]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/remoteproc/remoteproc_core.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-zesty-kernel.git] / drivers / remoteproc / remoteproc_core.c
1 /*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25 #define pr_fmt(fmt) "%s: " fmt, __func__
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/crc32.h>
41 #include <linux/virtio_ids.h>
42 #include <linux/virtio_ring.h>
43 #include <asm/byteorder.h>
44
45 #include "remoteproc_internal.h"
46
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
49
50 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
51 struct resource_table *table, int len);
52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 void *, int offset, int avail);
54
55 /* Unique indices for remoteproc devices */
56 static DEFINE_IDA(rproc_dev_index);
57
58 static const char * const rproc_crash_names[] = {
59 [RPROC_MMUFAULT] = "mmufault",
60 [RPROC_WATCHDOG] = "watchdog",
61 [RPROC_FATAL_ERROR] = "fatal error",
62 };
63
64 /* translate rproc_crash_type to string */
65 static const char *rproc_crash_to_string(enum rproc_crash_type type)
66 {
67 if (type < ARRAY_SIZE(rproc_crash_names))
68 return rproc_crash_names[type];
69 return "unknown";
70 }
71
72 /*
73 * This is the IOMMU fault handler we register with the IOMMU API
74 * (when relevant; not all remote processors access memory through
75 * an IOMMU).
76 *
77 * IOMMU core will invoke this handler whenever the remote processor
78 * will try to access an unmapped device address.
79 */
80 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81 unsigned long iova, int flags, void *token)
82 {
83 struct rproc *rproc = token;
84
85 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
86
87 rproc_report_crash(rproc, RPROC_MMUFAULT);
88
89 /*
90 * Let the iommu core know we're not really handling this fault;
91 * we just used it as a recovery trigger.
92 */
93 return -ENOSYS;
94 }
95
96 static int rproc_enable_iommu(struct rproc *rproc)
97 {
98 struct iommu_domain *domain;
99 struct device *dev = rproc->dev.parent;
100 int ret;
101
102 if (!rproc->has_iommu) {
103 dev_dbg(dev, "iommu not present\n");
104 return 0;
105 }
106
107 domain = iommu_domain_alloc(dev->bus);
108 if (!domain) {
109 dev_err(dev, "can't alloc iommu domain\n");
110 return -ENOMEM;
111 }
112
113 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
114
115 ret = iommu_attach_device(domain, dev);
116 if (ret) {
117 dev_err(dev, "can't attach iommu device: %d\n", ret);
118 goto free_domain;
119 }
120
121 rproc->domain = domain;
122
123 return 0;
124
125 free_domain:
126 iommu_domain_free(domain);
127 return ret;
128 }
129
130 static void rproc_disable_iommu(struct rproc *rproc)
131 {
132 struct iommu_domain *domain = rproc->domain;
133 struct device *dev = rproc->dev.parent;
134
135 if (!domain)
136 return;
137
138 iommu_detach_device(domain, dev);
139 iommu_domain_free(domain);
140 }
141
142 /**
143 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
144 * @rproc: handle of a remote processor
145 * @da: remoteproc device address to translate
146 * @len: length of the memory region @da is pointing to
147 *
148 * Some remote processors will ask us to allocate them physically contiguous
149 * memory regions (which we call "carveouts"), and map them to specific
150 * device addresses (which are hardcoded in the firmware). They may also have
151 * dedicated memory regions internal to the processors, and use them either
152 * exclusively or alongside carveouts.
153 *
154 * They may then ask us to copy objects into specific device addresses (e.g.
155 * code/data sections) or expose us certain symbols in other device address
156 * (e.g. their trace buffer).
157 *
158 * This function is a helper function with which we can go over the allocated
159 * carveouts and translate specific device addresses to kernel virtual addresses
160 * so we can access the referenced memory. This function also allows to perform
161 * translations on the internal remoteproc memory regions through a platform
162 * implementation specific da_to_va ops, if present.
163 *
164 * The function returns a valid kernel address on success or NULL on failure.
165 *
166 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
167 * but only on kernel direct mapped RAM memory. Instead, we're just using
168 * here the output of the DMA API for the carveouts, which should be more
169 * correct.
170 */
171 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
172 {
173 struct rproc_mem_entry *carveout;
174 void *ptr = NULL;
175
176 if (rproc->ops->da_to_va) {
177 ptr = rproc->ops->da_to_va(rproc, da, len);
178 if (ptr)
179 goto out;
180 }
181
182 list_for_each_entry(carveout, &rproc->carveouts, node) {
183 int offset = da - carveout->da;
184
185 /* try next carveout if da is too small */
186 if (offset < 0)
187 continue;
188
189 /* try next carveout if da is too large */
190 if (offset + len > carveout->len)
191 continue;
192
193 ptr = carveout->va + offset;
194
195 break;
196 }
197
198 out:
199 return ptr;
200 }
201 EXPORT_SYMBOL(rproc_da_to_va);
202
203 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
204 {
205 struct rproc *rproc = rvdev->rproc;
206 struct device *dev = &rproc->dev;
207 struct rproc_vring *rvring = &rvdev->vring[i];
208 struct fw_rsc_vdev *rsc;
209 dma_addr_t dma;
210 void *va;
211 int ret, size, notifyid;
212
213 /* actual size of vring (in bytes) */
214 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
215
216 /*
217 * Allocate non-cacheable memory for the vring. In the future
218 * this call will also configure the IOMMU for us
219 */
220 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
221 if (!va) {
222 dev_err(dev->parent, "dma_alloc_coherent failed\n");
223 return -EINVAL;
224 }
225
226 /*
227 * Assign an rproc-wide unique index for this vring
228 * TODO: assign a notifyid for rvdev updates as well
229 * TODO: support predefined notifyids (via resource table)
230 */
231 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
232 if (ret < 0) {
233 dev_err(dev, "idr_alloc failed: %d\n", ret);
234 dma_free_coherent(dev->parent, size, va, dma);
235 return ret;
236 }
237 notifyid = ret;
238
239 /* Potentially bump max_notifyid */
240 if (notifyid > rproc->max_notifyid)
241 rproc->max_notifyid = notifyid;
242
243 dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n",
244 i, va, &dma, size, notifyid);
245
246 rvring->va = va;
247 rvring->dma = dma;
248 rvring->notifyid = notifyid;
249
250 /*
251 * Let the rproc know the notifyid and da of this vring.
252 * Not all platforms use dma_alloc_coherent to automatically
253 * set up the iommu. In this case the device address (da) will
254 * hold the physical address and not the device address.
255 */
256 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
257 rsc->vring[i].da = dma;
258 rsc->vring[i].notifyid = notifyid;
259 return 0;
260 }
261
262 static int
263 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
264 {
265 struct rproc *rproc = rvdev->rproc;
266 struct device *dev = &rproc->dev;
267 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
268 struct rproc_vring *rvring = &rvdev->vring[i];
269
270 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
271 i, vring->da, vring->num, vring->align);
272
273 /* verify queue size and vring alignment are sane */
274 if (!vring->num || !vring->align) {
275 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
276 vring->num, vring->align);
277 return -EINVAL;
278 }
279
280 rvring->len = vring->num;
281 rvring->align = vring->align;
282 rvring->rvdev = rvdev;
283
284 return 0;
285 }
286
287 void rproc_free_vring(struct rproc_vring *rvring)
288 {
289 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
290 struct rproc *rproc = rvring->rvdev->rproc;
291 int idx = rvring->rvdev->vring - rvring;
292 struct fw_rsc_vdev *rsc;
293
294 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
295 idr_remove(&rproc->notifyids, rvring->notifyid);
296
297 /* reset resource entry info */
298 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
299 rsc->vring[idx].da = 0;
300 rsc->vring[idx].notifyid = -1;
301 }
302
303 static int rproc_vdev_do_probe(struct rproc_subdev *subdev)
304 {
305 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
306
307 return rproc_add_virtio_dev(rvdev, rvdev->id);
308 }
309
310 static void rproc_vdev_do_remove(struct rproc_subdev *subdev)
311 {
312 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
313
314 rproc_remove_virtio_dev(rvdev);
315 }
316
317 /**
318 * rproc_handle_vdev() - handle a vdev fw resource
319 * @rproc: the remote processor
320 * @rsc: the vring resource descriptor
321 * @avail: size of available data (for sanity checking the image)
322 *
323 * This resource entry requests the host to statically register a virtio
324 * device (vdev), and setup everything needed to support it. It contains
325 * everything needed to make it possible: the virtio device id, virtio
326 * device features, vrings information, virtio config space, etc...
327 *
328 * Before registering the vdev, the vrings are allocated from non-cacheable
329 * physically contiguous memory. Currently we only support two vrings per
330 * remote processor (temporary limitation). We might also want to consider
331 * doing the vring allocation only later when ->find_vqs() is invoked, and
332 * then release them upon ->del_vqs().
333 *
334 * Note: @da is currently not really handled correctly: we dynamically
335 * allocate it using the DMA API, ignoring requested hard coded addresses,
336 * and we don't take care of any required IOMMU programming. This is all
337 * going to be taken care of when the generic iommu-based DMA API will be
338 * merged. Meanwhile, statically-addressed iommu-based firmware images should
339 * use RSC_DEVMEM resource entries to map their required @da to the physical
340 * address of their base CMA region (ouch, hacky!).
341 *
342 * Returns 0 on success, or an appropriate error code otherwise
343 */
344 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
345 int offset, int avail)
346 {
347 struct device *dev = &rproc->dev;
348 struct rproc_vdev *rvdev;
349 int i, ret;
350
351 /* make sure resource isn't truncated */
352 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
353 + rsc->config_len > avail) {
354 dev_err(dev, "vdev rsc is truncated\n");
355 return -EINVAL;
356 }
357
358 /* make sure reserved bytes are zeroes */
359 if (rsc->reserved[0] || rsc->reserved[1]) {
360 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
361 return -EINVAL;
362 }
363
364 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
365 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
366
367 /* we currently support only two vrings per rvdev */
368 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
369 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
370 return -EINVAL;
371 }
372
373 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
374 if (!rvdev)
375 return -ENOMEM;
376
377 kref_init(&rvdev->refcount);
378
379 rvdev->id = rsc->id;
380 rvdev->rproc = rproc;
381
382 /* parse the vrings */
383 for (i = 0; i < rsc->num_of_vrings; i++) {
384 ret = rproc_parse_vring(rvdev, rsc, i);
385 if (ret)
386 goto free_rvdev;
387 }
388
389 /* remember the resource offset*/
390 rvdev->rsc_offset = offset;
391
392 /* allocate the vring resources */
393 for (i = 0; i < rsc->num_of_vrings; i++) {
394 ret = rproc_alloc_vring(rvdev, i);
395 if (ret)
396 goto unwind_vring_allocations;
397 }
398
399 list_add_tail(&rvdev->node, &rproc->rvdevs);
400
401 rproc_add_subdev(rproc, &rvdev->subdev,
402 rproc_vdev_do_probe, rproc_vdev_do_remove);
403
404 return 0;
405
406 unwind_vring_allocations:
407 for (i--; i >= 0; i--)
408 rproc_free_vring(&rvdev->vring[i]);
409 free_rvdev:
410 kfree(rvdev);
411 return ret;
412 }
413
414 void rproc_vdev_release(struct kref *ref)
415 {
416 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
417 struct rproc_vring *rvring;
418 struct rproc *rproc = rvdev->rproc;
419 int id;
420
421 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
422 rvring = &rvdev->vring[id];
423 if (!rvring->va)
424 continue;
425
426 rproc_free_vring(rvring);
427 }
428
429 rproc_remove_subdev(rproc, &rvdev->subdev);
430 list_del(&rvdev->node);
431 kfree(rvdev);
432 }
433
434 /**
435 * rproc_handle_trace() - handle a shared trace buffer resource
436 * @rproc: the remote processor
437 * @rsc: the trace resource descriptor
438 * @avail: size of available data (for sanity checking the image)
439 *
440 * In case the remote processor dumps trace logs into memory,
441 * export it via debugfs.
442 *
443 * Currently, the 'da' member of @rsc should contain the device address
444 * where the remote processor is dumping the traces. Later we could also
445 * support dynamically allocating this address using the generic
446 * DMA API (but currently there isn't a use case for that).
447 *
448 * Returns 0 on success, or an appropriate error code otherwise
449 */
450 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
451 int offset, int avail)
452 {
453 struct rproc_mem_entry *trace;
454 struct device *dev = &rproc->dev;
455 void *ptr;
456 char name[15];
457
458 if (sizeof(*rsc) > avail) {
459 dev_err(dev, "trace rsc is truncated\n");
460 return -EINVAL;
461 }
462
463 /* make sure reserved bytes are zeroes */
464 if (rsc->reserved) {
465 dev_err(dev, "trace rsc has non zero reserved bytes\n");
466 return -EINVAL;
467 }
468
469 /* what's the kernel address of this resource ? */
470 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
471 if (!ptr) {
472 dev_err(dev, "erroneous trace resource entry\n");
473 return -EINVAL;
474 }
475
476 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
477 if (!trace)
478 return -ENOMEM;
479
480 /* set the trace buffer dma properties */
481 trace->len = rsc->len;
482 trace->va = ptr;
483
484 /* make sure snprintf always null terminates, even if truncating */
485 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
486
487 /* create the debugfs entry */
488 trace->priv = rproc_create_trace_file(name, rproc, trace);
489 if (!trace->priv) {
490 trace->va = NULL;
491 kfree(trace);
492 return -EINVAL;
493 }
494
495 list_add_tail(&trace->node, &rproc->traces);
496
497 rproc->num_traces++;
498
499 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n",
500 name, ptr, rsc->da, rsc->len);
501
502 return 0;
503 }
504
505 /**
506 * rproc_handle_devmem() - handle devmem resource entry
507 * @rproc: remote processor handle
508 * @rsc: the devmem resource entry
509 * @avail: size of available data (for sanity checking the image)
510 *
511 * Remote processors commonly need to access certain on-chip peripherals.
512 *
513 * Some of these remote processors access memory via an iommu device,
514 * and might require us to configure their iommu before they can access
515 * the on-chip peripherals they need.
516 *
517 * This resource entry is a request to map such a peripheral device.
518 *
519 * These devmem entries will contain the physical address of the device in
520 * the 'pa' member. If a specific device address is expected, then 'da' will
521 * contain it (currently this is the only use case supported). 'len' will
522 * contain the size of the physical region we need to map.
523 *
524 * Currently we just "trust" those devmem entries to contain valid physical
525 * addresses, but this is going to change: we want the implementations to
526 * tell us ranges of physical addresses the firmware is allowed to request,
527 * and not allow firmwares to request access to physical addresses that
528 * are outside those ranges.
529 */
530 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
531 int offset, int avail)
532 {
533 struct rproc_mem_entry *mapping;
534 struct device *dev = &rproc->dev;
535 int ret;
536
537 /* no point in handling this resource without a valid iommu domain */
538 if (!rproc->domain)
539 return -EINVAL;
540
541 if (sizeof(*rsc) > avail) {
542 dev_err(dev, "devmem rsc is truncated\n");
543 return -EINVAL;
544 }
545
546 /* make sure reserved bytes are zeroes */
547 if (rsc->reserved) {
548 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
549 return -EINVAL;
550 }
551
552 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
553 if (!mapping)
554 return -ENOMEM;
555
556 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
557 if (ret) {
558 dev_err(dev, "failed to map devmem: %d\n", ret);
559 goto out;
560 }
561
562 /*
563 * We'll need this info later when we'll want to unmap everything
564 * (e.g. on shutdown).
565 *
566 * We can't trust the remote processor not to change the resource
567 * table, so we must maintain this info independently.
568 */
569 mapping->da = rsc->da;
570 mapping->len = rsc->len;
571 list_add_tail(&mapping->node, &rproc->mappings);
572
573 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
574 rsc->pa, rsc->da, rsc->len);
575
576 return 0;
577
578 out:
579 kfree(mapping);
580 return ret;
581 }
582
583 /**
584 * rproc_handle_carveout() - handle phys contig memory allocation requests
585 * @rproc: rproc handle
586 * @rsc: the resource entry
587 * @avail: size of available data (for image validation)
588 *
589 * This function will handle firmware requests for allocation of physically
590 * contiguous memory regions.
591 *
592 * These request entries should come first in the firmware's resource table,
593 * as other firmware entries might request placing other data objects inside
594 * these memory regions (e.g. data/code segments, trace resource entries, ...).
595 *
596 * Allocating memory this way helps utilizing the reserved physical memory
597 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
598 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
599 * pressure is important; it may have a substantial impact on performance.
600 */
601 static int rproc_handle_carveout(struct rproc *rproc,
602 struct fw_rsc_carveout *rsc,
603 int offset, int avail)
604 {
605 struct rproc_mem_entry *carveout, *mapping;
606 struct device *dev = &rproc->dev;
607 dma_addr_t dma;
608 void *va;
609 int ret;
610
611 if (sizeof(*rsc) > avail) {
612 dev_err(dev, "carveout rsc is truncated\n");
613 return -EINVAL;
614 }
615
616 /* make sure reserved bytes are zeroes */
617 if (rsc->reserved) {
618 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
619 return -EINVAL;
620 }
621
622 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
623 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
624
625 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
626 if (!carveout)
627 return -ENOMEM;
628
629 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
630 if (!va) {
631 dev_err(dev->parent,
632 "failed to allocate dma memory: len 0x%x\n", rsc->len);
633 ret = -ENOMEM;
634 goto free_carv;
635 }
636
637 dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n",
638 va, &dma, rsc->len);
639
640 /*
641 * Ok, this is non-standard.
642 *
643 * Sometimes we can't rely on the generic iommu-based DMA API
644 * to dynamically allocate the device address and then set the IOMMU
645 * tables accordingly, because some remote processors might
646 * _require_ us to use hard coded device addresses that their
647 * firmware was compiled with.
648 *
649 * In this case, we must use the IOMMU API directly and map
650 * the memory to the device address as expected by the remote
651 * processor.
652 *
653 * Obviously such remote processor devices should not be configured
654 * to use the iommu-based DMA API: we expect 'dma' to contain the
655 * physical address in this case.
656 */
657 if (rproc->domain) {
658 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
659 if (!mapping) {
660 ret = -ENOMEM;
661 goto dma_free;
662 }
663
664 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
665 rsc->flags);
666 if (ret) {
667 dev_err(dev, "iommu_map failed: %d\n", ret);
668 goto free_mapping;
669 }
670
671 /*
672 * We'll need this info later when we'll want to unmap
673 * everything (e.g. on shutdown).
674 *
675 * We can't trust the remote processor not to change the
676 * resource table, so we must maintain this info independently.
677 */
678 mapping->da = rsc->da;
679 mapping->len = rsc->len;
680 list_add_tail(&mapping->node, &rproc->mappings);
681
682 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
683 rsc->da, &dma);
684 }
685
686 /*
687 * Some remote processors might need to know the pa
688 * even though they are behind an IOMMU. E.g., OMAP4's
689 * remote M3 processor needs this so it can control
690 * on-chip hardware accelerators that are not behind
691 * the IOMMU, and therefor must know the pa.
692 *
693 * Generally we don't want to expose physical addresses
694 * if we don't have to (remote processors are generally
695 * _not_ trusted), so we might want to do this only for
696 * remote processor that _must_ have this (e.g. OMAP4's
697 * dual M3 subsystem).
698 *
699 * Non-IOMMU processors might also want to have this info.
700 * In this case, the device address and the physical address
701 * are the same.
702 */
703 rsc->pa = dma;
704
705 carveout->va = va;
706 carveout->len = rsc->len;
707 carveout->dma = dma;
708 carveout->da = rsc->da;
709
710 list_add_tail(&carveout->node, &rproc->carveouts);
711
712 return 0;
713
714 free_mapping:
715 kfree(mapping);
716 dma_free:
717 dma_free_coherent(dev->parent, rsc->len, va, dma);
718 free_carv:
719 kfree(carveout);
720 return ret;
721 }
722
723 /*
724 * A lookup table for resource handlers. The indices are defined in
725 * enum fw_resource_type.
726 */
727 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
728 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
729 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
730 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
731 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
732 };
733
734 /* handle firmware resource entries before booting the remote processor */
735 static int rproc_handle_resources(struct rproc *rproc, int len,
736 rproc_handle_resource_t handlers[RSC_LAST])
737 {
738 struct device *dev = &rproc->dev;
739 rproc_handle_resource_t handler;
740 int ret = 0, i;
741
742 for (i = 0; i < rproc->table_ptr->num; i++) {
743 int offset = rproc->table_ptr->offset[i];
744 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
745 int avail = len - offset - sizeof(*hdr);
746 void *rsc = (void *)hdr + sizeof(*hdr);
747
748 /* make sure table isn't truncated */
749 if (avail < 0) {
750 dev_err(dev, "rsc table is truncated\n");
751 return -EINVAL;
752 }
753
754 dev_dbg(dev, "rsc: type %d\n", hdr->type);
755
756 if (hdr->type >= RSC_LAST) {
757 dev_warn(dev, "unsupported resource %d\n", hdr->type);
758 continue;
759 }
760
761 handler = handlers[hdr->type];
762 if (!handler)
763 continue;
764
765 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
766 if (ret)
767 break;
768 }
769
770 return ret;
771 }
772
773 static int rproc_probe_subdevices(struct rproc *rproc)
774 {
775 struct rproc_subdev *subdev;
776 int ret;
777
778 list_for_each_entry(subdev, &rproc->subdevs, node) {
779 ret = subdev->probe(subdev);
780 if (ret)
781 goto unroll_registration;
782 }
783
784 return 0;
785
786 unroll_registration:
787 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node)
788 subdev->remove(subdev);
789
790 return ret;
791 }
792
793 static void rproc_remove_subdevices(struct rproc *rproc)
794 {
795 struct rproc_subdev *subdev;
796
797 list_for_each_entry(subdev, &rproc->subdevs, node)
798 subdev->remove(subdev);
799 }
800
801 /**
802 * rproc_resource_cleanup() - clean up and free all acquired resources
803 * @rproc: rproc handle
804 *
805 * This function will free all resources acquired for @rproc, and it
806 * is called whenever @rproc either shuts down or fails to boot.
807 */
808 static void rproc_resource_cleanup(struct rproc *rproc)
809 {
810 struct rproc_mem_entry *entry, *tmp;
811 struct rproc_vdev *rvdev, *rvtmp;
812 struct device *dev = &rproc->dev;
813
814 /* clean up debugfs trace entries */
815 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
816 rproc_remove_trace_file(entry->priv);
817 rproc->num_traces--;
818 list_del(&entry->node);
819 kfree(entry);
820 }
821
822 /* clean up iommu mapping entries */
823 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
824 size_t unmapped;
825
826 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
827 if (unmapped != entry->len) {
828 /* nothing much to do besides complaining */
829 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
830 unmapped);
831 }
832
833 list_del(&entry->node);
834 kfree(entry);
835 }
836
837 /* clean up carveout allocations */
838 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
839 dma_free_coherent(dev->parent, entry->len, entry->va,
840 entry->dma);
841 list_del(&entry->node);
842 kfree(entry);
843 }
844
845 /* clean up remote vdev entries */
846 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
847 kref_put(&rvdev->refcount, rproc_vdev_release);
848 }
849
850 /*
851 * take a firmware and boot a remote processor with it.
852 */
853 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
854 {
855 struct device *dev = &rproc->dev;
856 const char *name = rproc->firmware;
857 struct resource_table *table, *loaded_table;
858 int ret, tablesz;
859
860 ret = rproc_fw_sanity_check(rproc, fw);
861 if (ret)
862 return ret;
863
864 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
865
866 /*
867 * if enabling an IOMMU isn't relevant for this rproc, this is
868 * just a nop
869 */
870 ret = rproc_enable_iommu(rproc);
871 if (ret) {
872 dev_err(dev, "can't enable iommu: %d\n", ret);
873 return ret;
874 }
875
876 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
877 ret = -EINVAL;
878
879 /* look for the resource table */
880 table = rproc_find_rsc_table(rproc, fw, &tablesz);
881 if (!table) {
882 dev_err(dev, "Failed to find resource table\n");
883 goto clean_up;
884 }
885
886 /*
887 * Create a copy of the resource table. When a virtio device starts
888 * and calls vring_new_virtqueue() the address of the allocated vring
889 * will be stored in the cached_table. Before the device is started,
890 * cached_table will be copied into device memory.
891 */
892 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
893 if (!rproc->cached_table)
894 goto clean_up;
895
896 rproc->table_ptr = rproc->cached_table;
897
898 /* reset max_notifyid */
899 rproc->max_notifyid = -1;
900
901 /* handle fw resources which are required to boot rproc */
902 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
903 if (ret) {
904 dev_err(dev, "Failed to process resources: %d\n", ret);
905 goto clean_up_resources;
906 }
907
908 /* load the ELF segments to memory */
909 ret = rproc_load_segments(rproc, fw);
910 if (ret) {
911 dev_err(dev, "Failed to load program segments: %d\n", ret);
912 goto clean_up_resources;
913 }
914
915 /*
916 * The starting device has been given the rproc->cached_table as the
917 * resource table. The address of the vring along with the other
918 * allocated resources (carveouts etc) is stored in cached_table.
919 * In order to pass this information to the remote device we must copy
920 * this information to device memory. We also update the table_ptr so
921 * that any subsequent changes will be applied to the loaded version.
922 */
923 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
924 if (loaded_table) {
925 memcpy(loaded_table, rproc->cached_table, tablesz);
926 rproc->table_ptr = loaded_table;
927 }
928
929 /* power up the remote processor */
930 ret = rproc->ops->start(rproc);
931 if (ret) {
932 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
933 goto clean_up_resources;
934 }
935
936 /* probe any subdevices for the remote processor */
937 ret = rproc_probe_subdevices(rproc);
938 if (ret) {
939 dev_err(dev, "failed to probe subdevices for %s: %d\n",
940 rproc->name, ret);
941 goto stop_rproc;
942 }
943
944 rproc->state = RPROC_RUNNING;
945
946 dev_info(dev, "remote processor %s is now up\n", rproc->name);
947
948 return 0;
949
950 stop_rproc:
951 rproc->ops->stop(rproc);
952 clean_up_resources:
953 rproc_resource_cleanup(rproc);
954 clean_up:
955 kfree(rproc->cached_table);
956 rproc->cached_table = NULL;
957 rproc->table_ptr = NULL;
958
959 rproc_disable_iommu(rproc);
960 return ret;
961 }
962
963 /*
964 * take a firmware and look for virtio devices to register.
965 *
966 * Note: this function is called asynchronously upon registration of the
967 * remote processor (so we must wait until it completes before we try
968 * to unregister the device. one other option is just to use kref here,
969 * that might be cleaner).
970 */
971 static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
972 {
973 struct rproc *rproc = context;
974
975 /* if rproc is marked always-on, request it to boot */
976 if (rproc->auto_boot)
977 rproc_boot(rproc);
978
979 release_firmware(fw);
980 /* allow rproc_del() contexts, if any, to proceed */
981 complete_all(&rproc->firmware_loading_complete);
982 }
983
984 static int rproc_add_virtio_devices(struct rproc *rproc)
985 {
986 int ret;
987
988 /* rproc_del() calls must wait until async loader completes */
989 init_completion(&rproc->firmware_loading_complete);
990
991 /*
992 * We must retrieve early virtio configuration info from
993 * the firmware (e.g. whether to register a virtio device,
994 * what virtio features does it support, ...).
995 *
996 * We're initiating an asynchronous firmware loading, so we can
997 * be built-in kernel code, without hanging the boot process.
998 */
999 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1000 rproc->firmware, &rproc->dev, GFP_KERNEL,
1001 rproc, rproc_fw_config_virtio);
1002 if (ret < 0) {
1003 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1004 complete_all(&rproc->firmware_loading_complete);
1005 }
1006
1007 return ret;
1008 }
1009
1010 /**
1011 * rproc_trigger_recovery() - recover a remoteproc
1012 * @rproc: the remote processor
1013 *
1014 * The recovery is done by resetting all the virtio devices, that way all the
1015 * rpmsg drivers will be reseted along with the remote processor making the
1016 * remoteproc functional again.
1017 *
1018 * This function can sleep, so it cannot be called from atomic context.
1019 */
1020 int rproc_trigger_recovery(struct rproc *rproc)
1021 {
1022 dev_err(&rproc->dev, "recovering %s\n", rproc->name);
1023
1024 init_completion(&rproc->crash_comp);
1025
1026 /* shut down the remote */
1027 /* TODO: make sure this works with rproc->power > 1 */
1028 rproc_shutdown(rproc);
1029
1030 /* wait until there is no more rproc users */
1031 wait_for_completion(&rproc->crash_comp);
1032
1033 /*
1034 * boot the remote processor up again
1035 */
1036 rproc_boot(rproc);
1037
1038 return 0;
1039 }
1040
1041 /**
1042 * rproc_crash_handler_work() - handle a crash
1043 *
1044 * This function needs to handle everything related to a crash, like cpu
1045 * registers and stack dump, information to help to debug the fatal error, etc.
1046 */
1047 static void rproc_crash_handler_work(struct work_struct *work)
1048 {
1049 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1050 struct device *dev = &rproc->dev;
1051
1052 dev_dbg(dev, "enter %s\n", __func__);
1053
1054 mutex_lock(&rproc->lock);
1055
1056 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1057 /* handle only the first crash detected */
1058 mutex_unlock(&rproc->lock);
1059 return;
1060 }
1061
1062 rproc->state = RPROC_CRASHED;
1063 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1064 rproc->name);
1065
1066 mutex_unlock(&rproc->lock);
1067
1068 if (!rproc->recovery_disabled)
1069 rproc_trigger_recovery(rproc);
1070 }
1071
1072 /**
1073 * __rproc_boot() - boot a remote processor
1074 * @rproc: handle of a remote processor
1075 *
1076 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1077 *
1078 * If the remote processor is already powered on, this function immediately
1079 * returns (successfully).
1080 *
1081 * Returns 0 on success, and an appropriate error value otherwise.
1082 */
1083 static int __rproc_boot(struct rproc *rproc)
1084 {
1085 const struct firmware *firmware_p;
1086 struct device *dev;
1087 int ret;
1088
1089 if (!rproc) {
1090 pr_err("invalid rproc handle\n");
1091 return -EINVAL;
1092 }
1093
1094 dev = &rproc->dev;
1095
1096 ret = mutex_lock_interruptible(&rproc->lock);
1097 if (ret) {
1098 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1099 return ret;
1100 }
1101
1102 /* skip the boot process if rproc is already powered up */
1103 if (atomic_inc_return(&rproc->power) > 1) {
1104 ret = 0;
1105 goto unlock_mutex;
1106 }
1107
1108 dev_info(dev, "powering up %s\n", rproc->name);
1109
1110 /* load firmware */
1111 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1112 if (ret < 0) {
1113 dev_err(dev, "request_firmware failed: %d\n", ret);
1114 goto downref_rproc;
1115 }
1116
1117 ret = rproc_fw_boot(rproc, firmware_p);
1118
1119 release_firmware(firmware_p);
1120
1121 downref_rproc:
1122 if (ret)
1123 atomic_dec(&rproc->power);
1124 unlock_mutex:
1125 mutex_unlock(&rproc->lock);
1126 return ret;
1127 }
1128
1129 /**
1130 * rproc_boot() - boot a remote processor
1131 * @rproc: handle of a remote processor
1132 */
1133 int rproc_boot(struct rproc *rproc)
1134 {
1135 return __rproc_boot(rproc);
1136 }
1137 EXPORT_SYMBOL(rproc_boot);
1138
1139 /**
1140 * rproc_shutdown() - power off the remote processor
1141 * @rproc: the remote processor
1142 *
1143 * Power off a remote processor (previously booted with rproc_boot()).
1144 *
1145 * In case @rproc is still being used by an additional user(s), then
1146 * this function will just decrement the power refcount and exit,
1147 * without really powering off the device.
1148 *
1149 * Every call to rproc_boot() must (eventually) be accompanied by a call
1150 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1151 *
1152 * Notes:
1153 * - we're not decrementing the rproc's refcount, only the power refcount.
1154 * which means that the @rproc handle stays valid even after rproc_shutdown()
1155 * returns, and users can still use it with a subsequent rproc_boot(), if
1156 * needed.
1157 */
1158 void rproc_shutdown(struct rproc *rproc)
1159 {
1160 struct device *dev = &rproc->dev;
1161 int ret;
1162
1163 ret = mutex_lock_interruptible(&rproc->lock);
1164 if (ret) {
1165 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1166 return;
1167 }
1168
1169 /* if the remote proc is still needed, bail out */
1170 if (!atomic_dec_and_test(&rproc->power))
1171 goto out;
1172
1173 /* remove any subdevices for the remote processor */
1174 rproc_remove_subdevices(rproc);
1175
1176 /* power off the remote processor */
1177 ret = rproc->ops->stop(rproc);
1178 if (ret) {
1179 atomic_inc(&rproc->power);
1180 dev_err(dev, "can't stop rproc: %d\n", ret);
1181 goto out;
1182 }
1183
1184 /* clean up all acquired resources */
1185 rproc_resource_cleanup(rproc);
1186
1187 rproc_disable_iommu(rproc);
1188
1189 /* Free the copy of the resource table */
1190 kfree(rproc->cached_table);
1191 rproc->cached_table = NULL;
1192 rproc->table_ptr = NULL;
1193
1194 /* if in crash state, unlock crash handler */
1195 if (rproc->state == RPROC_CRASHED)
1196 complete_all(&rproc->crash_comp);
1197
1198 rproc->state = RPROC_OFFLINE;
1199
1200 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1201
1202 out:
1203 mutex_unlock(&rproc->lock);
1204 }
1205 EXPORT_SYMBOL(rproc_shutdown);
1206
1207 /**
1208 * rproc_get_by_phandle() - find a remote processor by phandle
1209 * @phandle: phandle to the rproc
1210 *
1211 * Finds an rproc handle using the remote processor's phandle, and then
1212 * return a handle to the rproc.
1213 *
1214 * This function increments the remote processor's refcount, so always
1215 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1216 *
1217 * Returns the rproc handle on success, and NULL on failure.
1218 */
1219 #ifdef CONFIG_OF
1220 struct rproc *rproc_get_by_phandle(phandle phandle)
1221 {
1222 struct rproc *rproc = NULL, *r;
1223 struct device_node *np;
1224
1225 np = of_find_node_by_phandle(phandle);
1226 if (!np)
1227 return NULL;
1228
1229 mutex_lock(&rproc_list_mutex);
1230 list_for_each_entry(r, &rproc_list, node) {
1231 if (r->dev.parent && r->dev.parent->of_node == np) {
1232 /* prevent underlying implementation from being removed */
1233 if (!try_module_get(r->dev.parent->driver->owner)) {
1234 dev_err(&r->dev, "can't get owner\n");
1235 break;
1236 }
1237
1238 rproc = r;
1239 get_device(&rproc->dev);
1240 break;
1241 }
1242 }
1243 mutex_unlock(&rproc_list_mutex);
1244
1245 of_node_put(np);
1246
1247 return rproc;
1248 }
1249 #else
1250 struct rproc *rproc_get_by_phandle(phandle phandle)
1251 {
1252 return NULL;
1253 }
1254 #endif
1255 EXPORT_SYMBOL(rproc_get_by_phandle);
1256
1257 /**
1258 * rproc_add() - register a remote processor
1259 * @rproc: the remote processor handle to register
1260 *
1261 * Registers @rproc with the remoteproc framework, after it has been
1262 * allocated with rproc_alloc().
1263 *
1264 * This is called by the platform-specific rproc implementation, whenever
1265 * a new remote processor device is probed.
1266 *
1267 * Returns 0 on success and an appropriate error code otherwise.
1268 *
1269 * Note: this function initiates an asynchronous firmware loading
1270 * context, which will look for virtio devices supported by the rproc's
1271 * firmware.
1272 *
1273 * If found, those virtio devices will be created and added, so as a result
1274 * of registering this remote processor, additional virtio drivers might be
1275 * probed.
1276 */
1277 int rproc_add(struct rproc *rproc)
1278 {
1279 struct device *dev = &rproc->dev;
1280 int ret;
1281
1282 ret = device_add(dev);
1283 if (ret < 0)
1284 return ret;
1285
1286 dev_info(dev, "%s is available\n", rproc->name);
1287
1288 /* create debugfs entries */
1289 rproc_create_debug_dir(rproc);
1290 ret = rproc_add_virtio_devices(rproc);
1291 if (ret < 0)
1292 return ret;
1293
1294 /* expose to rproc_get_by_phandle users */
1295 mutex_lock(&rproc_list_mutex);
1296 list_add(&rproc->node, &rproc_list);
1297 mutex_unlock(&rproc_list_mutex);
1298
1299 return 0;
1300 }
1301 EXPORT_SYMBOL(rproc_add);
1302
1303 /**
1304 * rproc_type_release() - release a remote processor instance
1305 * @dev: the rproc's device
1306 *
1307 * This function should _never_ be called directly.
1308 *
1309 * It will be called by the driver core when no one holds a valid pointer
1310 * to @dev anymore.
1311 */
1312 static void rproc_type_release(struct device *dev)
1313 {
1314 struct rproc *rproc = container_of(dev, struct rproc, dev);
1315
1316 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1317
1318 rproc_delete_debug_dir(rproc);
1319
1320 idr_destroy(&rproc->notifyids);
1321
1322 if (rproc->index >= 0)
1323 ida_simple_remove(&rproc_dev_index, rproc->index);
1324
1325 kfree(rproc->firmware);
1326 kfree(rproc);
1327 }
1328
1329 static struct device_type rproc_type = {
1330 .name = "remoteproc",
1331 .release = rproc_type_release,
1332 };
1333
1334 /**
1335 * rproc_alloc() - allocate a remote processor handle
1336 * @dev: the underlying device
1337 * @name: name of this remote processor
1338 * @ops: platform-specific handlers (mainly start/stop)
1339 * @firmware: name of firmware file to load, can be NULL
1340 * @len: length of private data needed by the rproc driver (in bytes)
1341 *
1342 * Allocates a new remote processor handle, but does not register
1343 * it yet. if @firmware is NULL, a default name is used.
1344 *
1345 * This function should be used by rproc implementations during initialization
1346 * of the remote processor.
1347 *
1348 * After creating an rproc handle using this function, and when ready,
1349 * implementations should then call rproc_add() to complete
1350 * the registration of the remote processor.
1351 *
1352 * On success the new rproc is returned, and on failure, NULL.
1353 *
1354 * Note: _never_ directly deallocate @rproc, even if it was not registered
1355 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1356 */
1357 struct rproc *rproc_alloc(struct device *dev, const char *name,
1358 const struct rproc_ops *ops,
1359 const char *firmware, int len)
1360 {
1361 struct rproc *rproc;
1362 char *p, *template = "rproc-%s-fw";
1363 int name_len;
1364
1365 if (!dev || !name || !ops)
1366 return NULL;
1367
1368 if (!firmware) {
1369 /*
1370 * If the caller didn't pass in a firmware name then
1371 * construct a default name.
1372 */
1373 name_len = strlen(name) + strlen(template) - 2 + 1;
1374 p = kmalloc(name_len, GFP_KERNEL);
1375 if (!p)
1376 return NULL;
1377 snprintf(p, name_len, template, name);
1378 } else {
1379 p = kstrdup(firmware, GFP_KERNEL);
1380 if (!p)
1381 return NULL;
1382 }
1383
1384 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1385 if (!rproc) {
1386 kfree(p);
1387 return NULL;
1388 }
1389
1390 rproc->firmware = p;
1391 rproc->name = name;
1392 rproc->ops = ops;
1393 rproc->priv = &rproc[1];
1394 rproc->auto_boot = true;
1395
1396 device_initialize(&rproc->dev);
1397 rproc->dev.parent = dev;
1398 rproc->dev.type = &rproc_type;
1399 rproc->dev.class = &rproc_class;
1400
1401 /* Assign a unique device index and name */
1402 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1403 if (rproc->index < 0) {
1404 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1405 put_device(&rproc->dev);
1406 return NULL;
1407 }
1408
1409 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1410
1411 atomic_set(&rproc->power, 0);
1412
1413 /* Set ELF as the default fw_ops handler */
1414 rproc->fw_ops = &rproc_elf_fw_ops;
1415
1416 mutex_init(&rproc->lock);
1417
1418 idr_init(&rproc->notifyids);
1419
1420 INIT_LIST_HEAD(&rproc->carveouts);
1421 INIT_LIST_HEAD(&rproc->mappings);
1422 INIT_LIST_HEAD(&rproc->traces);
1423 INIT_LIST_HEAD(&rproc->rvdevs);
1424 INIT_LIST_HEAD(&rproc->subdevs);
1425
1426 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1427 init_completion(&rproc->crash_comp);
1428
1429 rproc->state = RPROC_OFFLINE;
1430
1431 return rproc;
1432 }
1433 EXPORT_SYMBOL(rproc_alloc);
1434
1435 /**
1436 * rproc_free() - unroll rproc_alloc()
1437 * @rproc: the remote processor handle
1438 *
1439 * This function decrements the rproc dev refcount.
1440 *
1441 * If no one holds any reference to rproc anymore, then its refcount would
1442 * now drop to zero, and it would be freed.
1443 */
1444 void rproc_free(struct rproc *rproc)
1445 {
1446 put_device(&rproc->dev);
1447 }
1448 EXPORT_SYMBOL(rproc_free);
1449
1450 /**
1451 * rproc_put() - release rproc reference
1452 * @rproc: the remote processor handle
1453 *
1454 * This function decrements the rproc dev refcount.
1455 *
1456 * If no one holds any reference to rproc anymore, then its refcount would
1457 * now drop to zero, and it would be freed.
1458 */
1459 void rproc_put(struct rproc *rproc)
1460 {
1461 module_put(rproc->dev.parent->driver->owner);
1462 put_device(&rproc->dev);
1463 }
1464 EXPORT_SYMBOL(rproc_put);
1465
1466 /**
1467 * rproc_del() - unregister a remote processor
1468 * @rproc: rproc handle to unregister
1469 *
1470 * This function should be called when the platform specific rproc
1471 * implementation decides to remove the rproc device. it should
1472 * _only_ be called if a previous invocation of rproc_add()
1473 * has completed successfully.
1474 *
1475 * After rproc_del() returns, @rproc isn't freed yet, because
1476 * of the outstanding reference created by rproc_alloc. To decrement that
1477 * one last refcount, one still needs to call rproc_free().
1478 *
1479 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1480 */
1481 int rproc_del(struct rproc *rproc)
1482 {
1483 if (!rproc)
1484 return -EINVAL;
1485
1486 /* if rproc is just being registered, wait */
1487 wait_for_completion(&rproc->firmware_loading_complete);
1488
1489 /* if rproc is marked always-on, rproc_add() booted it */
1490 /* TODO: make sure this works with rproc->power > 1 */
1491 if (rproc->auto_boot)
1492 rproc_shutdown(rproc);
1493
1494 /* the rproc is downref'ed as soon as it's removed from the klist */
1495 mutex_lock(&rproc_list_mutex);
1496 list_del(&rproc->node);
1497 mutex_unlock(&rproc_list_mutex);
1498
1499 device_del(&rproc->dev);
1500
1501 return 0;
1502 }
1503 EXPORT_SYMBOL(rproc_del);
1504
1505 /**
1506 * rproc_add_subdev() - add a subdevice to a remoteproc
1507 * @rproc: rproc handle to add the subdevice to
1508 * @subdev: subdev handle to register
1509 * @probe: function to call when the rproc boots
1510 * @remove: function to call when the rproc shuts down
1511 */
1512 void rproc_add_subdev(struct rproc *rproc,
1513 struct rproc_subdev *subdev,
1514 int (*probe)(struct rproc_subdev *subdev),
1515 void (*remove)(struct rproc_subdev *subdev))
1516 {
1517 subdev->probe = probe;
1518 subdev->remove = remove;
1519
1520 list_add_tail(&subdev->node, &rproc->subdevs);
1521 }
1522 EXPORT_SYMBOL(rproc_add_subdev);
1523
1524 /**
1525 * rproc_remove_subdev() - remove a subdevice from a remoteproc
1526 * @rproc: rproc handle to remove the subdevice from
1527 * @subdev: subdev handle, previously registered with rproc_add_subdev()
1528 */
1529 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
1530 {
1531 list_del(&subdev->node);
1532 }
1533 EXPORT_SYMBOL(rproc_remove_subdev);
1534
1535 /**
1536 * rproc_report_crash() - rproc crash reporter function
1537 * @rproc: remote processor
1538 * @type: crash type
1539 *
1540 * This function must be called every time a crash is detected by the low-level
1541 * drivers implementing a specific remoteproc. This should not be called from a
1542 * non-remoteproc driver.
1543 *
1544 * This function can be called from atomic/interrupt context.
1545 */
1546 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1547 {
1548 if (!rproc) {
1549 pr_err("NULL rproc pointer\n");
1550 return;
1551 }
1552
1553 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1554 rproc->name, rproc_crash_to_string(type));
1555
1556 /* create a new task to handle the error */
1557 schedule_work(&rproc->crash_handler);
1558 }
1559 EXPORT_SYMBOL(rproc_report_crash);
1560
1561 static int __init remoteproc_init(void)
1562 {
1563 rproc_init_sysfs();
1564 rproc_init_debugfs();
1565
1566 return 0;
1567 }
1568 module_init(remoteproc_init);
1569
1570 static void __exit remoteproc_exit(void)
1571 {
1572 ida_destroy(&rproc_dev_index);
1573
1574 rproc_exit_debugfs();
1575 rproc_exit_sysfs();
1576 }
1577 module_exit(remoteproc_exit);
1578
1579 MODULE_LICENSE("GPL v2");
1580 MODULE_DESCRIPTION("Generic Remote Processor Framework");