]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/remoteproc/remoteproc_core.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / remoteproc / remoteproc_core.c
1 /*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25 #define pr_fmt(fmt) "%s: " fmt, __func__
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/crc32.h>
41 #include <linux/virtio_ids.h>
42 #include <linux/virtio_ring.h>
43 #include <asm/byteorder.h>
44
45 #include "remoteproc_internal.h"
46
47 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
48 struct resource_table *table, int len);
49 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
50 void *, int offset, int avail);
51
52 /* Unique indices for remoteproc devices */
53 static DEFINE_IDA(rproc_dev_index);
54
55 static const char * const rproc_crash_names[] = {
56 [RPROC_MMUFAULT] = "mmufault",
57 };
58
59 /* translate rproc_crash_type to string */
60 static const char *rproc_crash_to_string(enum rproc_crash_type type)
61 {
62 if (type < ARRAY_SIZE(rproc_crash_names))
63 return rproc_crash_names[type];
64 return "unknown";
65 }
66
67 /*
68 * This is the IOMMU fault handler we register with the IOMMU API
69 * (when relevant; not all remote processors access memory through
70 * an IOMMU).
71 *
72 * IOMMU core will invoke this handler whenever the remote processor
73 * will try to access an unmapped device address.
74 */
75 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
76 unsigned long iova, int flags, void *token)
77 {
78 struct rproc *rproc = token;
79
80 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
81
82 rproc_report_crash(rproc, RPROC_MMUFAULT);
83
84 /*
85 * Let the iommu core know we're not really handling this fault;
86 * we just used it as a recovery trigger.
87 */
88 return -ENOSYS;
89 }
90
91 static int rproc_enable_iommu(struct rproc *rproc)
92 {
93 struct iommu_domain *domain;
94 struct device *dev = rproc->dev.parent;
95 int ret;
96
97 if (!rproc->has_iommu) {
98 dev_dbg(dev, "iommu not present\n");
99 return 0;
100 }
101
102 domain = iommu_domain_alloc(dev->bus);
103 if (!domain) {
104 dev_err(dev, "can't alloc iommu domain\n");
105 return -ENOMEM;
106 }
107
108 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
109
110 ret = iommu_attach_device(domain, dev);
111 if (ret) {
112 dev_err(dev, "can't attach iommu device: %d\n", ret);
113 goto free_domain;
114 }
115
116 rproc->domain = domain;
117
118 return 0;
119
120 free_domain:
121 iommu_domain_free(domain);
122 return ret;
123 }
124
125 static void rproc_disable_iommu(struct rproc *rproc)
126 {
127 struct iommu_domain *domain = rproc->domain;
128 struct device *dev = rproc->dev.parent;
129
130 if (!domain)
131 return;
132
133 iommu_detach_device(domain, dev);
134 iommu_domain_free(domain);
135
136 return;
137 }
138
139 /*
140 * Some remote processors will ask us to allocate them physically contiguous
141 * memory regions (which we call "carveouts"), and map them to specific
142 * device addresses (which are hardcoded in the firmware).
143 *
144 * They may then ask us to copy objects into specific device addresses (e.g.
145 * code/data sections) or expose us certain symbols in other device address
146 * (e.g. their trace buffer).
147 *
148 * This function is an internal helper with which we can go over the allocated
149 * carveouts and translate specific device address to kernel virtual addresses
150 * so we can access the referenced memory.
151 *
152 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
153 * but only on kernel direct mapped RAM memory. Instead, we're just using
154 * here the output of the DMA API, which should be more correct.
155 */
156 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
157 {
158 struct rproc_mem_entry *carveout;
159 void *ptr = NULL;
160
161 list_for_each_entry(carveout, &rproc->carveouts, node) {
162 int offset = da - carveout->da;
163
164 /* try next carveout if da is too small */
165 if (offset < 0)
166 continue;
167
168 /* try next carveout if da is too large */
169 if (offset + len > carveout->len)
170 continue;
171
172 ptr = carveout->va + offset;
173
174 break;
175 }
176
177 return ptr;
178 }
179 EXPORT_SYMBOL(rproc_da_to_va);
180
181 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
182 {
183 struct rproc *rproc = rvdev->rproc;
184 struct device *dev = &rproc->dev;
185 struct rproc_vring *rvring = &rvdev->vring[i];
186 struct fw_rsc_vdev *rsc;
187 dma_addr_t dma;
188 void *va;
189 int ret, size, notifyid;
190
191 /* actual size of vring (in bytes) */
192 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
193
194 /*
195 * Allocate non-cacheable memory for the vring. In the future
196 * this call will also configure the IOMMU for us
197 */
198 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
199 if (!va) {
200 dev_err(dev->parent, "dma_alloc_coherent failed\n");
201 return -EINVAL;
202 }
203
204 /*
205 * Assign an rproc-wide unique index for this vring
206 * TODO: assign a notifyid for rvdev updates as well
207 * TODO: support predefined notifyids (via resource table)
208 */
209 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
210 if (ret < 0) {
211 dev_err(dev, "idr_alloc failed: %d\n", ret);
212 dma_free_coherent(dev->parent, size, va, dma);
213 return ret;
214 }
215 notifyid = ret;
216
217 dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
218 (unsigned long long)dma, size, notifyid);
219
220 rvring->va = va;
221 rvring->dma = dma;
222 rvring->notifyid = notifyid;
223
224 /*
225 * Let the rproc know the notifyid and da of this vring.
226 * Not all platforms use dma_alloc_coherent to automatically
227 * set up the iommu. In this case the device address (da) will
228 * hold the physical address and not the device address.
229 */
230 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
231 rsc->vring[i].da = dma;
232 rsc->vring[i].notifyid = notifyid;
233 return 0;
234 }
235
236 static int
237 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
238 {
239 struct rproc *rproc = rvdev->rproc;
240 struct device *dev = &rproc->dev;
241 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
242 struct rproc_vring *rvring = &rvdev->vring[i];
243
244 dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
245 i, vring->da, vring->num, vring->align);
246
247 /* make sure reserved bytes are zeroes */
248 if (vring->reserved) {
249 dev_err(dev, "vring rsc has non zero reserved bytes\n");
250 return -EINVAL;
251 }
252
253 /* verify queue size and vring alignment are sane */
254 if (!vring->num || !vring->align) {
255 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
256 vring->num, vring->align);
257 return -EINVAL;
258 }
259
260 rvring->len = vring->num;
261 rvring->align = vring->align;
262 rvring->rvdev = rvdev;
263
264 return 0;
265 }
266
267 void rproc_free_vring(struct rproc_vring *rvring)
268 {
269 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
270 struct rproc *rproc = rvring->rvdev->rproc;
271 int idx = rvring->rvdev->vring - rvring;
272 struct fw_rsc_vdev *rsc;
273
274 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
275 idr_remove(&rproc->notifyids, rvring->notifyid);
276
277 /* reset resource entry info */
278 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
279 rsc->vring[idx].da = 0;
280 rsc->vring[idx].notifyid = -1;
281 }
282
283 /**
284 * rproc_handle_vdev() - handle a vdev fw resource
285 * @rproc: the remote processor
286 * @rsc: the vring resource descriptor
287 * @avail: size of available data (for sanity checking the image)
288 *
289 * This resource entry requests the host to statically register a virtio
290 * device (vdev), and setup everything needed to support it. It contains
291 * everything needed to make it possible: the virtio device id, virtio
292 * device features, vrings information, virtio config space, etc...
293 *
294 * Before registering the vdev, the vrings are allocated from non-cacheable
295 * physically contiguous memory. Currently we only support two vrings per
296 * remote processor (temporary limitation). We might also want to consider
297 * doing the vring allocation only later when ->find_vqs() is invoked, and
298 * then release them upon ->del_vqs().
299 *
300 * Note: @da is currently not really handled correctly: we dynamically
301 * allocate it using the DMA API, ignoring requested hard coded addresses,
302 * and we don't take care of any required IOMMU programming. This is all
303 * going to be taken care of when the generic iommu-based DMA API will be
304 * merged. Meanwhile, statically-addressed iommu-based firmware images should
305 * use RSC_DEVMEM resource entries to map their required @da to the physical
306 * address of their base CMA region (ouch, hacky!).
307 *
308 * Returns 0 on success, or an appropriate error code otherwise
309 */
310 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
311 int offset, int avail)
312 {
313 struct device *dev = &rproc->dev;
314 struct rproc_vdev *rvdev;
315 int i, ret;
316
317 /* make sure resource isn't truncated */
318 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
319 + rsc->config_len > avail) {
320 dev_err(dev, "vdev rsc is truncated\n");
321 return -EINVAL;
322 }
323
324 /* make sure reserved bytes are zeroes */
325 if (rsc->reserved[0] || rsc->reserved[1]) {
326 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
327 return -EINVAL;
328 }
329
330 dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
331 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
332
333 /* we currently support only two vrings per rvdev */
334 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
335 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
336 return -EINVAL;
337 }
338
339 rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
340 if (!rvdev)
341 return -ENOMEM;
342
343 rvdev->rproc = rproc;
344
345 /* parse the vrings */
346 for (i = 0; i < rsc->num_of_vrings; i++) {
347 ret = rproc_parse_vring(rvdev, rsc, i);
348 if (ret)
349 goto free_rvdev;
350 }
351
352 /* remember the resource offset*/
353 rvdev->rsc_offset = offset;
354
355 list_add_tail(&rvdev->node, &rproc->rvdevs);
356
357 /* it is now safe to add the virtio device */
358 ret = rproc_add_virtio_dev(rvdev, rsc->id);
359 if (ret)
360 goto remove_rvdev;
361
362 return 0;
363
364 remove_rvdev:
365 list_del(&rvdev->node);
366 free_rvdev:
367 kfree(rvdev);
368 return ret;
369 }
370
371 /**
372 * rproc_handle_trace() - handle a shared trace buffer resource
373 * @rproc: the remote processor
374 * @rsc: the trace resource descriptor
375 * @avail: size of available data (for sanity checking the image)
376 *
377 * In case the remote processor dumps trace logs into memory,
378 * export it via debugfs.
379 *
380 * Currently, the 'da' member of @rsc should contain the device address
381 * where the remote processor is dumping the traces. Later we could also
382 * support dynamically allocating this address using the generic
383 * DMA API (but currently there isn't a use case for that).
384 *
385 * Returns 0 on success, or an appropriate error code otherwise
386 */
387 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
388 int offset, int avail)
389 {
390 struct rproc_mem_entry *trace;
391 struct device *dev = &rproc->dev;
392 void *ptr;
393 char name[15];
394
395 if (sizeof(*rsc) > avail) {
396 dev_err(dev, "trace rsc is truncated\n");
397 return -EINVAL;
398 }
399
400 /* make sure reserved bytes are zeroes */
401 if (rsc->reserved) {
402 dev_err(dev, "trace rsc has non zero reserved bytes\n");
403 return -EINVAL;
404 }
405
406 /* what's the kernel address of this resource ? */
407 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
408 if (!ptr) {
409 dev_err(dev, "erroneous trace resource entry\n");
410 return -EINVAL;
411 }
412
413 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
414 if (!trace) {
415 dev_err(dev, "kzalloc trace failed\n");
416 return -ENOMEM;
417 }
418
419 /* set the trace buffer dma properties */
420 trace->len = rsc->len;
421 trace->va = ptr;
422
423 /* make sure snprintf always null terminates, even if truncating */
424 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
425
426 /* create the debugfs entry */
427 trace->priv = rproc_create_trace_file(name, rproc, trace);
428 if (!trace->priv) {
429 trace->va = NULL;
430 kfree(trace);
431 return -EINVAL;
432 }
433
434 list_add_tail(&trace->node, &rproc->traces);
435
436 rproc->num_traces++;
437
438 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
439 rsc->da, rsc->len);
440
441 return 0;
442 }
443
444 /**
445 * rproc_handle_devmem() - handle devmem resource entry
446 * @rproc: remote processor handle
447 * @rsc: the devmem resource entry
448 * @avail: size of available data (for sanity checking the image)
449 *
450 * Remote processors commonly need to access certain on-chip peripherals.
451 *
452 * Some of these remote processors access memory via an iommu device,
453 * and might require us to configure their iommu before they can access
454 * the on-chip peripherals they need.
455 *
456 * This resource entry is a request to map such a peripheral device.
457 *
458 * These devmem entries will contain the physical address of the device in
459 * the 'pa' member. If a specific device address is expected, then 'da' will
460 * contain it (currently this is the only use case supported). 'len' will
461 * contain the size of the physical region we need to map.
462 *
463 * Currently we just "trust" those devmem entries to contain valid physical
464 * addresses, but this is going to change: we want the implementations to
465 * tell us ranges of physical addresses the firmware is allowed to request,
466 * and not allow firmwares to request access to physical addresses that
467 * are outside those ranges.
468 */
469 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
470 int offset, int avail)
471 {
472 struct rproc_mem_entry *mapping;
473 struct device *dev = &rproc->dev;
474 int ret;
475
476 /* no point in handling this resource without a valid iommu domain */
477 if (!rproc->domain)
478 return -EINVAL;
479
480 if (sizeof(*rsc) > avail) {
481 dev_err(dev, "devmem rsc is truncated\n");
482 return -EINVAL;
483 }
484
485 /* make sure reserved bytes are zeroes */
486 if (rsc->reserved) {
487 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
488 return -EINVAL;
489 }
490
491 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
492 if (!mapping) {
493 dev_err(dev, "kzalloc mapping failed\n");
494 return -ENOMEM;
495 }
496
497 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
498 if (ret) {
499 dev_err(dev, "failed to map devmem: %d\n", ret);
500 goto out;
501 }
502
503 /*
504 * We'll need this info later when we'll want to unmap everything
505 * (e.g. on shutdown).
506 *
507 * We can't trust the remote processor not to change the resource
508 * table, so we must maintain this info independently.
509 */
510 mapping->da = rsc->da;
511 mapping->len = rsc->len;
512 list_add_tail(&mapping->node, &rproc->mappings);
513
514 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
515 rsc->pa, rsc->da, rsc->len);
516
517 return 0;
518
519 out:
520 kfree(mapping);
521 return ret;
522 }
523
524 /**
525 * rproc_handle_carveout() - handle phys contig memory allocation requests
526 * @rproc: rproc handle
527 * @rsc: the resource entry
528 * @avail: size of available data (for image validation)
529 *
530 * This function will handle firmware requests for allocation of physically
531 * contiguous memory regions.
532 *
533 * These request entries should come first in the firmware's resource table,
534 * as other firmware entries might request placing other data objects inside
535 * these memory regions (e.g. data/code segments, trace resource entries, ...).
536 *
537 * Allocating memory this way helps utilizing the reserved physical memory
538 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
539 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
540 * pressure is important; it may have a substantial impact on performance.
541 */
542 static int rproc_handle_carveout(struct rproc *rproc,
543 struct fw_rsc_carveout *rsc,
544 int offset, int avail)
545
546 {
547 struct rproc_mem_entry *carveout, *mapping;
548 struct device *dev = &rproc->dev;
549 dma_addr_t dma;
550 void *va;
551 int ret;
552
553 if (sizeof(*rsc) > avail) {
554 dev_err(dev, "carveout rsc is truncated\n");
555 return -EINVAL;
556 }
557
558 /* make sure reserved bytes are zeroes */
559 if (rsc->reserved) {
560 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
561 return -EINVAL;
562 }
563
564 dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
565 rsc->da, rsc->pa, rsc->len, rsc->flags);
566
567 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
568 if (!carveout) {
569 dev_err(dev, "kzalloc carveout failed\n");
570 return -ENOMEM;
571 }
572
573 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
574 if (!va) {
575 dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
576 ret = -ENOMEM;
577 goto free_carv;
578 }
579
580 dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
581 (unsigned long long)dma, rsc->len);
582
583 /*
584 * Ok, this is non-standard.
585 *
586 * Sometimes we can't rely on the generic iommu-based DMA API
587 * to dynamically allocate the device address and then set the IOMMU
588 * tables accordingly, because some remote processors might
589 * _require_ us to use hard coded device addresses that their
590 * firmware was compiled with.
591 *
592 * In this case, we must use the IOMMU API directly and map
593 * the memory to the device address as expected by the remote
594 * processor.
595 *
596 * Obviously such remote processor devices should not be configured
597 * to use the iommu-based DMA API: we expect 'dma' to contain the
598 * physical address in this case.
599 */
600 if (rproc->domain) {
601 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
602 if (!mapping) {
603 dev_err(dev, "kzalloc mapping failed\n");
604 ret = -ENOMEM;
605 goto dma_free;
606 }
607
608 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
609 rsc->flags);
610 if (ret) {
611 dev_err(dev, "iommu_map failed: %d\n", ret);
612 goto free_mapping;
613 }
614
615 /*
616 * We'll need this info later when we'll want to unmap
617 * everything (e.g. on shutdown).
618 *
619 * We can't trust the remote processor not to change the
620 * resource table, so we must maintain this info independently.
621 */
622 mapping->da = rsc->da;
623 mapping->len = rsc->len;
624 list_add_tail(&mapping->node, &rproc->mappings);
625
626 dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
627 rsc->da, (unsigned long long)dma);
628 }
629
630 /*
631 * Some remote processors might need to know the pa
632 * even though they are behind an IOMMU. E.g., OMAP4's
633 * remote M3 processor needs this so it can control
634 * on-chip hardware accelerators that are not behind
635 * the IOMMU, and therefor must know the pa.
636 *
637 * Generally we don't want to expose physical addresses
638 * if we don't have to (remote processors are generally
639 * _not_ trusted), so we might want to do this only for
640 * remote processor that _must_ have this (e.g. OMAP4's
641 * dual M3 subsystem).
642 *
643 * Non-IOMMU processors might also want to have this info.
644 * In this case, the device address and the physical address
645 * are the same.
646 */
647 rsc->pa = dma;
648
649 carveout->va = va;
650 carveout->len = rsc->len;
651 carveout->dma = dma;
652 carveout->da = rsc->da;
653
654 list_add_tail(&carveout->node, &rproc->carveouts);
655
656 return 0;
657
658 free_mapping:
659 kfree(mapping);
660 dma_free:
661 dma_free_coherent(dev->parent, rsc->len, va, dma);
662 free_carv:
663 kfree(carveout);
664 return ret;
665 }
666
667 static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
668 int offset, int avail)
669 {
670 /* Summarize the number of notification IDs */
671 rproc->max_notifyid += rsc->num_of_vrings;
672
673 return 0;
674 }
675
676 /*
677 * A lookup table for resource handlers. The indices are defined in
678 * enum fw_resource_type.
679 */
680 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
681 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
682 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
683 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
684 [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
685 };
686
687 static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
688 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
689 };
690
691 static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
692 [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
693 };
694
695 /* handle firmware resource entries before booting the remote processor */
696 static int rproc_handle_resources(struct rproc *rproc, int len,
697 rproc_handle_resource_t handlers[RSC_LAST])
698 {
699 struct device *dev = &rproc->dev;
700 rproc_handle_resource_t handler;
701 int ret = 0, i;
702
703 for (i = 0; i < rproc->table_ptr->num; i++) {
704 int offset = rproc->table_ptr->offset[i];
705 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
706 int avail = len - offset - sizeof(*hdr);
707 void *rsc = (void *)hdr + sizeof(*hdr);
708
709 /* make sure table isn't truncated */
710 if (avail < 0) {
711 dev_err(dev, "rsc table is truncated\n");
712 return -EINVAL;
713 }
714
715 dev_dbg(dev, "rsc: type %d\n", hdr->type);
716
717 if (hdr->type >= RSC_LAST) {
718 dev_warn(dev, "unsupported resource %d\n", hdr->type);
719 continue;
720 }
721
722 handler = handlers[hdr->type];
723 if (!handler)
724 continue;
725
726 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
727 if (ret)
728 break;
729 }
730
731 return ret;
732 }
733
734 /**
735 * rproc_resource_cleanup() - clean up and free all acquired resources
736 * @rproc: rproc handle
737 *
738 * This function will free all resources acquired for @rproc, and it
739 * is called whenever @rproc either shuts down or fails to boot.
740 */
741 static void rproc_resource_cleanup(struct rproc *rproc)
742 {
743 struct rproc_mem_entry *entry, *tmp;
744 struct device *dev = &rproc->dev;
745
746 /* clean up debugfs trace entries */
747 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
748 rproc_remove_trace_file(entry->priv);
749 rproc->num_traces--;
750 list_del(&entry->node);
751 kfree(entry);
752 }
753
754 /* clean up iommu mapping entries */
755 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
756 size_t unmapped;
757
758 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
759 if (unmapped != entry->len) {
760 /* nothing much to do besides complaining */
761 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
762 unmapped);
763 }
764
765 list_del(&entry->node);
766 kfree(entry);
767 }
768
769 /* clean up carveout allocations */
770 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
771 dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
772 list_del(&entry->node);
773 kfree(entry);
774 }
775 }
776
777 /*
778 * take a firmware and boot a remote processor with it.
779 */
780 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
781 {
782 struct device *dev = &rproc->dev;
783 const char *name = rproc->firmware;
784 struct resource_table *table, *loaded_table;
785 int ret, tablesz;
786
787 if (!rproc->table_ptr)
788 return -ENOMEM;
789
790 ret = rproc_fw_sanity_check(rproc, fw);
791 if (ret)
792 return ret;
793
794 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
795
796 /*
797 * if enabling an IOMMU isn't relevant for this rproc, this is
798 * just a nop
799 */
800 ret = rproc_enable_iommu(rproc);
801 if (ret) {
802 dev_err(dev, "can't enable iommu: %d\n", ret);
803 return ret;
804 }
805
806 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
807 ret = -EINVAL;
808
809 /* look for the resource table */
810 table = rproc_find_rsc_table(rproc, fw, &tablesz);
811 if (!table) {
812 goto clean_up;
813 }
814
815 /* Verify that resource table in loaded fw is unchanged */
816 if (rproc->table_csum != crc32(0, table, tablesz)) {
817 dev_err(dev, "resource checksum failed, fw changed?\n");
818 goto clean_up;
819 }
820
821 /* handle fw resources which are required to boot rproc */
822 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
823 if (ret) {
824 dev_err(dev, "Failed to process resources: %d\n", ret);
825 goto clean_up;
826 }
827
828 /* load the ELF segments to memory */
829 ret = rproc_load_segments(rproc, fw);
830 if (ret) {
831 dev_err(dev, "Failed to load program segments: %d\n", ret);
832 goto clean_up;
833 }
834
835 /*
836 * The starting device has been given the rproc->cached_table as the
837 * resource table. The address of the vring along with the other
838 * allocated resources (carveouts etc) is stored in cached_table.
839 * In order to pass this information to the remote device we must
840 * copy this information to device memory.
841 */
842 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
843 if (!loaded_table) {
844 ret = -EINVAL;
845 goto clean_up;
846 }
847
848 memcpy(loaded_table, rproc->cached_table, tablesz);
849
850 /* power up the remote processor */
851 ret = rproc->ops->start(rproc);
852 if (ret) {
853 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
854 goto clean_up;
855 }
856
857 /*
858 * Update table_ptr so that all subsequent vring allocations and
859 * virtio fields manipulation update the actual loaded resource table
860 * in device memory.
861 */
862 rproc->table_ptr = loaded_table;
863
864 rproc->state = RPROC_RUNNING;
865
866 dev_info(dev, "remote processor %s is now up\n", rproc->name);
867
868 return 0;
869
870 clean_up:
871 rproc_resource_cleanup(rproc);
872 rproc_disable_iommu(rproc);
873 return ret;
874 }
875
876 /*
877 * take a firmware and look for virtio devices to register.
878 *
879 * Note: this function is called asynchronously upon registration of the
880 * remote processor (so we must wait until it completes before we try
881 * to unregister the device. one other option is just to use kref here,
882 * that might be cleaner).
883 */
884 static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
885 {
886 struct rproc *rproc = context;
887 struct resource_table *table;
888 int ret, tablesz;
889
890 if (rproc_fw_sanity_check(rproc, fw) < 0)
891 goto out;
892
893 /* look for the resource table */
894 table = rproc_find_rsc_table(rproc, fw, &tablesz);
895 if (!table)
896 goto out;
897
898 rproc->table_csum = crc32(0, table, tablesz);
899
900 /*
901 * Create a copy of the resource table. When a virtio device starts
902 * and calls vring_new_virtqueue() the address of the allocated vring
903 * will be stored in the cached_table. Before the device is started,
904 * cached_table will be copied into devic memory.
905 */
906 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
907 if (!rproc->cached_table)
908 goto out;
909
910 rproc->table_ptr = rproc->cached_table;
911
912 /* count the number of notify-ids */
913 rproc->max_notifyid = -1;
914 ret = rproc_handle_resources(rproc, tablesz, rproc_count_vrings_handler);
915 if (ret)
916 goto out;
917
918 /* look for virtio devices and register them */
919 ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
920
921 out:
922 release_firmware(fw);
923 /* allow rproc_del() contexts, if any, to proceed */
924 complete_all(&rproc->firmware_loading_complete);
925 }
926
927 static int rproc_add_virtio_devices(struct rproc *rproc)
928 {
929 int ret;
930
931 /* rproc_del() calls must wait until async loader completes */
932 init_completion(&rproc->firmware_loading_complete);
933
934 /*
935 * We must retrieve early virtio configuration info from
936 * the firmware (e.g. whether to register a virtio device,
937 * what virtio features does it support, ...).
938 *
939 * We're initiating an asynchronous firmware loading, so we can
940 * be built-in kernel code, without hanging the boot process.
941 */
942 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
943 rproc->firmware, &rproc->dev, GFP_KERNEL,
944 rproc, rproc_fw_config_virtio);
945 if (ret < 0) {
946 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
947 complete_all(&rproc->firmware_loading_complete);
948 }
949
950 return ret;
951 }
952
953 /**
954 * rproc_trigger_recovery() - recover a remoteproc
955 * @rproc: the remote processor
956 *
957 * The recovery is done by reseting all the virtio devices, that way all the
958 * rpmsg drivers will be reseted along with the remote processor making the
959 * remoteproc functional again.
960 *
961 * This function can sleep, so it cannot be called from atomic context.
962 */
963 int rproc_trigger_recovery(struct rproc *rproc)
964 {
965 struct rproc_vdev *rvdev, *rvtmp;
966
967 dev_err(&rproc->dev, "recovering %s\n", rproc->name);
968
969 init_completion(&rproc->crash_comp);
970
971 /* clean up remote vdev entries */
972 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
973 rproc_remove_virtio_dev(rvdev);
974
975 /* wait until there is no more rproc users */
976 wait_for_completion(&rproc->crash_comp);
977
978 /* Free the copy of the resource table */
979 kfree(rproc->cached_table);
980
981 return rproc_add_virtio_devices(rproc);
982 }
983
984 /**
985 * rproc_crash_handler_work() - handle a crash
986 *
987 * This function needs to handle everything related to a crash, like cpu
988 * registers and stack dump, information to help to debug the fatal error, etc.
989 */
990 static void rproc_crash_handler_work(struct work_struct *work)
991 {
992 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
993 struct device *dev = &rproc->dev;
994
995 dev_dbg(dev, "enter %s\n", __func__);
996
997 mutex_lock(&rproc->lock);
998
999 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1000 /* handle only the first crash detected */
1001 mutex_unlock(&rproc->lock);
1002 return;
1003 }
1004
1005 rproc->state = RPROC_CRASHED;
1006 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1007 rproc->name);
1008
1009 mutex_unlock(&rproc->lock);
1010
1011 if (!rproc->recovery_disabled)
1012 rproc_trigger_recovery(rproc);
1013 }
1014
1015 /**
1016 * rproc_boot() - boot a remote processor
1017 * @rproc: handle of a remote processor
1018 *
1019 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1020 *
1021 * If the remote processor is already powered on, this function immediately
1022 * returns (successfully).
1023 *
1024 * Returns 0 on success, and an appropriate error value otherwise.
1025 */
1026 int rproc_boot(struct rproc *rproc)
1027 {
1028 const struct firmware *firmware_p;
1029 struct device *dev;
1030 int ret;
1031
1032 if (!rproc) {
1033 pr_err("invalid rproc handle\n");
1034 return -EINVAL;
1035 }
1036
1037 dev = &rproc->dev;
1038
1039 ret = mutex_lock_interruptible(&rproc->lock);
1040 if (ret) {
1041 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1042 return ret;
1043 }
1044
1045 /* loading a firmware is required */
1046 if (!rproc->firmware) {
1047 dev_err(dev, "%s: no firmware to load\n", __func__);
1048 ret = -EINVAL;
1049 goto unlock_mutex;
1050 }
1051
1052 /* prevent underlying implementation from being removed */
1053 if (!try_module_get(dev->parent->driver->owner)) {
1054 dev_err(dev, "%s: can't get owner\n", __func__);
1055 ret = -EINVAL;
1056 goto unlock_mutex;
1057 }
1058
1059 /* skip the boot process if rproc is already powered up */
1060 if (atomic_inc_return(&rproc->power) > 1) {
1061 ret = 0;
1062 goto unlock_mutex;
1063 }
1064
1065 dev_info(dev, "powering up %s\n", rproc->name);
1066
1067 /* load firmware */
1068 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1069 if (ret < 0) {
1070 dev_err(dev, "request_firmware failed: %d\n", ret);
1071 goto downref_rproc;
1072 }
1073
1074 ret = rproc_fw_boot(rproc, firmware_p);
1075
1076 release_firmware(firmware_p);
1077
1078 downref_rproc:
1079 if (ret) {
1080 module_put(dev->parent->driver->owner);
1081 atomic_dec(&rproc->power);
1082 }
1083 unlock_mutex:
1084 mutex_unlock(&rproc->lock);
1085 return ret;
1086 }
1087 EXPORT_SYMBOL(rproc_boot);
1088
1089 /**
1090 * rproc_shutdown() - power off the remote processor
1091 * @rproc: the remote processor
1092 *
1093 * Power off a remote processor (previously booted with rproc_boot()).
1094 *
1095 * In case @rproc is still being used by an additional user(s), then
1096 * this function will just decrement the power refcount and exit,
1097 * without really powering off the device.
1098 *
1099 * Every call to rproc_boot() must (eventually) be accompanied by a call
1100 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1101 *
1102 * Notes:
1103 * - we're not decrementing the rproc's refcount, only the power refcount.
1104 * which means that the @rproc handle stays valid even after rproc_shutdown()
1105 * returns, and users can still use it with a subsequent rproc_boot(), if
1106 * needed.
1107 */
1108 void rproc_shutdown(struct rproc *rproc)
1109 {
1110 struct device *dev = &rproc->dev;
1111 int ret;
1112
1113 ret = mutex_lock_interruptible(&rproc->lock);
1114 if (ret) {
1115 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1116 return;
1117 }
1118
1119 /* if the remote proc is still needed, bail out */
1120 if (!atomic_dec_and_test(&rproc->power))
1121 goto out;
1122
1123 /* power off the remote processor */
1124 ret = rproc->ops->stop(rproc);
1125 if (ret) {
1126 atomic_inc(&rproc->power);
1127 dev_err(dev, "can't stop rproc: %d\n", ret);
1128 goto out;
1129 }
1130
1131 /* clean up all acquired resources */
1132 rproc_resource_cleanup(rproc);
1133
1134 rproc_disable_iommu(rproc);
1135
1136 /* Give the next start a clean resource table */
1137 rproc->table_ptr = rproc->cached_table;
1138
1139 /* if in crash state, unlock crash handler */
1140 if (rproc->state == RPROC_CRASHED)
1141 complete_all(&rproc->crash_comp);
1142
1143 rproc->state = RPROC_OFFLINE;
1144
1145 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1146
1147 out:
1148 mutex_unlock(&rproc->lock);
1149 if (!ret)
1150 module_put(dev->parent->driver->owner);
1151 }
1152 EXPORT_SYMBOL(rproc_shutdown);
1153
1154 /**
1155 * rproc_add() - register a remote processor
1156 * @rproc: the remote processor handle to register
1157 *
1158 * Registers @rproc with the remoteproc framework, after it has been
1159 * allocated with rproc_alloc().
1160 *
1161 * This is called by the platform-specific rproc implementation, whenever
1162 * a new remote processor device is probed.
1163 *
1164 * Returns 0 on success and an appropriate error code otherwise.
1165 *
1166 * Note: this function initiates an asynchronous firmware loading
1167 * context, which will look for virtio devices supported by the rproc's
1168 * firmware.
1169 *
1170 * If found, those virtio devices will be created and added, so as a result
1171 * of registering this remote processor, additional virtio drivers might be
1172 * probed.
1173 */
1174 int rproc_add(struct rproc *rproc)
1175 {
1176 struct device *dev = &rproc->dev;
1177 int ret;
1178
1179 ret = device_add(dev);
1180 if (ret < 0)
1181 return ret;
1182
1183 dev_info(dev, "%s is available\n", rproc->name);
1184
1185 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1186 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1187
1188 /* create debugfs entries */
1189 rproc_create_debug_dir(rproc);
1190
1191 return rproc_add_virtio_devices(rproc);
1192 }
1193 EXPORT_SYMBOL(rproc_add);
1194
1195 /**
1196 * rproc_type_release() - release a remote processor instance
1197 * @dev: the rproc's device
1198 *
1199 * This function should _never_ be called directly.
1200 *
1201 * It will be called by the driver core when no one holds a valid pointer
1202 * to @dev anymore.
1203 */
1204 static void rproc_type_release(struct device *dev)
1205 {
1206 struct rproc *rproc = container_of(dev, struct rproc, dev);
1207
1208 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1209
1210 rproc_delete_debug_dir(rproc);
1211
1212 idr_destroy(&rproc->notifyids);
1213
1214 if (rproc->index >= 0)
1215 ida_simple_remove(&rproc_dev_index, rproc->index);
1216
1217 kfree(rproc);
1218 }
1219
1220 static struct device_type rproc_type = {
1221 .name = "remoteproc",
1222 .release = rproc_type_release,
1223 };
1224
1225 /**
1226 * rproc_alloc() - allocate a remote processor handle
1227 * @dev: the underlying device
1228 * @name: name of this remote processor
1229 * @ops: platform-specific handlers (mainly start/stop)
1230 * @firmware: name of firmware file to load, can be NULL
1231 * @len: length of private data needed by the rproc driver (in bytes)
1232 *
1233 * Allocates a new remote processor handle, but does not register
1234 * it yet. if @firmware is NULL, a default name is used.
1235 *
1236 * This function should be used by rproc implementations during initialization
1237 * of the remote processor.
1238 *
1239 * After creating an rproc handle using this function, and when ready,
1240 * implementations should then call rproc_add() to complete
1241 * the registration of the remote processor.
1242 *
1243 * On success the new rproc is returned, and on failure, NULL.
1244 *
1245 * Note: _never_ directly deallocate @rproc, even if it was not registered
1246 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1247 */
1248 struct rproc *rproc_alloc(struct device *dev, const char *name,
1249 const struct rproc_ops *ops,
1250 const char *firmware, int len)
1251 {
1252 struct rproc *rproc;
1253 char *p, *template = "rproc-%s-fw";
1254 int name_len = 0;
1255
1256 if (!dev || !name || !ops)
1257 return NULL;
1258
1259 if (!firmware)
1260 /*
1261 * Make room for default firmware name (minus %s plus '\0').
1262 * If the caller didn't pass in a firmware name then
1263 * construct a default name. We're already glomming 'len'
1264 * bytes onto the end of the struct rproc allocation, so do
1265 * a few more for the default firmware name (but only if
1266 * the caller doesn't pass one).
1267 */
1268 name_len = strlen(name) + strlen(template) - 2 + 1;
1269
1270 rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
1271 if (!rproc) {
1272 dev_err(dev, "%s: kzalloc failed\n", __func__);
1273 return NULL;
1274 }
1275
1276 if (!firmware) {
1277 p = (char *)rproc + sizeof(struct rproc) + len;
1278 snprintf(p, name_len, template, name);
1279 } else {
1280 p = (char *)firmware;
1281 }
1282
1283 rproc->firmware = p;
1284 rproc->name = name;
1285 rproc->ops = ops;
1286 rproc->priv = &rproc[1];
1287
1288 device_initialize(&rproc->dev);
1289 rproc->dev.parent = dev;
1290 rproc->dev.type = &rproc_type;
1291
1292 /* Assign a unique device index and name */
1293 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1294 if (rproc->index < 0) {
1295 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1296 put_device(&rproc->dev);
1297 return NULL;
1298 }
1299
1300 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1301
1302 atomic_set(&rproc->power, 0);
1303
1304 /* Set ELF as the default fw_ops handler */
1305 rproc->fw_ops = &rproc_elf_fw_ops;
1306
1307 mutex_init(&rproc->lock);
1308
1309 idr_init(&rproc->notifyids);
1310
1311 INIT_LIST_HEAD(&rproc->carveouts);
1312 INIT_LIST_HEAD(&rproc->mappings);
1313 INIT_LIST_HEAD(&rproc->traces);
1314 INIT_LIST_HEAD(&rproc->rvdevs);
1315
1316 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1317 init_completion(&rproc->crash_comp);
1318
1319 rproc->state = RPROC_OFFLINE;
1320
1321 return rproc;
1322 }
1323 EXPORT_SYMBOL(rproc_alloc);
1324
1325 /**
1326 * rproc_put() - unroll rproc_alloc()
1327 * @rproc: the remote processor handle
1328 *
1329 * This function decrements the rproc dev refcount.
1330 *
1331 * If no one holds any reference to rproc anymore, then its refcount would
1332 * now drop to zero, and it would be freed.
1333 */
1334 void rproc_put(struct rproc *rproc)
1335 {
1336 put_device(&rproc->dev);
1337 }
1338 EXPORT_SYMBOL(rproc_put);
1339
1340 /**
1341 * rproc_del() - unregister a remote processor
1342 * @rproc: rproc handle to unregister
1343 *
1344 * This function should be called when the platform specific rproc
1345 * implementation decides to remove the rproc device. it should
1346 * _only_ be called if a previous invocation of rproc_add()
1347 * has completed successfully.
1348 *
1349 * After rproc_del() returns, @rproc isn't freed yet, because
1350 * of the outstanding reference created by rproc_alloc. To decrement that
1351 * one last refcount, one still needs to call rproc_put().
1352 *
1353 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1354 */
1355 int rproc_del(struct rproc *rproc)
1356 {
1357 struct rproc_vdev *rvdev, *tmp;
1358
1359 if (!rproc)
1360 return -EINVAL;
1361
1362 /* if rproc is just being registered, wait */
1363 wait_for_completion(&rproc->firmware_loading_complete);
1364
1365 /* clean up remote vdev entries */
1366 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1367 rproc_remove_virtio_dev(rvdev);
1368
1369 /* Free the copy of the resource table */
1370 kfree(rproc->cached_table);
1371
1372 device_del(&rproc->dev);
1373
1374 return 0;
1375 }
1376 EXPORT_SYMBOL(rproc_del);
1377
1378 /**
1379 * rproc_report_crash() - rproc crash reporter function
1380 * @rproc: remote processor
1381 * @type: crash type
1382 *
1383 * This function must be called every time a crash is detected by the low-level
1384 * drivers implementing a specific remoteproc. This should not be called from a
1385 * non-remoteproc driver.
1386 *
1387 * This function can be called from atomic/interrupt context.
1388 */
1389 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1390 {
1391 if (!rproc) {
1392 pr_err("NULL rproc pointer\n");
1393 return;
1394 }
1395
1396 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1397 rproc->name, rproc_crash_to_string(type));
1398
1399 /* create a new task to handle the error */
1400 schedule_work(&rproc->crash_handler);
1401 }
1402 EXPORT_SYMBOL(rproc_report_crash);
1403
1404 static int __init remoteproc_init(void)
1405 {
1406 rproc_init_debugfs();
1407
1408 return 0;
1409 }
1410 module_init(remoteproc_init);
1411
1412 static void __exit remoteproc_exit(void)
1413 {
1414 rproc_exit_debugfs();
1415 }
1416 module_exit(remoteproc_exit);
1417
1418 MODULE_LICENSE("GPL v2");
1419 MODULE_DESCRIPTION("Generic Remote Processor Framework");