]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/rtc/interface.c
Merge branch 'tip/perf/core' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-eoan-kernel.git] / drivers / rtc / interface.c
1 /*
2 * RTC subsystem, interface functions
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * based on arch/arm/common/rtctime.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 int err;
26 if (!rtc->ops)
27 err = -ENODEV;
28 else if (!rtc->ops->read_time)
29 err = -EINVAL;
30 else {
31 memset(tm, 0, sizeof(struct rtc_time));
32 err = rtc->ops->read_time(rtc->dev.parent, tm);
33 }
34 return err;
35 }
36
37 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
38 {
39 int err;
40
41 err = mutex_lock_interruptible(&rtc->ops_lock);
42 if (err)
43 return err;
44
45 err = __rtc_read_time(rtc, tm);
46 mutex_unlock(&rtc->ops_lock);
47 return err;
48 }
49 EXPORT_SYMBOL_GPL(rtc_read_time);
50
51 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
52 {
53 int err;
54
55 err = rtc_valid_tm(tm);
56 if (err != 0)
57 return err;
58
59 err = mutex_lock_interruptible(&rtc->ops_lock);
60 if (err)
61 return err;
62
63 if (!rtc->ops)
64 err = -ENODEV;
65 else if (rtc->ops->set_time)
66 err = rtc->ops->set_time(rtc->dev.parent, tm);
67 else if (rtc->ops->set_mmss) {
68 unsigned long secs;
69 err = rtc_tm_to_time(tm, &secs);
70 if (err == 0)
71 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
72 } else
73 err = -EINVAL;
74
75 mutex_unlock(&rtc->ops_lock);
76 return err;
77 }
78 EXPORT_SYMBOL_GPL(rtc_set_time);
79
80 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
81 {
82 int err;
83
84 err = mutex_lock_interruptible(&rtc->ops_lock);
85 if (err)
86 return err;
87
88 if (!rtc->ops)
89 err = -ENODEV;
90 else if (rtc->ops->set_mmss)
91 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
92 else if (rtc->ops->read_time && rtc->ops->set_time) {
93 struct rtc_time new, old;
94
95 err = rtc->ops->read_time(rtc->dev.parent, &old);
96 if (err == 0) {
97 rtc_time_to_tm(secs, &new);
98
99 /*
100 * avoid writing when we're going to change the day of
101 * the month. We will retry in the next minute. This
102 * basically means that if the RTC must not drift
103 * by more than 1 minute in 11 minutes.
104 */
105 if (!((old.tm_hour == 23 && old.tm_min == 59) ||
106 (new.tm_hour == 23 && new.tm_min == 59)))
107 err = rtc->ops->set_time(rtc->dev.parent,
108 &new);
109 }
110 }
111 else
112 err = -EINVAL;
113
114 mutex_unlock(&rtc->ops_lock);
115
116 return err;
117 }
118 EXPORT_SYMBOL_GPL(rtc_set_mmss);
119
120 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
121 {
122 int err;
123
124 err = mutex_lock_interruptible(&rtc->ops_lock);
125 if (err)
126 return err;
127
128 if (rtc->ops == NULL)
129 err = -ENODEV;
130 else if (!rtc->ops->read_alarm)
131 err = -EINVAL;
132 else {
133 memset(alarm, 0, sizeof(struct rtc_wkalrm));
134 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
135 }
136
137 mutex_unlock(&rtc->ops_lock);
138 return err;
139 }
140
141 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
142 {
143 int err;
144 struct rtc_time before, now;
145 int first_time = 1;
146 unsigned long t_now, t_alm;
147 enum { none, day, month, year } missing = none;
148 unsigned days;
149
150 /* The lower level RTC driver may return -1 in some fields,
151 * creating invalid alarm->time values, for reasons like:
152 *
153 * - The hardware may not be capable of filling them in;
154 * many alarms match only on time-of-day fields, not
155 * day/month/year calendar data.
156 *
157 * - Some hardware uses illegal values as "wildcard" match
158 * values, which non-Linux firmware (like a BIOS) may try
159 * to set up as e.g. "alarm 15 minutes after each hour".
160 * Linux uses only oneshot alarms.
161 *
162 * When we see that here, we deal with it by using values from
163 * a current RTC timestamp for any missing (-1) values. The
164 * RTC driver prevents "periodic alarm" modes.
165 *
166 * But this can be racey, because some fields of the RTC timestamp
167 * may have wrapped in the interval since we read the RTC alarm,
168 * which would lead to us inserting inconsistent values in place
169 * of the -1 fields.
170 *
171 * Reading the alarm and timestamp in the reverse sequence
172 * would have the same race condition, and not solve the issue.
173 *
174 * So, we must first read the RTC timestamp,
175 * then read the RTC alarm value,
176 * and then read a second RTC timestamp.
177 *
178 * If any fields of the second timestamp have changed
179 * when compared with the first timestamp, then we know
180 * our timestamp may be inconsistent with that used by
181 * the low-level rtc_read_alarm_internal() function.
182 *
183 * So, when the two timestamps disagree, we just loop and do
184 * the process again to get a fully consistent set of values.
185 *
186 * This could all instead be done in the lower level driver,
187 * but since more than one lower level RTC implementation needs it,
188 * then it's probably best best to do it here instead of there..
189 */
190
191 /* Get the "before" timestamp */
192 err = rtc_read_time(rtc, &before);
193 if (err < 0)
194 return err;
195 do {
196 if (!first_time)
197 memcpy(&before, &now, sizeof(struct rtc_time));
198 first_time = 0;
199
200 /* get the RTC alarm values, which may be incomplete */
201 err = rtc_read_alarm_internal(rtc, alarm);
202 if (err)
203 return err;
204
205 /* full-function RTCs won't have such missing fields */
206 if (rtc_valid_tm(&alarm->time) == 0)
207 return 0;
208
209 /* get the "after" timestamp, to detect wrapped fields */
210 err = rtc_read_time(rtc, &now);
211 if (err < 0)
212 return err;
213
214 /* note that tm_sec is a "don't care" value here: */
215 } while ( before.tm_min != now.tm_min
216 || before.tm_hour != now.tm_hour
217 || before.tm_mon != now.tm_mon
218 || before.tm_year != now.tm_year);
219
220 /* Fill in the missing alarm fields using the timestamp; we
221 * know there's at least one since alarm->time is invalid.
222 */
223 if (alarm->time.tm_sec == -1)
224 alarm->time.tm_sec = now.tm_sec;
225 if (alarm->time.tm_min == -1)
226 alarm->time.tm_min = now.tm_min;
227 if (alarm->time.tm_hour == -1)
228 alarm->time.tm_hour = now.tm_hour;
229
230 /* For simplicity, only support date rollover for now */
231 if (alarm->time.tm_mday == -1) {
232 alarm->time.tm_mday = now.tm_mday;
233 missing = day;
234 }
235 if (alarm->time.tm_mon == -1) {
236 alarm->time.tm_mon = now.tm_mon;
237 if (missing == none)
238 missing = month;
239 }
240 if (alarm->time.tm_year == -1) {
241 alarm->time.tm_year = now.tm_year;
242 if (missing == none)
243 missing = year;
244 }
245
246 /* with luck, no rollover is needed */
247 rtc_tm_to_time(&now, &t_now);
248 rtc_tm_to_time(&alarm->time, &t_alm);
249 if (t_now < t_alm)
250 goto done;
251
252 switch (missing) {
253
254 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
255 * that will trigger at 5am will do so at 5am Tuesday, which
256 * could also be in the next month or year. This is a common
257 * case, especially for PCs.
258 */
259 case day:
260 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
261 t_alm += 24 * 60 * 60;
262 rtc_time_to_tm(t_alm, &alarm->time);
263 break;
264
265 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
266 * be next month. An alarm matching on the 30th, 29th, or 28th
267 * may end up in the month after that! Many newer PCs support
268 * this type of alarm.
269 */
270 case month:
271 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
272 do {
273 if (alarm->time.tm_mon < 11)
274 alarm->time.tm_mon++;
275 else {
276 alarm->time.tm_mon = 0;
277 alarm->time.tm_year++;
278 }
279 days = rtc_month_days(alarm->time.tm_mon,
280 alarm->time.tm_year);
281 } while (days < alarm->time.tm_mday);
282 break;
283
284 /* Year rollover ... easy except for leap years! */
285 case year:
286 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
287 do {
288 alarm->time.tm_year++;
289 } while (rtc_valid_tm(&alarm->time) != 0);
290 break;
291
292 default:
293 dev_warn(&rtc->dev, "alarm rollover not handled\n");
294 }
295
296 done:
297 return 0;
298 }
299
300 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
301 {
302 int err;
303
304 err = mutex_lock_interruptible(&rtc->ops_lock);
305 if (err)
306 return err;
307 if (rtc->ops == NULL)
308 err = -ENODEV;
309 else if (!rtc->ops->read_alarm)
310 err = -EINVAL;
311 else {
312 memset(alarm, 0, sizeof(struct rtc_wkalrm));
313 alarm->enabled = rtc->aie_timer.enabled;
314 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
315 }
316 mutex_unlock(&rtc->ops_lock);
317
318 return err;
319 }
320 EXPORT_SYMBOL_GPL(rtc_read_alarm);
321
322 static int ___rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
323 {
324 int err;
325
326 if (!rtc->ops)
327 err = -ENODEV;
328 else if (!rtc->ops->set_alarm)
329 err = -EINVAL;
330 else
331 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
332
333 return err;
334 }
335
336 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
337 {
338 struct rtc_time tm;
339 long now, scheduled;
340 int err;
341
342 err = rtc_valid_tm(&alarm->time);
343 if (err)
344 return err;
345 rtc_tm_to_time(&alarm->time, &scheduled);
346
347 /* Make sure we're not setting alarms in the past */
348 err = __rtc_read_time(rtc, &tm);
349 rtc_tm_to_time(&tm, &now);
350 if (scheduled <= now)
351 return -ETIME;
352 /*
353 * XXX - We just checked to make sure the alarm time is not
354 * in the past, but there is still a race window where if
355 * the is alarm set for the next second and the second ticks
356 * over right here, before we set the alarm.
357 */
358
359 return ___rtc_set_alarm(rtc, alarm);
360 }
361
362 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
363 {
364 int err;
365
366 err = rtc_valid_tm(&alarm->time);
367 if (err != 0)
368 return err;
369
370 err = mutex_lock_interruptible(&rtc->ops_lock);
371 if (err)
372 return err;
373 if (rtc->aie_timer.enabled) {
374 rtc_timer_remove(rtc, &rtc->aie_timer);
375 }
376 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
377 rtc->aie_timer.period = ktime_set(0, 0);
378 if (alarm->enabled) {
379 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
380 }
381 mutex_unlock(&rtc->ops_lock);
382 return err;
383 }
384 EXPORT_SYMBOL_GPL(rtc_set_alarm);
385
386 /* Called once per device from rtc_device_register */
387 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
388 {
389 int err;
390
391 err = rtc_valid_tm(&alarm->time);
392 if (err != 0)
393 return err;
394
395 err = mutex_lock_interruptible(&rtc->ops_lock);
396 if (err)
397 return err;
398
399 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
400 rtc->aie_timer.period = ktime_set(0, 0);
401 if (alarm->enabled) {
402 rtc->aie_timer.enabled = 1;
403 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
404 }
405 mutex_unlock(&rtc->ops_lock);
406 return err;
407 }
408 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
409
410
411
412 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
413 {
414 int err = mutex_lock_interruptible(&rtc->ops_lock);
415 if (err)
416 return err;
417
418 if (rtc->aie_timer.enabled != enabled) {
419 if (enabled)
420 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
421 else
422 rtc_timer_remove(rtc, &rtc->aie_timer);
423 }
424
425 if (err)
426 /* nothing */;
427 else if (!rtc->ops)
428 err = -ENODEV;
429 else if (!rtc->ops->alarm_irq_enable)
430 err = -EINVAL;
431 else
432 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
433
434 mutex_unlock(&rtc->ops_lock);
435 return err;
436 }
437 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
438
439 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
440 {
441 int err = mutex_lock_interruptible(&rtc->ops_lock);
442 if (err)
443 return err;
444
445 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
446 if (enabled == 0 && rtc->uie_irq_active) {
447 mutex_unlock(&rtc->ops_lock);
448 return rtc_dev_update_irq_enable_emul(rtc, 0);
449 }
450 #endif
451 /* make sure we're changing state */
452 if (rtc->uie_rtctimer.enabled == enabled)
453 goto out;
454
455 if (enabled) {
456 struct rtc_time tm;
457 ktime_t now, onesec;
458
459 __rtc_read_time(rtc, &tm);
460 onesec = ktime_set(1, 0);
461 now = rtc_tm_to_ktime(tm);
462 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
463 rtc->uie_rtctimer.period = ktime_set(1, 0);
464 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
465 } else
466 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
467
468 out:
469 mutex_unlock(&rtc->ops_lock);
470 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
471 /*
472 * Enable emulation if the driver did not provide
473 * the update_irq_enable function pointer or if returned
474 * -EINVAL to signal that it has been configured without
475 * interrupts or that are not available at the moment.
476 */
477 if (err == -EINVAL)
478 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
479 #endif
480 return err;
481
482 }
483 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
484
485
486 /**
487 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
488 * @rtc: pointer to the rtc device
489 *
490 * This function is called when an AIE, UIE or PIE mode interrupt
491 * has occurred (or been emulated).
492 *
493 * Triggers the registered irq_task function callback.
494 */
495 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
496 {
497 unsigned long flags;
498
499 /* mark one irq of the appropriate mode */
500 spin_lock_irqsave(&rtc->irq_lock, flags);
501 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
502 spin_unlock_irqrestore(&rtc->irq_lock, flags);
503
504 /* call the task func */
505 spin_lock_irqsave(&rtc->irq_task_lock, flags);
506 if (rtc->irq_task)
507 rtc->irq_task->func(rtc->irq_task->private_data);
508 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
509
510 wake_up_interruptible(&rtc->irq_queue);
511 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
512 }
513
514
515 /**
516 * rtc_aie_update_irq - AIE mode rtctimer hook
517 * @private: pointer to the rtc_device
518 *
519 * This functions is called when the aie_timer expires.
520 */
521 void rtc_aie_update_irq(void *private)
522 {
523 struct rtc_device *rtc = (struct rtc_device *)private;
524 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
525 }
526
527
528 /**
529 * rtc_uie_update_irq - UIE mode rtctimer hook
530 * @private: pointer to the rtc_device
531 *
532 * This functions is called when the uie_timer expires.
533 */
534 void rtc_uie_update_irq(void *private)
535 {
536 struct rtc_device *rtc = (struct rtc_device *)private;
537 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
538 }
539
540
541 /**
542 * rtc_pie_update_irq - PIE mode hrtimer hook
543 * @timer: pointer to the pie mode hrtimer
544 *
545 * This function is used to emulate PIE mode interrupts
546 * using an hrtimer. This function is called when the periodic
547 * hrtimer expires.
548 */
549 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
550 {
551 struct rtc_device *rtc;
552 ktime_t period;
553 int count;
554 rtc = container_of(timer, struct rtc_device, pie_timer);
555
556 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
557 count = hrtimer_forward_now(timer, period);
558
559 rtc_handle_legacy_irq(rtc, count, RTC_PF);
560
561 return HRTIMER_RESTART;
562 }
563
564 /**
565 * rtc_update_irq - Triggered when a RTC interrupt occurs.
566 * @rtc: the rtc device
567 * @num: how many irqs are being reported (usually one)
568 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
569 * Context: any
570 */
571 void rtc_update_irq(struct rtc_device *rtc,
572 unsigned long num, unsigned long events)
573 {
574 schedule_work(&rtc->irqwork);
575 }
576 EXPORT_SYMBOL_GPL(rtc_update_irq);
577
578 static int __rtc_match(struct device *dev, void *data)
579 {
580 char *name = (char *)data;
581
582 if (strcmp(dev_name(dev), name) == 0)
583 return 1;
584 return 0;
585 }
586
587 struct rtc_device *rtc_class_open(char *name)
588 {
589 struct device *dev;
590 struct rtc_device *rtc = NULL;
591
592 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
593 if (dev)
594 rtc = to_rtc_device(dev);
595
596 if (rtc) {
597 if (!try_module_get(rtc->owner)) {
598 put_device(dev);
599 rtc = NULL;
600 }
601 }
602
603 return rtc;
604 }
605 EXPORT_SYMBOL_GPL(rtc_class_open);
606
607 void rtc_class_close(struct rtc_device *rtc)
608 {
609 module_put(rtc->owner);
610 put_device(&rtc->dev);
611 }
612 EXPORT_SYMBOL_GPL(rtc_class_close);
613
614 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
615 {
616 int retval = -EBUSY;
617
618 if (task == NULL || task->func == NULL)
619 return -EINVAL;
620
621 /* Cannot register while the char dev is in use */
622 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
623 return -EBUSY;
624
625 spin_lock_irq(&rtc->irq_task_lock);
626 if (rtc->irq_task == NULL) {
627 rtc->irq_task = task;
628 retval = 0;
629 }
630 spin_unlock_irq(&rtc->irq_task_lock);
631
632 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
633
634 return retval;
635 }
636 EXPORT_SYMBOL_GPL(rtc_irq_register);
637
638 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
639 {
640 spin_lock_irq(&rtc->irq_task_lock);
641 if (rtc->irq_task == task)
642 rtc->irq_task = NULL;
643 spin_unlock_irq(&rtc->irq_task_lock);
644 }
645 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
646
647 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
648 {
649 /*
650 * We always cancel the timer here first, because otherwise
651 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
652 * when we manage to start the timer before the callback
653 * returns HRTIMER_RESTART.
654 *
655 * We cannot use hrtimer_cancel() here as a running callback
656 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
657 * would spin forever.
658 */
659 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
660 return -1;
661
662 if (enabled) {
663 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
664
665 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
666 }
667 return 0;
668 }
669
670 /**
671 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
672 * @rtc: the rtc device
673 * @task: currently registered with rtc_irq_register()
674 * @enabled: true to enable periodic IRQs
675 * Context: any
676 *
677 * Note that rtc_irq_set_freq() should previously have been used to
678 * specify the desired frequency of periodic IRQ task->func() callbacks.
679 */
680 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
681 {
682 int err = 0;
683 unsigned long flags;
684
685 retry:
686 spin_lock_irqsave(&rtc->irq_task_lock, flags);
687 if (rtc->irq_task != NULL && task == NULL)
688 err = -EBUSY;
689 if (rtc->irq_task != task)
690 err = -EACCES;
691 if (!err) {
692 if (rtc_update_hrtimer(rtc, enabled) < 0) {
693 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
694 cpu_relax();
695 goto retry;
696 }
697 rtc->pie_enabled = enabled;
698 }
699 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
700 return err;
701 }
702 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
703
704 /**
705 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
706 * @rtc: the rtc device
707 * @task: currently registered with rtc_irq_register()
708 * @freq: positive frequency with which task->func() will be called
709 * Context: any
710 *
711 * Note that rtc_irq_set_state() is used to enable or disable the
712 * periodic IRQs.
713 */
714 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
715 {
716 int err = 0;
717 unsigned long flags;
718
719 if (freq <= 0 || freq > RTC_MAX_FREQ)
720 return -EINVAL;
721 retry:
722 spin_lock_irqsave(&rtc->irq_task_lock, flags);
723 if (rtc->irq_task != NULL && task == NULL)
724 err = -EBUSY;
725 if (rtc->irq_task != task)
726 err = -EACCES;
727 if (!err) {
728 rtc->irq_freq = freq;
729 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
730 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
731 cpu_relax();
732 goto retry;
733 }
734 }
735 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
736 return err;
737 }
738 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
739
740 /**
741 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
742 * @rtc rtc device
743 * @timer timer being added.
744 *
745 * Enqueues a timer onto the rtc devices timerqueue and sets
746 * the next alarm event appropriately.
747 *
748 * Sets the enabled bit on the added timer.
749 *
750 * Must hold ops_lock for proper serialization of timerqueue
751 */
752 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
753 {
754 timer->enabled = 1;
755 timerqueue_add(&rtc->timerqueue, &timer->node);
756 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
757 struct rtc_wkalrm alarm;
758 int err;
759 alarm.time = rtc_ktime_to_tm(timer->node.expires);
760 alarm.enabled = 1;
761 err = __rtc_set_alarm(rtc, &alarm);
762 if (err == -ETIME)
763 schedule_work(&rtc->irqwork);
764 else if (err) {
765 timerqueue_del(&rtc->timerqueue, &timer->node);
766 timer->enabled = 0;
767 return err;
768 }
769 }
770 return 0;
771 }
772
773 static void rtc_alarm_disable(struct rtc_device *rtc)
774 {
775 struct rtc_wkalrm alarm;
776 struct rtc_time tm;
777
778 __rtc_read_time(rtc, &tm);
779
780 alarm.time = rtc_ktime_to_tm(ktime_add(rtc_tm_to_ktime(tm),
781 ktime_set(300, 0)));
782 alarm.enabled = 0;
783
784 ___rtc_set_alarm(rtc, &alarm);
785 }
786
787 /**
788 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
789 * @rtc rtc device
790 * @timer timer being removed.
791 *
792 * Removes a timer onto the rtc devices timerqueue and sets
793 * the next alarm event appropriately.
794 *
795 * Clears the enabled bit on the removed timer.
796 *
797 * Must hold ops_lock for proper serialization of timerqueue
798 */
799 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
800 {
801 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
802 timerqueue_del(&rtc->timerqueue, &timer->node);
803 timer->enabled = 0;
804 if (next == &timer->node) {
805 struct rtc_wkalrm alarm;
806 int err;
807 next = timerqueue_getnext(&rtc->timerqueue);
808 if (!next) {
809 rtc_alarm_disable(rtc);
810 return;
811 }
812 alarm.time = rtc_ktime_to_tm(next->expires);
813 alarm.enabled = 1;
814 err = __rtc_set_alarm(rtc, &alarm);
815 if (err == -ETIME)
816 schedule_work(&rtc->irqwork);
817 }
818 }
819
820 /**
821 * rtc_timer_do_work - Expires rtc timers
822 * @rtc rtc device
823 * @timer timer being removed.
824 *
825 * Expires rtc timers. Reprograms next alarm event if needed.
826 * Called via worktask.
827 *
828 * Serializes access to timerqueue via ops_lock mutex
829 */
830 void rtc_timer_do_work(struct work_struct *work)
831 {
832 struct rtc_timer *timer;
833 struct timerqueue_node *next;
834 ktime_t now;
835 struct rtc_time tm;
836
837 struct rtc_device *rtc =
838 container_of(work, struct rtc_device, irqwork);
839
840 mutex_lock(&rtc->ops_lock);
841 again:
842 __rtc_read_time(rtc, &tm);
843 now = rtc_tm_to_ktime(tm);
844 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
845 if (next->expires.tv64 > now.tv64)
846 break;
847
848 /* expire timer */
849 timer = container_of(next, struct rtc_timer, node);
850 timerqueue_del(&rtc->timerqueue, &timer->node);
851 timer->enabled = 0;
852 if (timer->task.func)
853 timer->task.func(timer->task.private_data);
854
855 /* Re-add/fwd periodic timers */
856 if (ktime_to_ns(timer->period)) {
857 timer->node.expires = ktime_add(timer->node.expires,
858 timer->period);
859 timer->enabled = 1;
860 timerqueue_add(&rtc->timerqueue, &timer->node);
861 }
862 }
863
864 /* Set next alarm */
865 if (next) {
866 struct rtc_wkalrm alarm;
867 int err;
868 alarm.time = rtc_ktime_to_tm(next->expires);
869 alarm.enabled = 1;
870 err = __rtc_set_alarm(rtc, &alarm);
871 if (err == -ETIME)
872 goto again;
873 } else
874 rtc_alarm_disable(rtc);
875
876 mutex_unlock(&rtc->ops_lock);
877 }
878
879
880 /* rtc_timer_init - Initializes an rtc_timer
881 * @timer: timer to be intiialized
882 * @f: function pointer to be called when timer fires
883 * @data: private data passed to function pointer
884 *
885 * Kernel interface to initializing an rtc_timer.
886 */
887 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
888 {
889 timerqueue_init(&timer->node);
890 timer->enabled = 0;
891 timer->task.func = f;
892 timer->task.private_data = data;
893 }
894
895 /* rtc_timer_start - Sets an rtc_timer to fire in the future
896 * @ rtc: rtc device to be used
897 * @ timer: timer being set
898 * @ expires: time at which to expire the timer
899 * @ period: period that the timer will recur
900 *
901 * Kernel interface to set an rtc_timer
902 */
903 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
904 ktime_t expires, ktime_t period)
905 {
906 int ret = 0;
907 mutex_lock(&rtc->ops_lock);
908 if (timer->enabled)
909 rtc_timer_remove(rtc, timer);
910
911 timer->node.expires = expires;
912 timer->period = period;
913
914 ret = rtc_timer_enqueue(rtc, timer);
915
916 mutex_unlock(&rtc->ops_lock);
917 return ret;
918 }
919
920 /* rtc_timer_cancel - Stops an rtc_timer
921 * @ rtc: rtc device to be used
922 * @ timer: timer being set
923 *
924 * Kernel interface to cancel an rtc_timer
925 */
926 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
927 {
928 int ret = 0;
929 mutex_lock(&rtc->ops_lock);
930 if (timer->enabled)
931 rtc_timer_remove(rtc, timer);
932 mutex_unlock(&rtc->ops_lock);
933 return ret;
934 }
935
936