if the parent remoteproc debugfs directory
254 * exists, and will be cleaned up by the remoteproc core.
255 */
256 static void pru_rproc_create_debug_entries(struct rproc *rproc)
257 {
258 if (!rproc->dbg_dir)
259 return;
260
261 debugfs_create_file("regs", 0400, rproc->dbg_dir,
262 rproc, &regs_fops);
263 debugfs_create_file("single_step", 0600, rproc->dbg_dir,
264 rproc, &pru_rproc_debug_ss_fops);
265 }
266
267 static void pru_dispose_irq_mapping(struct pru_rproc *pru)
268 {
269 if (!pru->mapped_irq)
270 return;
271
272 while (pru->evt_count) {
273 pru->evt_count--;
274 if (pru->mapped_irq[pru->evt_count] > 0)
275 irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
276 }
277
278 kfree(pru->mapped_irq);
279 pru->mapped_irq = NULL;
280 }
281
282 /*
283 * Parse the custom PRU interrupt map resource and configure the INTC
284 * appropriately.
285 */
286 static int pru_handle_intrmap(struct rproc *rproc)
287 {
288 struct device *dev = rproc->dev.parent;
289 struct pru_rproc *pru = rproc->priv;
290 struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
291 struct irq_fwspec fwspec;
292 struct device_node *parent, *irq_parent;
293 int i, ret = 0;
294
295 /* not having pru_interrupt_map is not an error */
296 if (!rsc)
297 return 0;
298
299 /* currently supporting only type 0 */
300 if (rsc->type != 0) {
301 dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
302 return -EINVAL;
303 }
304
305 if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
306 return -EINVAL;
307
308 if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
309 pru->pru_interrupt_map_sz)
310 return -EINVAL;
311
312 pru->evt_count = rsc->num_evts;
313 pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
314 GFP_KERNEL);
315 if (!pru->mapped_irq) {
316 pru->evt_count = 0;
317 return -ENOMEM;
318 }
319
320 /*
321 * parse and fill in system event to interrupt channel and
322 * channel-to-host mapping. The interrupt controller to be used
323 * for these mappings for a given PRU remoteproc is always its
324 * corresponding sibling PRUSS INTC node.
325 */
326 parent = of_get_parent(dev_of_node(pru->dev));
327 if (!parent) {
328 kfree(pru->mapped_irq);
329 pru->mapped_irq = NULL;
330 pru->evt_count = 0;
331 return -ENODEV;
332 }
333
334 irq_parent = of_get_child_by_name(parent, "interrupt-controller");
335 of_node_put(parent);
336 if (!irq_parent) {
337 kfree(pru->mapped_irq);
338 pru->mapped_irq = NULL;
339 pru->evt_count = 0;
340 return -ENODEV;
341 }
342
343 fwspec.fwnode = of_node_to_fwnode(irq_parent);
344 fwspec.param_count = 3;
345 for (i = 0; i < pru->evt_count; i++) {
346 fwspec.param[0] = rsc->pru_intc_map[i].event;
347 fwspec.param[1] = rsc->pru_intc_map[i].chnl;
348 fwspec.param[2] = rsc->pru_intc_map[i].host;
349
350 dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
351 i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);
352
353 pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
354 if (!pru->mapped_irq[i]) {
355 dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
356 i, fwspec.param[0], fwspec.param[1],
357 fwspec.param[2]);
358 ret = -EINVAL;
359 goto map_fail;
360 }
361 }
362 of_node_put(irq_parent);
363
364 return ret;
365
366 map_fail:
367 pru_dispose_irq_mapping(pru);
368 of_node_put(irq_parent);
369
370 return ret;
371 }
372
373 static int pru_rproc_start(struct rproc *rproc)
374 {
375 struct device *dev = &rproc->dev;
376 struct pru_rproc *pru = rproc->priv;
377 const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
378 u32 val;
379 int ret;
380
381 dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
382 names[pru->data->type], pru->id, (rproc->bootaddr >> 2));
383
384 ret = pru_handle_intrmap(rproc);
385 /*
386 * reset references to pru interrupt map - they will stop being valid
387 * after rproc_start returns
388 */
389 pru->pru_interrupt_map = NULL;
390 pru->pru_interrupt_map_sz = 0;
391 if (ret)
392 return ret;
393
394 val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
395 pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
396
397 return 0;
398 }
399
400 static int pru_rproc_stop(struct rproc *rproc)
401 {
402 struct device *dev = &rproc->dev;
403 struct pru_rproc *pru = rproc->priv;
404 const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
405 u32 val;
406
407 dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);
408
409 val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
410 val &= ~CTRL_CTRL_EN;
411 pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
412
413 /* dispose irq mapping - new firmware can provide new mapping */
414 pru_dispose_irq_mapping(pru);
415
416 return 0;
417 }
418
419 /*
420 * Convert PRU device address (data spaces only) to kernel virtual address.
421 *
422 * Each PRU has access to all data memories within the PRUSS, accessible at
423 * different ranges. So, look through both its primary and secondary Data
424 * RAMs as well as any shared Data RAM to convert a PRU device address to
425 * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
426 * RAM1 is primary Data RAM for PRU1.
427 */
428 static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
429 {
430 struct pruss_mem_region dram0, dram1, shrd_ram;
431 struct pruss *pruss = pru->pruss;
432 u32 offset;
433 void *va = NULL;
434
435 if (len == 0)
436 return NULL;
437
438 dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
439 dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
440 /* PRU1 has its local RAM addresses reversed */
441 if (pru->id == 1)
442 swap(dram0, dram1);
443 shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];
444
445 if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) {
446 offset = da - PRU_PDRAM_DA;
447 va = (__force void *)(dram0.va + offset);
448 } else if (da >= PRU_SDRAM_DA &&
449 da + len <= PRU_SDRAM_DA + dram1.size) {
450 offset = da - PRU_SDRAM_DA;
451 va = (__force void *)(dram1.va + offset);
452 } else if (da >= PRU_SHRDRAM_DA &&
453 da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
454 offset = da - PRU_SHRDRAM_DA;
455 va = (__force void *)(shrd_ram.va + offset);
456 }
457
458 return va;
459 }
460
461 /*
462 * Convert PRU device address (instruction space) to kernel virtual address.
463 *
464 * A PRU does not have an unified address space. Each PRU has its very own
465 * private Instruction RAM, and its device address is identical to that of
466 * its primary Data RAM device address.
467 */
468 static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
469 {
470 u32 offset;
471 void *va = NULL;
472
473 if (len == 0)
474 return NULL;
475
476 /*
477 * GNU binutils do not support multiple address spaces. The GNU
478 * linker's default linker script places IRAM at an arbitrary high
479 * offset, in order to differentiate it from DRAM. Hence we need to
480 * strip the artificial offset in the IRAM addresses coming from the
481 * ELF file.
482 *
483 * The TI proprietary linker would never set those higher IRAM address
484 * bits anyway. PRU architecture limits the program counter to 16-bit
485 * word-address range. This in turn corresponds to 18-bit IRAM
486 * byte-address range for ELF.
487 *
488 * Two more bits are added just in case to make the final 20-bit mask.
489 * Idea is to have a safeguard in case TI decides to add banking
490 * in future SoCs.
491 */
492 da &= 0xfffff;
493
494 if (da >= PRU_IRAM_DA &&
495 da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
496 offset = da - PRU_IRAM_DA;
497 va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
498 offset);
499 }
500
501 return va;
502 }
503
504 /*
505 * Provide address translations for only PRU Data RAMs through the remoteproc
506 * core for any PRU client drivers. The PRU Instruction RAM access is restricted
507 * only to the PRU loader code.
508 */
509 static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
510 {
511 struct pru_rproc *pru = rproc->priv;
512
513 return pru_d_da_to_va(pru, da, len);
514 }
515
516 /* PRU-specific address translator used by PRU loader. */
517 static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
518 {
519 struct pru_rproc *pru = rproc->priv;
520 void *va;
521
522 if (is_iram)
523 va = pru_i_da_to_va(pru, da, len);
524 else
525 va = pru_d_da_to_va(pru, da, len);
526
527 return va;
528 }
529
530 static struct rproc_ops pru_rproc_ops = {
531 .start = pru_rproc_start,
532 .stop = pru_rproc_stop,
533 .da_to_va = pru_rproc_da_to_va,
534 };
535
536 /*
537 * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
538 *
539 * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
540 * memories, that is not seen on previous generation SoCs. The data is reflected
541 * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
542 * copies result in all the other pre-existing bytes zeroed out within that
543 * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
544 * IRAM memory port interface does not allow any 8-byte copies (as commonly used
545 * by ARM64 memcpy implementation) and throws an exception. The DRAM memory
546 * ports do not show this behavior.
547 */
548 static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
549 {
550 const u32 *s = src;
551 u32 *d = dest;
552 size_t size = count / 4;
553 u32 *tmp_src = NULL;
554
555 /*
556 * TODO: relax limitation of 4-byte aligned dest addresses and copy
557 * sizes
558 */
559 if ((long)dest % 4 || count % 4)
560 return -EINVAL;
561
562 /* src offsets in ELF firmware image can be non-aligned */
563 if ((long)src % 4) {
564 tmp_src = kmemdup(src, count, GFP_KERNEL);
565 if (!tmp_src)
566 return -ENOMEM;
567 s = tmp_src;
568 }
569
570 while (size--)
571 *d++ = *s++;
572
573 kfree(tmp_src);
574
575 return 0;
576 }
577
578 static int
579 pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
580 {
581 struct pru_rproc *pru = rproc->priv;
582 struct device *dev = &rproc->dev;
583 struct elf32_hdr *ehdr;
584 struct elf32_phdr *phdr;
585 int i, ret = 0;
586 const u8 *elf_data = fw->data;
587
588 ehdr = (struct elf32_hdr *)elf_data;
589 phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
590
591 /* go through the available ELF segments */
592 for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
593 u32 da = phdr->p_paddr;
594 u32 memsz = phdr->p_memsz;
595 u32 filesz = phdr->p_filesz;
596 u32 offset = phdr->p_offset;
597 bool is_iram;
598 void *ptr;
599
600 if (phdr->p_type != PT_LOAD || !filesz)
601 continue;
602
603 dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
604 phdr->p_type, da, memsz, filesz);
605
606 if (filesz > memsz) {
607 dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
608 filesz, memsz);
609 ret = -EINVAL;
610 break;
611 }
612
613 if (offset + filesz > fw->size) {
614 dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
615 offset + filesz, fw->size);
616 ret = -EINVAL;
617 break;
618 }
619
620 /* grab the kernel address for this device address */
621 is_iram = phdr->p_flags & PF_X;
622 ptr = pru_da_to_va(rproc, da, memsz, is_iram);
623 if (!ptr) {
624 dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
625 ret = -EINVAL;
626 break;
627 }
628
629 if (pru->data->is_k3) {
630 ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
631 filesz);
632 if (ret) {
633 dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
634 da, memsz);
635 break;
636 }
637 } else {
638 memcpy(ptr, elf_data + phdr->p_offset, filesz);
639 }
640
641 /* skip the memzero logic performed by remoteproc ELF loader */
642 }
643
644 return ret;
645 }
646
647 static const void *
648 pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
649 {
650 struct elf32_shdr *shdr, *name_table_shdr;
651 const char *name_table;
652 const u8 *elf_data = fw->data;
653 struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
654 u16 shnum = ehdr->e_shnum;
655 u16 shstrndx = ehdr->e_shstrndx;
656 int i;
657
658 /* first, get the section header */
659 shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
660 /* compute name table section header entry in shdr array */
661 name_table_shdr = shdr + shstrndx;
662 /* finally, compute the name table section address in elf */
663 name_table = elf_data + name_table_shdr->sh_offset;
664
665 for (i = 0; i < shnum; i++, shdr++) {
666 u32 size = shdr->sh_size;
667 u32 offset = shdr->sh_offset;
668 u32 name = shdr->sh_name;
669
670 if (strcmp(name_table + name, ".pru_irq_map"))
671 continue;
672
673 /* make sure we have the entire irq map */
674 if (offset + size > fw->size || offset + size < size) {
675 dev_err(dev, ".pru_irq_map section truncated\n");
676 return ERR_PTR(-EINVAL);
677 }
678
679 /* make sure irq map has at least the header */
680 if (sizeof(struct pru_irq_rsc) > size) {
681 dev_err(dev, "header-less .pru_irq_map section\n");
682 return ERR_PTR(-EINVAL);
683 }
684
685 return shdr;
686 }
687
688 dev_dbg(dev, "no .pru_irq_map section found for this fw\n");
689
690 return NULL;
691 }
692
693 /*
694 * Use a custom parse_fw callback function for dealing with PRU firmware
695 * specific sections.
696 *
697 * The firmware blob can contain optional ELF sections: .resource_table section
698 * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
699 * description, which needs to be setup before powering on the PRU core. To
700 * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
701 * firmware linker) and therefore is not loaded to PRU memory.
702 */
703 static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
704 {
705 struct device *dev = &rproc->dev;
706 struct pru_rproc *pru = rproc->priv;
707 const u8 *elf_data = fw->data;
708 const void *shdr;
709 u8 class = fw_elf_get_class(fw);
710 u64 sh_offset;
711 int ret;
712
713 /* load optional rsc table */
714 ret = rproc_elf_load_rsc_table(rproc, fw);
715 if (ret == -EINVAL)
716 dev_dbg(&rproc->dev, "no resource table found for this fw\n");
717 else if (ret)
718 return ret;
719
720 /* find .pru_interrupt_map section, not having it is not an error */
721 shdr = pru_rproc_find_interrupt_map(dev, fw);
722 if (IS_ERR(shdr))
723 return PTR_ERR(shdr);
724
725 if (!shdr)
726 return 0;
727
728 /* preserve pointer to PRU interrupt map together with it size */
729 sh_offset = elf_shdr_get_sh_offset(class, shdr);
730 pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
731 pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);
732
733 return 0;
734 }
735
736 /*
737 * Compute PRU id based on the IRAM addresses. The PRU IRAMs are
738 * always at a particular offset within the PRUSS address space.
739 */
740 static int pru_rproc_set_id(struct pru_rproc *pru)
741 {
742 int ret = 0;
743
744 switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
745 case TX_PRU0_IRAM_ADDR_MASK:
746 fallthrough;
747 case RTU0_IRAM_ADDR_MASK:
748 fallthrough;
749 case PRU0_IRAM_ADDR_MASK:
750 pru->id = 0;
751 break;
752 case TX_PRU1_IRAM_ADDR_MASK:
753 fallthrough;
754 case RTU1_IRAM_ADDR_MASK:
755 fallthrough;
756 case PRU1_IRAM_ADDR_MASK:
757 pru->id = 1;
758 break;
759 default:
760 ret = -EINVAL;
761 }
762
763 return ret;
764 }
765
766 static int pru_rproc_probe(struct platform_device *pdev)
767 {
768 struct device *dev = &pdev->dev;
769 struct device_node *np = dev->of_node;
770 struct platform_device *ppdev = to_platform_device(dev->parent);
771 struct pru_rproc *pru;
772 const char *fw_name;
773 struct rproc *rproc = NULL;
774 struct resource *res;
775 int i, ret;
776 const struct pru_private_data *data;
777 const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };
778
779 data = of_device_get_match_data(&pdev->dev);
780 if (!data)
781 return -ENODEV;
782
783 ret = of_property_read_string(np, "firmware-name", &fw_name);
784 if (ret) {
785 dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
786 return ret;
787 }
788
789 rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
790 sizeof(*pru));
791 if (!rproc) {
792 dev_err(dev, "rproc_alloc failed\n");
793 return -ENOMEM;
794 }
795 /* use a custom load function to deal with PRU-specific quirks */
796 rproc->ops->load = pru_rproc_load_elf_segments;
797
798 /* use a custom parse function to deal with PRU-specific resources */
799 rproc->ops->parse_fw = pru_rproc_parse_fw;
800
801 /* error recovery is not supported for PRUs */
802 rproc->recovery_disabled = true;
803
804 /*
805 * rproc_add will auto-boot the processor normally, but this is not
806 * desired with PRU client driven boot-flow methodology. A PRU
807 * application/client driver will boot the corresponding PRU
808 * remote-processor as part of its state machine either through the
809 * remoteproc sysfs interface or through the equivalent kernel API.
810 */
811 rproc->auto_boot = false;
812
813 pru = rproc->priv;
814 pru->dev = dev;
815 pru->data = data;
816 pru->pruss = platform_get_drvdata(ppdev);
817 pru->rproc = rproc;
818 pru->fw_name = fw_name;
819
820 for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
821 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
822 mem_names[i]);
823 pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
824 if (IS_ERR(pru->mem_regions[i].va)) {
825 dev_err(dev, "failed to parse and map memory resource %d %s\n",
826 i, mem_names[i]);
827 ret = PTR_ERR(pru->mem_regions[i].va);
828 return ret;
829 }
830 pru->mem_regions[i].pa = res->start;
831 pru->mem_regions[i].size = resource_size(res);
832
833 dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
834 mem_names[i], &pru->mem_regions[i].pa,
835 pru->mem_regions[i].size, pru->mem_regions[i].va);
836 }
837
838 ret = pru_rproc_set_id(pru);
839 if (ret < 0)
840 return ret;
841
842 platform_set_drvdata(pdev, rproc);
843
844 ret = devm_rproc_add(dev, pru->rproc);
845 if (ret) {
846 dev_err(dev, "rproc_add failed: %d\n", ret);
847 return ret;
848 }
849
850 pru_rproc_create_debug_entries(rproc);
851
852 dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);
853
854 return 0;
855 }
856
857 static int pru_rproc_remove(struct platform_device *pdev)
858 {
859 struct device *dev = &pdev->dev;
860 struct rproc *rproc = platform_get_drvdata(pdev);
861
862 dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);
863
864 return 0;
865 }
866
867 static const struct pru_private_data pru_data = {
868 .type = PRU_TYPE_PRU,
869 };
870
871 static const struct pru_private_data k3_pru_data = {
872 .type = PRU_TYPE_PRU,
873 .is_k3 = 1,
874 };
875
876 static const struct pru_private_data k3_rtu_data = {
877 .type = PRU_TYPE_RTU,
878 .is_k3 = 1,
879 };
880
881 static const struct pru_private_data k3_tx_pru_data = {
882 .type = PRU_TYPE_TX_PRU,
883 .is_k3 = 1,
884 };
885
886 static const struct of_device_id pru_rproc_match[] = {
887 { .compatible = "ti,am3356-pru", .data = &pru_data },
888 { .compatible = "ti,am4376-pru", .data = &pru_data },
889 { .compatible = "ti,am5728-pru", .data = &pru_data },
890 { .compatible = "ti,am642-pru", .data = &k3_pru_data },
891 { .compatible = "ti,am642-rtu", .data = &k3_rtu_data },
892 { .compatible = "ti,am642-tx-pru", .data = &k3_tx_pru_data },
893 { .compatible = "ti,k2g-pru", .data = &pru_data },
894 { .compatible = "ti,am654-pru", .data = &k3_pru_data },
895 { .compatible = "ti,am654-rtu", .data = &k3_rtu_data },
896 { .compatible = "ti,am654-tx-pru", .data = &k3_tx_pru_data },
897 { .compatible = "ti,j721e-pru", .data = &k3_pru_data },
898 { .compatible = "ti,j721e-rtu", .data = &k3_rtu_data },
899 { .compatible = "ti,j721e-tx-pru", .data = &k3_tx_pru_data },
900 {},
901 };
902 MODULE_DEVICE_TABLE(of, pru_rproc_match);
903
904 static struct platform_driver pru_rproc_driver = {
905 .driver = {
906 .name = "pru-rproc",
907 .of_match_table = pru_rproc_match,
908 .suppress_bind_attrs = true,
909 },
910 .probe = pru_rproc_probe,
911 .remove = pru_rproc_remove,
912 };
913 module_platform_driver(pru_rproc_driver);
914
915 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
916 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
917 MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
918 MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
919 MODULE_LICENSE("GPL v2");