]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/rtc/rtc-ac100.c
rtc: pcf8563: Fix interrupt trigger method
[mirror_ubuntu-bionic-kernel.git] / drivers / rtc / rtc-ac100.c
1 /*
2 * RTC Driver for X-Powers AC100
3 *
4 * Copyright (c) 2016 Chen-Yu Tsai
5 *
6 * Chen-Yu Tsai <wens@csie.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 */
17
18 #include <linux/bcd.h>
19 #include <linux/clk-provider.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/kernel.h>
23 #include <linux/mfd/ac100.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/of.h>
27 #include <linux/platform_device.h>
28 #include <linux/regmap.h>
29 #include <linux/rtc.h>
30 #include <linux/types.h>
31
32 /* Control register */
33 #define AC100_RTC_CTRL_24HOUR BIT(0)
34
35 /* Clock output register bits */
36 #define AC100_CLKOUT_PRE_DIV_SHIFT 5
37 #define AC100_CLKOUT_PRE_DIV_WIDTH 3
38 #define AC100_CLKOUT_MUX_SHIFT 4
39 #define AC100_CLKOUT_MUX_WIDTH 1
40 #define AC100_CLKOUT_DIV_SHIFT 1
41 #define AC100_CLKOUT_DIV_WIDTH 3
42 #define AC100_CLKOUT_EN BIT(0)
43
44 /* RTC */
45 #define AC100_RTC_SEC_MASK GENMASK(6, 0)
46 #define AC100_RTC_MIN_MASK GENMASK(6, 0)
47 #define AC100_RTC_HOU_MASK GENMASK(5, 0)
48 #define AC100_RTC_WEE_MASK GENMASK(2, 0)
49 #define AC100_RTC_DAY_MASK GENMASK(5, 0)
50 #define AC100_RTC_MON_MASK GENMASK(4, 0)
51 #define AC100_RTC_YEA_MASK GENMASK(7, 0)
52 #define AC100_RTC_YEA_LEAP BIT(15)
53 #define AC100_RTC_UPD_TRIGGER BIT(15)
54
55 /* Alarm (wall clock) */
56 #define AC100_ALM_INT_ENABLE BIT(0)
57
58 #define AC100_ALM_SEC_MASK GENMASK(6, 0)
59 #define AC100_ALM_MIN_MASK GENMASK(6, 0)
60 #define AC100_ALM_HOU_MASK GENMASK(5, 0)
61 #define AC100_ALM_WEE_MASK GENMASK(2, 0)
62 #define AC100_ALM_DAY_MASK GENMASK(5, 0)
63 #define AC100_ALM_MON_MASK GENMASK(4, 0)
64 #define AC100_ALM_YEA_MASK GENMASK(7, 0)
65 #define AC100_ALM_ENABLE_FLAG BIT(15)
66 #define AC100_ALM_UPD_TRIGGER BIT(15)
67
68 /*
69 * The year parameter passed to the driver is usually an offset relative to
70 * the year 1900. This macro is used to convert this offset to another one
71 * relative to the minimum year allowed by the hardware.
72 *
73 * The year range is 1970 - 2069. This range is selected to match Allwinner's
74 * driver.
75 */
76 #define AC100_YEAR_MIN 1970
77 #define AC100_YEAR_MAX 2069
78 #define AC100_YEAR_OFF (AC100_YEAR_MIN - 1900)
79
80 struct ac100_clkout {
81 struct clk_hw hw;
82 struct regmap *regmap;
83 u8 offset;
84 };
85
86 #define to_ac100_clkout(_hw) container_of(_hw, struct ac100_clkout, hw)
87
88 #define AC100_RTC_32K_NAME "ac100-rtc-32k"
89 #define AC100_RTC_32K_RATE 32768
90 #define AC100_CLKOUT_NUM 3
91
92 static const char * const ac100_clkout_names[AC100_CLKOUT_NUM] = {
93 "ac100-cko1-rtc",
94 "ac100-cko2-rtc",
95 "ac100-cko3-rtc",
96 };
97
98 struct ac100_rtc_dev {
99 struct rtc_device *rtc;
100 struct device *dev;
101 struct regmap *regmap;
102 int irq;
103 unsigned long alarm;
104
105 struct clk_hw *rtc_32k_clk;
106 struct ac100_clkout clks[AC100_CLKOUT_NUM];
107 struct clk_hw_onecell_data *clk_data;
108 };
109
110 /**
111 * Clock controls for 3 clock output pins
112 */
113
114 static const struct clk_div_table ac100_clkout_prediv[] = {
115 { .val = 0, .div = 1 },
116 { .val = 1, .div = 2 },
117 { .val = 2, .div = 4 },
118 { .val = 3, .div = 8 },
119 { .val = 4, .div = 16 },
120 { .val = 5, .div = 32 },
121 { .val = 6, .div = 64 },
122 { .val = 7, .div = 122 },
123 { },
124 };
125
126 /* Abuse the fact that one parent is 32768 Hz, and the other is 4 MHz */
127 static unsigned long ac100_clkout_recalc_rate(struct clk_hw *hw,
128 unsigned long prate)
129 {
130 struct ac100_clkout *clk = to_ac100_clkout(hw);
131 unsigned int reg, div;
132
133 regmap_read(clk->regmap, clk->offset, &reg);
134
135 /* Handle pre-divider first */
136 if (prate != AC100_RTC_32K_RATE) {
137 div = (reg >> AC100_CLKOUT_PRE_DIV_SHIFT) &
138 ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1);
139 prate = divider_recalc_rate(hw, prate, div,
140 ac100_clkout_prediv, 0,
141 AC100_CLKOUT_PRE_DIV_WIDTH);
142 }
143
144 div = (reg >> AC100_CLKOUT_DIV_SHIFT) &
145 (BIT(AC100_CLKOUT_DIV_WIDTH) - 1);
146 return divider_recalc_rate(hw, prate, div, NULL,
147 CLK_DIVIDER_POWER_OF_TWO,
148 AC100_CLKOUT_DIV_WIDTH);
149 }
150
151 static long ac100_clkout_round_rate(struct clk_hw *hw, unsigned long rate,
152 unsigned long prate)
153 {
154 unsigned long best_rate = 0, tmp_rate, tmp_prate;
155 int i;
156
157 if (prate == AC100_RTC_32K_RATE)
158 return divider_round_rate(hw, rate, &prate, NULL,
159 AC100_CLKOUT_DIV_WIDTH,
160 CLK_DIVIDER_POWER_OF_TWO);
161
162 for (i = 0; ac100_clkout_prediv[i].div; i++) {
163 tmp_prate = DIV_ROUND_UP(prate, ac100_clkout_prediv[i].val);
164 tmp_rate = divider_round_rate(hw, rate, &tmp_prate, NULL,
165 AC100_CLKOUT_DIV_WIDTH,
166 CLK_DIVIDER_POWER_OF_TWO);
167
168 if (tmp_rate > rate)
169 continue;
170 if (rate - tmp_rate < best_rate - tmp_rate)
171 best_rate = tmp_rate;
172 }
173
174 return best_rate;
175 }
176
177 static int ac100_clkout_determine_rate(struct clk_hw *hw,
178 struct clk_rate_request *req)
179 {
180 struct clk_hw *best_parent;
181 unsigned long best = 0;
182 int i, num_parents = clk_hw_get_num_parents(hw);
183
184 for (i = 0; i < num_parents; i++) {
185 struct clk_hw *parent = clk_hw_get_parent_by_index(hw, i);
186 unsigned long tmp, prate = clk_hw_get_rate(parent);
187
188 tmp = ac100_clkout_round_rate(hw, req->rate, prate);
189
190 if (tmp > req->rate)
191 continue;
192 if (req->rate - tmp < req->rate - best) {
193 best = tmp;
194 best_parent = parent;
195 }
196 }
197
198 if (!best)
199 return -EINVAL;
200
201 req->best_parent_hw = best_parent;
202 req->best_parent_rate = best;
203 req->rate = best;
204
205 return 0;
206 }
207
208 static int ac100_clkout_set_rate(struct clk_hw *hw, unsigned long rate,
209 unsigned long prate)
210 {
211 struct ac100_clkout *clk = to_ac100_clkout(hw);
212 int div = 0, pre_div = 0;
213
214 do {
215 div = divider_get_val(rate * ac100_clkout_prediv[pre_div].div,
216 prate, NULL, AC100_CLKOUT_DIV_WIDTH,
217 CLK_DIVIDER_POWER_OF_TWO);
218 if (div >= 0)
219 break;
220 } while (prate != AC100_RTC_32K_RATE &&
221 ac100_clkout_prediv[++pre_div].div);
222
223 if (div < 0)
224 return div;
225
226 pre_div = ac100_clkout_prediv[pre_div].val;
227
228 regmap_update_bits(clk->regmap, clk->offset,
229 ((1 << AC100_CLKOUT_DIV_WIDTH) - 1) << AC100_CLKOUT_DIV_SHIFT |
230 ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1) << AC100_CLKOUT_PRE_DIV_SHIFT,
231 (div - 1) << AC100_CLKOUT_DIV_SHIFT |
232 (pre_div - 1) << AC100_CLKOUT_PRE_DIV_SHIFT);
233
234 return 0;
235 }
236
237 static int ac100_clkout_prepare(struct clk_hw *hw)
238 {
239 struct ac100_clkout *clk = to_ac100_clkout(hw);
240
241 return regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN,
242 AC100_CLKOUT_EN);
243 }
244
245 static void ac100_clkout_unprepare(struct clk_hw *hw)
246 {
247 struct ac100_clkout *clk = to_ac100_clkout(hw);
248
249 regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, 0);
250 }
251
252 static int ac100_clkout_is_prepared(struct clk_hw *hw)
253 {
254 struct ac100_clkout *clk = to_ac100_clkout(hw);
255 unsigned int reg;
256
257 regmap_read(clk->regmap, clk->offset, &reg);
258
259 return reg & AC100_CLKOUT_EN;
260 }
261
262 static u8 ac100_clkout_get_parent(struct clk_hw *hw)
263 {
264 struct ac100_clkout *clk = to_ac100_clkout(hw);
265 unsigned int reg;
266
267 regmap_read(clk->regmap, clk->offset, &reg);
268
269 return (reg >> AC100_CLKOUT_MUX_SHIFT) & 0x1;
270 }
271
272 static int ac100_clkout_set_parent(struct clk_hw *hw, u8 index)
273 {
274 struct ac100_clkout *clk = to_ac100_clkout(hw);
275
276 return regmap_update_bits(clk->regmap, clk->offset,
277 BIT(AC100_CLKOUT_MUX_SHIFT),
278 index ? BIT(AC100_CLKOUT_MUX_SHIFT) : 0);
279 }
280
281 static const struct clk_ops ac100_clkout_ops = {
282 .prepare = ac100_clkout_prepare,
283 .unprepare = ac100_clkout_unprepare,
284 .is_prepared = ac100_clkout_is_prepared,
285 .recalc_rate = ac100_clkout_recalc_rate,
286 .determine_rate = ac100_clkout_determine_rate,
287 .get_parent = ac100_clkout_get_parent,
288 .set_parent = ac100_clkout_set_parent,
289 .set_rate = ac100_clkout_set_rate,
290 };
291
292 static int ac100_rtc_register_clks(struct ac100_rtc_dev *chip)
293 {
294 struct device_node *np = chip->dev->of_node;
295 const char *parents[2] = {AC100_RTC_32K_NAME};
296 int i, ret;
297
298 chip->clk_data = devm_kzalloc(chip->dev, sizeof(*chip->clk_data) +
299 sizeof(*chip->clk_data->hws) *
300 AC100_CLKOUT_NUM,
301 GFP_KERNEL);
302 if (!chip->clk_data)
303 return -ENOMEM;
304
305 chip->rtc_32k_clk = clk_hw_register_fixed_rate(chip->dev,
306 AC100_RTC_32K_NAME,
307 NULL, 0,
308 AC100_RTC_32K_RATE);
309 if (IS_ERR(chip->rtc_32k_clk)) {
310 ret = PTR_ERR(chip->rtc_32k_clk);
311 dev_err(chip->dev, "Failed to register RTC-32k clock: %d\n",
312 ret);
313 return ret;
314 }
315
316 parents[1] = of_clk_get_parent_name(np, 0);
317 if (!parents[1]) {
318 dev_err(chip->dev, "Failed to get ADDA 4M clock\n");
319 return -EINVAL;
320 }
321
322 for (i = 0; i < AC100_CLKOUT_NUM; i++) {
323 struct ac100_clkout *clk = &chip->clks[i];
324 struct clk_init_data init = {
325 .name = ac100_clkout_names[i],
326 .ops = &ac100_clkout_ops,
327 .parent_names = parents,
328 .num_parents = ARRAY_SIZE(parents),
329 .flags = 0,
330 };
331
332 of_property_read_string_index(np, "clock-output-names",
333 i, &init.name);
334 clk->regmap = chip->regmap;
335 clk->offset = AC100_CLKOUT_CTRL1 + i;
336 clk->hw.init = &init;
337
338 ret = devm_clk_hw_register(chip->dev, &clk->hw);
339 if (ret) {
340 dev_err(chip->dev, "Failed to register clk '%s': %d\n",
341 init.name, ret);
342 goto err_unregister_rtc_32k;
343 }
344
345 chip->clk_data->hws[i] = &clk->hw;
346 }
347
348 chip->clk_data->num = i;
349 ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, chip->clk_data);
350 if (ret)
351 goto err_unregister_rtc_32k;
352
353 return 0;
354
355 err_unregister_rtc_32k:
356 clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);
357
358 return ret;
359 }
360
361 static void ac100_rtc_unregister_clks(struct ac100_rtc_dev *chip)
362 {
363 of_clk_del_provider(chip->dev->of_node);
364 clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);
365 }
366
367 /**
368 * RTC related bits
369 */
370 static int ac100_rtc_get_time(struct device *dev, struct rtc_time *rtc_tm)
371 {
372 struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
373 struct regmap *regmap = chip->regmap;
374 u16 reg[7];
375 int ret;
376
377 ret = regmap_bulk_read(regmap, AC100_RTC_SEC, reg, 7);
378 if (ret)
379 return ret;
380
381 rtc_tm->tm_sec = bcd2bin(reg[0] & AC100_RTC_SEC_MASK);
382 rtc_tm->tm_min = bcd2bin(reg[1] & AC100_RTC_MIN_MASK);
383 rtc_tm->tm_hour = bcd2bin(reg[2] & AC100_RTC_HOU_MASK);
384 rtc_tm->tm_wday = bcd2bin(reg[3] & AC100_RTC_WEE_MASK);
385 rtc_tm->tm_mday = bcd2bin(reg[4] & AC100_RTC_DAY_MASK);
386 rtc_tm->tm_mon = bcd2bin(reg[5] & AC100_RTC_MON_MASK) - 1;
387 rtc_tm->tm_year = bcd2bin(reg[6] & AC100_RTC_YEA_MASK) +
388 AC100_YEAR_OFF;
389
390 return rtc_valid_tm(rtc_tm);
391 }
392
393 static int ac100_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm)
394 {
395 struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
396 struct regmap *regmap = chip->regmap;
397 int year;
398 u16 reg[8];
399
400 /* our RTC has a limited year range... */
401 year = rtc_tm->tm_year - AC100_YEAR_OFF;
402 if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
403 dev_err(dev, "rtc only supports year in range %d - %d\n",
404 AC100_YEAR_MIN, AC100_YEAR_MAX);
405 return -EINVAL;
406 }
407
408 /* convert to BCD */
409 reg[0] = bin2bcd(rtc_tm->tm_sec) & AC100_RTC_SEC_MASK;
410 reg[1] = bin2bcd(rtc_tm->tm_min) & AC100_RTC_MIN_MASK;
411 reg[2] = bin2bcd(rtc_tm->tm_hour) & AC100_RTC_HOU_MASK;
412 reg[3] = bin2bcd(rtc_tm->tm_wday) & AC100_RTC_WEE_MASK;
413 reg[4] = bin2bcd(rtc_tm->tm_mday) & AC100_RTC_DAY_MASK;
414 reg[5] = bin2bcd(rtc_tm->tm_mon + 1) & AC100_RTC_MON_MASK;
415 reg[6] = bin2bcd(year) & AC100_RTC_YEA_MASK;
416 /* trigger write */
417 reg[7] = AC100_RTC_UPD_TRIGGER;
418
419 /* Is it a leap year? */
420 if (is_leap_year(year + AC100_YEAR_OFF + 1900))
421 reg[6] |= AC100_RTC_YEA_LEAP;
422
423 return regmap_bulk_write(regmap, AC100_RTC_SEC, reg, 8);
424 }
425
426 static int ac100_rtc_alarm_irq_enable(struct device *dev, unsigned int en)
427 {
428 struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
429 struct regmap *regmap = chip->regmap;
430 unsigned int val;
431
432 val = en ? AC100_ALM_INT_ENABLE : 0;
433
434 return regmap_write(regmap, AC100_ALM_INT_ENA, val);
435 }
436
437 static int ac100_rtc_get_alarm(struct device *dev, struct rtc_wkalrm *alrm)
438 {
439 struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
440 struct regmap *regmap = chip->regmap;
441 struct rtc_time *alrm_tm = &alrm->time;
442 u16 reg[7];
443 unsigned int val;
444 int ret;
445
446 ret = regmap_read(regmap, AC100_ALM_INT_ENA, &val);
447 if (ret)
448 return ret;
449
450 alrm->enabled = !!(val & AC100_ALM_INT_ENABLE);
451
452 ret = regmap_bulk_read(regmap, AC100_ALM_SEC, reg, 7);
453 if (ret)
454 return ret;
455
456 alrm_tm->tm_sec = bcd2bin(reg[0] & AC100_ALM_SEC_MASK);
457 alrm_tm->tm_min = bcd2bin(reg[1] & AC100_ALM_MIN_MASK);
458 alrm_tm->tm_hour = bcd2bin(reg[2] & AC100_ALM_HOU_MASK);
459 alrm_tm->tm_wday = bcd2bin(reg[3] & AC100_ALM_WEE_MASK);
460 alrm_tm->tm_mday = bcd2bin(reg[4] & AC100_ALM_DAY_MASK);
461 alrm_tm->tm_mon = bcd2bin(reg[5] & AC100_ALM_MON_MASK) - 1;
462 alrm_tm->tm_year = bcd2bin(reg[6] & AC100_ALM_YEA_MASK) +
463 AC100_YEAR_OFF;
464
465 return 0;
466 }
467
468 static int ac100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
469 {
470 struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
471 struct regmap *regmap = chip->regmap;
472 struct rtc_time *alrm_tm = &alrm->time;
473 u16 reg[8];
474 int year;
475 int ret;
476
477 /* our alarm has a limited year range... */
478 year = alrm_tm->tm_year - AC100_YEAR_OFF;
479 if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
480 dev_err(dev, "alarm only supports year in range %d - %d\n",
481 AC100_YEAR_MIN, AC100_YEAR_MAX);
482 return -EINVAL;
483 }
484
485 /* convert to BCD */
486 reg[0] = (bin2bcd(alrm_tm->tm_sec) & AC100_ALM_SEC_MASK) |
487 AC100_ALM_ENABLE_FLAG;
488 reg[1] = (bin2bcd(alrm_tm->tm_min) & AC100_ALM_MIN_MASK) |
489 AC100_ALM_ENABLE_FLAG;
490 reg[2] = (bin2bcd(alrm_tm->tm_hour) & AC100_ALM_HOU_MASK) |
491 AC100_ALM_ENABLE_FLAG;
492 /* Do not enable weekday alarm */
493 reg[3] = bin2bcd(alrm_tm->tm_wday) & AC100_ALM_WEE_MASK;
494 reg[4] = (bin2bcd(alrm_tm->tm_mday) & AC100_ALM_DAY_MASK) |
495 AC100_ALM_ENABLE_FLAG;
496 reg[5] = (bin2bcd(alrm_tm->tm_mon + 1) & AC100_ALM_MON_MASK) |
497 AC100_ALM_ENABLE_FLAG;
498 reg[6] = (bin2bcd(year) & AC100_ALM_YEA_MASK) |
499 AC100_ALM_ENABLE_FLAG;
500 /* trigger write */
501 reg[7] = AC100_ALM_UPD_TRIGGER;
502
503 ret = regmap_bulk_write(regmap, AC100_ALM_SEC, reg, 8);
504 if (ret)
505 return ret;
506
507 return ac100_rtc_alarm_irq_enable(dev, alrm->enabled);
508 }
509
510 static irqreturn_t ac100_rtc_irq(int irq, void *data)
511 {
512 struct ac100_rtc_dev *chip = data;
513 struct regmap *regmap = chip->regmap;
514 unsigned int val = 0;
515 int ret;
516
517 mutex_lock(&chip->rtc->ops_lock);
518
519 /* read status */
520 ret = regmap_read(regmap, AC100_ALM_INT_STA, &val);
521 if (ret)
522 goto out;
523
524 if (val & AC100_ALM_INT_ENABLE) {
525 /* signal rtc framework */
526 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
527
528 /* clear status */
529 ret = regmap_write(regmap, AC100_ALM_INT_STA, val);
530 if (ret)
531 goto out;
532
533 /* disable interrupt */
534 ret = ac100_rtc_alarm_irq_enable(chip->dev, 0);
535 if (ret)
536 goto out;
537 }
538
539 out:
540 mutex_unlock(&chip->rtc->ops_lock);
541 return IRQ_HANDLED;
542 }
543
544 static const struct rtc_class_ops ac100_rtc_ops = {
545 .read_time = ac100_rtc_get_time,
546 .set_time = ac100_rtc_set_time,
547 .read_alarm = ac100_rtc_get_alarm,
548 .set_alarm = ac100_rtc_set_alarm,
549 .alarm_irq_enable = ac100_rtc_alarm_irq_enable,
550 };
551
552 static int ac100_rtc_probe(struct platform_device *pdev)
553 {
554 struct ac100_dev *ac100 = dev_get_drvdata(pdev->dev.parent);
555 struct ac100_rtc_dev *chip;
556 int ret;
557
558 chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
559 if (!chip)
560 return -ENOMEM;
561
562 platform_set_drvdata(pdev, chip);
563 chip->dev = &pdev->dev;
564 chip->regmap = ac100->regmap;
565
566 chip->irq = platform_get_irq(pdev, 0);
567 if (chip->irq < 0) {
568 dev_err(&pdev->dev, "No IRQ resource\n");
569 return chip->irq;
570 }
571
572 chip->rtc = devm_rtc_allocate_device(&pdev->dev);
573 if (IS_ERR(chip->rtc))
574 return PTR_ERR(chip->rtc);
575
576 chip->rtc->ops = &ac100_rtc_ops;
577
578 ret = devm_request_threaded_irq(&pdev->dev, chip->irq, NULL,
579 ac100_rtc_irq,
580 IRQF_SHARED | IRQF_ONESHOT,
581 dev_name(&pdev->dev), chip);
582 if (ret) {
583 dev_err(&pdev->dev, "Could not request IRQ\n");
584 return ret;
585 }
586
587 /* always use 24 hour mode */
588 regmap_write_bits(chip->regmap, AC100_RTC_CTRL, AC100_RTC_CTRL_24HOUR,
589 AC100_RTC_CTRL_24HOUR);
590
591 /* disable counter alarm interrupt */
592 regmap_write(chip->regmap, AC100_ALM_INT_ENA, 0);
593
594 /* clear counter alarm pending interrupts */
595 regmap_write(chip->regmap, AC100_ALM_INT_STA, AC100_ALM_INT_ENABLE);
596
597 ret = ac100_rtc_register_clks(chip);
598 if (ret)
599 return ret;
600
601 ret = rtc_register_device(chip->rtc);
602 if (ret) {
603 dev_err(&pdev->dev, "unable to register device\n");
604 return ret;
605 }
606
607 dev_info(&pdev->dev, "RTC enabled\n");
608
609 return 0;
610 }
611
612 static int ac100_rtc_remove(struct platform_device *pdev)
613 {
614 struct ac100_rtc_dev *chip = platform_get_drvdata(pdev);
615
616 ac100_rtc_unregister_clks(chip);
617
618 return 0;
619 }
620
621 static const struct of_device_id ac100_rtc_match[] = {
622 { .compatible = "x-powers,ac100-rtc" },
623 { },
624 };
625 MODULE_DEVICE_TABLE(of, ac100_rtc_match);
626
627 static struct platform_driver ac100_rtc_driver = {
628 .probe = ac100_rtc_probe,
629 .remove = ac100_rtc_remove,
630 .driver = {
631 .name = "ac100-rtc",
632 .of_match_table = of_match_ptr(ac100_rtc_match),
633 },
634 };
635 module_platform_driver(ac100_rtc_driver);
636
637 MODULE_DESCRIPTION("X-Powers AC100 RTC driver");
638 MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>");
639 MODULE_LICENSE("GPL v2");