]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/rtc/rtc-omap.c
Merge branch 'linux-4.15' of git://github.com/skeggsb/linux into drm-fixes
[mirror_ubuntu-bionic-kernel.git] / drivers / rtc / rtc-omap.c
1 /*
2 * TI OMAP Real Time Clock interface for Linux
3 *
4 * Copyright (C) 2003 MontaVista Software, Inc.
5 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
6 *
7 * Copyright (C) 2006 David Brownell (new RTC framework)
8 * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16 #include <dt-bindings/gpio/gpio.h>
17 #include <linux/bcd.h>
18 #include <linux/clk.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/io.h>
22 #include <linux/ioport.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/pinctrl/pinctrl.h>
28 #include <linux/pinctrl/pinconf.h>
29 #include <linux/pinctrl/pinconf-generic.h>
30 #include <linux/platform_device.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/rtc.h>
33
34 /*
35 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
36 * with century-range alarm matching, driven by the 32kHz clock.
37 *
38 * The main user-visible ways it differs from PC RTCs are by omitting
39 * "don't care" alarm fields and sub-second periodic IRQs, and having
40 * an autoadjust mechanism to calibrate to the true oscillator rate.
41 *
42 * Board-specific wiring options include using split power mode with
43 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
44 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
45 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
46 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
47 */
48
49 /* RTC registers */
50 #define OMAP_RTC_SECONDS_REG 0x00
51 #define OMAP_RTC_MINUTES_REG 0x04
52 #define OMAP_RTC_HOURS_REG 0x08
53 #define OMAP_RTC_DAYS_REG 0x0C
54 #define OMAP_RTC_MONTHS_REG 0x10
55 #define OMAP_RTC_YEARS_REG 0x14
56 #define OMAP_RTC_WEEKS_REG 0x18
57
58 #define OMAP_RTC_ALARM_SECONDS_REG 0x20
59 #define OMAP_RTC_ALARM_MINUTES_REG 0x24
60 #define OMAP_RTC_ALARM_HOURS_REG 0x28
61 #define OMAP_RTC_ALARM_DAYS_REG 0x2c
62 #define OMAP_RTC_ALARM_MONTHS_REG 0x30
63 #define OMAP_RTC_ALARM_YEARS_REG 0x34
64
65 #define OMAP_RTC_CTRL_REG 0x40
66 #define OMAP_RTC_STATUS_REG 0x44
67 #define OMAP_RTC_INTERRUPTS_REG 0x48
68
69 #define OMAP_RTC_COMP_LSB_REG 0x4c
70 #define OMAP_RTC_COMP_MSB_REG 0x50
71 #define OMAP_RTC_OSC_REG 0x54
72
73 #define OMAP_RTC_SCRATCH0_REG 0x60
74 #define OMAP_RTC_SCRATCH1_REG 0x64
75 #define OMAP_RTC_SCRATCH2_REG 0x68
76
77 #define OMAP_RTC_KICK0_REG 0x6c
78 #define OMAP_RTC_KICK1_REG 0x70
79
80 #define OMAP_RTC_IRQWAKEEN 0x7c
81
82 #define OMAP_RTC_ALARM2_SECONDS_REG 0x80
83 #define OMAP_RTC_ALARM2_MINUTES_REG 0x84
84 #define OMAP_RTC_ALARM2_HOURS_REG 0x88
85 #define OMAP_RTC_ALARM2_DAYS_REG 0x8c
86 #define OMAP_RTC_ALARM2_MONTHS_REG 0x90
87 #define OMAP_RTC_ALARM2_YEARS_REG 0x94
88
89 #define OMAP_RTC_PMIC_REG 0x98
90
91 /* OMAP_RTC_CTRL_REG bit fields: */
92 #define OMAP_RTC_CTRL_SPLIT BIT(7)
93 #define OMAP_RTC_CTRL_DISABLE BIT(6)
94 #define OMAP_RTC_CTRL_SET_32_COUNTER BIT(5)
95 #define OMAP_RTC_CTRL_TEST BIT(4)
96 #define OMAP_RTC_CTRL_MODE_12_24 BIT(3)
97 #define OMAP_RTC_CTRL_AUTO_COMP BIT(2)
98 #define OMAP_RTC_CTRL_ROUND_30S BIT(1)
99 #define OMAP_RTC_CTRL_STOP BIT(0)
100
101 /* OMAP_RTC_STATUS_REG bit fields: */
102 #define OMAP_RTC_STATUS_POWER_UP BIT(7)
103 #define OMAP_RTC_STATUS_ALARM2 BIT(7)
104 #define OMAP_RTC_STATUS_ALARM BIT(6)
105 #define OMAP_RTC_STATUS_1D_EVENT BIT(5)
106 #define OMAP_RTC_STATUS_1H_EVENT BIT(4)
107 #define OMAP_RTC_STATUS_1M_EVENT BIT(3)
108 #define OMAP_RTC_STATUS_1S_EVENT BIT(2)
109 #define OMAP_RTC_STATUS_RUN BIT(1)
110 #define OMAP_RTC_STATUS_BUSY BIT(0)
111
112 /* OMAP_RTC_INTERRUPTS_REG bit fields: */
113 #define OMAP_RTC_INTERRUPTS_IT_ALARM2 BIT(4)
114 #define OMAP_RTC_INTERRUPTS_IT_ALARM BIT(3)
115 #define OMAP_RTC_INTERRUPTS_IT_TIMER BIT(2)
116
117 /* OMAP_RTC_OSC_REG bit fields: */
118 #define OMAP_RTC_OSC_32KCLK_EN BIT(6)
119 #define OMAP_RTC_OSC_SEL_32KCLK_SRC BIT(3)
120 #define OMAP_RTC_OSC_OSC32K_GZ_DISABLE BIT(4)
121
122 /* OMAP_RTC_IRQWAKEEN bit fields: */
123 #define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN BIT(1)
124
125 /* OMAP_RTC_PMIC bit fields: */
126 #define OMAP_RTC_PMIC_POWER_EN_EN BIT(16)
127 #define OMAP_RTC_PMIC_EXT_WKUP_EN(x) BIT(x)
128 #define OMAP_RTC_PMIC_EXT_WKUP_POL(x) BIT(4 + x)
129
130 /* OMAP_RTC_KICKER values */
131 #define KICK0_VALUE 0x83e70b13
132 #define KICK1_VALUE 0x95a4f1e0
133
134 struct omap_rtc;
135
136 struct omap_rtc_device_type {
137 bool has_32kclk_en;
138 bool has_irqwakeen;
139 bool has_pmic_mode;
140 bool has_power_up_reset;
141 void (*lock)(struct omap_rtc *rtc);
142 void (*unlock)(struct omap_rtc *rtc);
143 };
144
145 struct omap_rtc {
146 struct rtc_device *rtc;
147 void __iomem *base;
148 struct clk *clk;
149 int irq_alarm;
150 int irq_timer;
151 u8 interrupts_reg;
152 bool is_pmic_controller;
153 bool has_ext_clk;
154 bool is_suspending;
155 const struct omap_rtc_device_type *type;
156 struct pinctrl_dev *pctldev;
157 };
158
159 static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
160 {
161 return readb(rtc->base + reg);
162 }
163
164 static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
165 {
166 return readl(rtc->base + reg);
167 }
168
169 static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
170 {
171 writeb(val, rtc->base + reg);
172 }
173
174 static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
175 {
176 writel(val, rtc->base + reg);
177 }
178
179 static void am3352_rtc_unlock(struct omap_rtc *rtc)
180 {
181 rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
182 rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
183 }
184
185 static void am3352_rtc_lock(struct omap_rtc *rtc)
186 {
187 rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
188 rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
189 }
190
191 static void default_rtc_unlock(struct omap_rtc *rtc)
192 {
193 }
194
195 static void default_rtc_lock(struct omap_rtc *rtc)
196 {
197 }
198
199 /*
200 * We rely on the rtc framework to handle locking (rtc->ops_lock),
201 * so the only other requirement is that register accesses which
202 * require BUSY to be clear are made with IRQs locally disabled
203 */
204 static void rtc_wait_not_busy(struct omap_rtc *rtc)
205 {
206 int count;
207 u8 status;
208
209 /* BUSY may stay active for 1/32768 second (~30 usec) */
210 for (count = 0; count < 50; count++) {
211 status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
212 if (!(status & OMAP_RTC_STATUS_BUSY))
213 break;
214 udelay(1);
215 }
216 /* now we have ~15 usec to read/write various registers */
217 }
218
219 static irqreturn_t rtc_irq(int irq, void *dev_id)
220 {
221 struct omap_rtc *rtc = dev_id;
222 unsigned long events = 0;
223 u8 irq_data;
224
225 irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
226
227 /* alarm irq? */
228 if (irq_data & OMAP_RTC_STATUS_ALARM) {
229 rtc->type->unlock(rtc);
230 rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
231 rtc->type->lock(rtc);
232 events |= RTC_IRQF | RTC_AF;
233 }
234
235 /* 1/sec periodic/update irq? */
236 if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
237 events |= RTC_IRQF | RTC_UF;
238
239 rtc_update_irq(rtc->rtc, 1, events);
240
241 return IRQ_HANDLED;
242 }
243
244 static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
245 {
246 struct omap_rtc *rtc = dev_get_drvdata(dev);
247 u8 reg, irqwake_reg = 0;
248
249 local_irq_disable();
250 rtc_wait_not_busy(rtc);
251 reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
252 if (rtc->type->has_irqwakeen)
253 irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
254
255 if (enabled) {
256 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
257 irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
258 } else {
259 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
260 irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
261 }
262 rtc_wait_not_busy(rtc);
263 rtc->type->unlock(rtc);
264 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
265 if (rtc->type->has_irqwakeen)
266 rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
267 rtc->type->lock(rtc);
268 local_irq_enable();
269
270 return 0;
271 }
272
273 /* this hardware doesn't support "don't care" alarm fields */
274 static int tm2bcd(struct rtc_time *tm)
275 {
276 if (rtc_valid_tm(tm) != 0)
277 return -EINVAL;
278
279 tm->tm_sec = bin2bcd(tm->tm_sec);
280 tm->tm_min = bin2bcd(tm->tm_min);
281 tm->tm_hour = bin2bcd(tm->tm_hour);
282 tm->tm_mday = bin2bcd(tm->tm_mday);
283
284 tm->tm_mon = bin2bcd(tm->tm_mon + 1);
285
286 /* epoch == 1900 */
287 if (tm->tm_year < 100 || tm->tm_year > 199)
288 return -EINVAL;
289 tm->tm_year = bin2bcd(tm->tm_year - 100);
290
291 return 0;
292 }
293
294 static void bcd2tm(struct rtc_time *tm)
295 {
296 tm->tm_sec = bcd2bin(tm->tm_sec);
297 tm->tm_min = bcd2bin(tm->tm_min);
298 tm->tm_hour = bcd2bin(tm->tm_hour);
299 tm->tm_mday = bcd2bin(tm->tm_mday);
300 tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
301 /* epoch == 1900 */
302 tm->tm_year = bcd2bin(tm->tm_year) + 100;
303 }
304
305 static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
306 {
307 tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
308 tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
309 tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
310 tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
311 tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
312 tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
313 }
314
315 static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
316 {
317 struct omap_rtc *rtc = dev_get_drvdata(dev);
318
319 /* we don't report wday/yday/isdst ... */
320 local_irq_disable();
321 rtc_wait_not_busy(rtc);
322 omap_rtc_read_time_raw(rtc, tm);
323 local_irq_enable();
324
325 bcd2tm(tm);
326
327 return 0;
328 }
329
330 static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
331 {
332 struct omap_rtc *rtc = dev_get_drvdata(dev);
333
334 if (tm2bcd(tm) < 0)
335 return -EINVAL;
336
337 local_irq_disable();
338 rtc_wait_not_busy(rtc);
339
340 rtc->type->unlock(rtc);
341 rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
342 rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
343 rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
344 rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
345 rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
346 rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
347 rtc->type->lock(rtc);
348
349 local_irq_enable();
350
351 return 0;
352 }
353
354 static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
355 {
356 struct omap_rtc *rtc = dev_get_drvdata(dev);
357 u8 interrupts;
358
359 local_irq_disable();
360 rtc_wait_not_busy(rtc);
361
362 alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
363 alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
364 alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
365 alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
366 alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
367 alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
368
369 local_irq_enable();
370
371 bcd2tm(&alm->time);
372
373 interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
374 alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
375
376 return 0;
377 }
378
379 static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
380 {
381 struct omap_rtc *rtc = dev_get_drvdata(dev);
382 u8 reg, irqwake_reg = 0;
383
384 if (tm2bcd(&alm->time) < 0)
385 return -EINVAL;
386
387 local_irq_disable();
388 rtc_wait_not_busy(rtc);
389
390 rtc->type->unlock(rtc);
391 rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
392 rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
393 rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
394 rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
395 rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
396 rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
397
398 reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
399 if (rtc->type->has_irqwakeen)
400 irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
401
402 if (alm->enabled) {
403 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
404 irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
405 } else {
406 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
407 irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
408 }
409 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
410 if (rtc->type->has_irqwakeen)
411 rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
412 rtc->type->lock(rtc);
413
414 local_irq_enable();
415
416 return 0;
417 }
418
419 static struct omap_rtc *omap_rtc_power_off_rtc;
420
421 /*
422 * omap_rtc_poweroff: RTC-controlled power off
423 *
424 * The RTC can be used to control an external PMIC via the pmic_power_en pin,
425 * which can be configured to transition to OFF on ALARM2 events.
426 *
427 * Notes:
428 * The two-second alarm offset is the shortest offset possible as the alarm
429 * registers must be set before the next timer update and the offset
430 * calculation is too heavy for everything to be done within a single access
431 * period (~15 us).
432 *
433 * Called with local interrupts disabled.
434 */
435 static void omap_rtc_power_off(void)
436 {
437 struct omap_rtc *rtc = omap_rtc_power_off_rtc;
438 struct rtc_time tm;
439 unsigned long now;
440 u32 val;
441
442 rtc->type->unlock(rtc);
443 /* enable pmic_power_en control */
444 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
445 rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
446
447 /* set alarm two seconds from now */
448 omap_rtc_read_time_raw(rtc, &tm);
449 bcd2tm(&tm);
450 rtc_tm_to_time(&tm, &now);
451 rtc_time_to_tm(now + 2, &tm);
452
453 if (tm2bcd(&tm) < 0) {
454 dev_err(&rtc->rtc->dev, "power off failed\n");
455 return;
456 }
457
458 rtc_wait_not_busy(rtc);
459
460 rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
461 rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
462 rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
463 rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
464 rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
465 rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
466
467 /*
468 * enable ALARM2 interrupt
469 *
470 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
471 */
472 val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
473 rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
474 val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
475 rtc->type->lock(rtc);
476
477 /*
478 * Wait for alarm to trigger (within two seconds) and external PMIC to
479 * power off the system. Add a 500 ms margin for external latencies
480 * (e.g. debounce circuits).
481 */
482 mdelay(2500);
483 }
484
485 static const struct rtc_class_ops omap_rtc_ops = {
486 .read_time = omap_rtc_read_time,
487 .set_time = omap_rtc_set_time,
488 .read_alarm = omap_rtc_read_alarm,
489 .set_alarm = omap_rtc_set_alarm,
490 .alarm_irq_enable = omap_rtc_alarm_irq_enable,
491 };
492
493 static const struct omap_rtc_device_type omap_rtc_default_type = {
494 .has_power_up_reset = true,
495 .lock = default_rtc_lock,
496 .unlock = default_rtc_unlock,
497 };
498
499 static const struct omap_rtc_device_type omap_rtc_am3352_type = {
500 .has_32kclk_en = true,
501 .has_irqwakeen = true,
502 .has_pmic_mode = true,
503 .lock = am3352_rtc_lock,
504 .unlock = am3352_rtc_unlock,
505 };
506
507 static const struct omap_rtc_device_type omap_rtc_da830_type = {
508 .lock = am3352_rtc_lock,
509 .unlock = am3352_rtc_unlock,
510 };
511
512 static const struct platform_device_id omap_rtc_id_table[] = {
513 {
514 .name = "omap_rtc",
515 .driver_data = (kernel_ulong_t)&omap_rtc_default_type,
516 }, {
517 .name = "am3352-rtc",
518 .driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
519 }, {
520 .name = "da830-rtc",
521 .driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
522 }, {
523 /* sentinel */
524 }
525 };
526 MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
527
528 static const struct of_device_id omap_rtc_of_match[] = {
529 {
530 .compatible = "ti,am3352-rtc",
531 .data = &omap_rtc_am3352_type,
532 }, {
533 .compatible = "ti,da830-rtc",
534 .data = &omap_rtc_da830_type,
535 }, {
536 /* sentinel */
537 }
538 };
539 MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
540
541 static const struct pinctrl_pin_desc rtc_pins_desc[] = {
542 PINCTRL_PIN(0, "ext_wakeup0"),
543 PINCTRL_PIN(1, "ext_wakeup1"),
544 PINCTRL_PIN(2, "ext_wakeup2"),
545 PINCTRL_PIN(3, "ext_wakeup3"),
546 };
547
548 static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev)
549 {
550 return 0;
551 }
552
553 static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
554 unsigned int group)
555 {
556 return NULL;
557 }
558
559 static const struct pinctrl_ops rtc_pinctrl_ops = {
560 .get_groups_count = rtc_pinctrl_get_groups_count,
561 .get_group_name = rtc_pinctrl_get_group_name,
562 .dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
563 .dt_free_map = pinconf_generic_dt_free_map,
564 };
565
566 enum rtc_pin_config_param {
567 PIN_CONFIG_ACTIVE_HIGH = PIN_CONFIG_END + 1,
568 };
569
570 static const struct pinconf_generic_params rtc_params[] = {
571 {"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0},
572 };
573
574 #ifdef CONFIG_DEBUG_FS
575 static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = {
576 PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false),
577 };
578 #endif
579
580 static int rtc_pinconf_get(struct pinctrl_dev *pctldev,
581 unsigned int pin, unsigned long *config)
582 {
583 struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
584 unsigned int param = pinconf_to_config_param(*config);
585 u32 val;
586 u16 arg = 0;
587
588 rtc->type->unlock(rtc);
589 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
590 rtc->type->lock(rtc);
591
592 switch (param) {
593 case PIN_CONFIG_INPUT_ENABLE:
594 if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin)))
595 return -EINVAL;
596 break;
597 case PIN_CONFIG_ACTIVE_HIGH:
598 if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin))
599 return -EINVAL;
600 break;
601 default:
602 return -ENOTSUPP;
603 };
604
605 *config = pinconf_to_config_packed(param, arg);
606
607 return 0;
608 }
609
610 static int rtc_pinconf_set(struct pinctrl_dev *pctldev,
611 unsigned int pin, unsigned long *configs,
612 unsigned int num_configs)
613 {
614 struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
615 u32 val;
616 unsigned int param;
617 u32 param_val;
618 int i;
619
620 rtc->type->unlock(rtc);
621 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
622 rtc->type->lock(rtc);
623
624 /* active low by default */
625 val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
626
627 for (i = 0; i < num_configs; i++) {
628 param = pinconf_to_config_param(configs[i]);
629 param_val = pinconf_to_config_argument(configs[i]);
630
631 switch (param) {
632 case PIN_CONFIG_INPUT_ENABLE:
633 if (param_val)
634 val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
635 else
636 val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
637 break;
638 case PIN_CONFIG_ACTIVE_HIGH:
639 val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
640 break;
641 default:
642 dev_err(&rtc->rtc->dev, "Property %u not supported\n",
643 param);
644 return -ENOTSUPP;
645 }
646 }
647
648 rtc->type->unlock(rtc);
649 rtc_writel(rtc, OMAP_RTC_PMIC_REG, val);
650 rtc->type->lock(rtc);
651
652 return 0;
653 }
654
655 static const struct pinconf_ops rtc_pinconf_ops = {
656 .is_generic = true,
657 .pin_config_get = rtc_pinconf_get,
658 .pin_config_set = rtc_pinconf_set,
659 };
660
661 static struct pinctrl_desc rtc_pinctrl_desc = {
662 .pins = rtc_pins_desc,
663 .npins = ARRAY_SIZE(rtc_pins_desc),
664 .pctlops = &rtc_pinctrl_ops,
665 .confops = &rtc_pinconf_ops,
666 .custom_params = rtc_params,
667 .num_custom_params = ARRAY_SIZE(rtc_params),
668 #ifdef CONFIG_DEBUG_FS
669 .custom_conf_items = rtc_conf_items,
670 #endif
671 .owner = THIS_MODULE,
672 };
673
674 static int omap_rtc_scratch_read(void *priv, unsigned int offset, void *_val,
675 size_t bytes)
676 {
677 struct omap_rtc *rtc = priv;
678 u32 *val = _val;
679 int i;
680
681 for (i = 0; i < bytes / 4; i++)
682 val[i] = rtc_readl(rtc,
683 OMAP_RTC_SCRATCH0_REG + offset + (i * 4));
684
685 return 0;
686 }
687
688 static int omap_rtc_scratch_write(void *priv, unsigned int offset, void *_val,
689 size_t bytes)
690 {
691 struct omap_rtc *rtc = priv;
692 u32 *val = _val;
693 int i;
694
695 rtc->type->unlock(rtc);
696 for (i = 0; i < bytes / 4; i++)
697 rtc_writel(rtc,
698 OMAP_RTC_SCRATCH0_REG + offset + (i * 4), val[i]);
699 rtc->type->lock(rtc);
700
701 return 0;
702 }
703
704 static struct nvmem_config omap_rtc_nvmem_config = {
705 .name = "omap_rtc_scratch",
706 .word_size = 4,
707 .stride = 4,
708 .size = OMAP_RTC_KICK0_REG - OMAP_RTC_SCRATCH0_REG,
709 .reg_read = omap_rtc_scratch_read,
710 .reg_write = omap_rtc_scratch_write,
711 };
712
713 static int omap_rtc_probe(struct platform_device *pdev)
714 {
715 struct omap_rtc *rtc;
716 struct resource *res;
717 u8 reg, mask, new_ctrl;
718 const struct platform_device_id *id_entry;
719 const struct of_device_id *of_id;
720 int ret;
721
722 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
723 if (!rtc)
724 return -ENOMEM;
725
726 of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
727 if (of_id) {
728 rtc->type = of_id->data;
729 rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
730 of_property_read_bool(pdev->dev.of_node,
731 "system-power-controller");
732 } else {
733 id_entry = platform_get_device_id(pdev);
734 rtc->type = (void *)id_entry->driver_data;
735 }
736
737 rtc->irq_timer = platform_get_irq(pdev, 0);
738 if (rtc->irq_timer <= 0)
739 return -ENOENT;
740
741 rtc->irq_alarm = platform_get_irq(pdev, 1);
742 if (rtc->irq_alarm <= 0)
743 return -ENOENT;
744
745 rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
746 if (!IS_ERR(rtc->clk))
747 rtc->has_ext_clk = true;
748 else
749 rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
750
751 if (!IS_ERR(rtc->clk))
752 clk_prepare_enable(rtc->clk);
753
754 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
755 rtc->base = devm_ioremap_resource(&pdev->dev, res);
756 if (IS_ERR(rtc->base))
757 return PTR_ERR(rtc->base);
758
759 platform_set_drvdata(pdev, rtc);
760
761 /* Enable the clock/module so that we can access the registers */
762 pm_runtime_enable(&pdev->dev);
763 pm_runtime_get_sync(&pdev->dev);
764
765 rtc->type->unlock(rtc);
766
767 /*
768 * disable interrupts
769 *
770 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
771 */
772 rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
773
774 /* enable RTC functional clock */
775 if (rtc->type->has_32kclk_en) {
776 reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
777 rtc_writel(rtc, OMAP_RTC_OSC_REG,
778 reg | OMAP_RTC_OSC_32KCLK_EN);
779 }
780
781 /* clear old status */
782 reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
783
784 mask = OMAP_RTC_STATUS_ALARM;
785
786 if (rtc->type->has_pmic_mode)
787 mask |= OMAP_RTC_STATUS_ALARM2;
788
789 if (rtc->type->has_power_up_reset) {
790 mask |= OMAP_RTC_STATUS_POWER_UP;
791 if (reg & OMAP_RTC_STATUS_POWER_UP)
792 dev_info(&pdev->dev, "RTC power up reset detected\n");
793 }
794
795 if (reg & mask)
796 rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
797
798 /* On boards with split power, RTC_ON_NOFF won't reset the RTC */
799 reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
800 if (reg & OMAP_RTC_CTRL_STOP)
801 dev_info(&pdev->dev, "already running\n");
802
803 /* force to 24 hour mode */
804 new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
805 new_ctrl |= OMAP_RTC_CTRL_STOP;
806
807 /*
808 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
809 *
810 * - Device wake-up capability setting should come through chip
811 * init logic. OMAP1 boards should initialize the "wakeup capable"
812 * flag in the platform device if the board is wired right for
813 * being woken up by RTC alarm. For OMAP-L138, this capability
814 * is built into the SoC by the "Deep Sleep" capability.
815 *
816 * - Boards wired so RTC_ON_nOFF is used as the reset signal,
817 * rather than nPWRON_RESET, should forcibly enable split
818 * power mode. (Some chip errata report that RTC_CTRL_SPLIT
819 * is write-only, and always reads as zero...)
820 */
821
822 if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
823 dev_info(&pdev->dev, "split power mode\n");
824
825 if (reg != new_ctrl)
826 rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
827
828 /*
829 * If we have the external clock then switch to it so we can keep
830 * ticking across suspend.
831 */
832 if (rtc->has_ext_clk) {
833 reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
834 reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE;
835 reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC;
836 rtc_writel(rtc, OMAP_RTC_OSC_REG, reg);
837 }
838
839 rtc->type->lock(rtc);
840
841 device_init_wakeup(&pdev->dev, true);
842
843 rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
844 if (IS_ERR(rtc->rtc)) {
845 ret = PTR_ERR(rtc->rtc);
846 goto err;
847 }
848
849 rtc->rtc->ops = &omap_rtc_ops;
850 omap_rtc_nvmem_config.priv = rtc;
851 rtc->rtc->nvmem_config = &omap_rtc_nvmem_config;
852
853 /* handle periodic and alarm irqs */
854 ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
855 dev_name(&rtc->rtc->dev), rtc);
856 if (ret)
857 goto err;
858
859 if (rtc->irq_timer != rtc->irq_alarm) {
860 ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
861 dev_name(&rtc->rtc->dev), rtc);
862 if (ret)
863 goto err;
864 }
865
866 if (rtc->is_pmic_controller) {
867 if (!pm_power_off) {
868 omap_rtc_power_off_rtc = rtc;
869 pm_power_off = omap_rtc_power_off;
870 }
871 }
872
873 /* Support ext_wakeup pinconf */
874 rtc_pinctrl_desc.name = dev_name(&pdev->dev);
875
876 rtc->pctldev = pinctrl_register(&rtc_pinctrl_desc, &pdev->dev, rtc);
877 if (IS_ERR(rtc->pctldev)) {
878 dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
879 ret = PTR_ERR(rtc->pctldev);
880 goto err;
881 }
882
883 ret = rtc_register_device(rtc->rtc);
884 if (ret)
885 goto err;
886
887 return 0;
888
889 err:
890 device_init_wakeup(&pdev->dev, false);
891 rtc->type->lock(rtc);
892 pm_runtime_put_sync(&pdev->dev);
893 pm_runtime_disable(&pdev->dev);
894
895 return ret;
896 }
897
898 static int omap_rtc_remove(struct platform_device *pdev)
899 {
900 struct omap_rtc *rtc = platform_get_drvdata(pdev);
901 u8 reg;
902
903 if (pm_power_off == omap_rtc_power_off &&
904 omap_rtc_power_off_rtc == rtc) {
905 pm_power_off = NULL;
906 omap_rtc_power_off_rtc = NULL;
907 }
908
909 device_init_wakeup(&pdev->dev, 0);
910
911 if (!IS_ERR(rtc->clk))
912 clk_disable_unprepare(rtc->clk);
913
914 rtc->type->unlock(rtc);
915 /* leave rtc running, but disable irqs */
916 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
917
918 if (rtc->has_ext_clk) {
919 reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
920 reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
921 rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
922 }
923
924 rtc->type->lock(rtc);
925
926 /* Disable the clock/module */
927 pm_runtime_put_sync(&pdev->dev);
928 pm_runtime_disable(&pdev->dev);
929
930 /* Remove ext_wakeup pinconf */
931 pinctrl_unregister(rtc->pctldev);
932
933 return 0;
934 }
935
936 static int __maybe_unused omap_rtc_suspend(struct device *dev)
937 {
938 struct omap_rtc *rtc = dev_get_drvdata(dev);
939
940 rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
941
942 rtc->type->unlock(rtc);
943 /*
944 * FIXME: the RTC alarm is not currently acting as a wakeup event
945 * source on some platforms, and in fact this enable() call is just
946 * saving a flag that's never used...
947 */
948 if (device_may_wakeup(dev))
949 enable_irq_wake(rtc->irq_alarm);
950 else
951 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
952 rtc->type->lock(rtc);
953
954 rtc->is_suspending = true;
955
956 return 0;
957 }
958
959 static int __maybe_unused omap_rtc_resume(struct device *dev)
960 {
961 struct omap_rtc *rtc = dev_get_drvdata(dev);
962
963 rtc->type->unlock(rtc);
964 if (device_may_wakeup(dev))
965 disable_irq_wake(rtc->irq_alarm);
966 else
967 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
968 rtc->type->lock(rtc);
969
970 rtc->is_suspending = false;
971
972 return 0;
973 }
974
975 static int __maybe_unused omap_rtc_runtime_suspend(struct device *dev)
976 {
977 struct omap_rtc *rtc = dev_get_drvdata(dev);
978
979 if (rtc->is_suspending && !rtc->has_ext_clk)
980 return -EBUSY;
981
982 return 0;
983 }
984
985 static const struct dev_pm_ops omap_rtc_pm_ops = {
986 SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume)
987 SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend, NULL, NULL)
988 };
989
990 static void omap_rtc_shutdown(struct platform_device *pdev)
991 {
992 struct omap_rtc *rtc = platform_get_drvdata(pdev);
993 u8 mask;
994
995 /*
996 * Keep the ALARM interrupt enabled to allow the system to power up on
997 * alarm events.
998 */
999 rtc->type->unlock(rtc);
1000 mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
1001 mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
1002 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
1003 rtc->type->lock(rtc);
1004 }
1005
1006 static struct platform_driver omap_rtc_driver = {
1007 .probe = omap_rtc_probe,
1008 .remove = omap_rtc_remove,
1009 .shutdown = omap_rtc_shutdown,
1010 .driver = {
1011 .name = "omap_rtc",
1012 .pm = &omap_rtc_pm_ops,
1013 .of_match_table = omap_rtc_of_match,
1014 },
1015 .id_table = omap_rtc_id_table,
1016 };
1017
1018 module_platform_driver(omap_rtc_driver);
1019
1020 MODULE_ALIAS("platform:omap_rtc");
1021 MODULE_AUTHOR("George G. Davis (and others)");
1022 MODULE_LICENSE("GPL");