]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/remoteproc/remoteproc_core.c
Merge branch 'drm-fixes-4.17' of git://people.freedesktop.org/~agd5f/linux into drm...
[mirror_ubuntu-eoan-kernel.git] / drivers / remoteproc / remoteproc_core.c
1 /*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25 #define pr_fmt(fmt) "%s: " fmt, __func__
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/devcoredump.h>
37 #include <linux/remoteproc.h>
38 #include <linux/iommu.h>
39 #include <linux/idr.h>
40 #include <linux/elf.h>
41 #include <linux/crc32.h>
42 #include <linux/virtio_ids.h>
43 #include <linux/virtio_ring.h>
44 #include <asm/byteorder.h>
45
46 #include "remoteproc_internal.h"
47
48 static DEFINE_MUTEX(rproc_list_mutex);
49 static LIST_HEAD(rproc_list);
50
51 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
52 struct resource_table *table, int len);
53 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
54 void *, int offset, int avail);
55
56 /* Unique indices for remoteproc devices */
57 static DEFINE_IDA(rproc_dev_index);
58
59 static const char * const rproc_crash_names[] = {
60 [RPROC_MMUFAULT] = "mmufault",
61 [RPROC_WATCHDOG] = "watchdog",
62 [RPROC_FATAL_ERROR] = "fatal error",
63 };
64
65 /* translate rproc_crash_type to string */
66 static const char *rproc_crash_to_string(enum rproc_crash_type type)
67 {
68 if (type < ARRAY_SIZE(rproc_crash_names))
69 return rproc_crash_names[type];
70 return "unknown";
71 }
72
73 /*
74 * This is the IOMMU fault handler we register with the IOMMU API
75 * (when relevant; not all remote processors access memory through
76 * an IOMMU).
77 *
78 * IOMMU core will invoke this handler whenever the remote processor
79 * will try to access an unmapped device address.
80 */
81 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
82 unsigned long iova, int flags, void *token)
83 {
84 struct rproc *rproc = token;
85
86 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
87
88 rproc_report_crash(rproc, RPROC_MMUFAULT);
89
90 /*
91 * Let the iommu core know we're not really handling this fault;
92 * we just used it as a recovery trigger.
93 */
94 return -ENOSYS;
95 }
96
97 static int rproc_enable_iommu(struct rproc *rproc)
98 {
99 struct iommu_domain *domain;
100 struct device *dev = rproc->dev.parent;
101 int ret;
102
103 if (!rproc->has_iommu) {
104 dev_dbg(dev, "iommu not present\n");
105 return 0;
106 }
107
108 domain = iommu_domain_alloc(dev->bus);
109 if (!domain) {
110 dev_err(dev, "can't alloc iommu domain\n");
111 return -ENOMEM;
112 }
113
114 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
115
116 ret = iommu_attach_device(domain, dev);
117 if (ret) {
118 dev_err(dev, "can't attach iommu device: %d\n", ret);
119 goto free_domain;
120 }
121
122 rproc->domain = domain;
123
124 return 0;
125
126 free_domain:
127 iommu_domain_free(domain);
128 return ret;
129 }
130
131 static void rproc_disable_iommu(struct rproc *rproc)
132 {
133 struct iommu_domain *domain = rproc->domain;
134 struct device *dev = rproc->dev.parent;
135
136 if (!domain)
137 return;
138
139 iommu_detach_device(domain, dev);
140 iommu_domain_free(domain);
141 }
142
143 /**
144 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
145 * @rproc: handle of a remote processor
146 * @da: remoteproc device address to translate
147 * @len: length of the memory region @da is pointing to
148 *
149 * Some remote processors will ask us to allocate them physically contiguous
150 * memory regions (which we call "carveouts"), and map them to specific
151 * device addresses (which are hardcoded in the firmware). They may also have
152 * dedicated memory regions internal to the processors, and use them either
153 * exclusively or alongside carveouts.
154 *
155 * They may then ask us to copy objects into specific device addresses (e.g.
156 * code/data sections) or expose us certain symbols in other device address
157 * (e.g. their trace buffer).
158 *
159 * This function is a helper function with which we can go over the allocated
160 * carveouts and translate specific device addresses to kernel virtual addresses
161 * so we can access the referenced memory. This function also allows to perform
162 * translations on the internal remoteproc memory regions through a platform
163 * implementation specific da_to_va ops, if present.
164 *
165 * The function returns a valid kernel address on success or NULL on failure.
166 *
167 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
168 * but only on kernel direct mapped RAM memory. Instead, we're just using
169 * here the output of the DMA API for the carveouts, which should be more
170 * correct.
171 */
172 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
173 {
174 struct rproc_mem_entry *carveout;
175 void *ptr = NULL;
176
177 if (rproc->ops->da_to_va) {
178 ptr = rproc->ops->da_to_va(rproc, da, len);
179 if (ptr)
180 goto out;
181 }
182
183 list_for_each_entry(carveout, &rproc->carveouts, node) {
184 int offset = da - carveout->da;
185
186 /* try next carveout if da is too small */
187 if (offset < 0)
188 continue;
189
190 /* try next carveout if da is too large */
191 if (offset + len > carveout->len)
192 continue;
193
194 ptr = carveout->va + offset;
195
196 break;
197 }
198
199 out:
200 return ptr;
201 }
202 EXPORT_SYMBOL(rproc_da_to_va);
203
204 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
205 {
206 struct rproc *rproc = rvdev->rproc;
207 struct device *dev = &rproc->dev;
208 struct rproc_vring *rvring = &rvdev->vring[i];
209 struct fw_rsc_vdev *rsc;
210 dma_addr_t dma;
211 void *va;
212 int ret, size, notifyid;
213
214 /* actual size of vring (in bytes) */
215 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
216
217 /*
218 * Allocate non-cacheable memory for the vring. In the future
219 * this call will also configure the IOMMU for us
220 */
221 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
222 if (!va) {
223 dev_err(dev->parent, "dma_alloc_coherent failed\n");
224 return -EINVAL;
225 }
226
227 /*
228 * Assign an rproc-wide unique index for this vring
229 * TODO: assign a notifyid for rvdev updates as well
230 * TODO: support predefined notifyids (via resource table)
231 */
232 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
233 if (ret < 0) {
234 dev_err(dev, "idr_alloc failed: %d\n", ret);
235 dma_free_coherent(dev->parent, size, va, dma);
236 return ret;
237 }
238 notifyid = ret;
239
240 /* Potentially bump max_notifyid */
241 if (notifyid > rproc->max_notifyid)
242 rproc->max_notifyid = notifyid;
243
244 dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n",
245 i, va, &dma, size, notifyid);
246
247 rvring->va = va;
248 rvring->dma = dma;
249 rvring->notifyid = notifyid;
250
251 /*
252 * Let the rproc know the notifyid and da of this vring.
253 * Not all platforms use dma_alloc_coherent to automatically
254 * set up the iommu. In this case the device address (da) will
255 * hold the physical address and not the device address.
256 */
257 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
258 rsc->vring[i].da = dma;
259 rsc->vring[i].notifyid = notifyid;
260 return 0;
261 }
262
263 static int
264 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
265 {
266 struct rproc *rproc = rvdev->rproc;
267 struct device *dev = &rproc->dev;
268 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
269 struct rproc_vring *rvring = &rvdev->vring[i];
270
271 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
272 i, vring->da, vring->num, vring->align);
273
274 /* verify queue size and vring alignment are sane */
275 if (!vring->num || !vring->align) {
276 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
277 vring->num, vring->align);
278 return -EINVAL;
279 }
280
281 rvring->len = vring->num;
282 rvring->align = vring->align;
283 rvring->rvdev = rvdev;
284
285 return 0;
286 }
287
288 void rproc_free_vring(struct rproc_vring *rvring)
289 {
290 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
291 struct rproc *rproc = rvring->rvdev->rproc;
292 int idx = rvring->rvdev->vring - rvring;
293 struct fw_rsc_vdev *rsc;
294
295 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
296 idr_remove(&rproc->notifyids, rvring->notifyid);
297
298 /* reset resource entry info */
299 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
300 rsc->vring[idx].da = 0;
301 rsc->vring[idx].notifyid = -1;
302 }
303
304 static int rproc_vdev_do_probe(struct rproc_subdev *subdev)
305 {
306 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
307
308 return rproc_add_virtio_dev(rvdev, rvdev->id);
309 }
310
311 static void rproc_vdev_do_remove(struct rproc_subdev *subdev, bool crashed)
312 {
313 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
314
315 rproc_remove_virtio_dev(rvdev);
316 }
317
318 /**
319 * rproc_handle_vdev() - handle a vdev fw resource
320 * @rproc: the remote processor
321 * @rsc: the vring resource descriptor
322 * @avail: size of available data (for sanity checking the image)
323 *
324 * This resource entry requests the host to statically register a virtio
325 * device (vdev), and setup everything needed to support it. It contains
326 * everything needed to make it possible: the virtio device id, virtio
327 * device features, vrings information, virtio config space, etc...
328 *
329 * Before registering the vdev, the vrings are allocated from non-cacheable
330 * physically contiguous memory. Currently we only support two vrings per
331 * remote processor (temporary limitation). We might also want to consider
332 * doing the vring allocation only later when ->find_vqs() is invoked, and
333 * then release them upon ->del_vqs().
334 *
335 * Note: @da is currently not really handled correctly: we dynamically
336 * allocate it using the DMA API, ignoring requested hard coded addresses,
337 * and we don't take care of any required IOMMU programming. This is all
338 * going to be taken care of when the generic iommu-based DMA API will be
339 * merged. Meanwhile, statically-addressed iommu-based firmware images should
340 * use RSC_DEVMEM resource entries to map their required @da to the physical
341 * address of their base CMA region (ouch, hacky!).
342 *
343 * Returns 0 on success, or an appropriate error code otherwise
344 */
345 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
346 int offset, int avail)
347 {
348 struct device *dev = &rproc->dev;
349 struct rproc_vdev *rvdev;
350 int i, ret;
351
352 /* make sure resource isn't truncated */
353 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
354 + rsc->config_len > avail) {
355 dev_err(dev, "vdev rsc is truncated\n");
356 return -EINVAL;
357 }
358
359 /* make sure reserved bytes are zeroes */
360 if (rsc->reserved[0] || rsc->reserved[1]) {
361 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
362 return -EINVAL;
363 }
364
365 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
366 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
367
368 /* we currently support only two vrings per rvdev */
369 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
370 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
371 return -EINVAL;
372 }
373
374 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
375 if (!rvdev)
376 return -ENOMEM;
377
378 kref_init(&rvdev->refcount);
379
380 rvdev->id = rsc->id;
381 rvdev->rproc = rproc;
382
383 /* parse the vrings */
384 for (i = 0; i < rsc->num_of_vrings; i++) {
385 ret = rproc_parse_vring(rvdev, rsc, i);
386 if (ret)
387 goto free_rvdev;
388 }
389
390 /* remember the resource offset*/
391 rvdev->rsc_offset = offset;
392
393 /* allocate the vring resources */
394 for (i = 0; i < rsc->num_of_vrings; i++) {
395 ret = rproc_alloc_vring(rvdev, i);
396 if (ret)
397 goto unwind_vring_allocations;
398 }
399
400 list_add_tail(&rvdev->node, &rproc->rvdevs);
401
402 rproc_add_subdev(rproc, &rvdev->subdev,
403 rproc_vdev_do_probe, rproc_vdev_do_remove);
404
405 return 0;
406
407 unwind_vring_allocations:
408 for (i--; i >= 0; i--)
409 rproc_free_vring(&rvdev->vring[i]);
410 free_rvdev:
411 kfree(rvdev);
412 return ret;
413 }
414
415 void rproc_vdev_release(struct kref *ref)
416 {
417 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
418 struct rproc_vring *rvring;
419 struct rproc *rproc = rvdev->rproc;
420 int id;
421
422 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
423 rvring = &rvdev->vring[id];
424 if (!rvring->va)
425 continue;
426
427 rproc_free_vring(rvring);
428 }
429
430 rproc_remove_subdev(rproc, &rvdev->subdev);
431 list_del(&rvdev->node);
432 kfree(rvdev);
433 }
434
435 /**
436 * rproc_handle_trace() - handle a shared trace buffer resource
437 * @rproc: the remote processor
438 * @rsc: the trace resource descriptor
439 * @avail: size of available data (for sanity checking the image)
440 *
441 * In case the remote processor dumps trace logs into memory,
442 * export it via debugfs.
443 *
444 * Currently, the 'da' member of @rsc should contain the device address
445 * where the remote processor is dumping the traces. Later we could also
446 * support dynamically allocating this address using the generic
447 * DMA API (but currently there isn't a use case for that).
448 *
449 * Returns 0 on success, or an appropriate error code otherwise
450 */
451 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
452 int offset, int avail)
453 {
454 struct rproc_mem_entry *trace;
455 struct device *dev = &rproc->dev;
456 void *ptr;
457 char name[15];
458
459 if (sizeof(*rsc) > avail) {
460 dev_err(dev, "trace rsc is truncated\n");
461 return -EINVAL;
462 }
463
464 /* make sure reserved bytes are zeroes */
465 if (rsc->reserved) {
466 dev_err(dev, "trace rsc has non zero reserved bytes\n");
467 return -EINVAL;
468 }
469
470 /* what's the kernel address of this resource ? */
471 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
472 if (!ptr) {
473 dev_err(dev, "erroneous trace resource entry\n");
474 return -EINVAL;
475 }
476
477 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
478 if (!trace)
479 return -ENOMEM;
480
481 /* set the trace buffer dma properties */
482 trace->len = rsc->len;
483 trace->va = ptr;
484
485 /* make sure snprintf always null terminates, even if truncating */
486 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
487
488 /* create the debugfs entry */
489 trace->priv = rproc_create_trace_file(name, rproc, trace);
490 if (!trace->priv) {
491 trace->va = NULL;
492 kfree(trace);
493 return -EINVAL;
494 }
495
496 list_add_tail(&trace->node, &rproc->traces);
497
498 rproc->num_traces++;
499
500 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n",
501 name, ptr, rsc->da, rsc->len);
502
503 return 0;
504 }
505
506 /**
507 * rproc_handle_devmem() - handle devmem resource entry
508 * @rproc: remote processor handle
509 * @rsc: the devmem resource entry
510 * @avail: size of available data (for sanity checking the image)
511 *
512 * Remote processors commonly need to access certain on-chip peripherals.
513 *
514 * Some of these remote processors access memory via an iommu device,
515 * and might require us to configure their iommu before they can access
516 * the on-chip peripherals they need.
517 *
518 * This resource entry is a request to map such a peripheral device.
519 *
520 * These devmem entries will contain the physical address of the device in
521 * the 'pa' member. If a specific device address is expected, then 'da' will
522 * contain it (currently this is the only use case supported). 'len' will
523 * contain the size of the physical region we need to map.
524 *
525 * Currently we just "trust" those devmem entries to contain valid physical
526 * addresses, but this is going to change: we want the implementations to
527 * tell us ranges of physical addresses the firmware is allowed to request,
528 * and not allow firmwares to request access to physical addresses that
529 * are outside those ranges.
530 */
531 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
532 int offset, int avail)
533 {
534 struct rproc_mem_entry *mapping;
535 struct device *dev = &rproc->dev;
536 int ret;
537
538 /* no point in handling this resource without a valid iommu domain */
539 if (!rproc->domain)
540 return -EINVAL;
541
542 if (sizeof(*rsc) > avail) {
543 dev_err(dev, "devmem rsc is truncated\n");
544 return -EINVAL;
545 }
546
547 /* make sure reserved bytes are zeroes */
548 if (rsc->reserved) {
549 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
550 return -EINVAL;
551 }
552
553 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
554 if (!mapping)
555 return -ENOMEM;
556
557 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
558 if (ret) {
559 dev_err(dev, "failed to map devmem: %d\n", ret);
560 goto out;
561 }
562
563 /*
564 * We'll need this info later when we'll want to unmap everything
565 * (e.g. on shutdown).
566 *
567 * We can't trust the remote processor not to change the resource
568 * table, so we must maintain this info independently.
569 */
570 mapping->da = rsc->da;
571 mapping->len = rsc->len;
572 list_add_tail(&mapping->node, &rproc->mappings);
573
574 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
575 rsc->pa, rsc->da, rsc->len);
576
577 return 0;
578
579 out:
580 kfree(mapping);
581 return ret;
582 }
583
584 /**
585 * rproc_handle_carveout() - handle phys contig memory allocation requests
586 * @rproc: rproc handle
587 * @rsc: the resource entry
588 * @avail: size of available data (for image validation)
589 *
590 * This function will handle firmware requests for allocation of physically
591 * contiguous memory regions.
592 *
593 * These request entries should come first in the firmware's resource table,
594 * as other firmware entries might request placing other data objects inside
595 * these memory regions (e.g. data/code segments, trace resource entries, ...).
596 *
597 * Allocating memory this way helps utilizing the reserved physical memory
598 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
599 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
600 * pressure is important; it may have a substantial impact on performance.
601 */
602 static int rproc_handle_carveout(struct rproc *rproc,
603 struct fw_rsc_carveout *rsc,
604 int offset, int avail)
605 {
606 struct rproc_mem_entry *carveout, *mapping;
607 struct device *dev = &rproc->dev;
608 dma_addr_t dma;
609 void *va;
610 int ret;
611
612 if (sizeof(*rsc) > avail) {
613 dev_err(dev, "carveout rsc is truncated\n");
614 return -EINVAL;
615 }
616
617 /* make sure reserved bytes are zeroes */
618 if (rsc->reserved) {
619 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
620 return -EINVAL;
621 }
622
623 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
624 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
625
626 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
627 if (!carveout)
628 return -ENOMEM;
629
630 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
631 if (!va) {
632 dev_err(dev->parent,
633 "failed to allocate dma memory: len 0x%x\n", rsc->len);
634 ret = -ENOMEM;
635 goto free_carv;
636 }
637
638 dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n",
639 va, &dma, rsc->len);
640
641 /*
642 * Ok, this is non-standard.
643 *
644 * Sometimes we can't rely on the generic iommu-based DMA API
645 * to dynamically allocate the device address and then set the IOMMU
646 * tables accordingly, because some remote processors might
647 * _require_ us to use hard coded device addresses that their
648 * firmware was compiled with.
649 *
650 * In this case, we must use the IOMMU API directly and map
651 * the memory to the device address as expected by the remote
652 * processor.
653 *
654 * Obviously such remote processor devices should not be configured
655 * to use the iommu-based DMA API: we expect 'dma' to contain the
656 * physical address in this case.
657 */
658 if (rproc->domain) {
659 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
660 if (!mapping) {
661 ret = -ENOMEM;
662 goto dma_free;
663 }
664
665 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
666 rsc->flags);
667 if (ret) {
668 dev_err(dev, "iommu_map failed: %d\n", ret);
669 goto free_mapping;
670 }
671
672 /*
673 * We'll need this info later when we'll want to unmap
674 * everything (e.g. on shutdown).
675 *
676 * We can't trust the remote processor not to change the
677 * resource table, so we must maintain this info independently.
678 */
679 mapping->da = rsc->da;
680 mapping->len = rsc->len;
681 list_add_tail(&mapping->node, &rproc->mappings);
682
683 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
684 rsc->da, &dma);
685 }
686
687 /*
688 * Some remote processors might need to know the pa
689 * even though they are behind an IOMMU. E.g., OMAP4's
690 * remote M3 processor needs this so it can control
691 * on-chip hardware accelerators that are not behind
692 * the IOMMU, and therefor must know the pa.
693 *
694 * Generally we don't want to expose physical addresses
695 * if we don't have to (remote processors are generally
696 * _not_ trusted), so we might want to do this only for
697 * remote processor that _must_ have this (e.g. OMAP4's
698 * dual M3 subsystem).
699 *
700 * Non-IOMMU processors might also want to have this info.
701 * In this case, the device address and the physical address
702 * are the same.
703 */
704 rsc->pa = dma;
705
706 carveout->va = va;
707 carveout->len = rsc->len;
708 carveout->dma = dma;
709 carveout->da = rsc->da;
710
711 list_add_tail(&carveout->node, &rproc->carveouts);
712
713 return 0;
714
715 free_mapping:
716 kfree(mapping);
717 dma_free:
718 dma_free_coherent(dev->parent, rsc->len, va, dma);
719 free_carv:
720 kfree(carveout);
721 return ret;
722 }
723
724 /*
725 * A lookup table for resource handlers. The indices are defined in
726 * enum fw_resource_type.
727 */
728 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
729 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
730 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
731 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
732 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
733 };
734
735 /* handle firmware resource entries before booting the remote processor */
736 static int rproc_handle_resources(struct rproc *rproc,
737 rproc_handle_resource_t handlers[RSC_LAST])
738 {
739 struct device *dev = &rproc->dev;
740 rproc_handle_resource_t handler;
741 int ret = 0, i;
742
743 if (!rproc->table_ptr)
744 return 0;
745
746 for (i = 0; i < rproc->table_ptr->num; i++) {
747 int offset = rproc->table_ptr->offset[i];
748 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
749 int avail = rproc->table_sz - offset - sizeof(*hdr);
750 void *rsc = (void *)hdr + sizeof(*hdr);
751
752 /* make sure table isn't truncated */
753 if (avail < 0) {
754 dev_err(dev, "rsc table is truncated\n");
755 return -EINVAL;
756 }
757
758 dev_dbg(dev, "rsc: type %d\n", hdr->type);
759
760 if (hdr->type >= RSC_LAST) {
761 dev_warn(dev, "unsupported resource %d\n", hdr->type);
762 continue;
763 }
764
765 handler = handlers[hdr->type];
766 if (!handler)
767 continue;
768
769 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
770 if (ret)
771 break;
772 }
773
774 return ret;
775 }
776
777 static int rproc_probe_subdevices(struct rproc *rproc)
778 {
779 struct rproc_subdev *subdev;
780 int ret;
781
782 list_for_each_entry(subdev, &rproc->subdevs, node) {
783 ret = subdev->probe(subdev);
784 if (ret)
785 goto unroll_registration;
786 }
787
788 return 0;
789
790 unroll_registration:
791 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node)
792 subdev->remove(subdev, true);
793
794 return ret;
795 }
796
797 static void rproc_remove_subdevices(struct rproc *rproc, bool crashed)
798 {
799 struct rproc_subdev *subdev;
800
801 list_for_each_entry_reverse(subdev, &rproc->subdevs, node)
802 subdev->remove(subdev, crashed);
803 }
804
805 /**
806 * rproc_coredump_cleanup() - clean up dump_segments list
807 * @rproc: the remote processor handle
808 */
809 static void rproc_coredump_cleanup(struct rproc *rproc)
810 {
811 struct rproc_dump_segment *entry, *tmp;
812
813 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
814 list_del(&entry->node);
815 kfree(entry);
816 }
817 }
818
819 /**
820 * rproc_resource_cleanup() - clean up and free all acquired resources
821 * @rproc: rproc handle
822 *
823 * This function will free all resources acquired for @rproc, and it
824 * is called whenever @rproc either shuts down or fails to boot.
825 */
826 static void rproc_resource_cleanup(struct rproc *rproc)
827 {
828 struct rproc_mem_entry *entry, *tmp;
829 struct rproc_vdev *rvdev, *rvtmp;
830 struct device *dev = &rproc->dev;
831
832 /* clean up debugfs trace entries */
833 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
834 rproc_remove_trace_file(entry->priv);
835 rproc->num_traces--;
836 list_del(&entry->node);
837 kfree(entry);
838 }
839
840 /* clean up iommu mapping entries */
841 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
842 size_t unmapped;
843
844 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
845 if (unmapped != entry->len) {
846 /* nothing much to do besides complaining */
847 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
848 unmapped);
849 }
850
851 list_del(&entry->node);
852 kfree(entry);
853 }
854
855 /* clean up carveout allocations */
856 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
857 dma_free_coherent(dev->parent, entry->len, entry->va,
858 entry->dma);
859 list_del(&entry->node);
860 kfree(entry);
861 }
862
863 /* clean up remote vdev entries */
864 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
865 kref_put(&rvdev->refcount, rproc_vdev_release);
866
867 rproc_coredump_cleanup(rproc);
868 }
869
870 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
871 {
872 struct resource_table *loaded_table;
873 struct device *dev = &rproc->dev;
874 int ret;
875
876 /* load the ELF segments to memory */
877 ret = rproc_load_segments(rproc, fw);
878 if (ret) {
879 dev_err(dev, "Failed to load program segments: %d\n", ret);
880 return ret;
881 }
882
883 /*
884 * The starting device has been given the rproc->cached_table as the
885 * resource table. The address of the vring along with the other
886 * allocated resources (carveouts etc) is stored in cached_table.
887 * In order to pass this information to the remote device we must copy
888 * this information to device memory. We also update the table_ptr so
889 * that any subsequent changes will be applied to the loaded version.
890 */
891 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
892 if (loaded_table) {
893 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
894 rproc->table_ptr = loaded_table;
895 }
896
897 /* power up the remote processor */
898 ret = rproc->ops->start(rproc);
899 if (ret) {
900 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
901 return ret;
902 }
903
904 /* probe any subdevices for the remote processor */
905 ret = rproc_probe_subdevices(rproc);
906 if (ret) {
907 dev_err(dev, "failed to probe subdevices for %s: %d\n",
908 rproc->name, ret);
909 rproc->ops->stop(rproc);
910 return ret;
911 }
912
913 rproc->state = RPROC_RUNNING;
914
915 dev_info(dev, "remote processor %s is now up\n", rproc->name);
916
917 return 0;
918 }
919
920 /*
921 * take a firmware and boot a remote processor with it.
922 */
923 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
924 {
925 struct device *dev = &rproc->dev;
926 const char *name = rproc->firmware;
927 int ret;
928
929 ret = rproc_fw_sanity_check(rproc, fw);
930 if (ret)
931 return ret;
932
933 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
934
935 /*
936 * if enabling an IOMMU isn't relevant for this rproc, this is
937 * just a nop
938 */
939 ret = rproc_enable_iommu(rproc);
940 if (ret) {
941 dev_err(dev, "can't enable iommu: %d\n", ret);
942 return ret;
943 }
944
945 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
946
947 /* Load resource table, core dump segment list etc from the firmware */
948 ret = rproc_parse_fw(rproc, fw);
949 if (ret)
950 goto disable_iommu;
951
952 /* reset max_notifyid */
953 rproc->max_notifyid = -1;
954
955 /* handle fw resources which are required to boot rproc */
956 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
957 if (ret) {
958 dev_err(dev, "Failed to process resources: %d\n", ret);
959 goto clean_up_resources;
960 }
961
962 ret = rproc_start(rproc, fw);
963 if (ret)
964 goto clean_up_resources;
965
966 return 0;
967
968 clean_up_resources:
969 rproc_resource_cleanup(rproc);
970 kfree(rproc->cached_table);
971 rproc->cached_table = NULL;
972 rproc->table_ptr = NULL;
973 disable_iommu:
974 rproc_disable_iommu(rproc);
975 return ret;
976 }
977
978 /*
979 * take a firmware and boot it up.
980 *
981 * Note: this function is called asynchronously upon registration of the
982 * remote processor (so we must wait until it completes before we try
983 * to unregister the device. one other option is just to use kref here,
984 * that might be cleaner).
985 */
986 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
987 {
988 struct rproc *rproc = context;
989
990 rproc_boot(rproc);
991
992 release_firmware(fw);
993 }
994
995 static int rproc_trigger_auto_boot(struct rproc *rproc)
996 {
997 int ret;
998
999 /*
1000 * We're initiating an asynchronous firmware loading, so we can
1001 * be built-in kernel code, without hanging the boot process.
1002 */
1003 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1004 rproc->firmware, &rproc->dev, GFP_KERNEL,
1005 rproc, rproc_auto_boot_callback);
1006 if (ret < 0)
1007 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1008
1009 return ret;
1010 }
1011
1012 static int rproc_stop(struct rproc *rproc, bool crashed)
1013 {
1014 struct device *dev = &rproc->dev;
1015 int ret;
1016
1017 /* remove any subdevices for the remote processor */
1018 rproc_remove_subdevices(rproc, crashed);
1019
1020 /* the installed resource table is no longer accessible */
1021 rproc->table_ptr = rproc->cached_table;
1022
1023 /* power off the remote processor */
1024 ret = rproc->ops->stop(rproc);
1025 if (ret) {
1026 dev_err(dev, "can't stop rproc: %d\n", ret);
1027 return ret;
1028 }
1029
1030 rproc->state = RPROC_OFFLINE;
1031
1032 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1033
1034 return 0;
1035 }
1036
1037 /**
1038 * rproc_coredump_add_segment() - add segment of device memory to coredump
1039 * @rproc: handle of a remote processor
1040 * @da: device address
1041 * @size: size of segment
1042 *
1043 * Add device memory to the list of segments to be included in a coredump for
1044 * the remoteproc.
1045 *
1046 * Return: 0 on success, negative errno on error.
1047 */
1048 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1049 {
1050 struct rproc_dump_segment *segment;
1051
1052 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1053 if (!segment)
1054 return -ENOMEM;
1055
1056 segment->da = da;
1057 segment->size = size;
1058
1059 list_add_tail(&segment->node, &rproc->dump_segments);
1060
1061 return 0;
1062 }
1063 EXPORT_SYMBOL(rproc_coredump_add_segment);
1064
1065 /**
1066 * rproc_coredump() - perform coredump
1067 * @rproc: rproc handle
1068 *
1069 * This function will generate an ELF header for the registered segments
1070 * and create a devcoredump device associated with rproc.
1071 */
1072 static void rproc_coredump(struct rproc *rproc)
1073 {
1074 struct rproc_dump_segment *segment;
1075 struct elf32_phdr *phdr;
1076 struct elf32_hdr *ehdr;
1077 size_t data_size;
1078 size_t offset;
1079 void *data;
1080 void *ptr;
1081 int phnum = 0;
1082
1083 if (list_empty(&rproc->dump_segments))
1084 return;
1085
1086 data_size = sizeof(*ehdr);
1087 list_for_each_entry(segment, &rproc->dump_segments, node) {
1088 data_size += sizeof(*phdr) + segment->size;
1089
1090 phnum++;
1091 }
1092
1093 data = vmalloc(data_size);
1094 if (!data)
1095 return;
1096
1097 ehdr = data;
1098
1099 memset(ehdr, 0, sizeof(*ehdr));
1100 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1101 ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1102 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1103 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1104 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1105 ehdr->e_type = ET_CORE;
1106 ehdr->e_machine = EM_NONE;
1107 ehdr->e_version = EV_CURRENT;
1108 ehdr->e_entry = rproc->bootaddr;
1109 ehdr->e_phoff = sizeof(*ehdr);
1110 ehdr->e_ehsize = sizeof(*ehdr);
1111 ehdr->e_phentsize = sizeof(*phdr);
1112 ehdr->e_phnum = phnum;
1113
1114 phdr = data + ehdr->e_phoff;
1115 offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1116 list_for_each_entry(segment, &rproc->dump_segments, node) {
1117 memset(phdr, 0, sizeof(*phdr));
1118 phdr->p_type = PT_LOAD;
1119 phdr->p_offset = offset;
1120 phdr->p_vaddr = segment->da;
1121 phdr->p_paddr = segment->da;
1122 phdr->p_filesz = segment->size;
1123 phdr->p_memsz = segment->size;
1124 phdr->p_flags = PF_R | PF_W | PF_X;
1125 phdr->p_align = 0;
1126
1127 ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1128 if (!ptr) {
1129 dev_err(&rproc->dev,
1130 "invalid coredump segment (%pad, %zu)\n",
1131 &segment->da, segment->size);
1132 memset(data + offset, 0xff, segment->size);
1133 } else {
1134 memcpy(data + offset, ptr, segment->size);
1135 }
1136
1137 offset += phdr->p_filesz;
1138 phdr++;
1139 }
1140
1141 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1142 }
1143
1144 /**
1145 * rproc_trigger_recovery() - recover a remoteproc
1146 * @rproc: the remote processor
1147 *
1148 * The recovery is done by resetting all the virtio devices, that way all the
1149 * rpmsg drivers will be reseted along with the remote processor making the
1150 * remoteproc functional again.
1151 *
1152 * This function can sleep, so it cannot be called from atomic context.
1153 */
1154 int rproc_trigger_recovery(struct rproc *rproc)
1155 {
1156 const struct firmware *firmware_p;
1157 struct device *dev = &rproc->dev;
1158 int ret;
1159
1160 dev_err(dev, "recovering %s\n", rproc->name);
1161
1162 ret = mutex_lock_interruptible(&rproc->lock);
1163 if (ret)
1164 return ret;
1165
1166 ret = rproc_stop(rproc, true);
1167 if (ret)
1168 goto unlock_mutex;
1169
1170 /* generate coredump */
1171 rproc_coredump(rproc);
1172
1173 /* load firmware */
1174 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1175 if (ret < 0) {
1176 dev_err(dev, "request_firmware failed: %d\n", ret);
1177 goto unlock_mutex;
1178 }
1179
1180 /* boot the remote processor up again */
1181 ret = rproc_start(rproc, firmware_p);
1182
1183 release_firmware(firmware_p);
1184
1185 unlock_mutex:
1186 mutex_unlock(&rproc->lock);
1187 return ret;
1188 }
1189
1190 /**
1191 * rproc_crash_handler_work() - handle a crash
1192 *
1193 * This function needs to handle everything related to a crash, like cpu
1194 * registers and stack dump, information to help to debug the fatal error, etc.
1195 */
1196 static void rproc_crash_handler_work(struct work_struct *work)
1197 {
1198 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1199 struct device *dev = &rproc->dev;
1200
1201 dev_dbg(dev, "enter %s\n", __func__);
1202
1203 mutex_lock(&rproc->lock);
1204
1205 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1206 /* handle only the first crash detected */
1207 mutex_unlock(&rproc->lock);
1208 return;
1209 }
1210
1211 rproc->state = RPROC_CRASHED;
1212 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1213 rproc->name);
1214
1215 mutex_unlock(&rproc->lock);
1216
1217 if (!rproc->recovery_disabled)
1218 rproc_trigger_recovery(rproc);
1219 }
1220
1221 /**
1222 * rproc_boot() - boot a remote processor
1223 * @rproc: handle of a remote processor
1224 *
1225 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1226 *
1227 * If the remote processor is already powered on, this function immediately
1228 * returns (successfully).
1229 *
1230 * Returns 0 on success, and an appropriate error value otherwise.
1231 */
1232 int rproc_boot(struct rproc *rproc)
1233 {
1234 const struct firmware *firmware_p;
1235 struct device *dev;
1236 int ret;
1237
1238 if (!rproc) {
1239 pr_err("invalid rproc handle\n");
1240 return -EINVAL;
1241 }
1242
1243 dev = &rproc->dev;
1244
1245 ret = mutex_lock_interruptible(&rproc->lock);
1246 if (ret) {
1247 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1248 return ret;
1249 }
1250
1251 if (rproc->state == RPROC_DELETED) {
1252 ret = -ENODEV;
1253 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1254 goto unlock_mutex;
1255 }
1256
1257 /* skip the boot process if rproc is already powered up */
1258 if (atomic_inc_return(&rproc->power) > 1) {
1259 ret = 0;
1260 goto unlock_mutex;
1261 }
1262
1263 dev_info(dev, "powering up %s\n", rproc->name);
1264
1265 /* load firmware */
1266 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1267 if (ret < 0) {
1268 dev_err(dev, "request_firmware failed: %d\n", ret);
1269 goto downref_rproc;
1270 }
1271
1272 ret = rproc_fw_boot(rproc, firmware_p);
1273
1274 release_firmware(firmware_p);
1275
1276 downref_rproc:
1277 if (ret)
1278 atomic_dec(&rproc->power);
1279 unlock_mutex:
1280 mutex_unlock(&rproc->lock);
1281 return ret;
1282 }
1283 EXPORT_SYMBOL(rproc_boot);
1284
1285 /**
1286 * rproc_shutdown() - power off the remote processor
1287 * @rproc: the remote processor
1288 *
1289 * Power off a remote processor (previously booted with rproc_boot()).
1290 *
1291 * In case @rproc is still being used by an additional user(s), then
1292 * this function will just decrement the power refcount and exit,
1293 * without really powering off the device.
1294 *
1295 * Every call to rproc_boot() must (eventually) be accompanied by a call
1296 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1297 *
1298 * Notes:
1299 * - we're not decrementing the rproc's refcount, only the power refcount.
1300 * which means that the @rproc handle stays valid even after rproc_shutdown()
1301 * returns, and users can still use it with a subsequent rproc_boot(), if
1302 * needed.
1303 */
1304 void rproc_shutdown(struct rproc *rproc)
1305 {
1306 struct device *dev = &rproc->dev;
1307 int ret;
1308
1309 ret = mutex_lock_interruptible(&rproc->lock);
1310 if (ret) {
1311 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1312 return;
1313 }
1314
1315 /* if the remote proc is still needed, bail out */
1316 if (!atomic_dec_and_test(&rproc->power))
1317 goto out;
1318
1319 ret = rproc_stop(rproc, false);
1320 if (ret) {
1321 atomic_inc(&rproc->power);
1322 goto out;
1323 }
1324
1325 /* clean up all acquired resources */
1326 rproc_resource_cleanup(rproc);
1327
1328 rproc_disable_iommu(rproc);
1329
1330 /* Free the copy of the resource table */
1331 kfree(rproc->cached_table);
1332 rproc->cached_table = NULL;
1333 rproc->table_ptr = NULL;
1334 out:
1335 mutex_unlock(&rproc->lock);
1336 }
1337 EXPORT_SYMBOL(rproc_shutdown);
1338
1339 /**
1340 * rproc_get_by_phandle() - find a remote processor by phandle
1341 * @phandle: phandle to the rproc
1342 *
1343 * Finds an rproc handle using the remote processor's phandle, and then
1344 * return a handle to the rproc.
1345 *
1346 * This function increments the remote processor's refcount, so always
1347 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1348 *
1349 * Returns the rproc handle on success, and NULL on failure.
1350 */
1351 #ifdef CONFIG_OF
1352 struct rproc *rproc_get_by_phandle(phandle phandle)
1353 {
1354 struct rproc *rproc = NULL, *r;
1355 struct device_node *np;
1356
1357 np = of_find_node_by_phandle(phandle);
1358 if (!np)
1359 return NULL;
1360
1361 mutex_lock(&rproc_list_mutex);
1362 list_for_each_entry(r, &rproc_list, node) {
1363 if (r->dev.parent && r->dev.parent->of_node == np) {
1364 /* prevent underlying implementation from being removed */
1365 if (!try_module_get(r->dev.parent->driver->owner)) {
1366 dev_err(&r->dev, "can't get owner\n");
1367 break;
1368 }
1369
1370 rproc = r;
1371 get_device(&rproc->dev);
1372 break;
1373 }
1374 }
1375 mutex_unlock(&rproc_list_mutex);
1376
1377 of_node_put(np);
1378
1379 return rproc;
1380 }
1381 #else
1382 struct rproc *rproc_get_by_phandle(phandle phandle)
1383 {
1384 return NULL;
1385 }
1386 #endif
1387 EXPORT_SYMBOL(rproc_get_by_phandle);
1388
1389 /**
1390 * rproc_add() - register a remote processor
1391 * @rproc: the remote processor handle to register
1392 *
1393 * Registers @rproc with the remoteproc framework, after it has been
1394 * allocated with rproc_alloc().
1395 *
1396 * This is called by the platform-specific rproc implementation, whenever
1397 * a new remote processor device is probed.
1398 *
1399 * Returns 0 on success and an appropriate error code otherwise.
1400 *
1401 * Note: this function initiates an asynchronous firmware loading
1402 * context, which will look for virtio devices supported by the rproc's
1403 * firmware.
1404 *
1405 * If found, those virtio devices will be created and added, so as a result
1406 * of registering this remote processor, additional virtio drivers might be
1407 * probed.
1408 */
1409 int rproc_add(struct rproc *rproc)
1410 {
1411 struct device *dev = &rproc->dev;
1412 int ret;
1413
1414 ret = device_add(dev);
1415 if (ret < 0)
1416 return ret;
1417
1418 dev_info(dev, "%s is available\n", rproc->name);
1419
1420 /* create debugfs entries */
1421 rproc_create_debug_dir(rproc);
1422
1423 /* if rproc is marked always-on, request it to boot */
1424 if (rproc->auto_boot) {
1425 ret = rproc_trigger_auto_boot(rproc);
1426 if (ret < 0)
1427 return ret;
1428 }
1429
1430 /* expose to rproc_get_by_phandle users */
1431 mutex_lock(&rproc_list_mutex);
1432 list_add(&rproc->node, &rproc_list);
1433 mutex_unlock(&rproc_list_mutex);
1434
1435 return 0;
1436 }
1437 EXPORT_SYMBOL(rproc_add);
1438
1439 /**
1440 * rproc_type_release() - release a remote processor instance
1441 * @dev: the rproc's device
1442 *
1443 * This function should _never_ be called directly.
1444 *
1445 * It will be called by the driver core when no one holds a valid pointer
1446 * to @dev anymore.
1447 */
1448 static void rproc_type_release(struct device *dev)
1449 {
1450 struct rproc *rproc = container_of(dev, struct rproc, dev);
1451
1452 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1453
1454 idr_destroy(&rproc->notifyids);
1455
1456 if (rproc->index >= 0)
1457 ida_simple_remove(&rproc_dev_index, rproc->index);
1458
1459 kfree(rproc->firmware);
1460 kfree(rproc->ops);
1461 kfree(rproc);
1462 }
1463
1464 static const struct device_type rproc_type = {
1465 .name = "remoteproc",
1466 .release = rproc_type_release,
1467 };
1468
1469 /**
1470 * rproc_alloc() - allocate a remote processor handle
1471 * @dev: the underlying device
1472 * @name: name of this remote processor
1473 * @ops: platform-specific handlers (mainly start/stop)
1474 * @firmware: name of firmware file to load, can be NULL
1475 * @len: length of private data needed by the rproc driver (in bytes)
1476 *
1477 * Allocates a new remote processor handle, but does not register
1478 * it yet. if @firmware is NULL, a default name is used.
1479 *
1480 * This function should be used by rproc implementations during initialization
1481 * of the remote processor.
1482 *
1483 * After creating an rproc handle using this function, and when ready,
1484 * implementations should then call rproc_add() to complete
1485 * the registration of the remote processor.
1486 *
1487 * On success the new rproc is returned, and on failure, NULL.
1488 *
1489 * Note: _never_ directly deallocate @rproc, even if it was not registered
1490 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1491 */
1492 struct rproc *rproc_alloc(struct device *dev, const char *name,
1493 const struct rproc_ops *ops,
1494 const char *firmware, int len)
1495 {
1496 struct rproc *rproc;
1497 char *p, *template = "rproc-%s-fw";
1498 int name_len;
1499
1500 if (!dev || !name || !ops)
1501 return NULL;
1502
1503 if (!firmware) {
1504 /*
1505 * If the caller didn't pass in a firmware name then
1506 * construct a default name.
1507 */
1508 name_len = strlen(name) + strlen(template) - 2 + 1;
1509 p = kmalloc(name_len, GFP_KERNEL);
1510 if (!p)
1511 return NULL;
1512 snprintf(p, name_len, template, name);
1513 } else {
1514 p = kstrdup(firmware, GFP_KERNEL);
1515 if (!p)
1516 return NULL;
1517 }
1518
1519 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1520 if (!rproc) {
1521 kfree(p);
1522 return NULL;
1523 }
1524
1525 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
1526 if (!rproc->ops) {
1527 kfree(p);
1528 kfree(rproc);
1529 return NULL;
1530 }
1531
1532 rproc->firmware = p;
1533 rproc->name = name;
1534 rproc->priv = &rproc[1];
1535 rproc->auto_boot = true;
1536
1537 device_initialize(&rproc->dev);
1538 rproc->dev.parent = dev;
1539 rproc->dev.type = &rproc_type;
1540 rproc->dev.class = &rproc_class;
1541 rproc->dev.driver_data = rproc;
1542
1543 /* Assign a unique device index and name */
1544 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1545 if (rproc->index < 0) {
1546 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1547 put_device(&rproc->dev);
1548 return NULL;
1549 }
1550
1551 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1552
1553 atomic_set(&rproc->power, 0);
1554
1555 /* Default to ELF loader if no load function is specified */
1556 if (!rproc->ops->load) {
1557 rproc->ops->load = rproc_elf_load_segments;
1558 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
1559 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
1560 rproc->ops->sanity_check = rproc_elf_sanity_check;
1561 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
1562 }
1563
1564 mutex_init(&rproc->lock);
1565
1566 idr_init(&rproc->notifyids);
1567
1568 INIT_LIST_HEAD(&rproc->carveouts);
1569 INIT_LIST_HEAD(&rproc->mappings);
1570 INIT_LIST_HEAD(&rproc->traces);
1571 INIT_LIST_HEAD(&rproc->rvdevs);
1572 INIT_LIST_HEAD(&rproc->subdevs);
1573 INIT_LIST_HEAD(&rproc->dump_segments);
1574
1575 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1576
1577 rproc->state = RPROC_OFFLINE;
1578
1579 return rproc;
1580 }
1581 EXPORT_SYMBOL(rproc_alloc);
1582
1583 /**
1584 * rproc_free() - unroll rproc_alloc()
1585 * @rproc: the remote processor handle
1586 *
1587 * This function decrements the rproc dev refcount.
1588 *
1589 * If no one holds any reference to rproc anymore, then its refcount would
1590 * now drop to zero, and it would be freed.
1591 */
1592 void rproc_free(struct rproc *rproc)
1593 {
1594 put_device(&rproc->dev);
1595 }
1596 EXPORT_SYMBOL(rproc_free);
1597
1598 /**
1599 * rproc_put() - release rproc reference
1600 * @rproc: the remote processor handle
1601 *
1602 * This function decrements the rproc dev refcount.
1603 *
1604 * If no one holds any reference to rproc anymore, then its refcount would
1605 * now drop to zero, and it would be freed.
1606 */
1607 void rproc_put(struct rproc *rproc)
1608 {
1609 module_put(rproc->dev.parent->driver->owner);
1610 put_device(&rproc->dev);
1611 }
1612 EXPORT_SYMBOL(rproc_put);
1613
1614 /**
1615 * rproc_del() - unregister a remote processor
1616 * @rproc: rproc handle to unregister
1617 *
1618 * This function should be called when the platform specific rproc
1619 * implementation decides to remove the rproc device. it should
1620 * _only_ be called if a previous invocation of rproc_add()
1621 * has completed successfully.
1622 *
1623 * After rproc_del() returns, @rproc isn't freed yet, because
1624 * of the outstanding reference created by rproc_alloc. To decrement that
1625 * one last refcount, one still needs to call rproc_free().
1626 *
1627 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1628 */
1629 int rproc_del(struct rproc *rproc)
1630 {
1631 if (!rproc)
1632 return -EINVAL;
1633
1634 /* if rproc is marked always-on, rproc_add() booted it */
1635 /* TODO: make sure this works with rproc->power > 1 */
1636 if (rproc->auto_boot)
1637 rproc_shutdown(rproc);
1638
1639 mutex_lock(&rproc->lock);
1640 rproc->state = RPROC_DELETED;
1641 mutex_unlock(&rproc->lock);
1642
1643 rproc_delete_debug_dir(rproc);
1644
1645 /* the rproc is downref'ed as soon as it's removed from the klist */
1646 mutex_lock(&rproc_list_mutex);
1647 list_del(&rproc->node);
1648 mutex_unlock(&rproc_list_mutex);
1649
1650 device_del(&rproc->dev);
1651
1652 return 0;
1653 }
1654 EXPORT_SYMBOL(rproc_del);
1655
1656 /**
1657 * rproc_add_subdev() - add a subdevice to a remoteproc
1658 * @rproc: rproc handle to add the subdevice to
1659 * @subdev: subdev handle to register
1660 * @probe: function to call when the rproc boots
1661 * @remove: function to call when the rproc shuts down
1662 */
1663 void rproc_add_subdev(struct rproc *rproc,
1664 struct rproc_subdev *subdev,
1665 int (*probe)(struct rproc_subdev *subdev),
1666 void (*remove)(struct rproc_subdev *subdev, bool crashed))
1667 {
1668 subdev->probe = probe;
1669 subdev->remove = remove;
1670
1671 list_add_tail(&subdev->node, &rproc->subdevs);
1672 }
1673 EXPORT_SYMBOL(rproc_add_subdev);
1674
1675 /**
1676 * rproc_remove_subdev() - remove a subdevice from a remoteproc
1677 * @rproc: rproc handle to remove the subdevice from
1678 * @subdev: subdev handle, previously registered with rproc_add_subdev()
1679 */
1680 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
1681 {
1682 list_del(&subdev->node);
1683 }
1684 EXPORT_SYMBOL(rproc_remove_subdev);
1685
1686 /**
1687 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
1688 * @dev: child device to find ancestor of
1689 *
1690 * Returns the ancestor rproc instance, or NULL if not found.
1691 */
1692 struct rproc *rproc_get_by_child(struct device *dev)
1693 {
1694 for (dev = dev->parent; dev; dev = dev->parent) {
1695 if (dev->type == &rproc_type)
1696 return dev->driver_data;
1697 }
1698
1699 return NULL;
1700 }
1701 EXPORT_SYMBOL(rproc_get_by_child);
1702
1703 /**
1704 * rproc_report_crash() - rproc crash reporter function
1705 * @rproc: remote processor
1706 * @type: crash type
1707 *
1708 * This function must be called every time a crash is detected by the low-level
1709 * drivers implementing a specific remoteproc. This should not be called from a
1710 * non-remoteproc driver.
1711 *
1712 * This function can be called from atomic/interrupt context.
1713 */
1714 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1715 {
1716 if (!rproc) {
1717 pr_err("NULL rproc pointer\n");
1718 return;
1719 }
1720
1721 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1722 rproc->name, rproc_crash_to_string(type));
1723
1724 /* create a new task to handle the error */
1725 schedule_work(&rproc->crash_handler);
1726 }
1727 EXPORT_SYMBOL(rproc_report_crash);
1728
1729 static int __init remoteproc_init(void)
1730 {
1731 rproc_init_sysfs();
1732 rproc_init_debugfs();
1733
1734 return 0;
1735 }
1736 module_init(remoteproc_init);
1737
1738 static void __exit remoteproc_exit(void)
1739 {
1740 ida_destroy(&rproc_dev_index);
1741
1742 rproc_exit_debugfs();
1743 rproc_exit_sysfs();
1744 }
1745 module_exit(remoteproc_exit);
1746
1747 MODULE_LICENSE("GPL v2");
1748 MODULE_DESCRIPTION("Generic Remote Processor Framework");