]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/rtc/rtc-ds1685.c
Merge tag 'socfpga_arm32_defconfig_for_v5.2' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-hirsute-kernel.git] / drivers / rtc / rtc-ds1685.c
1 /*
2 * An rtc driver for the Dallas/Maxim DS1685/DS1687 and related real-time
3 * chips.
4 *
5 * Copyright (C) 2011-2014 Joshua Kinard <kumba@gentoo.org>.
6 * Copyright (C) 2009 Matthias Fuchs <matthias.fuchs@esd-electronics.com>.
7 *
8 * References:
9 * DS1685/DS1687 3V/5V Real-Time Clocks, 19-5215, Rev 4/10.
10 * DS17x85/DS17x87 3V/5V Real-Time Clocks, 19-5222, Rev 4/10.
11 * DS1689/DS1693 3V/5V Serialized Real-Time Clocks, Rev 112105.
12 * Application Note 90, Using the Multiplex Bus RTC Extended Features.
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/bcd.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/rtc.h>
27 #include <linux/workqueue.h>
28
29 #include <linux/rtc/ds1685.h>
30
31 #ifdef CONFIG_PROC_FS
32 #include <linux/proc_fs.h>
33 #endif
34
35
36 /* ----------------------------------------------------------------------- */
37 /* Standard read/write functions if platform does not provide overrides */
38
39 /**
40 * ds1685_read - read a value from an rtc register.
41 * @rtc: pointer to the ds1685 rtc structure.
42 * @reg: the register address to read.
43 */
44 static u8
45 ds1685_read(struct ds1685_priv *rtc, int reg)
46 {
47 return readb((u8 __iomem *)rtc->regs +
48 (reg * rtc->regstep));
49 }
50
51 /**
52 * ds1685_write - write a value to an rtc register.
53 * @rtc: pointer to the ds1685 rtc structure.
54 * @reg: the register address to write.
55 * @value: value to write to the register.
56 */
57 static void
58 ds1685_write(struct ds1685_priv *rtc, int reg, u8 value)
59 {
60 writeb(value, ((u8 __iomem *)rtc->regs +
61 (reg * rtc->regstep)));
62 }
63 /* ----------------------------------------------------------------------- */
64
65
66 /* ----------------------------------------------------------------------- */
67 /* Inlined functions */
68
69 /**
70 * ds1685_rtc_bcd2bin - bcd2bin wrapper in case platform doesn't support BCD.
71 * @rtc: pointer to the ds1685 rtc structure.
72 * @val: u8 time value to consider converting.
73 * @bcd_mask: u8 mask value if BCD mode is used.
74 * @bin_mask: u8 mask value if BIN mode is used.
75 *
76 * Returns the value, converted to BIN if originally in BCD and bcd_mode TRUE.
77 */
78 static inline u8
79 ds1685_rtc_bcd2bin(struct ds1685_priv *rtc, u8 val, u8 bcd_mask, u8 bin_mask)
80 {
81 if (rtc->bcd_mode)
82 return (bcd2bin(val) & bcd_mask);
83
84 return (val & bin_mask);
85 }
86
87 /**
88 * ds1685_rtc_bin2bcd - bin2bcd wrapper in case platform doesn't support BCD.
89 * @rtc: pointer to the ds1685 rtc structure.
90 * @val: u8 time value to consider converting.
91 * @bin_mask: u8 mask value if BIN mode is used.
92 * @bcd_mask: u8 mask value if BCD mode is used.
93 *
94 * Returns the value, converted to BCD if originally in BIN and bcd_mode TRUE.
95 */
96 static inline u8
97 ds1685_rtc_bin2bcd(struct ds1685_priv *rtc, u8 val, u8 bin_mask, u8 bcd_mask)
98 {
99 if (rtc->bcd_mode)
100 return (bin2bcd(val) & bcd_mask);
101
102 return (val & bin_mask);
103 }
104
105 /**
106 * s1685_rtc_check_mday - check validity of the day of month.
107 * @rtc: pointer to the ds1685 rtc structure.
108 * @mday: day of month.
109 *
110 * Returns -EDOM if the day of month is not within 1..31 range.
111 */
112 static inline int
113 ds1685_rtc_check_mday(struct ds1685_priv *rtc, u8 mday)
114 {
115 if (rtc->bcd_mode) {
116 if (mday < 0x01 || mday > 0x31 || (mday & 0x0f) > 0x09)
117 return -EDOM;
118 } else {
119 if (mday < 1 || mday > 31)
120 return -EDOM;
121 }
122 return 0;
123 }
124
125 /**
126 * ds1685_rtc_switch_to_bank0 - switch the rtc to bank 0.
127 * @rtc: pointer to the ds1685 rtc structure.
128 */
129 static inline void
130 ds1685_rtc_switch_to_bank0(struct ds1685_priv *rtc)
131 {
132 rtc->write(rtc, RTC_CTRL_A,
133 (rtc->read(rtc, RTC_CTRL_A) & ~(RTC_CTRL_A_DV0)));
134 }
135
136 /**
137 * ds1685_rtc_switch_to_bank1 - switch the rtc to bank 1.
138 * @rtc: pointer to the ds1685 rtc structure.
139 */
140 static inline void
141 ds1685_rtc_switch_to_bank1(struct ds1685_priv *rtc)
142 {
143 rtc->write(rtc, RTC_CTRL_A,
144 (rtc->read(rtc, RTC_CTRL_A) | RTC_CTRL_A_DV0));
145 }
146
147 /**
148 * ds1685_rtc_begin_data_access - prepare the rtc for data access.
149 * @rtc: pointer to the ds1685 rtc structure.
150 *
151 * This takes several steps to prepare the rtc for access to get/set time
152 * and alarm values from the rtc registers:
153 * - Sets the SET bit in Control Register B.
154 * - Reads Ext Control Register 4A and checks the INCR bit.
155 * - If INCR is active, a short delay is added before Ext Control Register 4A
156 * is read again in a loop until INCR is inactive.
157 * - Switches the rtc to bank 1. This allows access to all relevant
158 * data for normal rtc operation, as bank 0 contains only the nvram.
159 */
160 static inline void
161 ds1685_rtc_begin_data_access(struct ds1685_priv *rtc)
162 {
163 /* Set the SET bit in Ctrl B */
164 rtc->write(rtc, RTC_CTRL_B,
165 (rtc->read(rtc, RTC_CTRL_B) | RTC_CTRL_B_SET));
166
167 /* Read Ext Ctrl 4A and check the INCR bit to avoid a lockout. */
168 while (rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_INCR)
169 cpu_relax();
170
171 /* Switch to Bank 1 */
172 ds1685_rtc_switch_to_bank1(rtc);
173 }
174
175 /**
176 * ds1685_rtc_end_data_access - end data access on the rtc.
177 * @rtc: pointer to the ds1685 rtc structure.
178 *
179 * This ends what was started by ds1685_rtc_begin_data_access:
180 * - Switches the rtc back to bank 0.
181 * - Clears the SET bit in Control Register B.
182 */
183 static inline void
184 ds1685_rtc_end_data_access(struct ds1685_priv *rtc)
185 {
186 /* Switch back to Bank 0 */
187 ds1685_rtc_switch_to_bank1(rtc);
188
189 /* Clear the SET bit in Ctrl B */
190 rtc->write(rtc, RTC_CTRL_B,
191 (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_SET)));
192 }
193
194 /**
195 * ds1685_rtc_get_ssn - retrieve the silicon serial number.
196 * @rtc: pointer to the ds1685 rtc structure.
197 * @ssn: u8 array to hold the bits of the silicon serial number.
198 *
199 * This number starts at 0x40, and is 8-bytes long, ending at 0x47. The
200 * first byte is the model number, the next six bytes are the serial number
201 * digits, and the final byte is a CRC check byte. Together, they form the
202 * silicon serial number.
203 *
204 * These values are stored in bank1, so ds1685_rtc_switch_to_bank1 must be
205 * called first before calling this function, else data will be read out of
206 * the bank0 NVRAM. Be sure to call ds1685_rtc_switch_to_bank0 when done.
207 */
208 static inline void
209 ds1685_rtc_get_ssn(struct ds1685_priv *rtc, u8 *ssn)
210 {
211 ssn[0] = rtc->read(rtc, RTC_BANK1_SSN_MODEL);
212 ssn[1] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_1);
213 ssn[2] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_2);
214 ssn[3] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_3);
215 ssn[4] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_4);
216 ssn[5] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_5);
217 ssn[6] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_6);
218 ssn[7] = rtc->read(rtc, RTC_BANK1_SSN_CRC);
219 }
220 /* ----------------------------------------------------------------------- */
221
222
223 /* ----------------------------------------------------------------------- */
224 /* Read/Set Time & Alarm functions */
225
226 /**
227 * ds1685_rtc_read_time - reads the time registers.
228 * @dev: pointer to device structure.
229 * @tm: pointer to rtc_time structure.
230 */
231 static int
232 ds1685_rtc_read_time(struct device *dev, struct rtc_time *tm)
233 {
234 struct ds1685_priv *rtc = dev_get_drvdata(dev);
235 u8 ctrlb, century;
236 u8 seconds, minutes, hours, wday, mday, month, years;
237
238 /* Fetch the time info from the RTC registers. */
239 ds1685_rtc_begin_data_access(rtc);
240 seconds = rtc->read(rtc, RTC_SECS);
241 minutes = rtc->read(rtc, RTC_MINS);
242 hours = rtc->read(rtc, RTC_HRS);
243 wday = rtc->read(rtc, RTC_WDAY);
244 mday = rtc->read(rtc, RTC_MDAY);
245 month = rtc->read(rtc, RTC_MONTH);
246 years = rtc->read(rtc, RTC_YEAR);
247 century = rtc->read(rtc, RTC_CENTURY);
248 ctrlb = rtc->read(rtc, RTC_CTRL_B);
249 ds1685_rtc_end_data_access(rtc);
250
251 /* bcd2bin if needed, perform fixups, and store to rtc_time. */
252 years = ds1685_rtc_bcd2bin(rtc, years, RTC_YEAR_BCD_MASK,
253 RTC_YEAR_BIN_MASK);
254 century = ds1685_rtc_bcd2bin(rtc, century, RTC_CENTURY_MASK,
255 RTC_CENTURY_MASK);
256 tm->tm_sec = ds1685_rtc_bcd2bin(rtc, seconds, RTC_SECS_BCD_MASK,
257 RTC_SECS_BIN_MASK);
258 tm->tm_min = ds1685_rtc_bcd2bin(rtc, minutes, RTC_MINS_BCD_MASK,
259 RTC_MINS_BIN_MASK);
260 tm->tm_hour = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_24_BCD_MASK,
261 RTC_HRS_24_BIN_MASK);
262 tm->tm_wday = (ds1685_rtc_bcd2bin(rtc, wday, RTC_WDAY_MASK,
263 RTC_WDAY_MASK) - 1);
264 tm->tm_mday = ds1685_rtc_bcd2bin(rtc, mday, RTC_MDAY_BCD_MASK,
265 RTC_MDAY_BIN_MASK);
266 tm->tm_mon = (ds1685_rtc_bcd2bin(rtc, month, RTC_MONTH_BCD_MASK,
267 RTC_MONTH_BIN_MASK) - 1);
268 tm->tm_year = ((years + (century * 100)) - 1900);
269 tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
270 tm->tm_isdst = 0; /* RTC has hardcoded timezone, so don't use. */
271
272 return 0;
273 }
274
275 /**
276 * ds1685_rtc_set_time - sets the time registers.
277 * @dev: pointer to device structure.
278 * @tm: pointer to rtc_time structure.
279 */
280 static int
281 ds1685_rtc_set_time(struct device *dev, struct rtc_time *tm)
282 {
283 struct ds1685_priv *rtc = dev_get_drvdata(dev);
284 u8 ctrlb, seconds, minutes, hours, wday, mday, month, years, century;
285
286 /* Fetch the time info from rtc_time. */
287 seconds = ds1685_rtc_bin2bcd(rtc, tm->tm_sec, RTC_SECS_BIN_MASK,
288 RTC_SECS_BCD_MASK);
289 minutes = ds1685_rtc_bin2bcd(rtc, tm->tm_min, RTC_MINS_BIN_MASK,
290 RTC_MINS_BCD_MASK);
291 hours = ds1685_rtc_bin2bcd(rtc, tm->tm_hour, RTC_HRS_24_BIN_MASK,
292 RTC_HRS_24_BCD_MASK);
293 wday = ds1685_rtc_bin2bcd(rtc, (tm->tm_wday + 1), RTC_WDAY_MASK,
294 RTC_WDAY_MASK);
295 mday = ds1685_rtc_bin2bcd(rtc, tm->tm_mday, RTC_MDAY_BIN_MASK,
296 RTC_MDAY_BCD_MASK);
297 month = ds1685_rtc_bin2bcd(rtc, (tm->tm_mon + 1), RTC_MONTH_BIN_MASK,
298 RTC_MONTH_BCD_MASK);
299 years = ds1685_rtc_bin2bcd(rtc, (tm->tm_year % 100),
300 RTC_YEAR_BIN_MASK, RTC_YEAR_BCD_MASK);
301 century = ds1685_rtc_bin2bcd(rtc, ((tm->tm_year + 1900) / 100),
302 RTC_CENTURY_MASK, RTC_CENTURY_MASK);
303
304 /*
305 * Perform Sanity Checks:
306 * - Months: !> 12, Month Day != 0.
307 * - Month Day !> Max days in current month.
308 * - Hours !>= 24, Mins !>= 60, Secs !>= 60, & Weekday !> 7.
309 */
310 if ((tm->tm_mon > 11) || (mday == 0))
311 return -EDOM;
312
313 if (tm->tm_mday > rtc_month_days(tm->tm_mon, tm->tm_year))
314 return -EDOM;
315
316 if ((tm->tm_hour >= 24) || (tm->tm_min >= 60) ||
317 (tm->tm_sec >= 60) || (wday > 7))
318 return -EDOM;
319
320 /*
321 * Set the data mode to use and store the time values in the
322 * RTC registers.
323 */
324 ds1685_rtc_begin_data_access(rtc);
325 ctrlb = rtc->read(rtc, RTC_CTRL_B);
326 if (rtc->bcd_mode)
327 ctrlb &= ~(RTC_CTRL_B_DM);
328 else
329 ctrlb |= RTC_CTRL_B_DM;
330 rtc->write(rtc, RTC_CTRL_B, ctrlb);
331 rtc->write(rtc, RTC_SECS, seconds);
332 rtc->write(rtc, RTC_MINS, minutes);
333 rtc->write(rtc, RTC_HRS, hours);
334 rtc->write(rtc, RTC_WDAY, wday);
335 rtc->write(rtc, RTC_MDAY, mday);
336 rtc->write(rtc, RTC_MONTH, month);
337 rtc->write(rtc, RTC_YEAR, years);
338 rtc->write(rtc, RTC_CENTURY, century);
339 ds1685_rtc_end_data_access(rtc);
340
341 return 0;
342 }
343
344 /**
345 * ds1685_rtc_read_alarm - reads the alarm registers.
346 * @dev: pointer to device structure.
347 * @alrm: pointer to rtc_wkalrm structure.
348 *
349 * There are three primary alarm registers: seconds, minutes, and hours.
350 * A fourth alarm register for the month date is also available in bank1 for
351 * kickstart/wakeup features. The DS1685/DS1687 manual states that a
352 * "don't care" value ranging from 0xc0 to 0xff may be written into one or
353 * more of the three alarm bytes to act as a wildcard value. The fourth
354 * byte doesn't support a "don't care" value.
355 */
356 static int
357 ds1685_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
358 {
359 struct ds1685_priv *rtc = dev_get_drvdata(dev);
360 u8 seconds, minutes, hours, mday, ctrlb, ctrlc;
361 int ret;
362
363 /* Fetch the alarm info from the RTC alarm registers. */
364 ds1685_rtc_begin_data_access(rtc);
365 seconds = rtc->read(rtc, RTC_SECS_ALARM);
366 minutes = rtc->read(rtc, RTC_MINS_ALARM);
367 hours = rtc->read(rtc, RTC_HRS_ALARM);
368 mday = rtc->read(rtc, RTC_MDAY_ALARM);
369 ctrlb = rtc->read(rtc, RTC_CTRL_B);
370 ctrlc = rtc->read(rtc, RTC_CTRL_C);
371 ds1685_rtc_end_data_access(rtc);
372
373 /* Check the month date for validity. */
374 ret = ds1685_rtc_check_mday(rtc, mday);
375 if (ret)
376 return ret;
377
378 /*
379 * Check the three alarm bytes.
380 *
381 * The Linux RTC system doesn't support the "don't care" capability
382 * of this RTC chip. We check for it anyways in case support is
383 * added in the future and only assign when we care.
384 */
385 if (likely(seconds < 0xc0))
386 alrm->time.tm_sec = ds1685_rtc_bcd2bin(rtc, seconds,
387 RTC_SECS_BCD_MASK,
388 RTC_SECS_BIN_MASK);
389
390 if (likely(minutes < 0xc0))
391 alrm->time.tm_min = ds1685_rtc_bcd2bin(rtc, minutes,
392 RTC_MINS_BCD_MASK,
393 RTC_MINS_BIN_MASK);
394
395 if (likely(hours < 0xc0))
396 alrm->time.tm_hour = ds1685_rtc_bcd2bin(rtc, hours,
397 RTC_HRS_24_BCD_MASK,
398 RTC_HRS_24_BIN_MASK);
399
400 /* Write the data to rtc_wkalrm. */
401 alrm->time.tm_mday = ds1685_rtc_bcd2bin(rtc, mday, RTC_MDAY_BCD_MASK,
402 RTC_MDAY_BIN_MASK);
403 alrm->enabled = !!(ctrlb & RTC_CTRL_B_AIE);
404 alrm->pending = !!(ctrlc & RTC_CTRL_C_AF);
405
406 return 0;
407 }
408
409 /**
410 * ds1685_rtc_set_alarm - sets the alarm in registers.
411 * @dev: pointer to device structure.
412 * @alrm: pointer to rtc_wkalrm structure.
413 */
414 static int
415 ds1685_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
416 {
417 struct ds1685_priv *rtc = dev_get_drvdata(dev);
418 u8 ctrlb, seconds, minutes, hours, mday;
419 int ret;
420
421 /* Fetch the alarm info and convert to BCD. */
422 seconds = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_sec,
423 RTC_SECS_BIN_MASK,
424 RTC_SECS_BCD_MASK);
425 minutes = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_min,
426 RTC_MINS_BIN_MASK,
427 RTC_MINS_BCD_MASK);
428 hours = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_hour,
429 RTC_HRS_24_BIN_MASK,
430 RTC_HRS_24_BCD_MASK);
431 mday = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_mday,
432 RTC_MDAY_BIN_MASK,
433 RTC_MDAY_BCD_MASK);
434
435 /* Check the month date for validity. */
436 ret = ds1685_rtc_check_mday(rtc, mday);
437 if (ret)
438 return ret;
439
440 /*
441 * Check the three alarm bytes.
442 *
443 * The Linux RTC system doesn't support the "don't care" capability
444 * of this RTC chip because rtc_valid_tm tries to validate every
445 * field, and we only support four fields. We put the support
446 * here anyways for the future.
447 */
448 if (unlikely(seconds >= 0xc0))
449 seconds = 0xff;
450
451 if (unlikely(minutes >= 0xc0))
452 minutes = 0xff;
453
454 if (unlikely(hours >= 0xc0))
455 hours = 0xff;
456
457 alrm->time.tm_mon = -1;
458 alrm->time.tm_year = -1;
459 alrm->time.tm_wday = -1;
460 alrm->time.tm_yday = -1;
461 alrm->time.tm_isdst = -1;
462
463 /* Disable the alarm interrupt first. */
464 ds1685_rtc_begin_data_access(rtc);
465 ctrlb = rtc->read(rtc, RTC_CTRL_B);
466 rtc->write(rtc, RTC_CTRL_B, (ctrlb & ~(RTC_CTRL_B_AIE)));
467
468 /* Read ctrlc to clear RTC_CTRL_C_AF. */
469 rtc->read(rtc, RTC_CTRL_C);
470
471 /*
472 * Set the data mode to use and store the time values in the
473 * RTC registers.
474 */
475 ctrlb = rtc->read(rtc, RTC_CTRL_B);
476 if (rtc->bcd_mode)
477 ctrlb &= ~(RTC_CTRL_B_DM);
478 else
479 ctrlb |= RTC_CTRL_B_DM;
480 rtc->write(rtc, RTC_CTRL_B, ctrlb);
481 rtc->write(rtc, RTC_SECS_ALARM, seconds);
482 rtc->write(rtc, RTC_MINS_ALARM, minutes);
483 rtc->write(rtc, RTC_HRS_ALARM, hours);
484 rtc->write(rtc, RTC_MDAY_ALARM, mday);
485
486 /* Re-enable the alarm if needed. */
487 if (alrm->enabled) {
488 ctrlb = rtc->read(rtc, RTC_CTRL_B);
489 ctrlb |= RTC_CTRL_B_AIE;
490 rtc->write(rtc, RTC_CTRL_B, ctrlb);
491 }
492
493 /* Done! */
494 ds1685_rtc_end_data_access(rtc);
495
496 return 0;
497 }
498 /* ----------------------------------------------------------------------- */
499
500
501 /* ----------------------------------------------------------------------- */
502 /* /dev/rtcX Interface functions */
503
504 /**
505 * ds1685_rtc_alarm_irq_enable - replaces ioctl() RTC_AIE on/off.
506 * @dev: pointer to device structure.
507 * @enabled: flag indicating whether to enable or disable.
508 */
509 static int
510 ds1685_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
511 {
512 struct ds1685_priv *rtc = dev_get_drvdata(dev);
513
514 /* Flip the requisite interrupt-enable bit. */
515 if (enabled)
516 rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) |
517 RTC_CTRL_B_AIE));
518 else
519 rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) &
520 ~(RTC_CTRL_B_AIE)));
521
522 /* Read Control C to clear all the flag bits. */
523 rtc->read(rtc, RTC_CTRL_C);
524
525 return 0;
526 }
527 /* ----------------------------------------------------------------------- */
528
529
530 /* ----------------------------------------------------------------------- */
531 /* IRQ handler */
532
533 /**
534 * ds1685_rtc_extended_irq - take care of extended interrupts
535 * @rtc: pointer to the ds1685 rtc structure.
536 * @pdev: platform device pointer.
537 */
538 static void
539 ds1685_rtc_extended_irq(struct ds1685_priv *rtc, struct platform_device *pdev)
540 {
541 u8 ctrl4a, ctrl4b;
542
543 ds1685_rtc_switch_to_bank1(rtc);
544 ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
545 ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B);
546
547 /*
548 * Check for a kickstart interrupt. With Vcc applied, this
549 * typically means that the power button was pressed, so we
550 * begin the shutdown sequence.
551 */
552 if ((ctrl4b & RTC_CTRL_4B_KSE) && (ctrl4a & RTC_CTRL_4A_KF)) {
553 /* Briefly disable kickstarts to debounce button presses. */
554 rtc->write(rtc, RTC_EXT_CTRL_4B,
555 (rtc->read(rtc, RTC_EXT_CTRL_4B) &
556 ~(RTC_CTRL_4B_KSE)));
557
558 /* Clear the kickstart flag. */
559 rtc->write(rtc, RTC_EXT_CTRL_4A,
560 (ctrl4a & ~(RTC_CTRL_4A_KF)));
561
562
563 /*
564 * Sleep 500ms before re-enabling kickstarts. This allows
565 * adequate time to avoid reading signal jitter as additional
566 * button presses.
567 */
568 msleep(500);
569 rtc->write(rtc, RTC_EXT_CTRL_4B,
570 (rtc->read(rtc, RTC_EXT_CTRL_4B) |
571 RTC_CTRL_4B_KSE));
572
573 /* Call the platform pre-poweroff function. Else, shutdown. */
574 if (rtc->prepare_poweroff != NULL)
575 rtc->prepare_poweroff();
576 else
577 ds1685_rtc_poweroff(pdev);
578 }
579
580 /*
581 * Check for a wake-up interrupt. With Vcc applied, this is
582 * essentially a second alarm interrupt, except it takes into
583 * account the 'date' register in bank1 in addition to the
584 * standard three alarm registers.
585 */
586 if ((ctrl4b & RTC_CTRL_4B_WIE) && (ctrl4a & RTC_CTRL_4A_WF)) {
587 rtc->write(rtc, RTC_EXT_CTRL_4A,
588 (ctrl4a & ~(RTC_CTRL_4A_WF)));
589
590 /* Call the platform wake_alarm function if defined. */
591 if (rtc->wake_alarm != NULL)
592 rtc->wake_alarm();
593 else
594 dev_warn(&pdev->dev,
595 "Wake Alarm IRQ just occurred!\n");
596 }
597
598 /*
599 * Check for a ram-clear interrupt. This happens if RIE=1 and RF=0
600 * when RCE=1 in 4B. This clears all NVRAM bytes in bank0 by setting
601 * each byte to a logic 1. This has no effect on any extended
602 * NV-SRAM that might be present, nor on the time/calendar/alarm
603 * registers. After a ram-clear is completed, there is a minimum
604 * recovery time of ~150ms in which all reads/writes are locked out.
605 * NOTE: A ram-clear can still occur if RCE=1 and RIE=0. We cannot
606 * catch this scenario.
607 */
608 if ((ctrl4b & RTC_CTRL_4B_RIE) && (ctrl4a & RTC_CTRL_4A_RF)) {
609 rtc->write(rtc, RTC_EXT_CTRL_4A,
610 (ctrl4a & ~(RTC_CTRL_4A_RF)));
611 msleep(150);
612
613 /* Call the platform post_ram_clear function if defined. */
614 if (rtc->post_ram_clear != NULL)
615 rtc->post_ram_clear();
616 else
617 dev_warn(&pdev->dev,
618 "RAM-Clear IRQ just occurred!\n");
619 }
620 ds1685_rtc_switch_to_bank0(rtc);
621 }
622
623 /**
624 * ds1685_rtc_irq_handler - IRQ handler.
625 * @irq: IRQ number.
626 * @dev_id: platform device pointer.
627 */
628 static irqreturn_t
629 ds1685_rtc_irq_handler(int irq, void *dev_id)
630 {
631 struct platform_device *pdev = dev_id;
632 struct ds1685_priv *rtc = platform_get_drvdata(pdev);
633 struct mutex *rtc_mutex;
634 u8 ctrlb, ctrlc;
635 unsigned long events = 0;
636 u8 num_irqs = 0;
637
638 /* Abort early if the device isn't ready yet (i.e., DEBUG_SHIRQ). */
639 if (unlikely(!rtc))
640 return IRQ_HANDLED;
641
642 rtc_mutex = &rtc->dev->ops_lock;
643 mutex_lock(rtc_mutex);
644
645 /* Ctrlb holds the interrupt-enable bits and ctrlc the flag bits. */
646 ctrlb = rtc->read(rtc, RTC_CTRL_B);
647 ctrlc = rtc->read(rtc, RTC_CTRL_C);
648
649 /* Is the IRQF bit set? */
650 if (likely(ctrlc & RTC_CTRL_C_IRQF)) {
651 /*
652 * We need to determine if it was one of the standard
653 * events: PF, AF, or UF. If so, we handle them and
654 * update the RTC core.
655 */
656 if (likely(ctrlc & RTC_CTRL_B_PAU_MASK)) {
657 events = RTC_IRQF;
658
659 /* Check for a periodic interrupt. */
660 if ((ctrlb & RTC_CTRL_B_PIE) &&
661 (ctrlc & RTC_CTRL_C_PF)) {
662 events |= RTC_PF;
663 num_irqs++;
664 }
665
666 /* Check for an alarm interrupt. */
667 if ((ctrlb & RTC_CTRL_B_AIE) &&
668 (ctrlc & RTC_CTRL_C_AF)) {
669 events |= RTC_AF;
670 num_irqs++;
671 }
672
673 /* Check for an update interrupt. */
674 if ((ctrlb & RTC_CTRL_B_UIE) &&
675 (ctrlc & RTC_CTRL_C_UF)) {
676 events |= RTC_UF;
677 num_irqs++;
678 }
679 } else {
680 /*
681 * One of the "extended" interrupts was received that
682 * is not recognized by the RTC core.
683 */
684 ds1685_rtc_extended_irq(rtc, pdev);
685 }
686 }
687 rtc_update_irq(rtc->dev, num_irqs, events);
688 mutex_unlock(rtc_mutex);
689
690 return events ? IRQ_HANDLED : IRQ_NONE;
691 }
692 /* ----------------------------------------------------------------------- */
693
694
695 /* ----------------------------------------------------------------------- */
696 /* ProcFS interface */
697
698 #ifdef CONFIG_PROC_FS
699 #define NUM_REGS 6 /* Num of control registers. */
700 #define NUM_BITS 8 /* Num bits per register. */
701 #define NUM_SPACES 4 /* Num spaces between each bit. */
702
703 /*
704 * Periodic Interrupt Rates.
705 */
706 static const char *ds1685_rtc_pirq_rate[16] = {
707 "none", "3.90625ms", "7.8125ms", "0.122070ms", "0.244141ms",
708 "0.488281ms", "0.9765625ms", "1.953125ms", "3.90625ms", "7.8125ms",
709 "15.625ms", "31.25ms", "62.5ms", "125ms", "250ms", "500ms"
710 };
711
712 /*
713 * Square-Wave Output Frequencies.
714 */
715 static const char *ds1685_rtc_sqw_freq[16] = {
716 "none", "256Hz", "128Hz", "8192Hz", "4096Hz", "2048Hz", "1024Hz",
717 "512Hz", "256Hz", "128Hz", "64Hz", "32Hz", "16Hz", "8Hz", "4Hz", "2Hz"
718 };
719
720 /**
721 * ds1685_rtc_proc - procfs access function.
722 * @dev: pointer to device structure.
723 * @seq: pointer to seq_file structure.
724 */
725 static int
726 ds1685_rtc_proc(struct device *dev, struct seq_file *seq)
727 {
728 struct ds1685_priv *rtc = dev_get_drvdata(dev);
729 u8 ctrla, ctrlb, ctrlc, ctrld, ctrl4a, ctrl4b, ssn[8];
730 char *model;
731
732 /* Read all the relevant data from the control registers. */
733 ds1685_rtc_switch_to_bank1(rtc);
734 ds1685_rtc_get_ssn(rtc, ssn);
735 ctrla = rtc->read(rtc, RTC_CTRL_A);
736 ctrlb = rtc->read(rtc, RTC_CTRL_B);
737 ctrlc = rtc->read(rtc, RTC_CTRL_C);
738 ctrld = rtc->read(rtc, RTC_CTRL_D);
739 ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
740 ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B);
741 ds1685_rtc_switch_to_bank0(rtc);
742
743 /* Determine the RTC model. */
744 switch (ssn[0]) {
745 case RTC_MODEL_DS1685:
746 model = "DS1685/DS1687\0";
747 break;
748 case RTC_MODEL_DS1689:
749 model = "DS1689/DS1693\0";
750 break;
751 case RTC_MODEL_DS17285:
752 model = "DS17285/DS17287\0";
753 break;
754 case RTC_MODEL_DS17485:
755 model = "DS17485/DS17487\0";
756 break;
757 case RTC_MODEL_DS17885:
758 model = "DS17885/DS17887\0";
759 break;
760 default:
761 model = "Unknown\0";
762 break;
763 }
764
765 /* Print out the information. */
766 seq_printf(seq,
767 "Model\t\t: %s\n"
768 "Oscillator\t: %s\n"
769 "12/24hr\t\t: %s\n"
770 "DST\t\t: %s\n"
771 "Data mode\t: %s\n"
772 "Battery\t\t: %s\n"
773 "Aux batt\t: %s\n"
774 "Update IRQ\t: %s\n"
775 "Periodic IRQ\t: %s\n"
776 "Periodic Rate\t: %s\n"
777 "SQW Freq\t: %s\n"
778 "Serial #\t: %8phC\n",
779 model,
780 ((ctrla & RTC_CTRL_A_DV1) ? "enabled" : "disabled"),
781 ((ctrlb & RTC_CTRL_B_2412) ? "24-hour" : "12-hour"),
782 ((ctrlb & RTC_CTRL_B_DSE) ? "enabled" : "disabled"),
783 ((ctrlb & RTC_CTRL_B_DM) ? "binary" : "BCD"),
784 ((ctrld & RTC_CTRL_D_VRT) ? "ok" : "exhausted or n/a"),
785 ((ctrl4a & RTC_CTRL_4A_VRT2) ? "ok" : "exhausted or n/a"),
786 ((ctrlb & RTC_CTRL_B_UIE) ? "yes" : "no"),
787 ((ctrlb & RTC_CTRL_B_PIE) ? "yes" : "no"),
788 (!(ctrl4b & RTC_CTRL_4B_E32K) ?
789 ds1685_rtc_pirq_rate[(ctrla & RTC_CTRL_A_RS_MASK)] : "none"),
790 (!((ctrl4b & RTC_CTRL_4B_E32K)) ?
791 ds1685_rtc_sqw_freq[(ctrla & RTC_CTRL_A_RS_MASK)] : "32768Hz"),
792 ssn);
793 return 0;
794 }
795 #else
796 #define ds1685_rtc_proc NULL
797 #endif /* CONFIG_PROC_FS */
798 /* ----------------------------------------------------------------------- */
799
800
801 /* ----------------------------------------------------------------------- */
802 /* RTC Class operations */
803
804 static const struct rtc_class_ops
805 ds1685_rtc_ops = {
806 .proc = ds1685_rtc_proc,
807 .read_time = ds1685_rtc_read_time,
808 .set_time = ds1685_rtc_set_time,
809 .read_alarm = ds1685_rtc_read_alarm,
810 .set_alarm = ds1685_rtc_set_alarm,
811 .alarm_irq_enable = ds1685_rtc_alarm_irq_enable,
812 };
813 /* ----------------------------------------------------------------------- */
814
815 static int ds1685_nvram_read(void *priv, unsigned int pos, void *val,
816 size_t size)
817 {
818 struct ds1685_priv *rtc = priv;
819 struct mutex *rtc_mutex = &rtc->dev->ops_lock;
820 ssize_t count;
821 u8 *buf = val;
822 int err;
823
824 err = mutex_lock_interruptible(rtc_mutex);
825 if (err)
826 return err;
827
828 ds1685_rtc_switch_to_bank0(rtc);
829
830 /* Read NVRAM in time and bank0 registers. */
831 for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ_BANK0;
832 count++, size--) {
833 if (count < NVRAM_SZ_TIME)
834 *buf++ = rtc->read(rtc, (NVRAM_TIME_BASE + pos++));
835 else
836 *buf++ = rtc->read(rtc, (NVRAM_BANK0_BASE + pos++));
837 }
838
839 #ifndef CONFIG_RTC_DRV_DS1689
840 if (size > 0) {
841 ds1685_rtc_switch_to_bank1(rtc);
842
843 #ifndef CONFIG_RTC_DRV_DS1685
844 /* Enable burst-mode on DS17x85/DS17x87 */
845 rtc->write(rtc, RTC_EXT_CTRL_4A,
846 (rtc->read(rtc, RTC_EXT_CTRL_4A) |
847 RTC_CTRL_4A_BME));
848
849 /* We need one write to RTC_BANK1_RAM_ADDR_LSB to start
850 * reading with burst-mode */
851 rtc->write(rtc, RTC_BANK1_RAM_ADDR_LSB,
852 (pos - NVRAM_TOTAL_SZ_BANK0));
853 #endif
854
855 /* Read NVRAM in bank1 registers. */
856 for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ;
857 count++, size--) {
858 #ifdef CONFIG_RTC_DRV_DS1685
859 /* DS1685/DS1687 has to write to RTC_BANK1_RAM_ADDR
860 * before each read. */
861 rtc->write(rtc, RTC_BANK1_RAM_ADDR,
862 (pos - NVRAM_TOTAL_SZ_BANK0));
863 #endif
864 *buf++ = rtc->read(rtc, RTC_BANK1_RAM_DATA_PORT);
865 pos++;
866 }
867
868 #ifndef CONFIG_RTC_DRV_DS1685
869 /* Disable burst-mode on DS17x85/DS17x87 */
870 rtc->write(rtc, RTC_EXT_CTRL_4A,
871 (rtc->read(rtc, RTC_EXT_CTRL_4A) &
872 ~(RTC_CTRL_4A_BME)));
873 #endif
874 ds1685_rtc_switch_to_bank0(rtc);
875 }
876 #endif /* !CONFIG_RTC_DRV_DS1689 */
877 mutex_unlock(rtc_mutex);
878
879 return 0;
880 }
881
882 static int ds1685_nvram_write(void *priv, unsigned int pos, void *val,
883 size_t size)
884 {
885 struct ds1685_priv *rtc = priv;
886 struct mutex *rtc_mutex = &rtc->dev->ops_lock;
887 ssize_t count;
888 u8 *buf = val;
889 int err;
890
891 err = mutex_lock_interruptible(rtc_mutex);
892 if (err)
893 return err;
894
895 ds1685_rtc_switch_to_bank0(rtc);
896
897 /* Write NVRAM in time and bank0 registers. */
898 for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ_BANK0;
899 count++, size--)
900 if (count < NVRAM_SZ_TIME)
901 rtc->write(rtc, (NVRAM_TIME_BASE + pos++),
902 *buf++);
903 else
904 rtc->write(rtc, (NVRAM_BANK0_BASE), *buf++);
905
906 #ifndef CONFIG_RTC_DRV_DS1689
907 if (size > 0) {
908 ds1685_rtc_switch_to_bank1(rtc);
909
910 #ifndef CONFIG_RTC_DRV_DS1685
911 /* Enable burst-mode on DS17x85/DS17x87 */
912 rtc->write(rtc, RTC_EXT_CTRL_4A,
913 (rtc->read(rtc, RTC_EXT_CTRL_4A) |
914 RTC_CTRL_4A_BME));
915
916 /* We need one write to RTC_BANK1_RAM_ADDR_LSB to start
917 * writing with burst-mode */
918 rtc->write(rtc, RTC_BANK1_RAM_ADDR_LSB,
919 (pos - NVRAM_TOTAL_SZ_BANK0));
920 #endif
921
922 /* Write NVRAM in bank1 registers. */
923 for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ;
924 count++, size--) {
925 #ifdef CONFIG_RTC_DRV_DS1685
926 /* DS1685/DS1687 has to write to RTC_BANK1_RAM_ADDR
927 * before each read. */
928 rtc->write(rtc, RTC_BANK1_RAM_ADDR,
929 (pos - NVRAM_TOTAL_SZ_BANK0));
930 #endif
931 rtc->write(rtc, RTC_BANK1_RAM_DATA_PORT, *buf++);
932 pos++;
933 }
934
935 #ifndef CONFIG_RTC_DRV_DS1685
936 /* Disable burst-mode on DS17x85/DS17x87 */
937 rtc->write(rtc, RTC_EXT_CTRL_4A,
938 (rtc->read(rtc, RTC_EXT_CTRL_4A) &
939 ~(RTC_CTRL_4A_BME)));
940 #endif
941 ds1685_rtc_switch_to_bank0(rtc);
942 }
943 #endif /* !CONFIG_RTC_DRV_DS1689 */
944 mutex_unlock(rtc_mutex);
945
946 return 0;
947 }
948
949 /* ----------------------------------------------------------------------- */
950 /* SysFS interface */
951
952 /**
953 * ds1685_rtc_sysfs_battery_show - sysfs file for main battery status.
954 * @dev: pointer to device structure.
955 * @attr: pointer to device_attribute structure.
956 * @buf: pointer to char array to hold the output.
957 */
958 static ssize_t
959 ds1685_rtc_sysfs_battery_show(struct device *dev,
960 struct device_attribute *attr, char *buf)
961 {
962 struct ds1685_priv *rtc = dev_get_drvdata(dev->parent);
963 u8 ctrld;
964
965 ctrld = rtc->read(rtc, RTC_CTRL_D);
966
967 return sprintf(buf, "%s\n",
968 (ctrld & RTC_CTRL_D_VRT) ? "ok" : "not ok or N/A");
969 }
970 static DEVICE_ATTR(battery, S_IRUGO, ds1685_rtc_sysfs_battery_show, NULL);
971
972 /**
973 * ds1685_rtc_sysfs_auxbatt_show - sysfs file for aux battery status.
974 * @dev: pointer to device structure.
975 * @attr: pointer to device_attribute structure.
976 * @buf: pointer to char array to hold the output.
977 */
978 static ssize_t
979 ds1685_rtc_sysfs_auxbatt_show(struct device *dev,
980 struct device_attribute *attr, char *buf)
981 {
982 struct ds1685_priv *rtc = dev_get_drvdata(dev->parent);
983 u8 ctrl4a;
984
985 ds1685_rtc_switch_to_bank1(rtc);
986 ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
987 ds1685_rtc_switch_to_bank0(rtc);
988
989 return sprintf(buf, "%s\n",
990 (ctrl4a & RTC_CTRL_4A_VRT2) ? "ok" : "not ok or N/A");
991 }
992 static DEVICE_ATTR(auxbatt, S_IRUGO, ds1685_rtc_sysfs_auxbatt_show, NULL);
993
994 /**
995 * ds1685_rtc_sysfs_serial_show - sysfs file for silicon serial number.
996 * @dev: pointer to device structure.
997 * @attr: pointer to device_attribute structure.
998 * @buf: pointer to char array to hold the output.
999 */
1000 static ssize_t
1001 ds1685_rtc_sysfs_serial_show(struct device *dev,
1002 struct device_attribute *attr, char *buf)
1003 {
1004 struct ds1685_priv *rtc = dev_get_drvdata(dev->parent);
1005 u8 ssn[8];
1006
1007 ds1685_rtc_switch_to_bank1(rtc);
1008 ds1685_rtc_get_ssn(rtc, ssn);
1009 ds1685_rtc_switch_to_bank0(rtc);
1010
1011 return sprintf(buf, "%8phC\n", ssn);
1012 }
1013 static DEVICE_ATTR(serial, S_IRUGO, ds1685_rtc_sysfs_serial_show, NULL);
1014
1015 /**
1016 * struct ds1685_rtc_sysfs_misc_attrs - list for misc RTC features.
1017 */
1018 static struct attribute*
1019 ds1685_rtc_sysfs_misc_attrs[] = {
1020 &dev_attr_battery.attr,
1021 &dev_attr_auxbatt.attr,
1022 &dev_attr_serial.attr,
1023 NULL,
1024 };
1025
1026 /**
1027 * struct ds1685_rtc_sysfs_misc_grp - attr group for misc RTC features.
1028 */
1029 static const struct attribute_group
1030 ds1685_rtc_sysfs_misc_grp = {
1031 .name = "misc",
1032 .attrs = ds1685_rtc_sysfs_misc_attrs,
1033 };
1034
1035 /* ----------------------------------------------------------------------- */
1036 /* Driver Probe/Removal */
1037
1038 /**
1039 * ds1685_rtc_probe - initializes rtc driver.
1040 * @pdev: pointer to platform_device structure.
1041 */
1042 static int
1043 ds1685_rtc_probe(struct platform_device *pdev)
1044 {
1045 struct rtc_device *rtc_dev;
1046 struct resource *res;
1047 struct ds1685_priv *rtc;
1048 struct ds1685_rtc_platform_data *pdata;
1049 u8 ctrla, ctrlb, hours;
1050 unsigned char am_pm;
1051 int ret = 0;
1052 struct nvmem_config nvmem_cfg = {
1053 .name = "ds1685_nvram",
1054 .size = NVRAM_TOTAL_SZ,
1055 .reg_read = ds1685_nvram_read,
1056 .reg_write = ds1685_nvram_write,
1057 };
1058
1059 /* Get the platform data. */
1060 pdata = (struct ds1685_rtc_platform_data *) pdev->dev.platform_data;
1061 if (!pdata)
1062 return -ENODEV;
1063
1064 /* Allocate memory for the rtc device. */
1065 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
1066 if (!rtc)
1067 return -ENOMEM;
1068
1069 /*
1070 * Allocate/setup any IORESOURCE_MEM resources, if required. Not all
1071 * platforms put the RTC in an easy-access place. Like the SGI Octane,
1072 * which attaches the RTC to a "ByteBus", hooked to a SuperIO chip
1073 * that sits behind the IOC3 PCI metadevice.
1074 */
1075 if (pdata->alloc_io_resources) {
1076 /* Get the platform resources. */
1077 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1078 if (!res)
1079 return -ENXIO;
1080 rtc->size = resource_size(res);
1081
1082 /* Request a memory region. */
1083 /* XXX: mmio-only for now. */
1084 if (!devm_request_mem_region(&pdev->dev, res->start, rtc->size,
1085 pdev->name))
1086 return -EBUSY;
1087
1088 /*
1089 * Set the base address for the rtc, and ioremap its
1090 * registers.
1091 */
1092 rtc->baseaddr = res->start;
1093 rtc->regs = devm_ioremap(&pdev->dev, res->start, rtc->size);
1094 if (!rtc->regs)
1095 return -ENOMEM;
1096 }
1097 rtc->alloc_io_resources = pdata->alloc_io_resources;
1098
1099 /* Get the register step size. */
1100 if (pdata->regstep > 0)
1101 rtc->regstep = pdata->regstep;
1102 else
1103 rtc->regstep = 1;
1104
1105 /* Platform read function, else default if mmio setup */
1106 if (pdata->plat_read)
1107 rtc->read = pdata->plat_read;
1108 else
1109 if (pdata->alloc_io_resources)
1110 rtc->read = ds1685_read;
1111 else
1112 return -ENXIO;
1113
1114 /* Platform write function, else default if mmio setup */
1115 if (pdata->plat_write)
1116 rtc->write = pdata->plat_write;
1117 else
1118 if (pdata->alloc_io_resources)
1119 rtc->write = ds1685_write;
1120 else
1121 return -ENXIO;
1122
1123 /* Platform pre-shutdown function, if defined. */
1124 if (pdata->plat_prepare_poweroff)
1125 rtc->prepare_poweroff = pdata->plat_prepare_poweroff;
1126
1127 /* Platform wake_alarm function, if defined. */
1128 if (pdata->plat_wake_alarm)
1129 rtc->wake_alarm = pdata->plat_wake_alarm;
1130
1131 /* Platform post_ram_clear function, if defined. */
1132 if (pdata->plat_post_ram_clear)
1133 rtc->post_ram_clear = pdata->plat_post_ram_clear;
1134
1135 /* set the driver data. */
1136 platform_set_drvdata(pdev, rtc);
1137
1138 /* Turn the oscillator on if is not already on (DV1 = 1). */
1139 ctrla = rtc->read(rtc, RTC_CTRL_A);
1140 if (!(ctrla & RTC_CTRL_A_DV1))
1141 ctrla |= RTC_CTRL_A_DV1;
1142
1143 /* Enable the countdown chain (DV2 = 0) */
1144 ctrla &= ~(RTC_CTRL_A_DV2);
1145
1146 /* Clear RS3-RS0 in Control A. */
1147 ctrla &= ~(RTC_CTRL_A_RS_MASK);
1148
1149 /*
1150 * All done with Control A. Switch to Bank 1 for the remainder of
1151 * the RTC setup so we have access to the extended functions.
1152 */
1153 ctrla |= RTC_CTRL_A_DV0;
1154 rtc->write(rtc, RTC_CTRL_A, ctrla);
1155
1156 /* Default to 32768kHz output. */
1157 rtc->write(rtc, RTC_EXT_CTRL_4B,
1158 (rtc->read(rtc, RTC_EXT_CTRL_4B) | RTC_CTRL_4B_E32K));
1159
1160 /* Set the SET bit in Control B so we can do some housekeeping. */
1161 rtc->write(rtc, RTC_CTRL_B,
1162 (rtc->read(rtc, RTC_CTRL_B) | RTC_CTRL_B_SET));
1163
1164 /* Read Ext Ctrl 4A and check the INCR bit to avoid a lockout. */
1165 while (rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_INCR)
1166 cpu_relax();
1167
1168 /*
1169 * If the platform supports BCD mode, then set DM=0 in Control B.
1170 * Otherwise, set DM=1 for BIN mode.
1171 */
1172 ctrlb = rtc->read(rtc, RTC_CTRL_B);
1173 if (pdata->bcd_mode)
1174 ctrlb &= ~(RTC_CTRL_B_DM);
1175 else
1176 ctrlb |= RTC_CTRL_B_DM;
1177 rtc->bcd_mode = pdata->bcd_mode;
1178
1179 /*
1180 * Disable Daylight Savings Time (DSE = 0).
1181 * The RTC has hardcoded timezone information that is rendered
1182 * obselete. We'll let the OS deal with DST settings instead.
1183 */
1184 if (ctrlb & RTC_CTRL_B_DSE)
1185 ctrlb &= ~(RTC_CTRL_B_DSE);
1186
1187 /* Force 24-hour mode (2412 = 1). */
1188 if (!(ctrlb & RTC_CTRL_B_2412)) {
1189 /* Reinitialize the time hours. */
1190 hours = rtc->read(rtc, RTC_HRS);
1191 am_pm = hours & RTC_HRS_AMPM_MASK;
1192 hours = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_12_BCD_MASK,
1193 RTC_HRS_12_BIN_MASK);
1194 hours = ((hours == 12) ? 0 : ((am_pm) ? hours + 12 : hours));
1195
1196 /* Enable 24-hour mode. */
1197 ctrlb |= RTC_CTRL_B_2412;
1198
1199 /* Write back to Control B, including DM & DSE bits. */
1200 rtc->write(rtc, RTC_CTRL_B, ctrlb);
1201
1202 /* Write the time hours back. */
1203 rtc->write(rtc, RTC_HRS,
1204 ds1685_rtc_bin2bcd(rtc, hours,
1205 RTC_HRS_24_BIN_MASK,
1206 RTC_HRS_24_BCD_MASK));
1207
1208 /* Reinitialize the alarm hours. */
1209 hours = rtc->read(rtc, RTC_HRS_ALARM);
1210 am_pm = hours & RTC_HRS_AMPM_MASK;
1211 hours = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_12_BCD_MASK,
1212 RTC_HRS_12_BIN_MASK);
1213 hours = ((hours == 12) ? 0 : ((am_pm) ? hours + 12 : hours));
1214
1215 /* Write the alarm hours back. */
1216 rtc->write(rtc, RTC_HRS_ALARM,
1217 ds1685_rtc_bin2bcd(rtc, hours,
1218 RTC_HRS_24_BIN_MASK,
1219 RTC_HRS_24_BCD_MASK));
1220 } else {
1221 /* 24-hour mode is already set, so write Control B back. */
1222 rtc->write(rtc, RTC_CTRL_B, ctrlb);
1223 }
1224
1225 /* Unset the SET bit in Control B so the RTC can update. */
1226 rtc->write(rtc, RTC_CTRL_B,
1227 (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_SET)));
1228
1229 /* Check the main battery. */
1230 if (!(rtc->read(rtc, RTC_CTRL_D) & RTC_CTRL_D_VRT))
1231 dev_warn(&pdev->dev,
1232 "Main battery is exhausted! RTC may be invalid!\n");
1233
1234 /* Check the auxillary battery. It is optional. */
1235 if (!(rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_VRT2))
1236 dev_warn(&pdev->dev,
1237 "Aux battery is exhausted or not available.\n");
1238
1239 /* Read Ctrl B and clear PIE/AIE/UIE. */
1240 rtc->write(rtc, RTC_CTRL_B,
1241 (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_PAU_MASK)));
1242
1243 /* Reading Ctrl C auto-clears PF/AF/UF. */
1244 rtc->read(rtc, RTC_CTRL_C);
1245
1246 /* Read Ctrl 4B and clear RIE/WIE/KSE. */
1247 rtc->write(rtc, RTC_EXT_CTRL_4B,
1248 (rtc->read(rtc, RTC_EXT_CTRL_4B) & ~(RTC_CTRL_4B_RWK_MASK)));
1249
1250 /* Clear RF/WF/KF in Ctrl 4A. */
1251 rtc->write(rtc, RTC_EXT_CTRL_4A,
1252 (rtc->read(rtc, RTC_EXT_CTRL_4A) & ~(RTC_CTRL_4A_RWK_MASK)));
1253
1254 /*
1255 * Re-enable KSE to handle power button events. We do not enable
1256 * WIE or RIE by default.
1257 */
1258 rtc->write(rtc, RTC_EXT_CTRL_4B,
1259 (rtc->read(rtc, RTC_EXT_CTRL_4B) | RTC_CTRL_4B_KSE));
1260
1261 rtc_dev = devm_rtc_allocate_device(&pdev->dev);
1262 if (IS_ERR(rtc_dev))
1263 return PTR_ERR(rtc_dev);
1264
1265 rtc_dev->ops = &ds1685_rtc_ops;
1266
1267 /* Century bit is useless because leap year fails in 1900 and 2100 */
1268 rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
1269 rtc_dev->range_max = RTC_TIMESTAMP_END_2099;
1270
1271 /* Maximum periodic rate is 8192Hz (0.122070ms). */
1272 rtc_dev->max_user_freq = RTC_MAX_USER_FREQ;
1273
1274 /* See if the platform doesn't support UIE. */
1275 if (pdata->uie_unsupported)
1276 rtc_dev->uie_unsupported = 1;
1277 rtc->uie_unsupported = pdata->uie_unsupported;
1278
1279 rtc->dev = rtc_dev;
1280
1281 /*
1282 * Fetch the IRQ and setup the interrupt handler.
1283 *
1284 * Not all platforms have the IRQF pin tied to something. If not, the
1285 * RTC will still set the *IE / *F flags and raise IRQF in ctrlc, but
1286 * there won't be an automatic way of notifying the kernel about it,
1287 * unless ctrlc is explicitly polled.
1288 */
1289 if (!pdata->no_irq) {
1290 ret = platform_get_irq(pdev, 0);
1291 if (ret <= 0)
1292 return ret;
1293
1294 rtc->irq_num = ret;
1295
1296 /* Request an IRQ. */
1297 ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_num,
1298 NULL, ds1685_rtc_irq_handler,
1299 IRQF_SHARED | IRQF_ONESHOT,
1300 pdev->name, pdev);
1301
1302 /* Check to see if something came back. */
1303 if (unlikely(ret)) {
1304 dev_warn(&pdev->dev,
1305 "RTC interrupt not available\n");
1306 rtc->irq_num = 0;
1307 }
1308 }
1309 rtc->no_irq = pdata->no_irq;
1310
1311 /* Setup complete. */
1312 ds1685_rtc_switch_to_bank0(rtc);
1313
1314 ret = rtc_add_group(rtc_dev, &ds1685_rtc_sysfs_misc_grp);
1315 if (ret)
1316 return ret;
1317
1318 rtc_dev->nvram_old_abi = true;
1319 nvmem_cfg.priv = rtc;
1320 ret = rtc_nvmem_register(rtc_dev, &nvmem_cfg);
1321 if (ret)
1322 return ret;
1323
1324 return rtc_register_device(rtc_dev);
1325 }
1326
1327 /**
1328 * ds1685_rtc_remove - removes rtc driver.
1329 * @pdev: pointer to platform_device structure.
1330 */
1331 static int
1332 ds1685_rtc_remove(struct platform_device *pdev)
1333 {
1334 struct ds1685_priv *rtc = platform_get_drvdata(pdev);
1335
1336 /* Read Ctrl B and clear PIE/AIE/UIE. */
1337 rtc->write(rtc, RTC_CTRL_B,
1338 (rtc->read(rtc, RTC_CTRL_B) &
1339 ~(RTC_CTRL_B_PAU_MASK)));
1340
1341 /* Reading Ctrl C auto-clears PF/AF/UF. */
1342 rtc->read(rtc, RTC_CTRL_C);
1343
1344 /* Read Ctrl 4B and clear RIE/WIE/KSE. */
1345 rtc->write(rtc, RTC_EXT_CTRL_4B,
1346 (rtc->read(rtc, RTC_EXT_CTRL_4B) &
1347 ~(RTC_CTRL_4B_RWK_MASK)));
1348
1349 /* Manually clear RF/WF/KF in Ctrl 4A. */
1350 rtc->write(rtc, RTC_EXT_CTRL_4A,
1351 (rtc->read(rtc, RTC_EXT_CTRL_4A) &
1352 ~(RTC_CTRL_4A_RWK_MASK)));
1353
1354 return 0;
1355 }
1356
1357 /**
1358 * ds1685_rtc_driver - rtc driver properties.
1359 */
1360 static struct platform_driver ds1685_rtc_driver = {
1361 .driver = {
1362 .name = "rtc-ds1685",
1363 },
1364 .probe = ds1685_rtc_probe,
1365 .remove = ds1685_rtc_remove,
1366 };
1367 module_platform_driver(ds1685_rtc_driver);
1368 /* ----------------------------------------------------------------------- */
1369
1370
1371 /* ----------------------------------------------------------------------- */
1372 /* Poweroff function */
1373
1374 /**
1375 * ds1685_rtc_poweroff - uses the RTC chip to power the system off.
1376 * @pdev: pointer to platform_device structure.
1377 */
1378 void __noreturn
1379 ds1685_rtc_poweroff(struct platform_device *pdev)
1380 {
1381 u8 ctrla, ctrl4a, ctrl4b;
1382 struct ds1685_priv *rtc;
1383
1384 /* Check for valid RTC data, else, spin forever. */
1385 if (unlikely(!pdev)) {
1386 pr_emerg("platform device data not available, spinning forever ...\n");
1387 while(1);
1388 unreachable();
1389 } else {
1390 /* Get the rtc data. */
1391 rtc = platform_get_drvdata(pdev);
1392
1393 /*
1394 * Disable our IRQ. We're powering down, so we're not
1395 * going to worry about cleaning up. Most of that should
1396 * have been taken care of by the shutdown scripts and this
1397 * is the final function call.
1398 */
1399 if (!rtc->no_irq)
1400 disable_irq_nosync(rtc->irq_num);
1401
1402 /* Oscillator must be on and the countdown chain enabled. */
1403 ctrla = rtc->read(rtc, RTC_CTRL_A);
1404 ctrla |= RTC_CTRL_A_DV1;
1405 ctrla &= ~(RTC_CTRL_A_DV2);
1406 rtc->write(rtc, RTC_CTRL_A, ctrla);
1407
1408 /*
1409 * Read Control 4A and check the status of the auxillary
1410 * battery. This must be present and working (VRT2 = 1)
1411 * for wakeup and kickstart functionality to be useful.
1412 */
1413 ds1685_rtc_switch_to_bank1(rtc);
1414 ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
1415 if (ctrl4a & RTC_CTRL_4A_VRT2) {
1416 /* Clear all of the interrupt flags on Control 4A. */
1417 ctrl4a &= ~(RTC_CTRL_4A_RWK_MASK);
1418 rtc->write(rtc, RTC_EXT_CTRL_4A, ctrl4a);
1419
1420 /*
1421 * The auxillary battery is present and working.
1422 * Enable extended functions (ABE=1), enable
1423 * wake-up (WIE=1), and enable kickstart (KSE=1)
1424 * in Control 4B.
1425 */
1426 ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B);
1427 ctrl4b |= (RTC_CTRL_4B_ABE | RTC_CTRL_4B_WIE |
1428 RTC_CTRL_4B_KSE);
1429 rtc->write(rtc, RTC_EXT_CTRL_4B, ctrl4b);
1430 }
1431
1432 /* Set PAB to 1 in Control 4A to power the system down. */
1433 dev_warn(&pdev->dev, "Powerdown.\n");
1434 msleep(20);
1435 rtc->write(rtc, RTC_EXT_CTRL_4A,
1436 (ctrl4a | RTC_CTRL_4A_PAB));
1437
1438 /* Spin ... we do not switch back to bank0. */
1439 while(1);
1440 unreachable();
1441 }
1442 }
1443 EXPORT_SYMBOL(ds1685_rtc_poweroff);
1444 /* ----------------------------------------------------------------------- */
1445
1446
1447 MODULE_AUTHOR("Joshua Kinard <kumba@gentoo.org>");
1448 MODULE_AUTHOR("Matthias Fuchs <matthias.fuchs@esd-electronics.com>");
1449 MODULE_DESCRIPTION("Dallas/Maxim DS1685/DS1687-series RTC driver");
1450 MODULE_LICENSE("GPL");
1451 MODULE_ALIAS("platform:rtc-ds1685");