]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/rpmsg/virtio_rpmsg_bus.c
UBUNTU: SAUCE: ljca: add multi ACPI HID support
[mirror_ubuntu-jammy-kernel.git] / drivers / rpmsg / virtio_rpmsg_bus.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Virtio-based remote processor messaging bus
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 */
11
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13
14 #include <linux/dma-mapping.h>
15 #include <linux/idr.h>
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/of_device.h>
21 #include <linux/rpmsg.h>
22 #include <linux/rpmsg/byteorder.h>
23 #include <linux/rpmsg/ns.h>
24 #include <linux/scatterlist.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/virtio.h>
28 #include <linux/virtio_ids.h>
29 #include <linux/virtio_config.h>
30 #include <linux/wait.h>
31
32 #include "rpmsg_internal.h"
33
34 /**
35 * struct virtproc_info - virtual remote processor state
36 * @vdev: the virtio device
37 * @rvq: rx virtqueue
38 * @svq: tx virtqueue
39 * @rbufs: kernel address of rx buffers
40 * @sbufs: kernel address of tx buffers
41 * @num_bufs: total number of buffers for rx and tx
42 * @buf_size: size of one rx or tx buffer
43 * @last_sbuf: index of last tx buffer used
44 * @bufs_dma: dma base addr of the buffers
45 * @tx_lock: protects svq, sbufs and sleepers, to allow concurrent senders.
46 * sending a message might require waking up a dozing remote
47 * processor, which involves sleeping, hence the mutex.
48 * @endpoints: idr of local endpoints, allows fast retrieval
49 * @endpoints_lock: lock of the endpoints set
50 * @sendq: wait queue of sending contexts waiting for a tx buffers
51 * @sleepers: number of senders that are waiting for a tx buffer
52 *
53 * This structure stores the rpmsg state of a given virtio remote processor
54 * device (there might be several virtio proc devices for each physical
55 * remote processor).
56 */
57 struct virtproc_info {
58 struct virtio_device *vdev;
59 struct virtqueue *rvq, *svq;
60 void *rbufs, *sbufs;
61 unsigned int num_bufs;
62 unsigned int buf_size;
63 int last_sbuf;
64 dma_addr_t bufs_dma;
65 struct mutex tx_lock;
66 struct idr endpoints;
67 struct mutex endpoints_lock;
68 wait_queue_head_t sendq;
69 atomic_t sleepers;
70 };
71
72 /* The feature bitmap for virtio rpmsg */
73 #define VIRTIO_RPMSG_F_NS 0 /* RP supports name service notifications */
74
75 /**
76 * struct rpmsg_hdr - common header for all rpmsg messages
77 * @src: source address
78 * @dst: destination address
79 * @reserved: reserved for future use
80 * @len: length of payload (in bytes)
81 * @flags: message flags
82 * @data: @len bytes of message payload data
83 *
84 * Every message sent(/received) on the rpmsg bus begins with this header.
85 */
86 struct rpmsg_hdr {
87 __rpmsg32 src;
88 __rpmsg32 dst;
89 __rpmsg32 reserved;
90 __rpmsg16 len;
91 __rpmsg16 flags;
92 u8 data[];
93 } __packed;
94
95
96 /**
97 * struct virtio_rpmsg_channel - rpmsg channel descriptor
98 * @rpdev: the rpmsg channel device
99 * @vrp: the virtio remote processor device this channel belongs to
100 *
101 * This structure stores the channel that links the rpmsg device to the virtio
102 * remote processor device.
103 */
104 struct virtio_rpmsg_channel {
105 struct rpmsg_device rpdev;
106
107 struct virtproc_info *vrp;
108 };
109
110 #define to_virtio_rpmsg_channel(_rpdev) \
111 container_of(_rpdev, struct virtio_rpmsg_channel, rpdev)
112
113 /*
114 * We're allocating buffers of 512 bytes each for communications. The
115 * number of buffers will be computed from the number of buffers supported
116 * by the vring, upto a maximum of 512 buffers (256 in each direction).
117 *
118 * Each buffer will have 16 bytes for the msg header and 496 bytes for
119 * the payload.
120 *
121 * This will utilize a maximum total space of 256KB for the buffers.
122 *
123 * We might also want to add support for user-provided buffers in time.
124 * This will allow bigger buffer size flexibility, and can also be used
125 * to achieve zero-copy messaging.
126 *
127 * Note that these numbers are purely a decision of this driver - we
128 * can change this without changing anything in the firmware of the remote
129 * processor.
130 */
131 #define MAX_RPMSG_NUM_BUFS (512)
132 #define MAX_RPMSG_BUF_SIZE (512)
133
134 /*
135 * Local addresses are dynamically allocated on-demand.
136 * We do not dynamically assign addresses from the low 1024 range,
137 * in order to reserve that address range for predefined services.
138 */
139 #define RPMSG_RESERVED_ADDRESSES (1024)
140
141 static void virtio_rpmsg_destroy_ept(struct rpmsg_endpoint *ept);
142 static int virtio_rpmsg_send(struct rpmsg_endpoint *ept, void *data, int len);
143 static int virtio_rpmsg_sendto(struct rpmsg_endpoint *ept, void *data, int len,
144 u32 dst);
145 static int virtio_rpmsg_send_offchannel(struct rpmsg_endpoint *ept, u32 src,
146 u32 dst, void *data, int len);
147 static int virtio_rpmsg_trysend(struct rpmsg_endpoint *ept, void *data, int len);
148 static int virtio_rpmsg_trysendto(struct rpmsg_endpoint *ept, void *data,
149 int len, u32 dst);
150 static int virtio_rpmsg_trysend_offchannel(struct rpmsg_endpoint *ept, u32 src,
151 u32 dst, void *data, int len);
152 static struct rpmsg_device *__rpmsg_create_channel(struct virtproc_info *vrp,
153 struct rpmsg_channel_info *chinfo);
154
155 static const struct rpmsg_endpoint_ops virtio_endpoint_ops = {
156 .destroy_ept = virtio_rpmsg_destroy_ept,
157 .send = virtio_rpmsg_send,
158 .sendto = virtio_rpmsg_sendto,
159 .send_offchannel = virtio_rpmsg_send_offchannel,
160 .trysend = virtio_rpmsg_trysend,
161 .trysendto = virtio_rpmsg_trysendto,
162 .trysend_offchannel = virtio_rpmsg_trysend_offchannel,
163 };
164
165 /**
166 * rpmsg_sg_init - initialize scatterlist according to cpu address location
167 * @sg: scatterlist to fill
168 * @cpu_addr: virtual address of the buffer
169 * @len: buffer length
170 *
171 * An internal function filling scatterlist according to virtual address
172 * location (in vmalloc or in kernel).
173 */
174 static void
175 rpmsg_sg_init(struct scatterlist *sg, void *cpu_addr, unsigned int len)
176 {
177 if (is_vmalloc_addr(cpu_addr)) {
178 sg_init_table(sg, 1);
179 sg_set_page(sg, vmalloc_to_page(cpu_addr), len,
180 offset_in_page(cpu_addr));
181 } else {
182 WARN_ON(!virt_addr_valid(cpu_addr));
183 sg_init_one(sg, cpu_addr, len);
184 }
185 }
186
187 /**
188 * __ept_release() - deallocate an rpmsg endpoint
189 * @kref: the ept's reference count
190 *
191 * This function deallocates an ept, and is invoked when its @kref refcount
192 * drops to zero.
193 *
194 * Never invoke this function directly!
195 */
196 static void __ept_release(struct kref *kref)
197 {
198 struct rpmsg_endpoint *ept = container_of(kref, struct rpmsg_endpoint,
199 refcount);
200 /*
201 * At this point no one holds a reference to ept anymore,
202 * so we can directly free it
203 */
204 kfree(ept);
205 }
206
207 /* for more info, see below documentation of rpmsg_create_ept() */
208 static struct rpmsg_endpoint *__rpmsg_create_ept(struct virtproc_info *vrp,
209 struct rpmsg_device *rpdev,
210 rpmsg_rx_cb_t cb,
211 void *priv, u32 addr)
212 {
213 int id_min, id_max, id;
214 struct rpmsg_endpoint *ept;
215 struct device *dev = rpdev ? &rpdev->dev : &vrp->vdev->dev;
216
217 ept = kzalloc(sizeof(*ept), GFP_KERNEL);
218 if (!ept)
219 return NULL;
220
221 kref_init(&ept->refcount);
222 mutex_init(&ept->cb_lock);
223
224 ept->rpdev = rpdev;
225 ept->cb = cb;
226 ept->priv = priv;
227 ept->ops = &virtio_endpoint_ops;
228
229 /* do we need to allocate a local address ? */
230 if (addr == RPMSG_ADDR_ANY) {
231 id_min = RPMSG_RESERVED_ADDRESSES;
232 id_max = 0;
233 } else {
234 id_min = addr;
235 id_max = addr + 1;
236 }
237
238 mutex_lock(&vrp->endpoints_lock);
239
240 /* bind the endpoint to an rpmsg address (and allocate one if needed) */
241 id = idr_alloc(&vrp->endpoints, ept, id_min, id_max, GFP_KERNEL);
242 if (id < 0) {
243 dev_err(dev, "idr_alloc failed: %d\n", id);
244 goto free_ept;
245 }
246 ept->addr = id;
247
248 mutex_unlock(&vrp->endpoints_lock);
249
250 return ept;
251
252 free_ept:
253 mutex_unlock(&vrp->endpoints_lock);
254 kref_put(&ept->refcount, __ept_release);
255 return NULL;
256 }
257
258 static struct rpmsg_device *virtio_rpmsg_create_channel(struct rpmsg_device *rpdev,
259 struct rpmsg_channel_info *chinfo)
260 {
261 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev);
262 struct virtproc_info *vrp = vch->vrp;
263
264 return __rpmsg_create_channel(vrp, chinfo);
265 }
266
267 static int virtio_rpmsg_release_channel(struct rpmsg_device *rpdev,
268 struct rpmsg_channel_info *chinfo)
269 {
270 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev);
271 struct virtproc_info *vrp = vch->vrp;
272
273 return rpmsg_unregister_device(&vrp->vdev->dev, chinfo);
274 }
275
276 static struct rpmsg_endpoint *virtio_rpmsg_create_ept(struct rpmsg_device *rpdev,
277 rpmsg_rx_cb_t cb,
278 void *priv,
279 struct rpmsg_channel_info chinfo)
280 {
281 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev);
282
283 return __rpmsg_create_ept(vch->vrp, rpdev, cb, priv, chinfo.src);
284 }
285
286 /**
287 * __rpmsg_destroy_ept() - destroy an existing rpmsg endpoint
288 * @vrp: virtproc which owns this ept
289 * @ept: endpoing to destroy
290 *
291 * An internal function which destroy an ept without assuming it is
292 * bound to an rpmsg channel. This is needed for handling the internal
293 * name service endpoint, which isn't bound to an rpmsg channel.
294 * See also __rpmsg_create_ept().
295 */
296 static void
297 __rpmsg_destroy_ept(struct virtproc_info *vrp, struct rpmsg_endpoint *ept)
298 {
299 /* make sure new inbound messages can't find this ept anymore */
300 mutex_lock(&vrp->endpoints_lock);
301 idr_remove(&vrp->endpoints, ept->addr);
302 mutex_unlock(&vrp->endpoints_lock);
303
304 /* make sure in-flight inbound messages won't invoke cb anymore */
305 mutex_lock(&ept->cb_lock);
306 ept->cb = NULL;
307 mutex_unlock(&ept->cb_lock);
308
309 kref_put(&ept->refcount, __ept_release);
310 }
311
312 static void virtio_rpmsg_destroy_ept(struct rpmsg_endpoint *ept)
313 {
314 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(ept->rpdev);
315
316 __rpmsg_destroy_ept(vch->vrp, ept);
317 }
318
319 static int virtio_rpmsg_announce_create(struct rpmsg_device *rpdev)
320 {
321 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev);
322 struct virtproc_info *vrp = vch->vrp;
323 struct device *dev = &rpdev->dev;
324 int err = 0;
325
326 /* need to tell remote processor's name service about this channel ? */
327 if (rpdev->announce && rpdev->ept &&
328 virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) {
329 struct rpmsg_ns_msg nsm;
330
331 strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE);
332 nsm.addr = cpu_to_rpmsg32(rpdev, rpdev->ept->addr);
333 nsm.flags = cpu_to_rpmsg32(rpdev, RPMSG_NS_CREATE);
334
335 err = rpmsg_sendto(rpdev->ept, &nsm, sizeof(nsm), RPMSG_NS_ADDR);
336 if (err)
337 dev_err(dev, "failed to announce service %d\n", err);
338 }
339
340 return err;
341 }
342
343 static int virtio_rpmsg_announce_destroy(struct rpmsg_device *rpdev)
344 {
345 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev);
346 struct virtproc_info *vrp = vch->vrp;
347 struct device *dev = &rpdev->dev;
348 int err = 0;
349
350 /* tell remote processor's name service we're removing this channel */
351 if (rpdev->announce && rpdev->ept &&
352 virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) {
353 struct rpmsg_ns_msg nsm;
354
355 strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE);
356 nsm.addr = cpu_to_rpmsg32(rpdev, rpdev->ept->addr);
357 nsm.flags = cpu_to_rpmsg32(rpdev, RPMSG_NS_DESTROY);
358
359 err = rpmsg_sendto(rpdev->ept, &nsm, sizeof(nsm), RPMSG_NS_ADDR);
360 if (err)
361 dev_err(dev, "failed to announce service %d\n", err);
362 }
363
364 return err;
365 }
366
367 static const struct rpmsg_device_ops virtio_rpmsg_ops = {
368 .create_channel = virtio_rpmsg_create_channel,
369 .release_channel = virtio_rpmsg_release_channel,
370 .create_ept = virtio_rpmsg_create_ept,
371 .announce_create = virtio_rpmsg_announce_create,
372 .announce_destroy = virtio_rpmsg_announce_destroy,
373 };
374
375 static void virtio_rpmsg_release_device(struct device *dev)
376 {
377 struct rpmsg_device *rpdev = to_rpmsg_device(dev);
378 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev);
379
380 kfree(vch);
381 }
382
383 /*
384 * create an rpmsg channel using its name and address info.
385 * this function will be used to create both static and dynamic
386 * channels.
387 */
388 static struct rpmsg_device *__rpmsg_create_channel(struct virtproc_info *vrp,
389 struct rpmsg_channel_info *chinfo)
390 {
391 struct virtio_rpmsg_channel *vch;
392 struct rpmsg_device *rpdev;
393 struct device *tmp, *dev = &vrp->vdev->dev;
394 int ret;
395
396 /* make sure a similar channel doesn't already exist */
397 tmp = rpmsg_find_device(dev, chinfo);
398 if (tmp) {
399 /* decrement the matched device's refcount back */
400 put_device(tmp);
401 dev_err(dev, "channel %s:%x:%x already exist\n",
402 chinfo->name, chinfo->src, chinfo->dst);
403 return NULL;
404 }
405
406 vch = kzalloc(sizeof(*vch), GFP_KERNEL);
407 if (!vch)
408 return NULL;
409
410 /* Link the channel to our vrp */
411 vch->vrp = vrp;
412
413 /* Assign public information to the rpmsg_device */
414 rpdev = &vch->rpdev;
415 rpdev->src = chinfo->src;
416 rpdev->dst = chinfo->dst;
417 rpdev->ops = &virtio_rpmsg_ops;
418 rpdev->little_endian = virtio_is_little_endian(vrp->vdev);
419
420 /*
421 * rpmsg server channels has predefined local address (for now),
422 * and their existence needs to be announced remotely
423 */
424 rpdev->announce = rpdev->src != RPMSG_ADDR_ANY;
425
426 strncpy(rpdev->id.name, chinfo->name, RPMSG_NAME_SIZE);
427
428 rpdev->dev.parent = &vrp->vdev->dev;
429 rpdev->dev.release = virtio_rpmsg_release_device;
430 ret = rpmsg_register_device(rpdev);
431 if (ret)
432 return NULL;
433
434 return rpdev;
435 }
436
437 /* super simple buffer "allocator" that is just enough for now */
438 static void *get_a_tx_buf(struct virtproc_info *vrp)
439 {
440 unsigned int len;
441 void *ret;
442
443 /* support multiple concurrent senders */
444 mutex_lock(&vrp->tx_lock);
445
446 /*
447 * either pick the next unused tx buffer
448 * (half of our buffers are used for sending messages)
449 */
450 if (vrp->last_sbuf < vrp->num_bufs / 2)
451 ret = vrp->sbufs + vrp->buf_size * vrp->last_sbuf++;
452 /* or recycle a used one */
453 else
454 ret = virtqueue_get_buf(vrp->svq, &len);
455
456 mutex_unlock(&vrp->tx_lock);
457
458 return ret;
459 }
460
461 /**
462 * rpmsg_upref_sleepers() - enable "tx-complete" interrupts, if needed
463 * @vrp: virtual remote processor state
464 *
465 * This function is called before a sender is blocked, waiting for
466 * a tx buffer to become available.
467 *
468 * If we already have blocking senders, this function merely increases
469 * the "sleepers" reference count, and exits.
470 *
471 * Otherwise, if this is the first sender to block, we also enable
472 * virtio's tx callbacks, so we'd be immediately notified when a tx
473 * buffer is consumed (we rely on virtio's tx callback in order
474 * to wake up sleeping senders as soon as a tx buffer is used by the
475 * remote processor).
476 */
477 static void rpmsg_upref_sleepers(struct virtproc_info *vrp)
478 {
479 /* support multiple concurrent senders */
480 mutex_lock(&vrp->tx_lock);
481
482 /* are we the first sleeping context waiting for tx buffers ? */
483 if (atomic_inc_return(&vrp->sleepers) == 1)
484 /* enable "tx-complete" interrupts before dozing off */
485 virtqueue_enable_cb(vrp->svq);
486
487 mutex_unlock(&vrp->tx_lock);
488 }
489
490 /**
491 * rpmsg_downref_sleepers() - disable "tx-complete" interrupts, if needed
492 * @vrp: virtual remote processor state
493 *
494 * This function is called after a sender, that waited for a tx buffer
495 * to become available, is unblocked.
496 *
497 * If we still have blocking senders, this function merely decreases
498 * the "sleepers" reference count, and exits.
499 *
500 * Otherwise, if there are no more blocking senders, we also disable
501 * virtio's tx callbacks, to avoid the overhead incurred with handling
502 * those (now redundant) interrupts.
503 */
504 static void rpmsg_downref_sleepers(struct virtproc_info *vrp)
505 {
506 /* support multiple concurrent senders */
507 mutex_lock(&vrp->tx_lock);
508
509 /* are we the last sleeping context waiting for tx buffers ? */
510 if (atomic_dec_and_test(&vrp->sleepers))
511 /* disable "tx-complete" interrupts */
512 virtqueue_disable_cb(vrp->svq);
513
514 mutex_unlock(&vrp->tx_lock);
515 }
516
517 /**
518 * rpmsg_send_offchannel_raw() - send a message across to the remote processor
519 * @rpdev: the rpmsg channel
520 * @src: source address
521 * @dst: destination address
522 * @data: payload of message
523 * @len: length of payload
524 * @wait: indicates whether caller should block in case no TX buffers available
525 *
526 * This function is the base implementation for all of the rpmsg sending API.
527 *
528 * It will send @data of length @len to @dst, and say it's from @src. The
529 * message will be sent to the remote processor which the @rpdev channel
530 * belongs to.
531 *
532 * The message is sent using one of the TX buffers that are available for
533 * communication with this remote processor.
534 *
535 * If @wait is true, the caller will be blocked until either a TX buffer is
536 * available, or 15 seconds elapses (we don't want callers to
537 * sleep indefinitely due to misbehaving remote processors), and in that
538 * case -ERESTARTSYS is returned. The number '15' itself was picked
539 * arbitrarily; there's little point in asking drivers to provide a timeout
540 * value themselves.
541 *
542 * Otherwise, if @wait is false, and there are no TX buffers available,
543 * the function will immediately fail, and -ENOMEM will be returned.
544 *
545 * Normally drivers shouldn't use this function directly; instead, drivers
546 * should use the appropriate rpmsg_{try}send{to, _offchannel} API
547 * (see include/linux/rpmsg.h).
548 *
549 * Returns 0 on success and an appropriate error value on failure.
550 */
551 static int rpmsg_send_offchannel_raw(struct rpmsg_device *rpdev,
552 u32 src, u32 dst,
553 void *data, int len, bool wait)
554 {
555 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev);
556 struct virtproc_info *vrp = vch->vrp;
557 struct device *dev = &rpdev->dev;
558 struct scatterlist sg;
559 struct rpmsg_hdr *msg;
560 int err;
561
562 /* bcasting isn't allowed */
563 if (src == RPMSG_ADDR_ANY || dst == RPMSG_ADDR_ANY) {
564 dev_err(dev, "invalid addr (src 0x%x, dst 0x%x)\n", src, dst);
565 return -EINVAL;
566 }
567
568 /*
569 * We currently use fixed-sized buffers, and therefore the payload
570 * length is limited.
571 *
572 * One of the possible improvements here is either to support
573 * user-provided buffers (and then we can also support zero-copy
574 * messaging), or to improve the buffer allocator, to support
575 * variable-length buffer sizes.
576 */
577 if (len > vrp->buf_size - sizeof(struct rpmsg_hdr)) {
578 dev_err(dev, "message is too big (%d)\n", len);
579 return -EMSGSIZE;
580 }
581
582 /* grab a buffer */
583 msg = get_a_tx_buf(vrp);
584 if (!msg && !wait)
585 return -ENOMEM;
586
587 /* no free buffer ? wait for one (but bail after 15 seconds) */
588 while (!msg) {
589 /* enable "tx-complete" interrupts, if not already enabled */
590 rpmsg_upref_sleepers(vrp);
591
592 /*
593 * sleep until a free buffer is available or 15 secs elapse.
594 * the timeout period is not configurable because there's
595 * little point in asking drivers to specify that.
596 * if later this happens to be required, it'd be easy to add.
597 */
598 err = wait_event_interruptible_timeout(vrp->sendq,
599 (msg = get_a_tx_buf(vrp)),
600 msecs_to_jiffies(15000));
601
602 /* disable "tx-complete" interrupts if we're the last sleeper */
603 rpmsg_downref_sleepers(vrp);
604
605 /* timeout ? */
606 if (!err) {
607 dev_err(dev, "timeout waiting for a tx buffer\n");
608 return -ERESTARTSYS;
609 }
610 }
611
612 msg->len = cpu_to_rpmsg16(rpdev, len);
613 msg->flags = 0;
614 msg->src = cpu_to_rpmsg32(rpdev, src);
615 msg->dst = cpu_to_rpmsg32(rpdev, dst);
616 msg->reserved = 0;
617 memcpy(msg->data, data, len);
618
619 dev_dbg(dev, "TX From 0x%x, To 0x%x, Len %d, Flags %d, Reserved %d\n",
620 src, dst, len, msg->flags, msg->reserved);
621 #if defined(CONFIG_DYNAMIC_DEBUG)
622 dynamic_hex_dump("rpmsg_virtio TX: ", DUMP_PREFIX_NONE, 16, 1,
623 msg, sizeof(*msg) + len, true);
624 #endif
625
626 rpmsg_sg_init(&sg, msg, sizeof(*msg) + len);
627
628 mutex_lock(&vrp->tx_lock);
629
630 /* add message to the remote processor's virtqueue */
631 err = virtqueue_add_outbuf(vrp->svq, &sg, 1, msg, GFP_KERNEL);
632 if (err) {
633 /*
634 * need to reclaim the buffer here, otherwise it's lost
635 * (memory won't leak, but rpmsg won't use it again for TX).
636 * this will wait for a buffer management overhaul.
637 */
638 dev_err(dev, "virtqueue_add_outbuf failed: %d\n", err);
639 goto out;
640 }
641
642 /* tell the remote processor it has a pending message to read */
643 virtqueue_kick(vrp->svq);
644 out:
645 mutex_unlock(&vrp->tx_lock);
646 return err;
647 }
648
649 static int virtio_rpmsg_send(struct rpmsg_endpoint *ept, void *data, int len)
650 {
651 struct rpmsg_device *rpdev = ept->rpdev;
652 u32 src = ept->addr, dst = rpdev->dst;
653
654 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true);
655 }
656
657 static int virtio_rpmsg_sendto(struct rpmsg_endpoint *ept, void *data, int len,
658 u32 dst)
659 {
660 struct rpmsg_device *rpdev = ept->rpdev;
661 u32 src = ept->addr;
662
663 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true);
664 }
665
666 static int virtio_rpmsg_send_offchannel(struct rpmsg_endpoint *ept, u32 src,
667 u32 dst, void *data, int len)
668 {
669 struct rpmsg_device *rpdev = ept->rpdev;
670
671 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true);
672 }
673
674 static int virtio_rpmsg_trysend(struct rpmsg_endpoint *ept, void *data, int len)
675 {
676 struct rpmsg_device *rpdev = ept->rpdev;
677 u32 src = ept->addr, dst = rpdev->dst;
678
679 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false);
680 }
681
682 static int virtio_rpmsg_trysendto(struct rpmsg_endpoint *ept, void *data,
683 int len, u32 dst)
684 {
685 struct rpmsg_device *rpdev = ept->rpdev;
686 u32 src = ept->addr;
687
688 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false);
689 }
690
691 static int virtio_rpmsg_trysend_offchannel(struct rpmsg_endpoint *ept, u32 src,
692 u32 dst, void *data, int len)
693 {
694 struct rpmsg_device *rpdev = ept->rpdev;
695
696 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false);
697 }
698
699 static int rpmsg_recv_single(struct virtproc_info *vrp, struct device *dev,
700 struct rpmsg_hdr *msg, unsigned int len)
701 {
702 struct rpmsg_endpoint *ept;
703 struct scatterlist sg;
704 bool little_endian = virtio_is_little_endian(vrp->vdev);
705 unsigned int msg_len = __rpmsg16_to_cpu(little_endian, msg->len);
706 int err;
707
708 dev_dbg(dev, "From: 0x%x, To: 0x%x, Len: %d, Flags: %d, Reserved: %d\n",
709 __rpmsg32_to_cpu(little_endian, msg->src),
710 __rpmsg32_to_cpu(little_endian, msg->dst), msg_len,
711 __rpmsg16_to_cpu(little_endian, msg->flags),
712 __rpmsg32_to_cpu(little_endian, msg->reserved));
713 #if defined(CONFIG_DYNAMIC_DEBUG)
714 dynamic_hex_dump("rpmsg_virtio RX: ", DUMP_PREFIX_NONE, 16, 1,
715 msg, sizeof(*msg) + msg_len, true);
716 #endif
717
718 /*
719 * We currently use fixed-sized buffers, so trivially sanitize
720 * the reported payload length.
721 */
722 if (len > vrp->buf_size ||
723 msg_len > (len - sizeof(struct rpmsg_hdr))) {
724 dev_warn(dev, "inbound msg too big: (%d, %d)\n", len, msg_len);
725 return -EINVAL;
726 }
727
728 /* use the dst addr to fetch the callback of the appropriate user */
729 mutex_lock(&vrp->endpoints_lock);
730
731 ept = idr_find(&vrp->endpoints, __rpmsg32_to_cpu(little_endian, msg->dst));
732
733 /* let's make sure no one deallocates ept while we use it */
734 if (ept)
735 kref_get(&ept->refcount);
736
737 mutex_unlock(&vrp->endpoints_lock);
738
739 if (ept) {
740 /* make sure ept->cb doesn't go away while we use it */
741 mutex_lock(&ept->cb_lock);
742
743 if (ept->cb)
744 ept->cb(ept->rpdev, msg->data, msg_len, ept->priv,
745 __rpmsg32_to_cpu(little_endian, msg->src));
746
747 mutex_unlock(&ept->cb_lock);
748
749 /* farewell, ept, we don't need you anymore */
750 kref_put(&ept->refcount, __ept_release);
751 } else
752 dev_warn(dev, "msg received with no recipient\n");
753
754 /* publish the real size of the buffer */
755 rpmsg_sg_init(&sg, msg, vrp->buf_size);
756
757 /* add the buffer back to the remote processor's virtqueue */
758 err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, msg, GFP_KERNEL);
759 if (err < 0) {
760 dev_err(dev, "failed to add a virtqueue buffer: %d\n", err);
761 return err;
762 }
763
764 return 0;
765 }
766
767 /* called when an rx buffer is used, and it's time to digest a message */
768 static void rpmsg_recv_done(struct virtqueue *rvq)
769 {
770 struct virtproc_info *vrp = rvq->vdev->priv;
771 struct device *dev = &rvq->vdev->dev;
772 struct rpmsg_hdr *msg;
773 unsigned int len, msgs_received = 0;
774 int err;
775
776 msg = virtqueue_get_buf(rvq, &len);
777 if (!msg) {
778 dev_err(dev, "uhm, incoming signal, but no used buffer ?\n");
779 return;
780 }
781
782 while (msg) {
783 err = rpmsg_recv_single(vrp, dev, msg, len);
784 if (err)
785 break;
786
787 msgs_received++;
788
789 msg = virtqueue_get_buf(rvq, &len);
790 }
791
792 dev_dbg(dev, "Received %u messages\n", msgs_received);
793
794 /* tell the remote processor we added another available rx buffer */
795 if (msgs_received)
796 virtqueue_kick(vrp->rvq);
797 }
798
799 /*
800 * This is invoked whenever the remote processor completed processing
801 * a TX msg we just sent it, and the buffer is put back to the used ring.
802 *
803 * Normally, though, we suppress this "tx complete" interrupt in order to
804 * avoid the incurred overhead.
805 */
806 static void rpmsg_xmit_done(struct virtqueue *svq)
807 {
808 struct virtproc_info *vrp = svq->vdev->priv;
809
810 dev_dbg(&svq->vdev->dev, "%s\n", __func__);
811
812 /* wake up potential senders that are waiting for a tx buffer */
813 wake_up_interruptible(&vrp->sendq);
814 }
815
816 /*
817 * Called to expose to user a /dev/rpmsg_ctrlX interface allowing to
818 * create endpoint-to-endpoint communication without associated RPMsg channel.
819 * The endpoints are rattached to the ctrldev RPMsg device.
820 */
821 static struct rpmsg_device *rpmsg_virtio_add_ctrl_dev(struct virtio_device *vdev)
822 {
823 struct virtproc_info *vrp = vdev->priv;
824 struct virtio_rpmsg_channel *vch;
825 struct rpmsg_device *rpdev_ctrl;
826 int err = 0;
827
828 vch = kzalloc(sizeof(*vch), GFP_KERNEL);
829 if (!vch)
830 return ERR_PTR(-ENOMEM);
831
832 /* Link the channel to the vrp */
833 vch->vrp = vrp;
834
835 /* Assign public information to the rpmsg_device */
836 rpdev_ctrl = &vch->rpdev;
837 rpdev_ctrl->ops = &virtio_rpmsg_ops;
838
839 rpdev_ctrl->dev.parent = &vrp->vdev->dev;
840 rpdev_ctrl->dev.release = virtio_rpmsg_release_device;
841 rpdev_ctrl->little_endian = virtio_is_little_endian(vrp->vdev);
842
843 err = rpmsg_chrdev_register_device(rpdev_ctrl);
844 if (err) {
845 kfree(vch);
846 return ERR_PTR(err);
847 }
848
849 return rpdev_ctrl;
850 }
851
852 static void rpmsg_virtio_del_ctrl_dev(struct rpmsg_device *rpdev_ctrl)
853 {
854 if (!rpdev_ctrl)
855 return;
856 kfree(to_virtio_rpmsg_channel(rpdev_ctrl));
857 }
858
859 static int rpmsg_probe(struct virtio_device *vdev)
860 {
861 vq_callback_t *vq_cbs[] = { rpmsg_recv_done, rpmsg_xmit_done };
862 static const char * const names[] = { "input", "output" };
863 struct virtqueue *vqs[2];
864 struct virtproc_info *vrp;
865 struct virtio_rpmsg_channel *vch = NULL;
866 struct rpmsg_device *rpdev_ns, *rpdev_ctrl;
867 void *bufs_va;
868 int err = 0, i;
869 size_t total_buf_space;
870 bool notify;
871
872 vrp = kzalloc(sizeof(*vrp), GFP_KERNEL);
873 if (!vrp)
874 return -ENOMEM;
875
876 vrp->vdev = vdev;
877
878 idr_init(&vrp->endpoints);
879 mutex_init(&vrp->endpoints_lock);
880 mutex_init(&vrp->tx_lock);
881 init_waitqueue_head(&vrp->sendq);
882
883 /* We expect two virtqueues, rx and tx (and in this order) */
884 err = virtio_find_vqs(vdev, 2, vqs, vq_cbs, names, NULL);
885 if (err)
886 goto free_vrp;
887
888 vrp->rvq = vqs[0];
889 vrp->svq = vqs[1];
890
891 /* we expect symmetric tx/rx vrings */
892 WARN_ON(virtqueue_get_vring_size(vrp->rvq) !=
893 virtqueue_get_vring_size(vrp->svq));
894
895 /* we need less buffers if vrings are small */
896 if (virtqueue_get_vring_size(vrp->rvq) < MAX_RPMSG_NUM_BUFS / 2)
897 vrp->num_bufs = virtqueue_get_vring_size(vrp->rvq) * 2;
898 else
899 vrp->num_bufs = MAX_RPMSG_NUM_BUFS;
900
901 vrp->buf_size = MAX_RPMSG_BUF_SIZE;
902
903 total_buf_space = vrp->num_bufs * vrp->buf_size;
904
905 /* allocate coherent memory for the buffers */
906 bufs_va = dma_alloc_coherent(vdev->dev.parent,
907 total_buf_space, &vrp->bufs_dma,
908 GFP_KERNEL);
909 if (!bufs_va) {
910 err = -ENOMEM;
911 goto vqs_del;
912 }
913
914 dev_dbg(&vdev->dev, "buffers: va %pK, dma %pad\n",
915 bufs_va, &vrp->bufs_dma);
916
917 /* half of the buffers is dedicated for RX */
918 vrp->rbufs = bufs_va;
919
920 /* and half is dedicated for TX */
921 vrp->sbufs = bufs_va + total_buf_space / 2;
922
923 /* set up the receive buffers */
924 for (i = 0; i < vrp->num_bufs / 2; i++) {
925 struct scatterlist sg;
926 void *cpu_addr = vrp->rbufs + i * vrp->buf_size;
927
928 rpmsg_sg_init(&sg, cpu_addr, vrp->buf_size);
929
930 err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, cpu_addr,
931 GFP_KERNEL);
932 WARN_ON(err); /* sanity check; this can't really happen */
933 }
934
935 /* suppress "tx-complete" interrupts */
936 virtqueue_disable_cb(vrp->svq);
937
938 vdev->priv = vrp;
939
940 rpdev_ctrl = rpmsg_virtio_add_ctrl_dev(vdev);
941 if (IS_ERR(rpdev_ctrl)) {
942 err = PTR_ERR(rpdev_ctrl);
943 goto free_coherent;
944 }
945
946 /* if supported by the remote processor, enable the name service */
947 if (virtio_has_feature(vdev, VIRTIO_RPMSG_F_NS)) {
948 vch = kzalloc(sizeof(*vch), GFP_KERNEL);
949 if (!vch) {
950 err = -ENOMEM;
951 goto free_ctrldev;
952 }
953
954 /* Link the channel to our vrp */
955 vch->vrp = vrp;
956
957 /* Assign public information to the rpmsg_device */
958 rpdev_ns = &vch->rpdev;
959 rpdev_ns->ops = &virtio_rpmsg_ops;
960 rpdev_ns->little_endian = virtio_is_little_endian(vrp->vdev);
961
962 rpdev_ns->dev.parent = &vrp->vdev->dev;
963 rpdev_ns->dev.release = virtio_rpmsg_release_device;
964
965 err = rpmsg_ns_register_device(rpdev_ns);
966 if (err)
967 goto free_vch;
968 }
969
970 /*
971 * Prepare to kick but don't notify yet - we can't do this before
972 * device is ready.
973 */
974 notify = virtqueue_kick_prepare(vrp->rvq);
975
976 /* From this point on, we can notify and get callbacks. */
977 virtio_device_ready(vdev);
978
979 /* tell the remote processor it can start sending messages */
980 /*
981 * this might be concurrent with callbacks, but we are only
982 * doing notify, not a full kick here, so that's ok.
983 */
984 if (notify)
985 virtqueue_notify(vrp->rvq);
986
987 dev_info(&vdev->dev, "rpmsg host is online\n");
988
989 return 0;
990
991 free_vch:
992 kfree(vch);
993 free_ctrldev:
994 rpmsg_virtio_del_ctrl_dev(rpdev_ctrl);
995 free_coherent:
996 dma_free_coherent(vdev->dev.parent, total_buf_space,
997 bufs_va, vrp->bufs_dma);
998 vqs_del:
999 vdev->config->del_vqs(vrp->vdev);
1000 free_vrp:
1001 kfree(vrp);
1002 return err;
1003 }
1004
1005 static int rpmsg_remove_device(struct device *dev, void *data)
1006 {
1007 device_unregister(dev);
1008
1009 return 0;
1010 }
1011
1012 static void rpmsg_remove(struct virtio_device *vdev)
1013 {
1014 struct virtproc_info *vrp = vdev->priv;
1015 size_t total_buf_space = vrp->num_bufs * vrp->buf_size;
1016 int ret;
1017
1018 vdev->config->reset(vdev);
1019
1020 ret = device_for_each_child(&vdev->dev, NULL, rpmsg_remove_device);
1021 if (ret)
1022 dev_warn(&vdev->dev, "can't remove rpmsg device: %d\n", ret);
1023
1024 idr_destroy(&vrp->endpoints);
1025
1026 vdev->config->del_vqs(vrp->vdev);
1027
1028 dma_free_coherent(vdev->dev.parent, total_buf_space,
1029 vrp->rbufs, vrp->bufs_dma);
1030
1031 kfree(vrp);
1032 }
1033
1034 static struct virtio_device_id id_table[] = {
1035 { VIRTIO_ID_RPMSG, VIRTIO_DEV_ANY_ID },
1036 { 0 },
1037 };
1038
1039 static unsigned int features[] = {
1040 VIRTIO_RPMSG_F_NS,
1041 };
1042
1043 static struct virtio_driver virtio_ipc_driver = {
1044 .feature_table = features,
1045 .feature_table_size = ARRAY_SIZE(features),
1046 .driver.name = KBUILD_MODNAME,
1047 .driver.owner = THIS_MODULE,
1048 .id_table = id_table,
1049 .probe = rpmsg_probe,
1050 .remove = rpmsg_remove,
1051 };
1052
1053 static int __init rpmsg_init(void)
1054 {
1055 int ret;
1056
1057 ret = register_virtio_driver(&virtio_ipc_driver);
1058 if (ret)
1059 pr_err("failed to register virtio driver: %d\n", ret);
1060
1061 return ret;
1062 }
1063 subsys_initcall(rpmsg_init);
1064
1065 static void __exit rpmsg_fini(void)
1066 {
1067 unregister_virtio_driver(&virtio_ipc_driver);
1068 }
1069 module_exit(rpmsg_fini);
1070
1071 MODULE_DEVICE_TABLE(virtio, id_table);
1072 MODULE_DESCRIPTION("Virtio-based remote processor messaging bus");
1073 MODULE_LICENSE("GPL v2");