]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/rtc/rtc-rs5c372.c
Merge branches 'pm-core-fixes' and 'pm-cpufreq-fixes'
[mirror_ubuntu-artful-kernel.git] / drivers / rtc / rtc-rs5c372.c
1 /*
2 * An I2C driver for Ricoh RS5C372, R2025S/D and RV5C38[67] RTCs
3 *
4 * Copyright (C) 2005 Pavel Mironchik <pmironchik@optifacio.net>
5 * Copyright (C) 2006 Tower Technologies
6 * Copyright (C) 2008 Paul Mundt
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/i2c.h>
14 #include <linux/rtc.h>
15 #include <linux/bcd.h>
16 #include <linux/slab.h>
17 #include <linux/module.h>
18
19 /*
20 * Ricoh has a family of I2C based RTCs, which differ only slightly from
21 * each other. Differences center on pinout (e.g. how many interrupts,
22 * output clock, etc) and how the control registers are used. The '372
23 * is significant only because that's the one this driver first supported.
24 */
25 #define RS5C372_REG_SECS 0
26 #define RS5C372_REG_MINS 1
27 #define RS5C372_REG_HOURS 2
28 #define RS5C372_REG_WDAY 3
29 #define RS5C372_REG_DAY 4
30 #define RS5C372_REG_MONTH 5
31 #define RS5C372_REG_YEAR 6
32 #define RS5C372_REG_TRIM 7
33 # define RS5C372_TRIM_XSL 0x80
34 # define RS5C372_TRIM_MASK 0x7F
35
36 #define RS5C_REG_ALARM_A_MIN 8 /* or ALARM_W */
37 #define RS5C_REG_ALARM_A_HOURS 9
38 #define RS5C_REG_ALARM_A_WDAY 10
39
40 #define RS5C_REG_ALARM_B_MIN 11 /* or ALARM_D */
41 #define RS5C_REG_ALARM_B_HOURS 12
42 #define RS5C_REG_ALARM_B_WDAY 13 /* (ALARM_B only) */
43
44 #define RS5C_REG_CTRL1 14
45 # define RS5C_CTRL1_AALE (1 << 7) /* or WALE */
46 # define RS5C_CTRL1_BALE (1 << 6) /* or DALE */
47 # define RV5C387_CTRL1_24 (1 << 5)
48 # define RS5C372A_CTRL1_SL1 (1 << 5)
49 # define RS5C_CTRL1_CT_MASK (7 << 0)
50 # define RS5C_CTRL1_CT0 (0 << 0) /* no periodic irq */
51 # define RS5C_CTRL1_CT4 (4 << 0) /* 1 Hz level irq */
52 #define RS5C_REG_CTRL2 15
53 # define RS5C372_CTRL2_24 (1 << 5)
54 # define R2025_CTRL2_XST (1 << 5)
55 # define RS5C_CTRL2_XSTP (1 << 4) /* only if !R2025S/D */
56 # define RS5C_CTRL2_CTFG (1 << 2)
57 # define RS5C_CTRL2_AAFG (1 << 1) /* or WAFG */
58 # define RS5C_CTRL2_BAFG (1 << 0) /* or DAFG */
59
60
61 /* to read (style 1) or write registers starting at R */
62 #define RS5C_ADDR(R) (((R) << 4) | 0)
63
64
65 enum rtc_type {
66 rtc_undef = 0,
67 rtc_r2025sd,
68 rtc_r2221tl,
69 rtc_rs5c372a,
70 rtc_rs5c372b,
71 rtc_rv5c386,
72 rtc_rv5c387a,
73 };
74
75 static const struct i2c_device_id rs5c372_id[] = {
76 { "r2025sd", rtc_r2025sd },
77 { "r2221tl", rtc_r2221tl },
78 { "rs5c372a", rtc_rs5c372a },
79 { "rs5c372b", rtc_rs5c372b },
80 { "rv5c386", rtc_rv5c386 },
81 { "rv5c387a", rtc_rv5c387a },
82 { }
83 };
84 MODULE_DEVICE_TABLE(i2c, rs5c372_id);
85
86 /* REVISIT: this assumes that:
87 * - we're in the 21st century, so it's safe to ignore the century
88 * bit for rv5c38[67] (REG_MONTH bit 7);
89 * - we should use ALARM_A not ALARM_B (may be wrong on some boards)
90 */
91 struct rs5c372 {
92 struct i2c_client *client;
93 struct rtc_device *rtc;
94 enum rtc_type type;
95 unsigned time24:1;
96 unsigned has_irq:1;
97 unsigned smbus:1;
98 char buf[17];
99 char *regs;
100 };
101
102 static int rs5c_get_regs(struct rs5c372 *rs5c)
103 {
104 struct i2c_client *client = rs5c->client;
105 struct i2c_msg msgs[] = {
106 {
107 .addr = client->addr,
108 .flags = I2C_M_RD,
109 .len = sizeof(rs5c->buf),
110 .buf = rs5c->buf
111 },
112 };
113
114 /* This implements the third reading method from the datasheet, using
115 * an internal address that's reset after each transaction (by STOP)
116 * to 0x0f ... so we read extra registers, and skip the first one.
117 *
118 * The first method doesn't work with the iop3xx adapter driver, on at
119 * least 80219 chips; this works around that bug.
120 *
121 * The third method on the other hand doesn't work for the SMBus-only
122 * configurations, so we use the the first method there, stripping off
123 * the extra register in the process.
124 */
125 if (rs5c->smbus) {
126 int addr = RS5C_ADDR(RS5C372_REG_SECS);
127 int size = sizeof(rs5c->buf) - 1;
128
129 if (i2c_smbus_read_i2c_block_data(client, addr, size,
130 rs5c->buf + 1) != size) {
131 dev_warn(&client->dev, "can't read registers\n");
132 return -EIO;
133 }
134 } else {
135 if ((i2c_transfer(client->adapter, msgs, 1)) != 1) {
136 dev_warn(&client->dev, "can't read registers\n");
137 return -EIO;
138 }
139 }
140
141 dev_dbg(&client->dev,
142 "%3ph (%02x) %3ph (%02x), %3ph, %3ph; %02x %02x\n",
143 rs5c->regs + 0, rs5c->regs[3],
144 rs5c->regs + 4, rs5c->regs[7],
145 rs5c->regs + 8, rs5c->regs + 11,
146 rs5c->regs[14], rs5c->regs[15]);
147
148 return 0;
149 }
150
151 static unsigned rs5c_reg2hr(struct rs5c372 *rs5c, unsigned reg)
152 {
153 unsigned hour;
154
155 if (rs5c->time24)
156 return bcd2bin(reg & 0x3f);
157
158 hour = bcd2bin(reg & 0x1f);
159 if (hour == 12)
160 hour = 0;
161 if (reg & 0x20)
162 hour += 12;
163 return hour;
164 }
165
166 static unsigned rs5c_hr2reg(struct rs5c372 *rs5c, unsigned hour)
167 {
168 if (rs5c->time24)
169 return bin2bcd(hour);
170
171 if (hour > 12)
172 return 0x20 | bin2bcd(hour - 12);
173 if (hour == 12)
174 return 0x20 | bin2bcd(12);
175 if (hour == 0)
176 return bin2bcd(12);
177 return bin2bcd(hour);
178 }
179
180 static int rs5c372_get_datetime(struct i2c_client *client, struct rtc_time *tm)
181 {
182 struct rs5c372 *rs5c = i2c_get_clientdata(client);
183 int status = rs5c_get_regs(rs5c);
184
185 if (status < 0)
186 return status;
187
188 tm->tm_sec = bcd2bin(rs5c->regs[RS5C372_REG_SECS] & 0x7f);
189 tm->tm_min = bcd2bin(rs5c->regs[RS5C372_REG_MINS] & 0x7f);
190 tm->tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C372_REG_HOURS]);
191
192 tm->tm_wday = bcd2bin(rs5c->regs[RS5C372_REG_WDAY] & 0x07);
193 tm->tm_mday = bcd2bin(rs5c->regs[RS5C372_REG_DAY] & 0x3f);
194
195 /* tm->tm_mon is zero-based */
196 tm->tm_mon = bcd2bin(rs5c->regs[RS5C372_REG_MONTH] & 0x1f) - 1;
197
198 /* year is 1900 + tm->tm_year */
199 tm->tm_year = bcd2bin(rs5c->regs[RS5C372_REG_YEAR]) + 100;
200
201 dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
202 "mday=%d, mon=%d, year=%d, wday=%d\n",
203 __func__,
204 tm->tm_sec, tm->tm_min, tm->tm_hour,
205 tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
206
207 /* rtc might need initialization */
208 return rtc_valid_tm(tm);
209 }
210
211 static int rs5c372_set_datetime(struct i2c_client *client, struct rtc_time *tm)
212 {
213 struct rs5c372 *rs5c = i2c_get_clientdata(client);
214 unsigned char buf[7];
215 int addr;
216
217 dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d "
218 "mday=%d, mon=%d, year=%d, wday=%d\n",
219 __func__,
220 tm->tm_sec, tm->tm_min, tm->tm_hour,
221 tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
222
223 addr = RS5C_ADDR(RS5C372_REG_SECS);
224 buf[0] = bin2bcd(tm->tm_sec);
225 buf[1] = bin2bcd(tm->tm_min);
226 buf[2] = rs5c_hr2reg(rs5c, tm->tm_hour);
227 buf[3] = bin2bcd(tm->tm_wday);
228 buf[4] = bin2bcd(tm->tm_mday);
229 buf[5] = bin2bcd(tm->tm_mon + 1);
230 buf[6] = bin2bcd(tm->tm_year - 100);
231
232 if (i2c_smbus_write_i2c_block_data(client, addr, sizeof(buf), buf) < 0) {
233 dev_err(&client->dev, "%s: write error\n", __func__);
234 return -EIO;
235 }
236
237 return 0;
238 }
239
240 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
241 #define NEED_TRIM
242 #endif
243
244 #if IS_ENABLED(CONFIG_RTC_INTF_SYSFS)
245 #define NEED_TRIM
246 #endif
247
248 #ifdef NEED_TRIM
249 static int rs5c372_get_trim(struct i2c_client *client, int *osc, int *trim)
250 {
251 struct rs5c372 *rs5c372 = i2c_get_clientdata(client);
252 u8 tmp = rs5c372->regs[RS5C372_REG_TRIM];
253
254 if (osc)
255 *osc = (tmp & RS5C372_TRIM_XSL) ? 32000 : 32768;
256
257 if (trim) {
258 dev_dbg(&client->dev, "%s: raw trim=%x\n", __func__, tmp);
259 tmp &= RS5C372_TRIM_MASK;
260 if (tmp & 0x3e) {
261 int t = tmp & 0x3f;
262
263 if (tmp & 0x40)
264 t = (~t | (s8)0xc0) + 1;
265 else
266 t = t - 1;
267
268 tmp = t * 2;
269 } else
270 tmp = 0;
271 *trim = tmp;
272 }
273
274 return 0;
275 }
276 #endif
277
278 static int rs5c372_rtc_read_time(struct device *dev, struct rtc_time *tm)
279 {
280 return rs5c372_get_datetime(to_i2c_client(dev), tm);
281 }
282
283 static int rs5c372_rtc_set_time(struct device *dev, struct rtc_time *tm)
284 {
285 return rs5c372_set_datetime(to_i2c_client(dev), tm);
286 }
287
288
289 static int rs5c_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
290 {
291 struct i2c_client *client = to_i2c_client(dev);
292 struct rs5c372 *rs5c = i2c_get_clientdata(client);
293 unsigned char buf;
294 int status, addr;
295
296 buf = rs5c->regs[RS5C_REG_CTRL1];
297
298 if (!rs5c->has_irq)
299 return -EINVAL;
300
301 status = rs5c_get_regs(rs5c);
302 if (status < 0)
303 return status;
304
305 addr = RS5C_ADDR(RS5C_REG_CTRL1);
306 if (enabled)
307 buf |= RS5C_CTRL1_AALE;
308 else
309 buf &= ~RS5C_CTRL1_AALE;
310
311 if (i2c_smbus_write_byte_data(client, addr, buf) < 0) {
312 dev_warn(dev, "can't update alarm\n");
313 status = -EIO;
314 } else
315 rs5c->regs[RS5C_REG_CTRL1] = buf;
316
317 return status;
318 }
319
320
321 /* NOTE: Since RTC_WKALM_{RD,SET} were originally defined for EFI,
322 * which only exposes a polled programming interface; and since
323 * these calls map directly to those EFI requests; we don't demand
324 * we have an IRQ for this chip when we go through this API.
325 *
326 * The older x86_pc derived RTC_ALM_{READ,SET} calls require irqs
327 * though, managed through RTC_AIE_{ON,OFF} requests.
328 */
329
330 static int rs5c_read_alarm(struct device *dev, struct rtc_wkalrm *t)
331 {
332 struct i2c_client *client = to_i2c_client(dev);
333 struct rs5c372 *rs5c = i2c_get_clientdata(client);
334 int status;
335
336 status = rs5c_get_regs(rs5c);
337 if (status < 0)
338 return status;
339
340 /* report alarm time */
341 t->time.tm_sec = 0;
342 t->time.tm_min = bcd2bin(rs5c->regs[RS5C_REG_ALARM_A_MIN] & 0x7f);
343 t->time.tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C_REG_ALARM_A_HOURS]);
344
345 /* ... and status */
346 t->enabled = !!(rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE);
347 t->pending = !!(rs5c->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_AAFG);
348
349 return 0;
350 }
351
352 static int rs5c_set_alarm(struct device *dev, struct rtc_wkalrm *t)
353 {
354 struct i2c_client *client = to_i2c_client(dev);
355 struct rs5c372 *rs5c = i2c_get_clientdata(client);
356 int status, addr, i;
357 unsigned char buf[3];
358
359 /* only handle up to 24 hours in the future, like RTC_ALM_SET */
360 if (t->time.tm_mday != -1
361 || t->time.tm_mon != -1
362 || t->time.tm_year != -1)
363 return -EINVAL;
364
365 /* REVISIT: round up tm_sec */
366
367 /* if needed, disable irq (clears pending status) */
368 status = rs5c_get_regs(rs5c);
369 if (status < 0)
370 return status;
371 if (rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE) {
372 addr = RS5C_ADDR(RS5C_REG_CTRL1);
373 buf[0] = rs5c->regs[RS5C_REG_CTRL1] & ~RS5C_CTRL1_AALE;
374 if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0) {
375 dev_dbg(dev, "can't disable alarm\n");
376 return -EIO;
377 }
378 rs5c->regs[RS5C_REG_CTRL1] = buf[0];
379 }
380
381 /* set alarm */
382 buf[0] = bin2bcd(t->time.tm_min);
383 buf[1] = rs5c_hr2reg(rs5c, t->time.tm_hour);
384 buf[2] = 0x7f; /* any/all days */
385
386 for (i = 0; i < sizeof(buf); i++) {
387 addr = RS5C_ADDR(RS5C_REG_ALARM_A_MIN + i);
388 if (i2c_smbus_write_byte_data(client, addr, buf[i]) < 0) {
389 dev_dbg(dev, "can't set alarm time\n");
390 return -EIO;
391 }
392 }
393
394 /* ... and maybe enable its irq */
395 if (t->enabled) {
396 addr = RS5C_ADDR(RS5C_REG_CTRL1);
397 buf[0] = rs5c->regs[RS5C_REG_CTRL1] | RS5C_CTRL1_AALE;
398 if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0)
399 dev_warn(dev, "can't enable alarm\n");
400 rs5c->regs[RS5C_REG_CTRL1] = buf[0];
401 }
402
403 return 0;
404 }
405
406 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
407
408 static int rs5c372_rtc_proc(struct device *dev, struct seq_file *seq)
409 {
410 int err, osc, trim;
411
412 err = rs5c372_get_trim(to_i2c_client(dev), &osc, &trim);
413 if (err == 0) {
414 seq_printf(seq, "crystal\t\t: %d.%03d KHz\n",
415 osc / 1000, osc % 1000);
416 seq_printf(seq, "trim\t\t: %d\n", trim);
417 }
418
419 return 0;
420 }
421
422 #else
423 #define rs5c372_rtc_proc NULL
424 #endif
425
426 static const struct rtc_class_ops rs5c372_rtc_ops = {
427 .proc = rs5c372_rtc_proc,
428 .read_time = rs5c372_rtc_read_time,
429 .set_time = rs5c372_rtc_set_time,
430 .read_alarm = rs5c_read_alarm,
431 .set_alarm = rs5c_set_alarm,
432 .alarm_irq_enable = rs5c_rtc_alarm_irq_enable,
433 };
434
435 #if IS_ENABLED(CONFIG_RTC_INTF_SYSFS)
436
437 static ssize_t rs5c372_sysfs_show_trim(struct device *dev,
438 struct device_attribute *attr, char *buf)
439 {
440 int err, trim;
441
442 err = rs5c372_get_trim(to_i2c_client(dev), NULL, &trim);
443 if (err)
444 return err;
445
446 return sprintf(buf, "%d\n", trim);
447 }
448 static DEVICE_ATTR(trim, S_IRUGO, rs5c372_sysfs_show_trim, NULL);
449
450 static ssize_t rs5c372_sysfs_show_osc(struct device *dev,
451 struct device_attribute *attr, char *buf)
452 {
453 int err, osc;
454
455 err = rs5c372_get_trim(to_i2c_client(dev), &osc, NULL);
456 if (err)
457 return err;
458
459 return sprintf(buf, "%d.%03d KHz\n", osc / 1000, osc % 1000);
460 }
461 static DEVICE_ATTR(osc, S_IRUGO, rs5c372_sysfs_show_osc, NULL);
462
463 static int rs5c_sysfs_register(struct device *dev)
464 {
465 int err;
466
467 err = device_create_file(dev, &dev_attr_trim);
468 if (err)
469 return err;
470 err = device_create_file(dev, &dev_attr_osc);
471 if (err)
472 device_remove_file(dev, &dev_attr_trim);
473
474 return err;
475 }
476
477 static void rs5c_sysfs_unregister(struct device *dev)
478 {
479 device_remove_file(dev, &dev_attr_trim);
480 device_remove_file(dev, &dev_attr_osc);
481 }
482
483 #else
484 static int rs5c_sysfs_register(struct device *dev)
485 {
486 return 0;
487 }
488
489 static void rs5c_sysfs_unregister(struct device *dev)
490 {
491 /* nothing */
492 }
493 #endif /* SYSFS */
494
495 static struct i2c_driver rs5c372_driver;
496
497 static int rs5c_oscillator_setup(struct rs5c372 *rs5c372)
498 {
499 unsigned char buf[2];
500 int addr, i, ret = 0;
501
502 if (rs5c372->type == rtc_r2025sd) {
503 if (rs5c372->regs[RS5C_REG_CTRL2] & R2025_CTRL2_XST)
504 return ret;
505 rs5c372->regs[RS5C_REG_CTRL2] |= R2025_CTRL2_XST;
506 } else {
507 if (!(rs5c372->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_XSTP))
508 return ret;
509 rs5c372->regs[RS5C_REG_CTRL2] &= ~RS5C_CTRL2_XSTP;
510 }
511
512 addr = RS5C_ADDR(RS5C_REG_CTRL1);
513 buf[0] = rs5c372->regs[RS5C_REG_CTRL1];
514 buf[1] = rs5c372->regs[RS5C_REG_CTRL2];
515
516 /* use 24hr mode */
517 switch (rs5c372->type) {
518 case rtc_rs5c372a:
519 case rtc_rs5c372b:
520 buf[1] |= RS5C372_CTRL2_24;
521 rs5c372->time24 = 1;
522 break;
523 case rtc_r2025sd:
524 case rtc_r2221tl:
525 case rtc_rv5c386:
526 case rtc_rv5c387a:
527 buf[0] |= RV5C387_CTRL1_24;
528 rs5c372->time24 = 1;
529 break;
530 default:
531 /* impossible */
532 break;
533 }
534
535 for (i = 0; i < sizeof(buf); i++) {
536 addr = RS5C_ADDR(RS5C_REG_CTRL1 + i);
537 ret = i2c_smbus_write_byte_data(rs5c372->client, addr, buf[i]);
538 if (unlikely(ret < 0))
539 return ret;
540 }
541
542 rs5c372->regs[RS5C_REG_CTRL1] = buf[0];
543 rs5c372->regs[RS5C_REG_CTRL2] = buf[1];
544
545 return 0;
546 }
547
548 static int rs5c372_probe(struct i2c_client *client,
549 const struct i2c_device_id *id)
550 {
551 int err = 0;
552 int smbus_mode = 0;
553 struct rs5c372 *rs5c372;
554 struct rtc_time tm;
555
556 dev_dbg(&client->dev, "%s\n", __func__);
557
558 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
559 I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_I2C_BLOCK)) {
560 /*
561 * If we don't have any master mode adapter, try breaking
562 * it down in to the barest of capabilities.
563 */
564 if (i2c_check_functionality(client->adapter,
565 I2C_FUNC_SMBUS_BYTE_DATA |
566 I2C_FUNC_SMBUS_I2C_BLOCK))
567 smbus_mode = 1;
568 else {
569 /* Still no good, give up */
570 err = -ENODEV;
571 goto exit;
572 }
573 }
574
575 rs5c372 = devm_kzalloc(&client->dev, sizeof(struct rs5c372),
576 GFP_KERNEL);
577 if (!rs5c372) {
578 err = -ENOMEM;
579 goto exit;
580 }
581
582 rs5c372->client = client;
583 i2c_set_clientdata(client, rs5c372);
584 rs5c372->type = id->driver_data;
585
586 /* we read registers 0x0f then 0x00-0x0f; skip the first one */
587 rs5c372->regs = &rs5c372->buf[1];
588 rs5c372->smbus = smbus_mode;
589
590 err = rs5c_get_regs(rs5c372);
591 if (err < 0)
592 goto exit;
593
594 /* clock may be set for am/pm or 24 hr time */
595 switch (rs5c372->type) {
596 case rtc_rs5c372a:
597 case rtc_rs5c372b:
598 /* alarm uses ALARM_A; and nINTRA on 372a, nINTR on 372b.
599 * so does periodic irq, except some 327a modes.
600 */
601 if (rs5c372->regs[RS5C_REG_CTRL2] & RS5C372_CTRL2_24)
602 rs5c372->time24 = 1;
603 break;
604 case rtc_r2025sd:
605 case rtc_r2221tl:
606 case rtc_rv5c386:
607 case rtc_rv5c387a:
608 if (rs5c372->regs[RS5C_REG_CTRL1] & RV5C387_CTRL1_24)
609 rs5c372->time24 = 1;
610 /* alarm uses ALARM_W; and nINTRB for alarm and periodic
611 * irq, on both 386 and 387
612 */
613 break;
614 default:
615 dev_err(&client->dev, "unknown RTC type\n");
616 goto exit;
617 }
618
619 /* if the oscillator lost power and no other software (like
620 * the bootloader) set it up, do it here.
621 *
622 * The R2025S/D does this a little differently than the other
623 * parts, so we special case that..
624 */
625 err = rs5c_oscillator_setup(rs5c372);
626 if (unlikely(err < 0)) {
627 dev_err(&client->dev, "setup error\n");
628 goto exit;
629 }
630
631 if (rs5c372_get_datetime(client, &tm) < 0)
632 dev_warn(&client->dev, "clock needs to be set\n");
633
634 dev_info(&client->dev, "%s found, %s\n",
635 ({ char *s; switch (rs5c372->type) {
636 case rtc_r2025sd: s = "r2025sd"; break;
637 case rtc_r2221tl: s = "r2221tl"; break;
638 case rtc_rs5c372a: s = "rs5c372a"; break;
639 case rtc_rs5c372b: s = "rs5c372b"; break;
640 case rtc_rv5c386: s = "rv5c386"; break;
641 case rtc_rv5c387a: s = "rv5c387a"; break;
642 default: s = "chip"; break;
643 }; s;}),
644 rs5c372->time24 ? "24hr" : "am/pm"
645 );
646
647 /* REVISIT use client->irq to register alarm irq ... */
648 rs5c372->rtc = devm_rtc_device_register(&client->dev,
649 rs5c372_driver.driver.name,
650 &rs5c372_rtc_ops, THIS_MODULE);
651
652 if (IS_ERR(rs5c372->rtc)) {
653 err = PTR_ERR(rs5c372->rtc);
654 goto exit;
655 }
656
657 err = rs5c_sysfs_register(&client->dev);
658 if (err)
659 goto exit;
660
661 return 0;
662
663 exit:
664 return err;
665 }
666
667 static int rs5c372_remove(struct i2c_client *client)
668 {
669 rs5c_sysfs_unregister(&client->dev);
670 return 0;
671 }
672
673 static struct i2c_driver rs5c372_driver = {
674 .driver = {
675 .name = "rtc-rs5c372",
676 },
677 .probe = rs5c372_probe,
678 .remove = rs5c372_remove,
679 .id_table = rs5c372_id,
680 };
681
682 module_i2c_driver(rs5c372_driver);
683
684 MODULE_AUTHOR(
685 "Pavel Mironchik <pmironchik@optifacio.net>, "
686 "Alessandro Zummo <a.zummo@towertech.it>, "
687 "Paul Mundt <lethal@linux-sh.org>");
688 MODULE_DESCRIPTION("Ricoh RS5C372 RTC driver");
689 MODULE_LICENSE("GPL");