]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/rtc/rtc-pcf2123.c
Merge branch 'linux-4.6' of git://github.com/skeggsb/linux into drm-fixes
[mirror_ubuntu-artful-kernel.git] / drivers / rtc / rtc-pcf2123.c
1 /*
2 * An SPI driver for the Philips PCF2123 RTC
3 * Copyright 2009 Cyber Switching, Inc.
4 *
5 * Author: Chris Verges <chrisv@cyberswitching.com>
6 * Maintainers: http://www.cyberswitching.com
7 *
8 * based on the RS5C348 driver in this same directory.
9 *
10 * Thanks to Christian Pellegrin <chripell@fsfe.org> for
11 * the sysfs contributions to this driver.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 *
17 * Please note that the CS is active high, so platform data
18 * should look something like:
19 *
20 * static struct spi_board_info ek_spi_devices[] = {
21 * ...
22 * {
23 * .modalias = "rtc-pcf2123",
24 * .chip_select = 1,
25 * .controller_data = (void *)AT91_PIN_PA10,
26 * .max_speed_hz = 1000 * 1000,
27 * .mode = SPI_CS_HIGH,
28 * .bus_num = 0,
29 * },
30 * ...
31 *};
32 *
33 */
34
35 #include <linux/bcd.h>
36 #include <linux/delay.h>
37 #include <linux/device.h>
38 #include <linux/errno.h>
39 #include <linux/init.h>
40 #include <linux/kernel.h>
41 #include <linux/of.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/rtc.h>
45 #include <linux/spi/spi.h>
46 #include <linux/module.h>
47 #include <linux/sysfs.h>
48
49 #define DRV_VERSION "0.6"
50
51 /* REGISTERS */
52 #define PCF2123_REG_CTRL1 (0x00) /* Control Register 1 */
53 #define PCF2123_REG_CTRL2 (0x01) /* Control Register 2 */
54 #define PCF2123_REG_SC (0x02) /* datetime */
55 #define PCF2123_REG_MN (0x03)
56 #define PCF2123_REG_HR (0x04)
57 #define PCF2123_REG_DM (0x05)
58 #define PCF2123_REG_DW (0x06)
59 #define PCF2123_REG_MO (0x07)
60 #define PCF2123_REG_YR (0x08)
61 #define PCF2123_REG_ALRM_MN (0x09) /* Alarm Registers */
62 #define PCF2123_REG_ALRM_HR (0x0a)
63 #define PCF2123_REG_ALRM_DM (0x0b)
64 #define PCF2123_REG_ALRM_DW (0x0c)
65 #define PCF2123_REG_OFFSET (0x0d) /* Clock Rate Offset Register */
66 #define PCF2123_REG_TMR_CLKOUT (0x0e) /* Timer Registers */
67 #define PCF2123_REG_CTDWN_TMR (0x0f)
68
69 /* PCF2123_REG_CTRL1 BITS */
70 #define CTRL1_CLEAR (0) /* Clear */
71 #define CTRL1_CORR_INT BIT(1) /* Correction irq enable */
72 #define CTRL1_12_HOUR BIT(2) /* 12 hour time */
73 #define CTRL1_SW_RESET (BIT(3) | BIT(4) | BIT(6)) /* Software reset */
74 #define CTRL1_STOP BIT(5) /* Stop the clock */
75 #define CTRL1_EXT_TEST BIT(7) /* External clock test mode */
76
77 /* PCF2123_REG_CTRL2 BITS */
78 #define CTRL2_TIE BIT(0) /* Countdown timer irq enable */
79 #define CTRL2_AIE BIT(1) /* Alarm irq enable */
80 #define CTRL2_TF BIT(2) /* Countdown timer flag */
81 #define CTRL2_AF BIT(3) /* Alarm flag */
82 #define CTRL2_TI_TP BIT(4) /* Irq pin generates pulse */
83 #define CTRL2_MSF BIT(5) /* Minute or second irq flag */
84 #define CTRL2_SI BIT(6) /* Second irq enable */
85 #define CTRL2_MI BIT(7) /* Minute irq enable */
86
87 /* PCF2123_REG_SC BITS */
88 #define OSC_HAS_STOPPED BIT(7) /* Clock has been stopped */
89
90 /* PCF2123_REG_ALRM_XX BITS */
91 #define ALRM_ENABLE BIT(7) /* MN, HR, DM, or DW alarm enable */
92
93 /* PCF2123_REG_TMR_CLKOUT BITS */
94 #define CD_TMR_4096KHZ (0) /* 4096 KHz countdown timer */
95 #define CD_TMR_64HZ (1) /* 64 Hz countdown timer */
96 #define CD_TMR_1HZ (2) /* 1 Hz countdown timer */
97 #define CD_TMR_60th_HZ (3) /* 60th Hz countdown timer */
98 #define CD_TMR_TE BIT(3) /* Countdown timer enable */
99
100 /* PCF2123_REG_OFFSET BITS */
101 #define OFFSET_SIGN_BIT BIT(6) /* 2's complement sign bit */
102 #define OFFSET_COARSE BIT(7) /* Coarse mode offset */
103 #define OFFSET_STEP (2170) /* Offset step in parts per billion */
104
105 /* READ/WRITE ADDRESS BITS */
106 #define PCF2123_WRITE BIT(4)
107 #define PCF2123_READ (BIT(4) | BIT(7))
108
109
110 static struct spi_driver pcf2123_driver;
111
112 struct pcf2123_sysfs_reg {
113 struct device_attribute attr;
114 char name[2];
115 };
116
117 struct pcf2123_plat_data {
118 struct rtc_device *rtc;
119 struct pcf2123_sysfs_reg regs[16];
120 };
121
122 /*
123 * Causes a 30 nanosecond delay to ensure that the PCF2123 chip select
124 * is released properly after an SPI write. This function should be
125 * called after EVERY read/write call over SPI.
126 */
127 static inline void pcf2123_delay_trec(void)
128 {
129 ndelay(30);
130 }
131
132 static int pcf2123_read(struct device *dev, u8 reg, u8 *rxbuf, size_t size)
133 {
134 struct spi_device *spi = to_spi_device(dev);
135 int ret;
136
137 reg |= PCF2123_READ;
138 ret = spi_write_then_read(spi, &reg, 1, rxbuf, size);
139 pcf2123_delay_trec();
140
141 return ret;
142 }
143
144 static int pcf2123_write(struct device *dev, u8 *txbuf, size_t size)
145 {
146 struct spi_device *spi = to_spi_device(dev);
147 int ret;
148
149 txbuf[0] |= PCF2123_WRITE;
150 ret = spi_write(spi, txbuf, size);
151 pcf2123_delay_trec();
152
153 return ret;
154 }
155
156 static int pcf2123_write_reg(struct device *dev, u8 reg, u8 val)
157 {
158 u8 txbuf[2];
159
160 txbuf[0] = reg;
161 txbuf[1] = val;
162 return pcf2123_write(dev, txbuf, sizeof(txbuf));
163 }
164
165 static ssize_t pcf2123_show(struct device *dev, struct device_attribute *attr,
166 char *buffer)
167 {
168 struct pcf2123_sysfs_reg *r;
169 u8 rxbuf[1];
170 unsigned long reg;
171 int ret;
172
173 r = container_of(attr, struct pcf2123_sysfs_reg, attr);
174
175 ret = kstrtoul(r->name, 16, &reg);
176 if (ret)
177 return ret;
178
179 ret = pcf2123_read(dev, reg, rxbuf, 1);
180 if (ret < 0)
181 return -EIO;
182
183 return sprintf(buffer, "0x%x\n", rxbuf[0]);
184 }
185
186 static ssize_t pcf2123_store(struct device *dev, struct device_attribute *attr,
187 const char *buffer, size_t count) {
188 struct pcf2123_sysfs_reg *r;
189 unsigned long reg;
190 unsigned long val;
191
192 int ret;
193
194 r = container_of(attr, struct pcf2123_sysfs_reg, attr);
195
196 ret = kstrtoul(r->name, 16, &reg);
197 if (ret)
198 return ret;
199
200 ret = kstrtoul(buffer, 10, &val);
201 if (ret)
202 return ret;
203
204 pcf2123_write_reg(dev, reg, val);
205 if (ret < 0)
206 return -EIO;
207 return count;
208 }
209
210 static int pcf2123_read_offset(struct device *dev, long *offset)
211 {
212 int ret;
213 s8 reg;
214
215 ret = pcf2123_read(dev, PCF2123_REG_OFFSET, &reg, 1);
216 if (ret < 0)
217 return ret;
218
219 if (reg & OFFSET_COARSE)
220 reg <<= 1; /* multiply by 2 and sign extend */
221 else
222 reg |= (reg & OFFSET_SIGN_BIT) << 1; /* sign extend only */
223
224 *offset = ((long)reg) * OFFSET_STEP;
225
226 return 0;
227 }
228
229 /*
230 * The offset register is a 7 bit signed value with a coarse bit in bit 7.
231 * The main difference between the two is normal offset adjusts the first
232 * second of n minutes every other hour, with 61, 62 and 63 being shoved
233 * into the 60th minute.
234 * The coarse adjustment does the same, but every hour.
235 * the two overlap, with every even normal offset value corresponding
236 * to a coarse offset. Based on this algorithm, it seems that despite the
237 * name, coarse offset is a better fit for overlapping values.
238 */
239 static int pcf2123_set_offset(struct device *dev, long offset)
240 {
241 s8 reg;
242
243 if (offset > OFFSET_STEP * 127)
244 reg = 127;
245 else if (offset < OFFSET_STEP * -128)
246 reg = -128;
247 else
248 reg = (s8)((offset + (OFFSET_STEP >> 1)) / OFFSET_STEP);
249
250 /* choose fine offset only for odd values in the normal range */
251 if (reg & 1 && reg <= 63 && reg >= -64) {
252 /* Normal offset. Clear the coarse bit */
253 reg &= ~OFFSET_COARSE;
254 } else {
255 /* Coarse offset. Divide by 2 and set the coarse bit */
256 reg >>= 1;
257 reg |= OFFSET_COARSE;
258 }
259
260 return pcf2123_write_reg(dev, PCF2123_REG_OFFSET, reg);
261 }
262
263 static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
264 {
265 u8 rxbuf[7];
266 int ret;
267
268 ret = pcf2123_read(dev, PCF2123_REG_SC, rxbuf, sizeof(rxbuf));
269 if (ret < 0)
270 return ret;
271
272 if (rxbuf[0] & OSC_HAS_STOPPED) {
273 dev_info(dev, "clock was stopped. Time is not valid\n");
274 return -EINVAL;
275 }
276
277 tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
278 tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
279 tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
280 tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
281 tm->tm_wday = rxbuf[4] & 0x07;
282 tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
283 tm->tm_year = bcd2bin(rxbuf[6]);
284 if (tm->tm_year < 70)
285 tm->tm_year += 100; /* assume we are in 1970...2069 */
286
287 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
288 "mday=%d, mon=%d, year=%d, wday=%d\n",
289 __func__,
290 tm->tm_sec, tm->tm_min, tm->tm_hour,
291 tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
292
293 return rtc_valid_tm(tm);
294 }
295
296 static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
297 {
298 u8 txbuf[8];
299 int ret;
300
301 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
302 "mday=%d, mon=%d, year=%d, wday=%d\n",
303 __func__,
304 tm->tm_sec, tm->tm_min, tm->tm_hour,
305 tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
306
307 /* Stop the counter first */
308 ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
309 if (ret < 0)
310 return ret;
311
312 /* Set the new time */
313 txbuf[0] = PCF2123_REG_SC;
314 txbuf[1] = bin2bcd(tm->tm_sec & 0x7F);
315 txbuf[2] = bin2bcd(tm->tm_min & 0x7F);
316 txbuf[3] = bin2bcd(tm->tm_hour & 0x3F);
317 txbuf[4] = bin2bcd(tm->tm_mday & 0x3F);
318 txbuf[5] = tm->tm_wday & 0x07;
319 txbuf[6] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
320 txbuf[7] = bin2bcd(tm->tm_year < 100 ? tm->tm_year : tm->tm_year - 100);
321
322 ret = pcf2123_write(dev, txbuf, sizeof(txbuf));
323 if (ret < 0)
324 return ret;
325
326 /* Start the counter */
327 ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
328 if (ret < 0)
329 return ret;
330
331 return 0;
332 }
333
334 static int pcf2123_reset(struct device *dev)
335 {
336 int ret;
337 u8 rxbuf[2];
338
339 ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
340 if (ret < 0)
341 return ret;
342
343 /* Stop the counter */
344 dev_dbg(dev, "stopping RTC\n");
345 ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
346 if (ret < 0)
347 return ret;
348
349 /* See if the counter was actually stopped */
350 dev_dbg(dev, "checking for presence of RTC\n");
351 ret = pcf2123_read(dev, PCF2123_REG_CTRL1, rxbuf, sizeof(rxbuf));
352 if (ret < 0)
353 return ret;
354
355 dev_dbg(dev, "received data from RTC (0x%02X 0x%02X)\n",
356 rxbuf[0], rxbuf[1]);
357 if (!(rxbuf[0] & CTRL1_STOP))
358 return -ENODEV;
359
360 /* Start the counter */
361 ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
362 if (ret < 0)
363 return ret;
364
365 return 0;
366 }
367
368 static const struct rtc_class_ops pcf2123_rtc_ops = {
369 .read_time = pcf2123_rtc_read_time,
370 .set_time = pcf2123_rtc_set_time,
371 .read_offset = pcf2123_read_offset,
372 .set_offset = pcf2123_set_offset,
373
374 };
375
376 static int pcf2123_probe(struct spi_device *spi)
377 {
378 struct rtc_device *rtc;
379 struct rtc_time tm;
380 struct pcf2123_plat_data *pdata;
381 int ret, i;
382
383 pdata = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_plat_data),
384 GFP_KERNEL);
385 if (!pdata)
386 return -ENOMEM;
387 spi->dev.platform_data = pdata;
388
389 ret = pcf2123_rtc_read_time(&spi->dev, &tm);
390 if (ret < 0) {
391 ret = pcf2123_reset(&spi->dev);
392 if (ret < 0) {
393 dev_err(&spi->dev, "chip not found\n");
394 goto kfree_exit;
395 }
396 }
397
398 dev_info(&spi->dev, "chip found, driver version " DRV_VERSION "\n");
399 dev_info(&spi->dev, "spiclk %u KHz.\n",
400 (spi->max_speed_hz + 500) / 1000);
401
402 /* Finalize the initialization */
403 rtc = devm_rtc_device_register(&spi->dev, pcf2123_driver.driver.name,
404 &pcf2123_rtc_ops, THIS_MODULE);
405
406 if (IS_ERR(rtc)) {
407 dev_err(&spi->dev, "failed to register.\n");
408 ret = PTR_ERR(rtc);
409 goto kfree_exit;
410 }
411
412 pdata->rtc = rtc;
413
414 for (i = 0; i < 16; i++) {
415 sysfs_attr_init(&pdata->regs[i].attr.attr);
416 sprintf(pdata->regs[i].name, "%1x", i);
417 pdata->regs[i].attr.attr.mode = S_IRUGO | S_IWUSR;
418 pdata->regs[i].attr.attr.name = pdata->regs[i].name;
419 pdata->regs[i].attr.show = pcf2123_show;
420 pdata->regs[i].attr.store = pcf2123_store;
421 ret = device_create_file(&spi->dev, &pdata->regs[i].attr);
422 if (ret) {
423 dev_err(&spi->dev, "Unable to create sysfs %s\n",
424 pdata->regs[i].name);
425 goto sysfs_exit;
426 }
427 }
428
429 return 0;
430
431 sysfs_exit:
432 for (i--; i >= 0; i--)
433 device_remove_file(&spi->dev, &pdata->regs[i].attr);
434
435 kfree_exit:
436 spi->dev.platform_data = NULL;
437 return ret;
438 }
439
440 static int pcf2123_remove(struct spi_device *spi)
441 {
442 struct pcf2123_plat_data *pdata = dev_get_platdata(&spi->dev);
443 int i;
444
445 if (pdata) {
446 for (i = 0; i < 16; i++)
447 if (pdata->regs[i].name[0])
448 device_remove_file(&spi->dev,
449 &pdata->regs[i].attr);
450 }
451
452 return 0;
453 }
454
455 #ifdef CONFIG_OF
456 static const struct of_device_id pcf2123_dt_ids[] = {
457 { .compatible = "nxp,rtc-pcf2123", },
458 { /* sentinel */ }
459 };
460 MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
461 #endif
462
463 static struct spi_driver pcf2123_driver = {
464 .driver = {
465 .name = "rtc-pcf2123",
466 .of_match_table = of_match_ptr(pcf2123_dt_ids),
467 },
468 .probe = pcf2123_probe,
469 .remove = pcf2123_remove,
470 };
471
472 module_spi_driver(pcf2123_driver);
473
474 MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
475 MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
476 MODULE_LICENSE("GPL");
477 MODULE_VERSION(DRV_VERSION);