]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/rtc/rtc-ds1305.c
Merge commit 'v2.6.33-rc5' into secretlab/test-devicetree
[mirror_ubuntu-hirsute-kernel.git] / drivers / rtc / rtc-ds1305.c
1 /*
2 * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
3 *
4 * Copyright (C) 2008 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/bcd.h>
14 #include <linux/rtc.h>
15 #include <linux/workqueue.h>
16
17 #include <linux/spi/spi.h>
18 #include <linux/spi/ds1305.h>
19
20
21 /*
22 * Registers ... mask DS1305_WRITE into register address to write,
23 * otherwise you're reading it. All non-bitmask values are BCD.
24 */
25 #define DS1305_WRITE 0x80
26
27
28 /* RTC date/time ... the main special cases are that we:
29 * - Need fancy "hours" encoding in 12hour mode
30 * - Don't rely on the "day-of-week" field (or tm_wday)
31 * - Are a 21st-century clock (2000 <= year < 2100)
32 */
33 #define DS1305_RTC_LEN 7 /* bytes for RTC regs */
34
35 #define DS1305_SEC 0x00 /* register addresses */
36 #define DS1305_MIN 0x01
37 #define DS1305_HOUR 0x02
38 # define DS1305_HR_12 0x40 /* set == 12 hr mode */
39 # define DS1305_HR_PM 0x20 /* set == PM (12hr mode) */
40 #define DS1305_WDAY 0x03
41 #define DS1305_MDAY 0x04
42 #define DS1305_MON 0x05
43 #define DS1305_YEAR 0x06
44
45
46 /* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
47 * DS1305_ALM_DISABLE disables a match field (some combos are bad).
48 *
49 * NOTE that since we don't use WDAY, we limit ourselves to alarms
50 * only one day into the future (vs potentially up to a week).
51 *
52 * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
53 * don't currently support them. We'd either need to do it only when
54 * no alarm is pending (not the standard model), or to use the second
55 * alarm (implying that this is a DS1305 not DS1306, *and* that either
56 * it's wired up a second IRQ we know, or that INTCN is set)
57 */
58 #define DS1305_ALM_LEN 4 /* bytes for ALM regs */
59 #define DS1305_ALM_DISABLE 0x80
60
61 #define DS1305_ALM0(r) (0x07 + (r)) /* register addresses */
62 #define DS1305_ALM1(r) (0x0b + (r))
63
64
65 /* three control registers */
66 #define DS1305_CONTROL_LEN 3 /* bytes of control regs */
67
68 #define DS1305_CONTROL 0x0f /* register addresses */
69 # define DS1305_nEOSC 0x80 /* low enables oscillator */
70 # define DS1305_WP 0x40 /* write protect */
71 # define DS1305_INTCN 0x04 /* clear == only int0 used */
72 # define DS1306_1HZ 0x04 /* enable 1Hz output */
73 # define DS1305_AEI1 0x02 /* enable ALM1 IRQ */
74 # define DS1305_AEI0 0x01 /* enable ALM0 IRQ */
75 #define DS1305_STATUS 0x10
76 /* status has just AEIx bits, mirrored as IRQFx */
77 #define DS1305_TRICKLE 0x11
78 /* trickle bits are defined in <linux/spi/ds1305.h> */
79
80 /* a bunch of NVRAM */
81 #define DS1305_NVRAM_LEN 96 /* bytes of NVRAM */
82
83 #define DS1305_NVRAM 0x20 /* register addresses */
84
85
86 struct ds1305 {
87 struct spi_device *spi;
88 struct rtc_device *rtc;
89
90 struct work_struct work;
91
92 unsigned long flags;
93 #define FLAG_EXITING 0
94
95 bool hr12;
96 u8 ctrl[DS1305_CONTROL_LEN];
97 };
98
99
100 /*----------------------------------------------------------------------*/
101
102 /*
103 * Utilities ... tolerate 12-hour AM/PM notation in case of non-Linux
104 * software (like a bootloader) which may require it.
105 */
106
107 static unsigned bcd2hour(u8 bcd)
108 {
109 if (bcd & DS1305_HR_12) {
110 unsigned hour = 0;
111
112 bcd &= ~DS1305_HR_12;
113 if (bcd & DS1305_HR_PM) {
114 hour = 12;
115 bcd &= ~DS1305_HR_PM;
116 }
117 hour += bcd2bin(bcd);
118 return hour - 1;
119 }
120 return bcd2bin(bcd);
121 }
122
123 static u8 hour2bcd(bool hr12, int hour)
124 {
125 if (hr12) {
126 hour++;
127 if (hour <= 12)
128 return DS1305_HR_12 | bin2bcd(hour);
129 hour -= 12;
130 return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
131 }
132 return bin2bcd(hour);
133 }
134
135 /*----------------------------------------------------------------------*/
136
137 /*
138 * Interface to RTC framework
139 */
140
141 #ifdef CONFIG_RTC_INTF_DEV
142
143 /*
144 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
145 */
146 static int ds1305_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
147 {
148 struct ds1305 *ds1305 = dev_get_drvdata(dev);
149 u8 buf[2];
150 int status = -ENOIOCTLCMD;
151
152 buf[0] = DS1305_WRITE | DS1305_CONTROL;
153 buf[1] = ds1305->ctrl[0];
154
155 switch (cmd) {
156 case RTC_AIE_OFF:
157 status = 0;
158 if (!(buf[1] & DS1305_AEI0))
159 goto done;
160 buf[1] &= ~DS1305_AEI0;
161 break;
162
163 case RTC_AIE_ON:
164 status = 0;
165 if (ds1305->ctrl[0] & DS1305_AEI0)
166 goto done;
167 buf[1] |= DS1305_AEI0;
168 break;
169 }
170 if (status == 0) {
171 status = spi_write_then_read(ds1305->spi, buf, sizeof buf,
172 NULL, 0);
173 if (status >= 0)
174 ds1305->ctrl[0] = buf[1];
175 }
176
177 done:
178 return status;
179 }
180
181 #else
182 #define ds1305_ioctl NULL
183 #endif
184
185 /*
186 * Get/set of date and time is pretty normal.
187 */
188
189 static int ds1305_get_time(struct device *dev, struct rtc_time *time)
190 {
191 struct ds1305 *ds1305 = dev_get_drvdata(dev);
192 u8 addr = DS1305_SEC;
193 u8 buf[DS1305_RTC_LEN];
194 int status;
195
196 /* Use write-then-read to get all the date/time registers
197 * since dma from stack is nonportable
198 */
199 status = spi_write_then_read(ds1305->spi, &addr, sizeof addr,
200 buf, sizeof buf);
201 if (status < 0)
202 return status;
203
204 dev_vdbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
205 "read", buf[0], buf[1], buf[2], buf[3],
206 buf[4], buf[5], buf[6]);
207
208 /* Decode the registers */
209 time->tm_sec = bcd2bin(buf[DS1305_SEC]);
210 time->tm_min = bcd2bin(buf[DS1305_MIN]);
211 time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
212 time->tm_wday = buf[DS1305_WDAY] - 1;
213 time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
214 time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
215 time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
216
217 dev_vdbg(dev, "%s secs=%d, mins=%d, "
218 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
219 "read", time->tm_sec, time->tm_min,
220 time->tm_hour, time->tm_mday,
221 time->tm_mon, time->tm_year, time->tm_wday);
222
223 /* Time may not be set */
224 return rtc_valid_tm(time);
225 }
226
227 static int ds1305_set_time(struct device *dev, struct rtc_time *time)
228 {
229 struct ds1305 *ds1305 = dev_get_drvdata(dev);
230 u8 buf[1 + DS1305_RTC_LEN];
231 u8 *bp = buf;
232
233 dev_vdbg(dev, "%s secs=%d, mins=%d, "
234 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
235 "write", time->tm_sec, time->tm_min,
236 time->tm_hour, time->tm_mday,
237 time->tm_mon, time->tm_year, time->tm_wday);
238
239 /* Write registers starting at the first time/date address. */
240 *bp++ = DS1305_WRITE | DS1305_SEC;
241
242 *bp++ = bin2bcd(time->tm_sec);
243 *bp++ = bin2bcd(time->tm_min);
244 *bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
245 *bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
246 *bp++ = bin2bcd(time->tm_mday);
247 *bp++ = bin2bcd(time->tm_mon + 1);
248 *bp++ = bin2bcd(time->tm_year - 100);
249
250 dev_dbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
251 "write", buf[1], buf[2], buf[3],
252 buf[4], buf[5], buf[6], buf[7]);
253
254 /* use write-then-read since dma from stack is nonportable */
255 return spi_write_then_read(ds1305->spi, buf, sizeof buf,
256 NULL, 0);
257 }
258
259 /*
260 * Get/set of alarm is a bit funky:
261 *
262 * - First there's the inherent raciness of getting the (partitioned)
263 * status of an alarm that could trigger while we're reading parts
264 * of that status.
265 *
266 * - Second there's its limited range (we could increase it a bit by
267 * relying on WDAY), which means it will easily roll over.
268 *
269 * - Third there's the choice of two alarms and alarm signals.
270 * Here we use ALM0 and expect that nINT0 (open drain) is used;
271 * that's the only real option for DS1306 runtime alarms, and is
272 * natural on DS1305.
273 *
274 * - Fourth, there's also ALM1, and a second interrupt signal:
275 * + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
276 * + On DS1306 ALM1 only uses INT1 (an active high pulse)
277 * and it won't work when VCC1 is active.
278 *
279 * So to be most general, we should probably set both alarms to the
280 * same value, letting ALM1 be the wakeup event source on DS1306
281 * and handling several wiring options on DS1305.
282 *
283 * - Fifth, we support the polled mode (as well as possible; why not?)
284 * even when no interrupt line is wired to an IRQ.
285 */
286
287 /*
288 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
289 */
290 static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
291 {
292 struct ds1305 *ds1305 = dev_get_drvdata(dev);
293 struct spi_device *spi = ds1305->spi;
294 u8 addr;
295 int status;
296 u8 buf[DS1305_ALM_LEN];
297
298 /* Refresh control register cache BEFORE reading ALM0 registers,
299 * since reading alarm registers acks any pending IRQ. That
300 * makes returning "pending" status a bit of a lie, but that bit
301 * of EFI status is at best fragile anyway (given IRQ handlers).
302 */
303 addr = DS1305_CONTROL;
304 status = spi_write_then_read(spi, &addr, sizeof addr,
305 ds1305->ctrl, sizeof ds1305->ctrl);
306 if (status < 0)
307 return status;
308
309 alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
310 alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
311
312 /* get and check ALM0 registers */
313 addr = DS1305_ALM0(DS1305_SEC);
314 status = spi_write_then_read(spi, &addr, sizeof addr,
315 buf, sizeof buf);
316 if (status < 0)
317 return status;
318
319 dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
320 "alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
321 buf[DS1305_HOUR], buf[DS1305_WDAY]);
322
323 if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
324 || (DS1305_ALM_DISABLE & buf[DS1305_MIN])
325 || (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
326 return -EIO;
327
328 /* Stuff these values into alm->time and let RTC framework code
329 * fill in the rest ... and also handle rollover to tomorrow when
330 * that's needed.
331 */
332 alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
333 alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
334 alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
335 alm->time.tm_mday = -1;
336 alm->time.tm_mon = -1;
337 alm->time.tm_year = -1;
338 /* next three fields are unused by Linux */
339 alm->time.tm_wday = -1;
340 alm->time.tm_mday = -1;
341 alm->time.tm_isdst = -1;
342
343 return 0;
344 }
345
346 /*
347 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
348 */
349 static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
350 {
351 struct ds1305 *ds1305 = dev_get_drvdata(dev);
352 struct spi_device *spi = ds1305->spi;
353 unsigned long now, later;
354 struct rtc_time tm;
355 int status;
356 u8 buf[1 + DS1305_ALM_LEN];
357
358 /* convert desired alarm to time_t */
359 status = rtc_tm_to_time(&alm->time, &later);
360 if (status < 0)
361 return status;
362
363 /* Read current time as time_t */
364 status = ds1305_get_time(dev, &tm);
365 if (status < 0)
366 return status;
367 status = rtc_tm_to_time(&tm, &now);
368 if (status < 0)
369 return status;
370
371 /* make sure alarm fires within the next 24 hours */
372 if (later <= now)
373 return -EINVAL;
374 if ((later - now) > 24 * 60 * 60)
375 return -EDOM;
376
377 /* disable alarm if needed */
378 if (ds1305->ctrl[0] & DS1305_AEI0) {
379 ds1305->ctrl[0] &= ~DS1305_AEI0;
380
381 buf[0] = DS1305_WRITE | DS1305_CONTROL;
382 buf[1] = ds1305->ctrl[0];
383 status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
384 if (status < 0)
385 return status;
386 }
387
388 /* write alarm */
389 buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
390 buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
391 buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
392 buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
393 buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
394
395 dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
396 "alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
397 buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
398
399 status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
400 if (status < 0)
401 return status;
402
403 /* enable alarm if requested */
404 if (alm->enabled) {
405 ds1305->ctrl[0] |= DS1305_AEI0;
406
407 buf[0] = DS1305_WRITE | DS1305_CONTROL;
408 buf[1] = ds1305->ctrl[0];
409 status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
410 }
411
412 return status;
413 }
414
415 #ifdef CONFIG_PROC_FS
416
417 static int ds1305_proc(struct device *dev, struct seq_file *seq)
418 {
419 struct ds1305 *ds1305 = dev_get_drvdata(dev);
420 char *diodes = "no";
421 char *resistors = "";
422
423 /* ctrl[2] is treated as read-only; no locking needed */
424 if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
425 switch (ds1305->ctrl[2] & 0x0c) {
426 case DS1305_TRICKLE_DS2:
427 diodes = "2 diodes, ";
428 break;
429 case DS1305_TRICKLE_DS1:
430 diodes = "1 diode, ";
431 break;
432 default:
433 goto done;
434 }
435 switch (ds1305->ctrl[2] & 0x03) {
436 case DS1305_TRICKLE_2K:
437 resistors = "2k Ohm";
438 break;
439 case DS1305_TRICKLE_4K:
440 resistors = "4k Ohm";
441 break;
442 case DS1305_TRICKLE_8K:
443 resistors = "8k Ohm";
444 break;
445 default:
446 diodes = "no";
447 break;
448 }
449 }
450
451 done:
452 return seq_printf(seq,
453 "trickle_charge\t: %s%s\n",
454 diodes, resistors);
455 }
456
457 #else
458 #define ds1305_proc NULL
459 #endif
460
461 static const struct rtc_class_ops ds1305_ops = {
462 .ioctl = ds1305_ioctl,
463 .read_time = ds1305_get_time,
464 .set_time = ds1305_set_time,
465 .read_alarm = ds1305_get_alarm,
466 .set_alarm = ds1305_set_alarm,
467 .proc = ds1305_proc,
468 };
469
470 static void ds1305_work(struct work_struct *work)
471 {
472 struct ds1305 *ds1305 = container_of(work, struct ds1305, work);
473 struct mutex *lock = &ds1305->rtc->ops_lock;
474 struct spi_device *spi = ds1305->spi;
475 u8 buf[3];
476 int status;
477
478 /* lock to protect ds1305->ctrl */
479 mutex_lock(lock);
480
481 /* Disable the IRQ, and clear its status ... for now, we "know"
482 * that if more than one alarm is active, they're in sync.
483 * Note that reading ALM data registers also clears IRQ status.
484 */
485 ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
486 ds1305->ctrl[1] = 0;
487
488 buf[0] = DS1305_WRITE | DS1305_CONTROL;
489 buf[1] = ds1305->ctrl[0];
490 buf[2] = 0;
491
492 status = spi_write_then_read(spi, buf, sizeof buf,
493 NULL, 0);
494 if (status < 0)
495 dev_dbg(&spi->dev, "clear irq --> %d\n", status);
496
497 mutex_unlock(lock);
498
499 if (!test_bit(FLAG_EXITING, &ds1305->flags))
500 enable_irq(spi->irq);
501
502 rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
503 }
504
505 /*
506 * This "real" IRQ handler hands off to a workqueue mostly to allow
507 * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
508 * I/O requests in IRQ context (to clear the IRQ status).
509 */
510 static irqreturn_t ds1305_irq(int irq, void *p)
511 {
512 struct ds1305 *ds1305 = p;
513
514 disable_irq(irq);
515 schedule_work(&ds1305->work);
516 return IRQ_HANDLED;
517 }
518
519 /*----------------------------------------------------------------------*/
520
521 /*
522 * Interface for NVRAM
523 */
524
525 static void msg_init(struct spi_message *m, struct spi_transfer *x,
526 u8 *addr, size_t count, char *tx, char *rx)
527 {
528 spi_message_init(m);
529 memset(x, 0, 2 * sizeof(*x));
530
531 x->tx_buf = addr;
532 x->len = 1;
533 spi_message_add_tail(x, m);
534
535 x++;
536
537 x->tx_buf = tx;
538 x->rx_buf = rx;
539 x->len = count;
540 spi_message_add_tail(x, m);
541 }
542
543 static ssize_t
544 ds1305_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
545 char *buf, loff_t off, size_t count)
546 {
547 struct spi_device *spi;
548 u8 addr;
549 struct spi_message m;
550 struct spi_transfer x[2];
551 int status;
552
553 spi = container_of(kobj, struct spi_device, dev.kobj);
554
555 if (unlikely(off >= DS1305_NVRAM_LEN))
556 return 0;
557 if (count >= DS1305_NVRAM_LEN)
558 count = DS1305_NVRAM_LEN;
559 if ((off + count) > DS1305_NVRAM_LEN)
560 count = DS1305_NVRAM_LEN - off;
561 if (unlikely(!count))
562 return count;
563
564 addr = DS1305_NVRAM + off;
565 msg_init(&m, x, &addr, count, NULL, buf);
566
567 status = spi_sync(spi, &m);
568 if (status < 0)
569 dev_err(&spi->dev, "nvram %s error %d\n", "read", status);
570 return (status < 0) ? status : count;
571 }
572
573 static ssize_t
574 ds1305_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
575 char *buf, loff_t off, size_t count)
576 {
577 struct spi_device *spi;
578 u8 addr;
579 struct spi_message m;
580 struct spi_transfer x[2];
581 int status;
582
583 spi = container_of(kobj, struct spi_device, dev.kobj);
584
585 if (unlikely(off >= DS1305_NVRAM_LEN))
586 return -EFBIG;
587 if (count >= DS1305_NVRAM_LEN)
588 count = DS1305_NVRAM_LEN;
589 if ((off + count) > DS1305_NVRAM_LEN)
590 count = DS1305_NVRAM_LEN - off;
591 if (unlikely(!count))
592 return count;
593
594 addr = (DS1305_WRITE | DS1305_NVRAM) + off;
595 msg_init(&m, x, &addr, count, buf, NULL);
596
597 status = spi_sync(spi, &m);
598 if (status < 0)
599 dev_err(&spi->dev, "nvram %s error %d\n", "write", status);
600 return (status < 0) ? status : count;
601 }
602
603 static struct bin_attribute nvram = {
604 .attr.name = "nvram",
605 .attr.mode = S_IRUGO | S_IWUSR,
606 .read = ds1305_nvram_read,
607 .write = ds1305_nvram_write,
608 .size = DS1305_NVRAM_LEN,
609 };
610
611 /*----------------------------------------------------------------------*/
612
613 /*
614 * Interface to SPI stack
615 */
616
617 static int __devinit ds1305_probe(struct spi_device *spi)
618 {
619 struct ds1305 *ds1305;
620 int status;
621 u8 addr, value;
622 struct ds1305_platform_data *pdata = spi->dev.platform_data;
623 bool write_ctrl = false;
624
625 /* Sanity check board setup data. This may be hooked up
626 * in 3wire mode, but we don't care. Note that unless
627 * there's an inverter in place, this needs SPI_CS_HIGH!
628 */
629 if ((spi->bits_per_word && spi->bits_per_word != 8)
630 || (spi->max_speed_hz > 2000000)
631 || !(spi->mode & SPI_CPHA))
632 return -EINVAL;
633
634 /* set up driver data */
635 ds1305 = kzalloc(sizeof *ds1305, GFP_KERNEL);
636 if (!ds1305)
637 return -ENOMEM;
638 ds1305->spi = spi;
639 spi_set_drvdata(spi, ds1305);
640
641 /* read and cache control registers */
642 addr = DS1305_CONTROL;
643 status = spi_write_then_read(spi, &addr, sizeof addr,
644 ds1305->ctrl, sizeof ds1305->ctrl);
645 if (status < 0) {
646 dev_dbg(&spi->dev, "can't %s, %d\n",
647 "read", status);
648 goto fail0;
649 }
650
651 dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
652 "read", ds1305->ctrl[0],
653 ds1305->ctrl[1], ds1305->ctrl[2]);
654
655 /* Sanity check register values ... partially compensating for the
656 * fact that SPI has no device handshake. A pullup on MISO would
657 * make these tests fail; but not all systems will have one. If
658 * some register is neither 0x00 nor 0xff, a chip is likely there.
659 */
660 if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
661 dev_dbg(&spi->dev, "RTC chip is not present\n");
662 status = -ENODEV;
663 goto fail0;
664 }
665 if (ds1305->ctrl[2] == 0)
666 dev_dbg(&spi->dev, "chip may not be present\n");
667
668 /* enable writes if needed ... if we were paranoid it would
669 * make sense to enable them only when absolutely necessary.
670 */
671 if (ds1305->ctrl[0] & DS1305_WP) {
672 u8 buf[2];
673
674 ds1305->ctrl[0] &= ~DS1305_WP;
675
676 buf[0] = DS1305_WRITE | DS1305_CONTROL;
677 buf[1] = ds1305->ctrl[0];
678 status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
679
680 dev_dbg(&spi->dev, "clear WP --> %d\n", status);
681 if (status < 0)
682 goto fail0;
683 }
684
685 /* on DS1305, maybe start oscillator; like most low power
686 * oscillators, it may take a second to stabilize
687 */
688 if (ds1305->ctrl[0] & DS1305_nEOSC) {
689 ds1305->ctrl[0] &= ~DS1305_nEOSC;
690 write_ctrl = true;
691 dev_warn(&spi->dev, "SET TIME!\n");
692 }
693
694 /* ack any pending IRQs */
695 if (ds1305->ctrl[1]) {
696 ds1305->ctrl[1] = 0;
697 write_ctrl = true;
698 }
699
700 /* this may need one-time (re)init */
701 if (pdata) {
702 /* maybe enable trickle charge */
703 if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
704 ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
705 | pdata->trickle;
706 write_ctrl = true;
707 }
708
709 /* on DS1306, configure 1 Hz signal */
710 if (pdata->is_ds1306) {
711 if (pdata->en_1hz) {
712 if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
713 ds1305->ctrl[0] |= DS1306_1HZ;
714 write_ctrl = true;
715 }
716 } else {
717 if (ds1305->ctrl[0] & DS1306_1HZ) {
718 ds1305->ctrl[0] &= ~DS1306_1HZ;
719 write_ctrl = true;
720 }
721 }
722 }
723 }
724
725 if (write_ctrl) {
726 u8 buf[4];
727
728 buf[0] = DS1305_WRITE | DS1305_CONTROL;
729 buf[1] = ds1305->ctrl[0];
730 buf[2] = ds1305->ctrl[1];
731 buf[3] = ds1305->ctrl[2];
732 status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
733 if (status < 0) {
734 dev_dbg(&spi->dev, "can't %s, %d\n",
735 "write", status);
736 goto fail0;
737 }
738
739 dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
740 "write", ds1305->ctrl[0],
741 ds1305->ctrl[1], ds1305->ctrl[2]);
742 }
743
744 /* see if non-Linux software set up AM/PM mode */
745 addr = DS1305_HOUR;
746 status = spi_write_then_read(spi, &addr, sizeof addr,
747 &value, sizeof value);
748 if (status < 0) {
749 dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
750 goto fail0;
751 }
752
753 ds1305->hr12 = (DS1305_HR_12 & value) != 0;
754 if (ds1305->hr12)
755 dev_dbg(&spi->dev, "AM/PM\n");
756
757 /* register RTC ... from here on, ds1305->ctrl needs locking */
758 ds1305->rtc = rtc_device_register("ds1305", &spi->dev,
759 &ds1305_ops, THIS_MODULE);
760 if (IS_ERR(ds1305->rtc)) {
761 status = PTR_ERR(ds1305->rtc);
762 dev_dbg(&spi->dev, "register rtc --> %d\n", status);
763 goto fail0;
764 }
765
766 /* Maybe set up alarm IRQ; be ready to handle it triggering right
767 * away. NOTE that we don't share this. The signal is active low,
768 * and we can't ack it before a SPI message delay. We temporarily
769 * disable the IRQ until it's acked, which lets us work with more
770 * IRQ trigger modes (not all IRQ controllers can do falling edge).
771 */
772 if (spi->irq) {
773 INIT_WORK(&ds1305->work, ds1305_work);
774 status = request_irq(spi->irq, ds1305_irq,
775 0, dev_name(&ds1305->rtc->dev), ds1305);
776 if (status < 0) {
777 dev_dbg(&spi->dev, "request_irq %d --> %d\n",
778 spi->irq, status);
779 goto fail1;
780 }
781
782 device_set_wakeup_capable(&spi->dev, 1);
783 }
784
785 /* export NVRAM */
786 status = sysfs_create_bin_file(&spi->dev.kobj, &nvram);
787 if (status < 0) {
788 dev_dbg(&spi->dev, "register nvram --> %d\n", status);
789 goto fail2;
790 }
791
792 return 0;
793
794 fail2:
795 free_irq(spi->irq, ds1305);
796 fail1:
797 rtc_device_unregister(ds1305->rtc);
798 fail0:
799 kfree(ds1305);
800 return status;
801 }
802
803 static int __devexit ds1305_remove(struct spi_device *spi)
804 {
805 struct ds1305 *ds1305 = spi_get_drvdata(spi);
806
807 sysfs_remove_bin_file(&spi->dev.kobj, &nvram);
808
809 /* carefully shut down irq and workqueue, if present */
810 if (spi->irq) {
811 set_bit(FLAG_EXITING, &ds1305->flags);
812 free_irq(spi->irq, ds1305);
813 flush_scheduled_work();
814 }
815
816 rtc_device_unregister(ds1305->rtc);
817 spi_set_drvdata(spi, NULL);
818 kfree(ds1305);
819 return 0;
820 }
821
822 static struct spi_driver ds1305_driver = {
823 .driver.name = "rtc-ds1305",
824 .driver.owner = THIS_MODULE,
825 .probe = ds1305_probe,
826 .remove = __devexit_p(ds1305_remove),
827 /* REVISIT add suspend/resume */
828 };
829
830 static int __init ds1305_init(void)
831 {
832 return spi_register_driver(&ds1305_driver);
833 }
834 module_init(ds1305_init);
835
836 static void __exit ds1305_exit(void)
837 {
838 spi_unregister_driver(&ds1305_driver);
839 }
840 module_exit(ds1305_exit);
841
842 MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
843 MODULE_LICENSE("GPL");
844 MODULE_ALIAS("spi:rtc-ds1305");