1 // SPDX-License-Identifier: GPL-2.0-only
3 * PRU-ICSS remoteproc driver for various TI SoCs
5 * Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/
8 * Suman Anna <s-anna@ti.com>
9 * Andrew F. Davis <afd@ti.com>
10 * Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
13 #include <linux/bitops.h>
14 #include <linux/debugfs.h>
15 #include <linux/irqdomain.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/of_irq.h>
19 #include <linux/pruss_driver.h>
20 #include <linux/remoteproc.h>
22 #include "remoteproc_internal.h"
23 #include "remoteproc_elf_helpers.h"
24 #include "pru_rproc.h"
26 /* PRU_ICSS_PRU_CTRL registers */
27 #define PRU_CTRL_CTRL 0x0000
28 #define PRU_CTRL_STS 0x0004
29 #define PRU_CTRL_WAKEUP_EN 0x0008
30 #define PRU_CTRL_CYCLE 0x000C
31 #define PRU_CTRL_STALL 0x0010
32 #define PRU_CTRL_CTBIR0 0x0020
33 #define PRU_CTRL_CTBIR1 0x0024
34 #define PRU_CTRL_CTPPR0 0x0028
35 #define PRU_CTRL_CTPPR1 0x002C
37 /* CTRL register bit-fields */
38 #define CTRL_CTRL_SOFT_RST_N BIT(0)
39 #define CTRL_CTRL_EN BIT(1)
40 #define CTRL_CTRL_SLEEPING BIT(2)
41 #define CTRL_CTRL_CTR_EN BIT(3)
42 #define CTRL_CTRL_SINGLE_STEP BIT(8)
43 #define CTRL_CTRL_RUNSTATE BIT(15)
45 /* PRU_ICSS_PRU_DEBUG registers */
46 #define PRU_DEBUG_GPREG(x) (0x0000 + (x) * 4)
47 #define PRU_DEBUG_CT_REG(x) (0x0080 + (x) * 4)
49 /* PRU/RTU/Tx_PRU Core IRAM address masks */
50 #define PRU_IRAM_ADDR_MASK 0x3ffff
51 #define PRU0_IRAM_ADDR_MASK 0x34000
52 #define PRU1_IRAM_ADDR_MASK 0x38000
53 #define RTU0_IRAM_ADDR_MASK 0x4000
54 #define RTU1_IRAM_ADDR_MASK 0x6000
55 #define TX_PRU0_IRAM_ADDR_MASK 0xa000
56 #define TX_PRU1_IRAM_ADDR_MASK 0xc000
58 /* PRU device addresses for various type of PRU RAMs */
59 #define PRU_IRAM_DA 0 /* Instruction RAM */
60 #define PRU_PDRAM_DA 0 /* Primary Data RAM */
61 #define PRU_SDRAM_DA 0x2000 /* Secondary Data RAM */
62 #define PRU_SHRDRAM_DA 0x10000 /* Shared Data RAM */
64 #define MAX_PRU_SYS_EVENTS 160
67 * enum pru_iomem - PRU core memory/register range identifiers
69 * @PRU_IOMEM_IRAM: PRU Instruction RAM range
70 * @PRU_IOMEM_CTRL: PRU Control register range
71 * @PRU_IOMEM_DEBUG: PRU Debug register range
72 * @PRU_IOMEM_MAX: just keep this one at the end
82 * enum pru_type - PRU core type identifier
84 * @PRU_TYPE_PRU: Programmable Real-time Unit
85 * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit
86 * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit
87 * @PRU_TYPE_MAX: just keep this one at the end
97 * struct pru_private_data - device data for a PRU core
98 * @type: type of the PRU core (PRU, RTU, Tx_PRU)
99 * @is_k3: flag used to identify the need for special load handling
101 struct pru_private_data
{
103 unsigned int is_k3
: 1;
107 * struct pru_rproc - PRU remoteproc structure
108 * @id: id of the PRU core within the PRUSS
109 * @dev: PRU core device pointer
110 * @pruss: back-reference to parent PRUSS structure
111 * @rproc: remoteproc pointer for this PRU core
112 * @data: PRU core specific data
113 * @mem_regions: data for each of the PRU memory regions
114 * @fw_name: name of firmware image used during loading
115 * @mapped_irq: virtual interrupt numbers of created fw specific mapping
116 * @pru_interrupt_map: pointer to interrupt mapping description (firmware)
117 * @pru_interrupt_map_sz: pru_interrupt_map size
118 * @dbg_single_step: debug state variable to set PRU into single step mode
119 * @dbg_continuous: debug state variable to restore PRU execution mode
120 * @evt_count: number of mapped events
127 const struct pru_private_data
*data
;
128 struct pruss_mem_region mem_regions
[PRU_IOMEM_MAX
];
130 unsigned int *mapped_irq
;
131 struct pru_irq_rsc
*pru_interrupt_map
;
132 size_t pru_interrupt_map_sz
;
138 static inline u32
pru_control_read_reg(struct pru_rproc
*pru
, unsigned int reg
)
140 return readl_relaxed(pru
->mem_regions
[PRU_IOMEM_CTRL
].va
+ reg
);
144 void pru_control_write_reg(struct pru_rproc
*pru
, unsigned int reg
, u32 val
)
146 writel_relaxed(val
, pru
->mem_regions
[PRU_IOMEM_CTRL
].va
+ reg
);
149 static inline u32
pru_debug_read_reg(struct pru_rproc
*pru
, unsigned int reg
)
151 return readl_relaxed(pru
->mem_regions
[PRU_IOMEM_DEBUG
].va
+ reg
);
154 static int regs_show(struct seq_file
*s
, void *data
)
156 struct rproc
*rproc
= s
->private;
157 struct pru_rproc
*pru
= rproc
->priv
;
162 seq_puts(s
, "============== Control Registers ==============\n");
163 seq_printf(s
, "CTRL := 0x%08x\n",
164 pru_control_read_reg(pru
, PRU_CTRL_CTRL
));
165 pru_sts
= pru_control_read_reg(pru
, PRU_CTRL_STS
);
166 seq_printf(s
, "STS (PC) := 0x%08x (0x%08x)\n", pru_sts
, pru_sts
<< 2);
167 seq_printf(s
, "WAKEUP_EN := 0x%08x\n",
168 pru_control_read_reg(pru
, PRU_CTRL_WAKEUP_EN
));
169 seq_printf(s
, "CYCLE := 0x%08x\n",
170 pru_control_read_reg(pru
, PRU_CTRL_CYCLE
));
171 seq_printf(s
, "STALL := 0x%08x\n",
172 pru_control_read_reg(pru
, PRU_CTRL_STALL
));
173 seq_printf(s
, "CTBIR0 := 0x%08x\n",
174 pru_control_read_reg(pru
, PRU_CTRL_CTBIR0
));
175 seq_printf(s
, "CTBIR1 := 0x%08x\n",
176 pru_control_read_reg(pru
, PRU_CTRL_CTBIR1
));
177 seq_printf(s
, "CTPPR0 := 0x%08x\n",
178 pru_control_read_reg(pru
, PRU_CTRL_CTPPR0
));
179 seq_printf(s
, "CTPPR1 := 0x%08x\n",
180 pru_control_read_reg(pru
, PRU_CTRL_CTPPR1
));
182 seq_puts(s
, "=============== Debug Registers ===============\n");
183 pru_is_running
= pru_control_read_reg(pru
, PRU_CTRL_CTRL
) &
185 if (pru_is_running
) {
186 seq_puts(s
, "PRU is executing, cannot print/access debug registers.\n");
190 for (i
= 0; i
< nregs
; i
++) {
191 seq_printf(s
, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
192 i
, pru_debug_read_reg(pru
, PRU_DEBUG_GPREG(i
)),
193 i
, pru_debug_read_reg(pru
, PRU_DEBUG_CT_REG(i
)));
198 DEFINE_SHOW_ATTRIBUTE(regs
);
201 * Control PRU single-step mode
203 * This is a debug helper function used for controlling the single-step
204 * mode of the PRU. The PRU Debug registers are not accessible when the
205 * PRU is in RUNNING state.
207 * Writing a non-zero value sets the PRU into single-step mode irrespective
208 * of its previous state. The PRU mode is saved only on the first set into
209 * a single-step mode. Writing a zero value will restore the PRU into its
212 static int pru_rproc_debug_ss_set(void *data
, u64 val
)
214 struct rproc
*rproc
= data
;
215 struct pru_rproc
*pru
= rproc
->priv
;
219 if (!val
&& !pru
->dbg_single_step
)
222 reg_val
= pru_control_read_reg(pru
, PRU_CTRL_CTRL
);
224 if (val
&& !pru
->dbg_single_step
)
225 pru
->dbg_continuous
= reg_val
;
228 reg_val
|= CTRL_CTRL_SINGLE_STEP
| CTRL_CTRL_EN
;
230 reg_val
= pru
->dbg_continuous
;
232 pru
->dbg_single_step
= val
;
233 pru_control_write_reg(pru
, PRU_CTRL_CTRL
, reg_val
);
238 static int pru_rproc_debug_ss_get(void *data
, u64
*val
)
240 struct rproc
*rproc
= data
;
241 struct pru_rproc
*pru
= rproc
->priv
;
243 *val
= pru
->dbg_single_step
;
247 DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops
, pru_rproc_debug_ss_get
,
248 pru_rproc_debug_ss_set
, "%llu\n");
251 * Create PRU-specific debugfs entries
253 * The entries are created only if the parent remoteproc debugfs directory
254 * exists, and will be cleaned up by the remoteproc core.
256 static void pru_rproc_create_debug_entries(struct rproc
*rproc
)
261 debugfs_create_file("regs", 0400, rproc
->dbg_dir
,
263 debugfs_create_file("single_step", 0600, rproc
->dbg_dir
,
264 rproc
, &pru_rproc_debug_ss_fops
);
267 static void pru_dispose_irq_mapping(struct pru_rproc
*pru
)
269 if (!pru
->mapped_irq
)
272 while (pru
->evt_count
) {
274 if (pru
->mapped_irq
[pru
->evt_count
] > 0)
275 irq_dispose_mapping(pru
->mapped_irq
[pru
->evt_count
]);
278 kfree(pru
->mapped_irq
);
279 pru
->mapped_irq
= NULL
;
283 * Parse the custom PRU interrupt map resource and configure the INTC
286 static int pru_handle_intrmap(struct rproc
*rproc
)
288 struct device
*dev
= rproc
->dev
.parent
;
289 struct pru_rproc
*pru
= rproc
->priv
;
290 struct pru_irq_rsc
*rsc
= pru
->pru_interrupt_map
;
291 struct irq_fwspec fwspec
;
292 struct device_node
*parent
, *irq_parent
;
295 /* not having pru_interrupt_map is not an error */
299 /* currently supporting only type 0 */
300 if (rsc
->type
!= 0) {
301 dev_err(dev
, "unsupported rsc type: %d\n", rsc
->type
);
305 if (rsc
->num_evts
> MAX_PRU_SYS_EVENTS
)
308 if (sizeof(*rsc
) + rsc
->num_evts
* sizeof(struct pruss_int_map
) !=
309 pru
->pru_interrupt_map_sz
)
312 pru
->evt_count
= rsc
->num_evts
;
313 pru
->mapped_irq
= kcalloc(pru
->evt_count
, sizeof(unsigned int),
315 if (!pru
->mapped_irq
) {
321 * parse and fill in system event to interrupt channel and
322 * channel-to-host mapping. The interrupt controller to be used
323 * for these mappings for a given PRU remoteproc is always its
324 * corresponding sibling PRUSS INTC node.
326 parent
= of_get_parent(dev_of_node(pru
->dev
));
328 kfree(pru
->mapped_irq
);
329 pru
->mapped_irq
= NULL
;
334 irq_parent
= of_get_child_by_name(parent
, "interrupt-controller");
337 kfree(pru
->mapped_irq
);
338 pru
->mapped_irq
= NULL
;
343 fwspec
.fwnode
= of_node_to_fwnode(irq_parent
);
344 fwspec
.param_count
= 3;
345 for (i
= 0; i
< pru
->evt_count
; i
++) {
346 fwspec
.param
[0] = rsc
->pru_intc_map
[i
].event
;
347 fwspec
.param
[1] = rsc
->pru_intc_map
[i
].chnl
;
348 fwspec
.param
[2] = rsc
->pru_intc_map
[i
].host
;
350 dev_dbg(dev
, "mapping%d: event %d, chnl %d, host %d\n",
351 i
, fwspec
.param
[0], fwspec
.param
[1], fwspec
.param
[2]);
353 pru
->mapped_irq
[i
] = irq_create_fwspec_mapping(&fwspec
);
354 if (!pru
->mapped_irq
[i
]) {
355 dev_err(dev
, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
356 i
, fwspec
.param
[0], fwspec
.param
[1],
362 of_node_put(irq_parent
);
367 pru_dispose_irq_mapping(pru
);
368 of_node_put(irq_parent
);
373 static int pru_rproc_start(struct rproc
*rproc
)
375 struct device
*dev
= &rproc
->dev
;
376 struct pru_rproc
*pru
= rproc
->priv
;
377 const char *names
[PRU_TYPE_MAX
] = { "PRU", "RTU", "Tx_PRU" };
381 dev_dbg(dev
, "starting %s%d: entry-point = 0x%llx\n",
382 names
[pru
->data
->type
], pru
->id
, (rproc
->bootaddr
>> 2));
384 ret
= pru_handle_intrmap(rproc
);
386 * reset references to pru interrupt map - they will stop being valid
387 * after rproc_start returns
389 pru
->pru_interrupt_map
= NULL
;
390 pru
->pru_interrupt_map_sz
= 0;
394 val
= CTRL_CTRL_EN
| ((rproc
->bootaddr
>> 2) << 16);
395 pru_control_write_reg(pru
, PRU_CTRL_CTRL
, val
);
400 static int pru_rproc_stop(struct rproc
*rproc
)
402 struct device
*dev
= &rproc
->dev
;
403 struct pru_rproc
*pru
= rproc
->priv
;
404 const char *names
[PRU_TYPE_MAX
] = { "PRU", "RTU", "Tx_PRU" };
407 dev_dbg(dev
, "stopping %s%d\n", names
[pru
->data
->type
], pru
->id
);
409 val
= pru_control_read_reg(pru
, PRU_CTRL_CTRL
);
410 val
&= ~CTRL_CTRL_EN
;
411 pru_control_write_reg(pru
, PRU_CTRL_CTRL
, val
);
413 /* dispose irq mapping - new firmware can provide new mapping */
414 pru_dispose_irq_mapping(pru
);
420 * Convert PRU device address (data spaces only) to kernel virtual address.
422 * Each PRU has access to all data memories within the PRUSS, accessible at
423 * different ranges. So, look through both its primary and secondary Data
424 * RAMs as well as any shared Data RAM to convert a PRU device address to
425 * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
426 * RAM1 is primary Data RAM for PRU1.
428 static void *pru_d_da_to_va(struct pru_rproc
*pru
, u32 da
, size_t len
)
430 struct pruss_mem_region dram0
, dram1
, shrd_ram
;
431 struct pruss
*pruss
= pru
->pruss
;
438 dram0
= pruss
->mem_regions
[PRUSS_MEM_DRAM0
];
439 dram1
= pruss
->mem_regions
[PRUSS_MEM_DRAM1
];
440 /* PRU1 has its local RAM addresses reversed */
443 shrd_ram
= pruss
->mem_regions
[PRUSS_MEM_SHRD_RAM2
];
445 if (da
>= PRU_PDRAM_DA
&& da
+ len
<= PRU_PDRAM_DA
+ dram0
.size
) {
446 offset
= da
- PRU_PDRAM_DA
;
447 va
= (__force
void *)(dram0
.va
+ offset
);
448 } else if (da
>= PRU_SDRAM_DA
&&
449 da
+ len
<= PRU_SDRAM_DA
+ dram1
.size
) {
450 offset
= da
- PRU_SDRAM_DA
;
451 va
= (__force
void *)(dram1
.va
+ offset
);
452 } else if (da
>= PRU_SHRDRAM_DA
&&
453 da
+ len
<= PRU_SHRDRAM_DA
+ shrd_ram
.size
) {
454 offset
= da
- PRU_SHRDRAM_DA
;
455 va
= (__force
void *)(shrd_ram
.va
+ offset
);
462 * Convert PRU device address (instruction space) to kernel virtual address.
464 * A PRU does not have an unified address space. Each PRU has its very own
465 * private Instruction RAM, and its device address is identical to that of
466 * its primary Data RAM device address.
468 static void *pru_i_da_to_va(struct pru_rproc
*pru
, u32 da
, size_t len
)
477 * GNU binutils do not support multiple address spaces. The GNU
478 * linker's default linker script places IRAM at an arbitrary high
479 * offset, in order to differentiate it from DRAM. Hence we need to
480 * strip the artificial offset in the IRAM addresses coming from the
483 * The TI proprietary linker would never set those higher IRAM address
484 * bits anyway. PRU architecture limits the program counter to 16-bit
485 * word-address range. This in turn corresponds to 18-bit IRAM
486 * byte-address range for ELF.
488 * Two more bits are added just in case to make the final 20-bit mask.
489 * Idea is to have a safeguard in case TI decides to add banking
494 if (da
>= PRU_IRAM_DA
&&
495 da
+ len
<= PRU_IRAM_DA
+ pru
->mem_regions
[PRU_IOMEM_IRAM
].size
) {
496 offset
= da
- PRU_IRAM_DA
;
497 va
= (__force
void *)(pru
->mem_regions
[PRU_IOMEM_IRAM
].va
+
505 * Provide address translations for only PRU Data RAMs through the remoteproc
506 * core for any PRU client drivers. The PRU Instruction RAM access is restricted
507 * only to the PRU loader code.
509 static void *pru_rproc_da_to_va(struct rproc
*rproc
, u64 da
, size_t len
, bool *is_iomem
)
511 struct pru_rproc
*pru
= rproc
->priv
;
513 return pru_d_da_to_va(pru
, da
, len
);
516 /* PRU-specific address translator used by PRU loader. */
517 static void *pru_da_to_va(struct rproc
*rproc
, u64 da
, size_t len
, bool is_iram
)
519 struct pru_rproc
*pru
= rproc
->priv
;
523 va
= pru_i_da_to_va(pru
, da
, len
);
525 va
= pru_d_da_to_va(pru
, da
, len
);
530 static struct rproc_ops pru_rproc_ops
= {
531 .start
= pru_rproc_start
,
532 .stop
= pru_rproc_stop
,
533 .da_to_va
= pru_rproc_da_to_va
,
537 * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
539 * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
540 * memories, that is not seen on previous generation SoCs. The data is reflected
541 * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
542 * copies result in all the other pre-existing bytes zeroed out within that
543 * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
544 * IRAM memory port interface does not allow any 8-byte copies (as commonly used
545 * by ARM64 memcpy implementation) and throws an exception. The DRAM memory
546 * ports do not show this behavior.
548 static int pru_rproc_memcpy(void *dest
, const void *src
, size_t count
)
552 size_t size
= count
/ 4;
556 * TODO: relax limitation of 4-byte aligned dest addresses and copy
559 if ((long)dest
% 4 || count
% 4)
562 /* src offsets in ELF firmware image can be non-aligned */
564 tmp_src
= kmemdup(src
, count
, GFP_KERNEL
);
579 pru_rproc_load_elf_segments(struct rproc
*rproc
, const struct firmware
*fw
)
581 struct pru_rproc
*pru
= rproc
->priv
;
582 struct device
*dev
= &rproc
->dev
;
583 struct elf32_hdr
*ehdr
;
584 struct elf32_phdr
*phdr
;
586 const u8
*elf_data
= fw
->data
;
588 ehdr
= (struct elf32_hdr
*)elf_data
;
589 phdr
= (struct elf32_phdr
*)(elf_data
+ ehdr
->e_phoff
);
591 /* go through the available ELF segments */
592 for (i
= 0; i
< ehdr
->e_phnum
; i
++, phdr
++) {
593 u32 da
= phdr
->p_paddr
;
594 u32 memsz
= phdr
->p_memsz
;
595 u32 filesz
= phdr
->p_filesz
;
596 u32 offset
= phdr
->p_offset
;
600 if (phdr
->p_type
!= PT_LOAD
|| !filesz
)
603 dev_dbg(dev
, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
604 phdr
->p_type
, da
, memsz
, filesz
);
606 if (filesz
> memsz
) {
607 dev_err(dev
, "bad phdr filesz 0x%x memsz 0x%x\n",
613 if (offset
+ filesz
> fw
->size
) {
614 dev_err(dev
, "truncated fw: need 0x%x avail 0x%zx\n",
615 offset
+ filesz
, fw
->size
);
620 /* grab the kernel address for this device address */
621 is_iram
= phdr
->p_flags
& PF_X
;
622 ptr
= pru_da_to_va(rproc
, da
, memsz
, is_iram
);
624 dev_err(dev
, "bad phdr da 0x%x mem 0x%x\n", da
, memsz
);
629 if (pru
->data
->is_k3
) {
630 ret
= pru_rproc_memcpy(ptr
, elf_data
+ phdr
->p_offset
,
633 dev_err(dev
, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
638 memcpy(ptr
, elf_data
+ phdr
->p_offset
, filesz
);
641 /* skip the memzero logic performed by remoteproc ELF loader */
648 pru_rproc_find_interrupt_map(struct device
*dev
, const struct firmware
*fw
)
650 struct elf32_shdr
*shdr
, *name_table_shdr
;
651 const char *name_table
;
652 const u8
*elf_data
= fw
->data
;
653 struct elf32_hdr
*ehdr
= (struct elf32_hdr
*)elf_data
;
654 u16 shnum
= ehdr
->e_shnum
;
655 u16 shstrndx
= ehdr
->e_shstrndx
;
658 /* first, get the section header */
659 shdr
= (struct elf32_shdr
*)(elf_data
+ ehdr
->e_shoff
);
660 /* compute name table section header entry in shdr array */
661 name_table_shdr
= shdr
+ shstrndx
;
662 /* finally, compute the name table section address in elf */
663 name_table
= elf_data
+ name_table_shdr
->sh_offset
;
665 for (i
= 0; i
< shnum
; i
++, shdr
++) {
666 u32 size
= shdr
->sh_size
;
667 u32 offset
= shdr
->sh_offset
;
668 u32 name
= shdr
->sh_name
;
670 if (strcmp(name_table
+ name
, ".pru_irq_map"))
673 /* make sure we have the entire irq map */
674 if (offset
+ size
> fw
->size
|| offset
+ size
< size
) {
675 dev_err(dev
, ".pru_irq_map section truncated\n");
676 return ERR_PTR(-EINVAL
);
679 /* make sure irq map has at least the header */
680 if (sizeof(struct pru_irq_rsc
) > size
) {
681 dev_err(dev
, "header-less .pru_irq_map section\n");
682 return ERR_PTR(-EINVAL
);
688 dev_dbg(dev
, "no .pru_irq_map section found for this fw\n");
694 * Use a custom parse_fw callback function for dealing with PRU firmware
697 * The firmware blob can contain optional ELF sections: .resource_table section
698 * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
699 * description, which needs to be setup before powering on the PRU core. To
700 * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
701 * firmware linker) and therefore is not loaded to PRU memory.
703 static int pru_rproc_parse_fw(struct rproc
*rproc
, const struct firmware
*fw
)
705 struct device
*dev
= &rproc
->dev
;
706 struct pru_rproc
*pru
= rproc
->priv
;
707 const u8
*elf_data
= fw
->data
;
709 u8
class = fw_elf_get_class(fw
);
713 /* load optional rsc table */
714 ret
= rproc_elf_load_rsc_table(rproc
, fw
);
716 dev_dbg(&rproc
->dev
, "no resource table found for this fw\n");
720 /* find .pru_interrupt_map section, not having it is not an error */
721 shdr
= pru_rproc_find_interrupt_map(dev
, fw
);
723 return PTR_ERR(shdr
);
728 /* preserve pointer to PRU interrupt map together with it size */
729 sh_offset
= elf_shdr_get_sh_offset(class, shdr
);
730 pru
->pru_interrupt_map
= (struct pru_irq_rsc
*)(elf_data
+ sh_offset
);
731 pru
->pru_interrupt_map_sz
= elf_shdr_get_sh_size(class, shdr
);
737 * Compute PRU id based on the IRAM addresses. The PRU IRAMs are
738 * always at a particular offset within the PRUSS address space.
740 static int pru_rproc_set_id(struct pru_rproc
*pru
)
744 switch (pru
->mem_regions
[PRU_IOMEM_IRAM
].pa
& PRU_IRAM_ADDR_MASK
) {
745 case TX_PRU0_IRAM_ADDR_MASK
:
747 case RTU0_IRAM_ADDR_MASK
:
749 case PRU0_IRAM_ADDR_MASK
:
752 case TX_PRU1_IRAM_ADDR_MASK
:
754 case RTU1_IRAM_ADDR_MASK
:
756 case PRU1_IRAM_ADDR_MASK
:
766 static int pru_rproc_probe(struct platform_device
*pdev
)
768 struct device
*dev
= &pdev
->dev
;
769 struct device_node
*np
= dev
->of_node
;
770 struct platform_device
*ppdev
= to_platform_device(dev
->parent
);
771 struct pru_rproc
*pru
;
773 struct rproc
*rproc
= NULL
;
774 struct resource
*res
;
776 const struct pru_private_data
*data
;
777 const char *mem_names
[PRU_IOMEM_MAX
] = { "iram", "control", "debug" };
779 data
= of_device_get_match_data(&pdev
->dev
);
783 ret
= of_property_read_string(np
, "firmware-name", &fw_name
);
785 dev_err(dev
, "unable to retrieve firmware-name %d\n", ret
);
789 rproc
= devm_rproc_alloc(dev
, pdev
->name
, &pru_rproc_ops
, fw_name
,
792 dev_err(dev
, "rproc_alloc failed\n");
795 /* use a custom load function to deal with PRU-specific quirks */
796 rproc
->ops
->load
= pru_rproc_load_elf_segments
;
798 /* use a custom parse function to deal with PRU-specific resources */
799 rproc
->ops
->parse_fw
= pru_rproc_parse_fw
;
801 /* error recovery is not supported for PRUs */
802 rproc
->recovery_disabled
= true;
805 * rproc_add will auto-boot the processor normally, but this is not
806 * desired with PRU client driven boot-flow methodology. A PRU
807 * application/client driver will boot the corresponding PRU
808 * remote-processor as part of its state machine either through the
809 * remoteproc sysfs interface or through the equivalent kernel API.
811 rproc
->auto_boot
= false;
816 pru
->pruss
= platform_get_drvdata(ppdev
);
818 pru
->fw_name
= fw_name
;
820 for (i
= 0; i
< ARRAY_SIZE(mem_names
); i
++) {
821 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
823 pru
->mem_regions
[i
].va
= devm_ioremap_resource(dev
, res
);
824 if (IS_ERR(pru
->mem_regions
[i
].va
)) {
825 dev_err(dev
, "failed to parse and map memory resource %d %s\n",
827 ret
= PTR_ERR(pru
->mem_regions
[i
].va
);
830 pru
->mem_regions
[i
].pa
= res
->start
;
831 pru
->mem_regions
[i
].size
= resource_size(res
);
833 dev_dbg(dev
, "memory %8s: pa %pa size 0x%zx va %pK\n",
834 mem_names
[i
], &pru
->mem_regions
[i
].pa
,
835 pru
->mem_regions
[i
].size
, pru
->mem_regions
[i
].va
);
838 ret
= pru_rproc_set_id(pru
);
842 platform_set_drvdata(pdev
, rproc
);
844 ret
= devm_rproc_add(dev
, pru
->rproc
);
846 dev_err(dev
, "rproc_add failed: %d\n", ret
);
850 pru_rproc_create_debug_entries(rproc
);
852 dev_dbg(dev
, "PRU rproc node %pOF probed successfully\n", np
);
857 static int pru_rproc_remove(struct platform_device
*pdev
)
859 struct device
*dev
= &pdev
->dev
;
860 struct rproc
*rproc
= platform_get_drvdata(pdev
);
862 dev_dbg(dev
, "%s: removing rproc %s\n", __func__
, rproc
->name
);
867 static const struct pru_private_data pru_data
= {
868 .type
= PRU_TYPE_PRU
,
871 static const struct pru_private_data k3_pru_data
= {
872 .type
= PRU_TYPE_PRU
,
876 static const struct pru_private_data k3_rtu_data
= {
877 .type
= PRU_TYPE_RTU
,
881 static const struct pru_private_data k3_tx_pru_data
= {
882 .type
= PRU_TYPE_TX_PRU
,
886 static const struct of_device_id pru_rproc_match
[] = {
887 { .compatible
= "ti,am3356-pru", .data
= &pru_data
},
888 { .compatible
= "ti,am4376-pru", .data
= &pru_data
},
889 { .compatible
= "ti,am5728-pru", .data
= &pru_data
},
890 { .compatible
= "ti,am642-pru", .data
= &k3_pru_data
},
891 { .compatible
= "ti,am642-rtu", .data
= &k3_rtu_data
},
892 { .compatible
= "ti,am642-tx-pru", .data
= &k3_tx_pru_data
},
893 { .compatible
= "ti,k2g-pru", .data
= &pru_data
},
894 { .compatible
= "ti,am654-pru", .data
= &k3_pru_data
},
895 { .compatible
= "ti,am654-rtu", .data
= &k3_rtu_data
},
896 { .compatible
= "ti,am654-tx-pru", .data
= &k3_tx_pru_data
},
897 { .compatible
= "ti,j721e-pru", .data
= &k3_pru_data
},
898 { .compatible
= "ti,j721e-rtu", .data
= &k3_rtu_data
},
899 { .compatible
= "ti,j721e-tx-pru", .data
= &k3_tx_pru_data
},
902 MODULE_DEVICE_TABLE(of
, pru_rproc_match
);
904 static struct platform_driver pru_rproc_driver
= {
907 .of_match_table
= pru_rproc_match
,
908 .suppress_bind_attrs
= true,
910 .probe
= pru_rproc_probe
,
911 .remove
= pru_rproc_remove
,
913 module_platform_driver(pru_rproc_driver
);
915 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
916 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
917 MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
918 MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
919 MODULE_LICENSE("GPL v2");