]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/rtc/rtc-pcf2123.c
drm/rockchip: dsi: move all lane config except LCDC mux to bind()
[mirror_ubuntu-hirsute-kernel.git] / drivers / rtc / rtc-pcf2123.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * An SPI driver for the Philips PCF2123 RTC
4 * Copyright 2009 Cyber Switching, Inc.
5 *
6 * Author: Chris Verges <chrisv@cyberswitching.com>
7 * Maintainers: http://www.cyberswitching.com
8 *
9 * based on the RS5C348 driver in this same directory.
10 *
11 * Thanks to Christian Pellegrin <chripell@fsfe.org> for
12 * the sysfs contributions to this driver.
13 *
14 * Please note that the CS is active high, so platform data
15 * should look something like:
16 *
17 * static struct spi_board_info ek_spi_devices[] = {
18 * ...
19 * {
20 * .modalias = "rtc-pcf2123",
21 * .chip_select = 1,
22 * .controller_data = (void *)AT91_PIN_PA10,
23 * .max_speed_hz = 1000 * 1000,
24 * .mode = SPI_CS_HIGH,
25 * .bus_num = 0,
26 * },
27 * ...
28 *};
29 */
30
31 #include <linux/bcd.h>
32 #include <linux/delay.h>
33 #include <linux/device.h>
34 #include <linux/errno.h>
35 #include <linux/init.h>
36 #include <linux/kernel.h>
37 #include <linux/of.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/rtc.h>
41 #include <linux/spi/spi.h>
42 #include <linux/module.h>
43 #include <linux/regmap.h>
44
45 /* REGISTERS */
46 #define PCF2123_REG_CTRL1 (0x00) /* Control Register 1 */
47 #define PCF2123_REG_CTRL2 (0x01) /* Control Register 2 */
48 #define PCF2123_REG_SC (0x02) /* datetime */
49 #define PCF2123_REG_MN (0x03)
50 #define PCF2123_REG_HR (0x04)
51 #define PCF2123_REG_DM (0x05)
52 #define PCF2123_REG_DW (0x06)
53 #define PCF2123_REG_MO (0x07)
54 #define PCF2123_REG_YR (0x08)
55 #define PCF2123_REG_ALRM_MN (0x09) /* Alarm Registers */
56 #define PCF2123_REG_ALRM_HR (0x0a)
57 #define PCF2123_REG_ALRM_DM (0x0b)
58 #define PCF2123_REG_ALRM_DW (0x0c)
59 #define PCF2123_REG_OFFSET (0x0d) /* Clock Rate Offset Register */
60 #define PCF2123_REG_TMR_CLKOUT (0x0e) /* Timer Registers */
61 #define PCF2123_REG_CTDWN_TMR (0x0f)
62
63 /* PCF2123_REG_CTRL1 BITS */
64 #define CTRL1_CLEAR (0) /* Clear */
65 #define CTRL1_CORR_INT BIT(1) /* Correction irq enable */
66 #define CTRL1_12_HOUR BIT(2) /* 12 hour time */
67 #define CTRL1_SW_RESET (BIT(3) | BIT(4) | BIT(6)) /* Software reset */
68 #define CTRL1_STOP BIT(5) /* Stop the clock */
69 #define CTRL1_EXT_TEST BIT(7) /* External clock test mode */
70
71 /* PCF2123_REG_CTRL2 BITS */
72 #define CTRL2_TIE BIT(0) /* Countdown timer irq enable */
73 #define CTRL2_AIE BIT(1) /* Alarm irq enable */
74 #define CTRL2_TF BIT(2) /* Countdown timer flag */
75 #define CTRL2_AF BIT(3) /* Alarm flag */
76 #define CTRL2_TI_TP BIT(4) /* Irq pin generates pulse */
77 #define CTRL2_MSF BIT(5) /* Minute or second irq flag */
78 #define CTRL2_SI BIT(6) /* Second irq enable */
79 #define CTRL2_MI BIT(7) /* Minute irq enable */
80
81 /* PCF2123_REG_SC BITS */
82 #define OSC_HAS_STOPPED BIT(7) /* Clock has been stopped */
83
84 /* PCF2123_REG_ALRM_XX BITS */
85 #define ALRM_DISABLE BIT(7) /* MN, HR, DM, or DW alarm matching */
86
87 /* PCF2123_REG_TMR_CLKOUT BITS */
88 #define CD_TMR_4096KHZ (0) /* 4096 KHz countdown timer */
89 #define CD_TMR_64HZ (1) /* 64 Hz countdown timer */
90 #define CD_TMR_1HZ (2) /* 1 Hz countdown timer */
91 #define CD_TMR_60th_HZ (3) /* 60th Hz countdown timer */
92 #define CD_TMR_TE BIT(3) /* Countdown timer enable */
93
94 /* PCF2123_REG_OFFSET BITS */
95 #define OFFSET_SIGN_BIT 6 /* 2's complement sign bit */
96 #define OFFSET_COARSE BIT(7) /* Coarse mode offset */
97 #define OFFSET_STEP (2170) /* Offset step in parts per billion */
98 #define OFFSET_MASK GENMASK(6, 0) /* Offset value */
99
100 /* READ/WRITE ADDRESS BITS */
101 #define PCF2123_WRITE BIT(4)
102 #define PCF2123_READ (BIT(4) | BIT(7))
103
104
105 static struct spi_driver pcf2123_driver;
106
107 struct pcf2123_data {
108 struct rtc_device *rtc;
109 struct regmap *map;
110 };
111
112 static const struct regmap_config pcf2123_regmap_config = {
113 .reg_bits = 8,
114 .val_bits = 8,
115 .read_flag_mask = PCF2123_READ,
116 .write_flag_mask = PCF2123_WRITE,
117 .max_register = PCF2123_REG_CTDWN_TMR,
118 };
119
120 static int pcf2123_read_offset(struct device *dev, long *offset)
121 {
122 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
123 int ret, val;
124 unsigned int reg;
125
126 ret = regmap_read(pcf2123->map, PCF2123_REG_OFFSET, &reg);
127 if (ret)
128 return ret;
129
130 val = sign_extend32((reg & OFFSET_MASK), OFFSET_SIGN_BIT);
131
132 if (reg & OFFSET_COARSE)
133 val *= 2;
134
135 *offset = ((long)val) * OFFSET_STEP;
136
137 return 0;
138 }
139
140 /*
141 * The offset register is a 7 bit signed value with a coarse bit in bit 7.
142 * The main difference between the two is normal offset adjusts the first
143 * second of n minutes every other hour, with 61, 62 and 63 being shoved
144 * into the 60th minute.
145 * The coarse adjustment does the same, but every hour.
146 * the two overlap, with every even normal offset value corresponding
147 * to a coarse offset. Based on this algorithm, it seems that despite the
148 * name, coarse offset is a better fit for overlapping values.
149 */
150 static int pcf2123_set_offset(struct device *dev, long offset)
151 {
152 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
153 s8 reg;
154
155 if (offset > OFFSET_STEP * 127)
156 reg = 127;
157 else if (offset < OFFSET_STEP * -128)
158 reg = -128;
159 else
160 reg = DIV_ROUND_CLOSEST(offset, OFFSET_STEP);
161
162 /* choose fine offset only for odd values in the normal range */
163 if (reg & 1 && reg <= 63 && reg >= -64) {
164 /* Normal offset. Clear the coarse bit */
165 reg &= ~OFFSET_COARSE;
166 } else {
167 /* Coarse offset. Divide by 2 and set the coarse bit */
168 reg >>= 1;
169 reg |= OFFSET_COARSE;
170 }
171
172 return regmap_write(pcf2123->map, PCF2123_REG_OFFSET, (unsigned int)reg);
173 }
174
175 static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
176 {
177 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
178 u8 rxbuf[7];
179 int ret;
180
181 ret = regmap_bulk_read(pcf2123->map, PCF2123_REG_SC, rxbuf,
182 sizeof(rxbuf));
183 if (ret)
184 return ret;
185
186 if (rxbuf[0] & OSC_HAS_STOPPED) {
187 dev_info(dev, "clock was stopped. Time is not valid\n");
188 return -EINVAL;
189 }
190
191 tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
192 tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
193 tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
194 tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
195 tm->tm_wday = rxbuf[4] & 0x07;
196 tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
197 tm->tm_year = bcd2bin(rxbuf[6]) + 100;
198
199 dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm);
200
201 return 0;
202 }
203
204 static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
205 {
206 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
207 u8 txbuf[7];
208 int ret;
209
210 dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm);
211
212 /* Stop the counter first */
213 ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_STOP);
214 if (ret)
215 return ret;
216
217 /* Set the new time */
218 txbuf[0] = bin2bcd(tm->tm_sec & 0x7F);
219 txbuf[1] = bin2bcd(tm->tm_min & 0x7F);
220 txbuf[2] = bin2bcd(tm->tm_hour & 0x3F);
221 txbuf[3] = bin2bcd(tm->tm_mday & 0x3F);
222 txbuf[4] = tm->tm_wday & 0x07;
223 txbuf[5] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
224 txbuf[6] = bin2bcd(tm->tm_year - 100);
225
226 ret = regmap_bulk_write(pcf2123->map, PCF2123_REG_SC, txbuf,
227 sizeof(txbuf));
228 if (ret)
229 return ret;
230
231 /* Start the counter */
232 ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_CLEAR);
233 if (ret)
234 return ret;
235
236 return 0;
237 }
238
239 static int pcf2123_rtc_alarm_irq_enable(struct device *dev, unsigned int en)
240 {
241 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
242
243 return regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AIE,
244 en ? CTRL2_AIE : 0);
245 }
246
247 static int pcf2123_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
248 {
249 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
250 u8 rxbuf[4];
251 int ret;
252 unsigned int val = 0;
253
254 ret = regmap_bulk_read(pcf2123->map, PCF2123_REG_ALRM_MN, rxbuf,
255 sizeof(rxbuf));
256 if (ret)
257 return ret;
258
259 alm->time.tm_min = bcd2bin(rxbuf[0] & 0x7F);
260 alm->time.tm_hour = bcd2bin(rxbuf[1] & 0x3F);
261 alm->time.tm_mday = bcd2bin(rxbuf[2] & 0x3F);
262 alm->time.tm_wday = bcd2bin(rxbuf[3] & 0x07);
263
264 dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time);
265
266 ret = regmap_read(pcf2123->map, PCF2123_REG_CTRL2, &val);
267 if (ret)
268 return ret;
269
270 alm->enabled = !!(val & CTRL2_AIE);
271
272 return 0;
273 }
274
275 static int pcf2123_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
276 {
277 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
278 u8 txbuf[4];
279 int ret;
280
281 dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time);
282
283 /* Disable alarm interrupt */
284 ret = regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AIE, 0);
285 if (ret)
286 return ret;
287
288 /* Ensure alarm flag is clear */
289 ret = regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AF, 0);
290 if (ret)
291 return ret;
292
293 /* Set new alarm */
294 txbuf[0] = bin2bcd(alm->time.tm_min & 0x7F);
295 txbuf[1] = bin2bcd(alm->time.tm_hour & 0x3F);
296 txbuf[2] = bin2bcd(alm->time.tm_mday & 0x3F);
297 txbuf[3] = ALRM_DISABLE;
298
299 ret = regmap_bulk_write(pcf2123->map, PCF2123_REG_ALRM_MN, txbuf,
300 sizeof(txbuf));
301 if (ret)
302 return ret;
303
304 return pcf2123_rtc_alarm_irq_enable(dev, alm->enabled);
305 }
306
307 static irqreturn_t pcf2123_rtc_irq(int irq, void *dev)
308 {
309 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
310 struct mutex *lock = &pcf2123->rtc->ops_lock;
311 unsigned int val = 0;
312 int ret = IRQ_NONE;
313
314 mutex_lock(lock);
315 regmap_read(pcf2123->map, PCF2123_REG_CTRL2, &val);
316
317 /* Alarm? */
318 if (val & CTRL2_AF) {
319 ret = IRQ_HANDLED;
320
321 /* Clear alarm flag */
322 regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AF, 0);
323
324 rtc_update_irq(pcf2123->rtc, 1, RTC_IRQF | RTC_AF);
325 }
326
327 mutex_unlock(lock);
328
329 return ret;
330 }
331
332 static int pcf2123_reset(struct device *dev)
333 {
334 struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
335 int ret;
336 unsigned int val = 0;
337
338 ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
339 if (ret)
340 return ret;
341
342 /* Stop the counter */
343 dev_dbg(dev, "stopping RTC\n");
344 ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_STOP);
345 if (ret)
346 return ret;
347
348 /* See if the counter was actually stopped */
349 dev_dbg(dev, "checking for presence of RTC\n");
350 ret = regmap_read(pcf2123->map, PCF2123_REG_CTRL1, &val);
351 if (ret)
352 return ret;
353
354 dev_dbg(dev, "received data from RTC (0x%08X)\n", val);
355 if (!(val & CTRL1_STOP))
356 return -ENODEV;
357
358 /* Start the counter */
359 ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_CLEAR);
360 if (ret)
361 return ret;
362
363 return 0;
364 }
365
366 static const struct rtc_class_ops pcf2123_rtc_ops = {
367 .read_time = pcf2123_rtc_read_time,
368 .set_time = pcf2123_rtc_set_time,
369 .read_offset = pcf2123_read_offset,
370 .set_offset = pcf2123_set_offset,
371 .read_alarm = pcf2123_rtc_read_alarm,
372 .set_alarm = pcf2123_rtc_set_alarm,
373 .alarm_irq_enable = pcf2123_rtc_alarm_irq_enable,
374 };
375
376 static int pcf2123_probe(struct spi_device *spi)
377 {
378 struct rtc_device *rtc;
379 struct rtc_time tm;
380 struct pcf2123_data *pcf2123;
381 int ret = 0;
382
383 pcf2123 = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_data),
384 GFP_KERNEL);
385 if (!pcf2123)
386 return -ENOMEM;
387
388 dev_set_drvdata(&spi->dev, pcf2123);
389
390 pcf2123->map = devm_regmap_init_spi(spi, &pcf2123_regmap_config);
391 if (IS_ERR(pcf2123->map)) {
392 dev_err(&spi->dev, "regmap init failed.\n");
393 return PTR_ERR(pcf2123->map);
394 }
395
396 ret = pcf2123_rtc_read_time(&spi->dev, &tm);
397 if (ret < 0) {
398 ret = pcf2123_reset(&spi->dev);
399 if (ret < 0) {
400 dev_err(&spi->dev, "chip not found\n");
401 return ret;
402 }
403 }
404
405 dev_info(&spi->dev, "spiclk %u KHz.\n",
406 (spi->max_speed_hz + 500) / 1000);
407
408 /* Finalize the initialization */
409 rtc = devm_rtc_allocate_device(&spi->dev);
410 if (IS_ERR(rtc))
411 return PTR_ERR(rtc);
412
413 pcf2123->rtc = rtc;
414
415 /* Register alarm irq */
416 if (spi->irq > 0) {
417 ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL,
418 pcf2123_rtc_irq,
419 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
420 pcf2123_driver.driver.name, &spi->dev);
421 if (!ret)
422 device_init_wakeup(&spi->dev, true);
423 else
424 dev_err(&spi->dev, "could not request irq.\n");
425 }
426
427 /* The PCF2123's alarm only has minute accuracy. Must add timer
428 * support to this driver to generate interrupts more than once
429 * per minute.
430 */
431 rtc->uie_unsupported = 1;
432 rtc->ops = &pcf2123_rtc_ops;
433 rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
434 rtc->range_max = RTC_TIMESTAMP_END_2099;
435 rtc->set_start_time = true;
436
437 ret = devm_rtc_register_device(rtc);
438 if (ret)
439 return ret;
440
441 return 0;
442 }
443
444 #ifdef CONFIG_OF
445 static const struct of_device_id pcf2123_dt_ids[] = {
446 { .compatible = "nxp,pcf2123", },
447 { .compatible = "microcrystal,rv2123", },
448 /* Deprecated, do not use */
449 { .compatible = "nxp,rtc-pcf2123", },
450 { /* sentinel */ }
451 };
452 MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
453 #endif
454
455 static struct spi_driver pcf2123_driver = {
456 .driver = {
457 .name = "rtc-pcf2123",
458 .of_match_table = of_match_ptr(pcf2123_dt_ids),
459 },
460 .probe = pcf2123_probe,
461 };
462
463 module_spi_driver(pcf2123_driver);
464
465 MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
466 MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
467 MODULE_LICENSE("GPL");