]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/rtc/rtc-mxc.c
Merge tag 'remoteproc-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/ohad...
[mirror_ubuntu-bionic-kernel.git] / drivers / rtc / rtc-mxc.c
1 /*
2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3 *
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
7 *
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
10 */
11
12 #include <linux/io.h>
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
19
20 #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
21 #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
22 #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
23
24 #define RTC_SW_BIT (1 << 0)
25 #define RTC_ALM_BIT (1 << 2)
26 #define RTC_1HZ_BIT (1 << 4)
27 #define RTC_2HZ_BIT (1 << 7)
28 #define RTC_SAM0_BIT (1 << 8)
29 #define RTC_SAM1_BIT (1 << 9)
30 #define RTC_SAM2_BIT (1 << 10)
31 #define RTC_SAM3_BIT (1 << 11)
32 #define RTC_SAM4_BIT (1 << 12)
33 #define RTC_SAM5_BIT (1 << 13)
34 #define RTC_SAM6_BIT (1 << 14)
35 #define RTC_SAM7_BIT (1 << 15)
36 #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
37 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
38 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
39
40 #define RTC_ENABLE_BIT (1 << 7)
41
42 #define MAX_PIE_NUM 9
43 #define MAX_PIE_FREQ 512
44 static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
45 { 2, RTC_2HZ_BIT },
46 { 4, RTC_SAM0_BIT },
47 { 8, RTC_SAM1_BIT },
48 { 16, RTC_SAM2_BIT },
49 { 32, RTC_SAM3_BIT },
50 { 64, RTC_SAM4_BIT },
51 { 128, RTC_SAM5_BIT },
52 { 256, RTC_SAM6_BIT },
53 { MAX_PIE_FREQ, RTC_SAM7_BIT },
54 };
55
56 #define MXC_RTC_TIME 0
57 #define MXC_RTC_ALARM 1
58
59 #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
60 #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
61 #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
62 #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
63 #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
64 #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
65 #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
66 #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
67 #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
68 #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
69 #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
70 #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
71 #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
72
73 enum imx_rtc_type {
74 IMX1_RTC,
75 IMX21_RTC,
76 };
77
78 struct rtc_plat_data {
79 struct rtc_device *rtc;
80 void __iomem *ioaddr;
81 int irq;
82 struct clk *clk;
83 struct rtc_time g_rtc_alarm;
84 enum imx_rtc_type devtype;
85 };
86
87 static const struct platform_device_id imx_rtc_devtype[] = {
88 {
89 .name = "imx1-rtc",
90 .driver_data = IMX1_RTC,
91 }, {
92 .name = "imx21-rtc",
93 .driver_data = IMX21_RTC,
94 }, {
95 /* sentinel */
96 }
97 };
98 MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
99
100 static inline int is_imx1_rtc(struct rtc_plat_data *data)
101 {
102 return data->devtype == IMX1_RTC;
103 }
104
105 /*
106 * This function is used to obtain the RTC time or the alarm value in
107 * second.
108 */
109 static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
110 {
111 struct platform_device *pdev = to_platform_device(dev);
112 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
113 void __iomem *ioaddr = pdata->ioaddr;
114 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
115
116 switch (time_alarm) {
117 case MXC_RTC_TIME:
118 day = readw(ioaddr + RTC_DAYR);
119 hr_min = readw(ioaddr + RTC_HOURMIN);
120 sec = readw(ioaddr + RTC_SECOND);
121 break;
122 case MXC_RTC_ALARM:
123 day = readw(ioaddr + RTC_DAYALARM);
124 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
125 sec = readw(ioaddr + RTC_ALRM_SEC);
126 break;
127 }
128
129 hr = hr_min >> 8;
130 min = hr_min & 0xff;
131
132 return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
133 }
134
135 /*
136 * This function sets the RTC alarm value or the time value.
137 */
138 static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
139 {
140 u32 tod, day, hr, min, sec, temp;
141 struct platform_device *pdev = to_platform_device(dev);
142 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
143 void __iomem *ioaddr = pdata->ioaddr;
144
145 day = div_s64_rem(time, 86400, &tod);
146
147 /* time is within a day now */
148 hr = tod / 3600;
149 tod -= hr * 3600;
150
151 /* time is within an hour now */
152 min = tod / 60;
153 sec = tod - min * 60;
154
155 temp = (hr << 8) + min;
156
157 switch (time_alarm) {
158 case MXC_RTC_TIME:
159 writew(day, ioaddr + RTC_DAYR);
160 writew(sec, ioaddr + RTC_SECOND);
161 writew(temp, ioaddr + RTC_HOURMIN);
162 break;
163 case MXC_RTC_ALARM:
164 writew(day, ioaddr + RTC_DAYALARM);
165 writew(sec, ioaddr + RTC_ALRM_SEC);
166 writew(temp, ioaddr + RTC_ALRM_HM);
167 break;
168 }
169 }
170
171 /*
172 * This function updates the RTC alarm registers and then clears all the
173 * interrupt status bits.
174 */
175 static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
176 {
177 time64_t time;
178 struct platform_device *pdev = to_platform_device(dev);
179 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
180 void __iomem *ioaddr = pdata->ioaddr;
181
182 time = rtc_tm_to_time64(alrm);
183
184 /* clear all the interrupt status bits */
185 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
186 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
187 }
188
189 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
190 unsigned int enabled)
191 {
192 struct platform_device *pdev = to_platform_device(dev);
193 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
194 void __iomem *ioaddr = pdata->ioaddr;
195 u32 reg;
196
197 spin_lock_irq(&pdata->rtc->irq_lock);
198 reg = readw(ioaddr + RTC_RTCIENR);
199
200 if (enabled)
201 reg |= bit;
202 else
203 reg &= ~bit;
204
205 writew(reg, ioaddr + RTC_RTCIENR);
206 spin_unlock_irq(&pdata->rtc->irq_lock);
207 }
208
209 /* This function is the RTC interrupt service routine. */
210 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
211 {
212 struct platform_device *pdev = dev_id;
213 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
214 void __iomem *ioaddr = pdata->ioaddr;
215 unsigned long flags;
216 u32 status;
217 u32 events = 0;
218
219 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
220 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
221 /* clear interrupt sources */
222 writew(status, ioaddr + RTC_RTCISR);
223
224 /* update irq data & counter */
225 if (status & RTC_ALM_BIT) {
226 events |= (RTC_AF | RTC_IRQF);
227 /* RTC alarm should be one-shot */
228 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
229 }
230
231 if (status & RTC_1HZ_BIT)
232 events |= (RTC_UF | RTC_IRQF);
233
234 if (status & PIT_ALL_ON)
235 events |= (RTC_PF | RTC_IRQF);
236
237 rtc_update_irq(pdata->rtc, 1, events);
238 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
239
240 return IRQ_HANDLED;
241 }
242
243 /*
244 * Clear all interrupts and release the IRQ
245 */
246 static void mxc_rtc_release(struct device *dev)
247 {
248 struct platform_device *pdev = to_platform_device(dev);
249 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
250 void __iomem *ioaddr = pdata->ioaddr;
251
252 spin_lock_irq(&pdata->rtc->irq_lock);
253
254 /* Disable all rtc interrupts */
255 writew(0, ioaddr + RTC_RTCIENR);
256
257 /* Clear all interrupt status */
258 writew(0xffffffff, ioaddr + RTC_RTCISR);
259
260 spin_unlock_irq(&pdata->rtc->irq_lock);
261 }
262
263 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
264 {
265 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
266 return 0;
267 }
268
269 /*
270 * This function reads the current RTC time into tm in Gregorian date.
271 */
272 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
273 {
274 time64_t val;
275
276 /* Avoid roll-over from reading the different registers */
277 do {
278 val = get_alarm_or_time(dev, MXC_RTC_TIME);
279 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
280
281 rtc_time64_to_tm(val, tm);
282
283 return 0;
284 }
285
286 /*
287 * This function sets the internal RTC time based on tm in Gregorian date.
288 */
289 static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
290 {
291 struct platform_device *pdev = to_platform_device(dev);
292 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
293
294 /*
295 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
296 */
297 if (is_imx1_rtc(pdata)) {
298 struct rtc_time tm;
299
300 rtc_time64_to_tm(time, &tm);
301 tm.tm_year = 70;
302 time = rtc_tm_to_time64(&tm);
303 }
304
305 /* Avoid roll-over from reading the different registers */
306 do {
307 set_alarm_or_time(dev, MXC_RTC_TIME, time);
308 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
309
310 return 0;
311 }
312
313 /*
314 * This function reads the current alarm value into the passed in 'alrm'
315 * argument. It updates the alrm's pending field value based on the whether
316 * an alarm interrupt occurs or not.
317 */
318 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
319 {
320 struct platform_device *pdev = to_platform_device(dev);
321 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
322 void __iomem *ioaddr = pdata->ioaddr;
323
324 rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
325 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
326
327 return 0;
328 }
329
330 /*
331 * This function sets the RTC alarm based on passed in alrm.
332 */
333 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
334 {
335 struct platform_device *pdev = to_platform_device(dev);
336 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
337
338 rtc_update_alarm(dev, &alrm->time);
339
340 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
341 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
342
343 return 0;
344 }
345
346 /* RTC layer */
347 static struct rtc_class_ops mxc_rtc_ops = {
348 .release = mxc_rtc_release,
349 .read_time = mxc_rtc_read_time,
350 .set_mmss64 = mxc_rtc_set_mmss,
351 .read_alarm = mxc_rtc_read_alarm,
352 .set_alarm = mxc_rtc_set_alarm,
353 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
354 };
355
356 static int mxc_rtc_probe(struct platform_device *pdev)
357 {
358 struct resource *res;
359 struct rtc_device *rtc;
360 struct rtc_plat_data *pdata = NULL;
361 u32 reg;
362 unsigned long rate;
363 int ret;
364
365 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
366 if (!pdata)
367 return -ENOMEM;
368
369 pdata->devtype = pdev->id_entry->driver_data;
370
371 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
372 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
373 if (IS_ERR(pdata->ioaddr))
374 return PTR_ERR(pdata->ioaddr);
375
376 pdata->clk = devm_clk_get(&pdev->dev, NULL);
377 if (IS_ERR(pdata->clk)) {
378 dev_err(&pdev->dev, "unable to get clock!\n");
379 return PTR_ERR(pdata->clk);
380 }
381
382 ret = clk_prepare_enable(pdata->clk);
383 if (ret)
384 return ret;
385
386 rate = clk_get_rate(pdata->clk);
387
388 if (rate == 32768)
389 reg = RTC_INPUT_CLK_32768HZ;
390 else if (rate == 32000)
391 reg = RTC_INPUT_CLK_32000HZ;
392 else if (rate == 38400)
393 reg = RTC_INPUT_CLK_38400HZ;
394 else {
395 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
396 ret = -EINVAL;
397 goto exit_put_clk;
398 }
399
400 reg |= RTC_ENABLE_BIT;
401 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
402 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
403 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
404 ret = -EIO;
405 goto exit_put_clk;
406 }
407
408 platform_set_drvdata(pdev, pdata);
409
410 /* Configure and enable the RTC */
411 pdata->irq = platform_get_irq(pdev, 0);
412
413 if (pdata->irq >= 0 &&
414 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
415 IRQF_SHARED, pdev->name, pdev) < 0) {
416 dev_warn(&pdev->dev, "interrupt not available.\n");
417 pdata->irq = -1;
418 }
419
420 if (pdata->irq >= 0)
421 device_init_wakeup(&pdev->dev, 1);
422
423 rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
424 THIS_MODULE);
425 if (IS_ERR(rtc)) {
426 ret = PTR_ERR(rtc);
427 goto exit_put_clk;
428 }
429
430 pdata->rtc = rtc;
431
432 return 0;
433
434 exit_put_clk:
435 clk_disable_unprepare(pdata->clk);
436
437 return ret;
438 }
439
440 static int mxc_rtc_remove(struct platform_device *pdev)
441 {
442 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
443
444 clk_disable_unprepare(pdata->clk);
445
446 return 0;
447 }
448
449 #ifdef CONFIG_PM_SLEEP
450 static int mxc_rtc_suspend(struct device *dev)
451 {
452 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
453
454 if (device_may_wakeup(dev))
455 enable_irq_wake(pdata->irq);
456
457 return 0;
458 }
459
460 static int mxc_rtc_resume(struct device *dev)
461 {
462 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
463
464 if (device_may_wakeup(dev))
465 disable_irq_wake(pdata->irq);
466
467 return 0;
468 }
469 #endif
470
471 static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
472
473 static struct platform_driver mxc_rtc_driver = {
474 .driver = {
475 .name = "mxc_rtc",
476 .pm = &mxc_rtc_pm_ops,
477 },
478 .id_table = imx_rtc_devtype,
479 .probe = mxc_rtc_probe,
480 .remove = mxc_rtc_remove,
481 };
482
483 module_platform_driver(mxc_rtc_driver)
484
485 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
486 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
487 MODULE_LICENSE("GPL");
488