]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/rtc/rtc-sh.c
Speed up console framebuffer imageblit function
[mirror_ubuntu-zesty-kernel.git] / drivers / rtc / rtc-sh.c
1 /*
2 * SuperH On-Chip RTC Support
3 *
4 * Copyright (C) 2006 - 2009 Paul Mundt
5 * Copyright (C) 2006 Jamie Lenehan
6 * Copyright (C) 2008 Angelo Castello
7 *
8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
9 *
10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
12 *
13 * This file is subject to the terms and conditions of the GNU General Public
14 * License. See the file "COPYING" in the main directory of this archive
15 * for more details.
16 */
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/io.h>
27 #include <linux/log2.h>
28 #include <linux/clk.h>
29 #include <linux/slab.h>
30 #include <asm/rtc.h>
31
32 #define DRV_NAME "sh-rtc"
33
34 #define RTC_REG(r) ((r) * rtc_reg_size)
35
36 #define R64CNT RTC_REG(0)
37
38 #define RSECCNT RTC_REG(1) /* RTC sec */
39 #define RMINCNT RTC_REG(2) /* RTC min */
40 #define RHRCNT RTC_REG(3) /* RTC hour */
41 #define RWKCNT RTC_REG(4) /* RTC week */
42 #define RDAYCNT RTC_REG(5) /* RTC day */
43 #define RMONCNT RTC_REG(6) /* RTC month */
44 #define RYRCNT RTC_REG(7) /* RTC year */
45 #define RSECAR RTC_REG(8) /* ALARM sec */
46 #define RMINAR RTC_REG(9) /* ALARM min */
47 #define RHRAR RTC_REG(10) /* ALARM hour */
48 #define RWKAR RTC_REG(11) /* ALARM week */
49 #define RDAYAR RTC_REG(12) /* ALARM day */
50 #define RMONAR RTC_REG(13) /* ALARM month */
51 #define RCR1 RTC_REG(14) /* Control */
52 #define RCR2 RTC_REG(15) /* Control */
53
54 /*
55 * Note on RYRAR and RCR3: Up until this point most of the register
56 * definitions are consistent across all of the available parts. However,
57 * the placement of the optional RYRAR and RCR3 (the RYRAR control
58 * register used to control RYRCNT/RYRAR compare) varies considerably
59 * across various parts, occasionally being mapped in to a completely
60 * unrelated address space. For proper RYRAR support a separate resource
61 * would have to be handed off, but as this is purely optional in
62 * practice, we simply opt not to support it, thereby keeping the code
63 * quite a bit more simplified.
64 */
65
66 /* ALARM Bits - or with BCD encoded value */
67 #define AR_ENB 0x80 /* Enable for alarm cmp */
68
69 /* Period Bits */
70 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */
71 #define PF_COUNT 0x200 /* Half periodic counter */
72 #define PF_OXS 0x400 /* Periodic One x Second */
73 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */
74 #define PF_MASK 0xf00
75
76 /* RCR1 Bits */
77 #define RCR1_CF 0x80 /* Carry Flag */
78 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
79 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
80 #define RCR1_AF 0x01 /* Alarm Flag */
81
82 /* RCR2 Bits */
83 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
84 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
85 #define RCR2_RTCEN 0x08 /* ENable RTC */
86 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
87 #define RCR2_RESET 0x02 /* Reset bit */
88 #define RCR2_START 0x01 /* Start bit */
89
90 struct sh_rtc {
91 void __iomem *regbase;
92 unsigned long regsize;
93 struct resource *res;
94 int alarm_irq;
95 int periodic_irq;
96 int carry_irq;
97 struct clk *clk;
98 struct rtc_device *rtc_dev;
99 spinlock_t lock;
100 unsigned long capabilities; /* See asm/rtc.h for cap bits */
101 unsigned short periodic_freq;
102 };
103
104 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
105 {
106 unsigned int tmp, pending;
107
108 tmp = readb(rtc->regbase + RCR1);
109 pending = tmp & RCR1_CF;
110 tmp &= ~RCR1_CF;
111 writeb(tmp, rtc->regbase + RCR1);
112
113 /* Users have requested One x Second IRQ */
114 if (pending && rtc->periodic_freq & PF_OXS)
115 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
116
117 return pending;
118 }
119
120 static int __sh_rtc_alarm(struct sh_rtc *rtc)
121 {
122 unsigned int tmp, pending;
123
124 tmp = readb(rtc->regbase + RCR1);
125 pending = tmp & RCR1_AF;
126 tmp &= ~(RCR1_AF | RCR1_AIE);
127 writeb(tmp, rtc->regbase + RCR1);
128
129 if (pending)
130 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
131
132 return pending;
133 }
134
135 static int __sh_rtc_periodic(struct sh_rtc *rtc)
136 {
137 struct rtc_device *rtc_dev = rtc->rtc_dev;
138 struct rtc_task *irq_task;
139 unsigned int tmp, pending;
140
141 tmp = readb(rtc->regbase + RCR2);
142 pending = tmp & RCR2_PEF;
143 tmp &= ~RCR2_PEF;
144 writeb(tmp, rtc->regbase + RCR2);
145
146 if (!pending)
147 return 0;
148
149 /* Half period enabled than one skipped and the next notified */
150 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
151 rtc->periodic_freq &= ~PF_COUNT;
152 else {
153 if (rtc->periodic_freq & PF_HP)
154 rtc->periodic_freq |= PF_COUNT;
155 if (rtc->periodic_freq & PF_KOU) {
156 spin_lock(&rtc_dev->irq_task_lock);
157 irq_task = rtc_dev->irq_task;
158 if (irq_task)
159 irq_task->func(irq_task->private_data);
160 spin_unlock(&rtc_dev->irq_task_lock);
161 } else
162 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
163 }
164
165 return pending;
166 }
167
168 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
169 {
170 struct sh_rtc *rtc = dev_id;
171 int ret;
172
173 spin_lock(&rtc->lock);
174 ret = __sh_rtc_interrupt(rtc);
175 spin_unlock(&rtc->lock);
176
177 return IRQ_RETVAL(ret);
178 }
179
180 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
181 {
182 struct sh_rtc *rtc = dev_id;
183 int ret;
184
185 spin_lock(&rtc->lock);
186 ret = __sh_rtc_alarm(rtc);
187 spin_unlock(&rtc->lock);
188
189 return IRQ_RETVAL(ret);
190 }
191
192 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
193 {
194 struct sh_rtc *rtc = dev_id;
195 int ret;
196
197 spin_lock(&rtc->lock);
198 ret = __sh_rtc_periodic(rtc);
199 spin_unlock(&rtc->lock);
200
201 return IRQ_RETVAL(ret);
202 }
203
204 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
205 {
206 struct sh_rtc *rtc = dev_id;
207 int ret;
208
209 spin_lock(&rtc->lock);
210 ret = __sh_rtc_interrupt(rtc);
211 ret |= __sh_rtc_alarm(rtc);
212 ret |= __sh_rtc_periodic(rtc);
213 spin_unlock(&rtc->lock);
214
215 return IRQ_RETVAL(ret);
216 }
217
218 static int sh_rtc_irq_set_state(struct device *dev, int enable)
219 {
220 struct sh_rtc *rtc = dev_get_drvdata(dev);
221 unsigned int tmp;
222
223 spin_lock_irq(&rtc->lock);
224
225 tmp = readb(rtc->regbase + RCR2);
226
227 if (enable) {
228 rtc->periodic_freq |= PF_KOU;
229 tmp &= ~RCR2_PEF; /* Clear PES bit */
230 tmp |= (rtc->periodic_freq & ~PF_HP); /* Set PES2-0 */
231 } else {
232 rtc->periodic_freq &= ~PF_KOU;
233 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
234 }
235
236 writeb(tmp, rtc->regbase + RCR2);
237
238 spin_unlock_irq(&rtc->lock);
239
240 return 0;
241 }
242
243 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
244 {
245 struct sh_rtc *rtc = dev_get_drvdata(dev);
246 int tmp, ret = 0;
247
248 spin_lock_irq(&rtc->lock);
249 tmp = rtc->periodic_freq & PF_MASK;
250
251 switch (freq) {
252 case 0:
253 rtc->periodic_freq = 0x00;
254 break;
255 case 1:
256 rtc->periodic_freq = 0x60;
257 break;
258 case 2:
259 rtc->periodic_freq = 0x50;
260 break;
261 case 4:
262 rtc->periodic_freq = 0x40;
263 break;
264 case 8:
265 rtc->periodic_freq = 0x30 | PF_HP;
266 break;
267 case 16:
268 rtc->periodic_freq = 0x30;
269 break;
270 case 32:
271 rtc->periodic_freq = 0x20 | PF_HP;
272 break;
273 case 64:
274 rtc->periodic_freq = 0x20;
275 break;
276 case 128:
277 rtc->periodic_freq = 0x10 | PF_HP;
278 break;
279 case 256:
280 rtc->periodic_freq = 0x10;
281 break;
282 default:
283 ret = -ENOTSUPP;
284 }
285
286 if (ret == 0)
287 rtc->periodic_freq |= tmp;
288
289 spin_unlock_irq(&rtc->lock);
290 return ret;
291 }
292
293 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
294 {
295 struct sh_rtc *rtc = dev_get_drvdata(dev);
296 unsigned int tmp;
297
298 spin_lock_irq(&rtc->lock);
299
300 tmp = readb(rtc->regbase + RCR1);
301
302 if (enable)
303 tmp |= RCR1_AIE;
304 else
305 tmp &= ~RCR1_AIE;
306
307 writeb(tmp, rtc->regbase + RCR1);
308
309 spin_unlock_irq(&rtc->lock);
310 }
311
312 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
313 {
314 struct sh_rtc *rtc = dev_get_drvdata(dev);
315 unsigned int tmp;
316
317 tmp = readb(rtc->regbase + RCR1);
318 seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
319
320 tmp = readb(rtc->regbase + RCR2);
321 seq_printf(seq, "periodic_IRQ\t: %s\n",
322 (tmp & RCR2_PESMASK) ? "yes" : "no");
323
324 return 0;
325 }
326
327 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
328 {
329 struct sh_rtc *rtc = dev_get_drvdata(dev);
330 unsigned int tmp;
331
332 spin_lock_irq(&rtc->lock);
333
334 tmp = readb(rtc->regbase + RCR1);
335
336 if (!enable)
337 tmp &= ~RCR1_CIE;
338 else
339 tmp |= RCR1_CIE;
340
341 writeb(tmp, rtc->regbase + RCR1);
342
343 spin_unlock_irq(&rtc->lock);
344 }
345
346 static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
347 {
348 sh_rtc_setaie(dev, enabled);
349 return 0;
350 }
351
352 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
353 {
354 struct platform_device *pdev = to_platform_device(dev);
355 struct sh_rtc *rtc = platform_get_drvdata(pdev);
356 unsigned int sec128, sec2, yr, yr100, cf_bit;
357
358 do {
359 unsigned int tmp;
360
361 spin_lock_irq(&rtc->lock);
362
363 tmp = readb(rtc->regbase + RCR1);
364 tmp &= ~RCR1_CF; /* Clear CF-bit */
365 tmp |= RCR1_CIE;
366 writeb(tmp, rtc->regbase + RCR1);
367
368 sec128 = readb(rtc->regbase + R64CNT);
369
370 tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT));
371 tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT));
372 tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT));
373 tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT));
374 tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT));
375 tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
376
377 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
378 yr = readw(rtc->regbase + RYRCNT);
379 yr100 = bcd2bin(yr >> 8);
380 yr &= 0xff;
381 } else {
382 yr = readb(rtc->regbase + RYRCNT);
383 yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
384 }
385
386 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
387
388 sec2 = readb(rtc->regbase + R64CNT);
389 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
390
391 spin_unlock_irq(&rtc->lock);
392 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
393
394 #if RTC_BIT_INVERTED != 0
395 if ((sec128 & RTC_BIT_INVERTED))
396 tm->tm_sec--;
397 #endif
398
399 /* only keep the carry interrupt enabled if UIE is on */
400 if (!(rtc->periodic_freq & PF_OXS))
401 sh_rtc_setcie(dev, 0);
402
403 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
404 "mday=%d, mon=%d, year=%d, wday=%d\n",
405 __func__,
406 tm->tm_sec, tm->tm_min, tm->tm_hour,
407 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
408
409 return rtc_valid_tm(tm);
410 }
411
412 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
413 {
414 struct platform_device *pdev = to_platform_device(dev);
415 struct sh_rtc *rtc = platform_get_drvdata(pdev);
416 unsigned int tmp;
417 int year;
418
419 spin_lock_irq(&rtc->lock);
420
421 /* Reset pre-scaler & stop RTC */
422 tmp = readb(rtc->regbase + RCR2);
423 tmp |= RCR2_RESET;
424 tmp &= ~RCR2_START;
425 writeb(tmp, rtc->regbase + RCR2);
426
427 writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT);
428 writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT);
429 writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
430 writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
431 writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
432 writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
433
434 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
435 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
436 bin2bcd(tm->tm_year % 100);
437 writew(year, rtc->regbase + RYRCNT);
438 } else {
439 year = tm->tm_year % 100;
440 writeb(bin2bcd(year), rtc->regbase + RYRCNT);
441 }
442
443 /* Start RTC */
444 tmp = readb(rtc->regbase + RCR2);
445 tmp &= ~RCR2_RESET;
446 tmp |= RCR2_RTCEN | RCR2_START;
447 writeb(tmp, rtc->regbase + RCR2);
448
449 spin_unlock_irq(&rtc->lock);
450
451 return 0;
452 }
453
454 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
455 {
456 unsigned int byte;
457 int value = 0xff; /* return 0xff for ignored values */
458
459 byte = readb(rtc->regbase + reg_off);
460 if (byte & AR_ENB) {
461 byte &= ~AR_ENB; /* strip the enable bit */
462 value = bcd2bin(byte);
463 }
464
465 return value;
466 }
467
468 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
469 {
470 struct platform_device *pdev = to_platform_device(dev);
471 struct sh_rtc *rtc = platform_get_drvdata(pdev);
472 struct rtc_time *tm = &wkalrm->time;
473
474 spin_lock_irq(&rtc->lock);
475
476 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
477 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
478 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
479 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
480 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
481 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
482 if (tm->tm_mon > 0)
483 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
484
485 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
486
487 spin_unlock_irq(&rtc->lock);
488
489 return 0;
490 }
491
492 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
493 int value, int reg_off)
494 {
495 /* < 0 for a value that is ignored */
496 if (value < 0)
497 writeb(0, rtc->regbase + reg_off);
498 else
499 writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off);
500 }
501
502 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
503 {
504 struct platform_device *pdev = to_platform_device(dev);
505 struct sh_rtc *rtc = platform_get_drvdata(pdev);
506 unsigned int rcr1;
507 struct rtc_time *tm = &wkalrm->time;
508 int mon;
509
510 spin_lock_irq(&rtc->lock);
511
512 /* disable alarm interrupt and clear the alarm flag */
513 rcr1 = readb(rtc->regbase + RCR1);
514 rcr1 &= ~(RCR1_AF | RCR1_AIE);
515 writeb(rcr1, rtc->regbase + RCR1);
516
517 /* set alarm time */
518 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
519 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
520 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
521 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
522 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
523 mon = tm->tm_mon;
524 if (mon >= 0)
525 mon += 1;
526 sh_rtc_write_alarm_value(rtc, mon, RMONAR);
527
528 if (wkalrm->enabled) {
529 rcr1 |= RCR1_AIE;
530 writeb(rcr1, rtc->regbase + RCR1);
531 }
532
533 spin_unlock_irq(&rtc->lock);
534
535 return 0;
536 }
537
538 static struct rtc_class_ops sh_rtc_ops = {
539 .read_time = sh_rtc_read_time,
540 .set_time = sh_rtc_set_time,
541 .read_alarm = sh_rtc_read_alarm,
542 .set_alarm = sh_rtc_set_alarm,
543 .proc = sh_rtc_proc,
544 .alarm_irq_enable = sh_rtc_alarm_irq_enable,
545 };
546
547 static int __init sh_rtc_probe(struct platform_device *pdev)
548 {
549 struct sh_rtc *rtc;
550 struct resource *res;
551 struct rtc_time r;
552 char clk_name[6];
553 int clk_id, ret;
554
555 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
556 if (unlikely(!rtc))
557 return -ENOMEM;
558
559 spin_lock_init(&rtc->lock);
560
561 /* get periodic/carry/alarm irqs */
562 ret = platform_get_irq(pdev, 0);
563 if (unlikely(ret <= 0)) {
564 dev_err(&pdev->dev, "No IRQ resource\n");
565 return -ENOENT;
566 }
567
568 rtc->periodic_irq = ret;
569 rtc->carry_irq = platform_get_irq(pdev, 1);
570 rtc->alarm_irq = platform_get_irq(pdev, 2);
571
572 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
573 if (unlikely(res == NULL)) {
574 dev_err(&pdev->dev, "No IO resource\n");
575 return -ENOENT;
576 }
577
578 rtc->regsize = resource_size(res);
579
580 rtc->res = devm_request_mem_region(&pdev->dev, res->start,
581 rtc->regsize, pdev->name);
582 if (unlikely(!rtc->res))
583 return -EBUSY;
584
585 rtc->regbase = devm_ioremap_nocache(&pdev->dev, rtc->res->start,
586 rtc->regsize);
587 if (unlikely(!rtc->regbase))
588 return -EINVAL;
589
590 clk_id = pdev->id;
591 /* With a single device, the clock id is still "rtc0" */
592 if (clk_id < 0)
593 clk_id = 0;
594
595 snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
596
597 rtc->clk = devm_clk_get(&pdev->dev, clk_name);
598 if (IS_ERR(rtc->clk)) {
599 /*
600 * No error handling for rtc->clk intentionally, not all
601 * platforms will have a unique clock for the RTC, and
602 * the clk API can handle the struct clk pointer being
603 * NULL.
604 */
605 rtc->clk = NULL;
606 }
607
608 clk_enable(rtc->clk);
609
610 rtc->capabilities = RTC_DEF_CAPABILITIES;
611 if (dev_get_platdata(&pdev->dev)) {
612 struct sh_rtc_platform_info *pinfo =
613 dev_get_platdata(&pdev->dev);
614
615 /*
616 * Some CPUs have special capabilities in addition to the
617 * default set. Add those in here.
618 */
619 rtc->capabilities |= pinfo->capabilities;
620 }
621
622 if (rtc->carry_irq <= 0) {
623 /* register shared periodic/carry/alarm irq */
624 ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
625 sh_rtc_shared, 0, "sh-rtc", rtc);
626 if (unlikely(ret)) {
627 dev_err(&pdev->dev,
628 "request IRQ failed with %d, IRQ %d\n", ret,
629 rtc->periodic_irq);
630 goto err_unmap;
631 }
632 } else {
633 /* register periodic/carry/alarm irqs */
634 ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
635 sh_rtc_periodic, 0, "sh-rtc period", rtc);
636 if (unlikely(ret)) {
637 dev_err(&pdev->dev,
638 "request period IRQ failed with %d, IRQ %d\n",
639 ret, rtc->periodic_irq);
640 goto err_unmap;
641 }
642
643 ret = devm_request_irq(&pdev->dev, rtc->carry_irq,
644 sh_rtc_interrupt, 0, "sh-rtc carry", rtc);
645 if (unlikely(ret)) {
646 dev_err(&pdev->dev,
647 "request carry IRQ failed with %d, IRQ %d\n",
648 ret, rtc->carry_irq);
649 goto err_unmap;
650 }
651
652 ret = devm_request_irq(&pdev->dev, rtc->alarm_irq,
653 sh_rtc_alarm, 0, "sh-rtc alarm", rtc);
654 if (unlikely(ret)) {
655 dev_err(&pdev->dev,
656 "request alarm IRQ failed with %d, IRQ %d\n",
657 ret, rtc->alarm_irq);
658 goto err_unmap;
659 }
660 }
661
662 platform_set_drvdata(pdev, rtc);
663
664 /* everything disabled by default */
665 sh_rtc_irq_set_freq(&pdev->dev, 0);
666 sh_rtc_irq_set_state(&pdev->dev, 0);
667 sh_rtc_setaie(&pdev->dev, 0);
668 sh_rtc_setcie(&pdev->dev, 0);
669
670 rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, "sh",
671 &sh_rtc_ops, THIS_MODULE);
672 if (IS_ERR(rtc->rtc_dev)) {
673 ret = PTR_ERR(rtc->rtc_dev);
674 goto err_unmap;
675 }
676
677 rtc->rtc_dev->max_user_freq = 256;
678
679 /* reset rtc to epoch 0 if time is invalid */
680 if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
681 rtc_time_to_tm(0, &r);
682 rtc_set_time(rtc->rtc_dev, &r);
683 }
684
685 device_init_wakeup(&pdev->dev, 1);
686 return 0;
687
688 err_unmap:
689 clk_disable(rtc->clk);
690
691 return ret;
692 }
693
694 static int __exit sh_rtc_remove(struct platform_device *pdev)
695 {
696 struct sh_rtc *rtc = platform_get_drvdata(pdev);
697
698 sh_rtc_irq_set_state(&pdev->dev, 0);
699
700 sh_rtc_setaie(&pdev->dev, 0);
701 sh_rtc_setcie(&pdev->dev, 0);
702
703 clk_disable(rtc->clk);
704
705 return 0;
706 }
707
708 static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
709 {
710 struct platform_device *pdev = to_platform_device(dev);
711 struct sh_rtc *rtc = platform_get_drvdata(pdev);
712
713 irq_set_irq_wake(rtc->periodic_irq, enabled);
714
715 if (rtc->carry_irq > 0) {
716 irq_set_irq_wake(rtc->carry_irq, enabled);
717 irq_set_irq_wake(rtc->alarm_irq, enabled);
718 }
719 }
720
721 #ifdef CONFIG_PM_SLEEP
722 static int sh_rtc_suspend(struct device *dev)
723 {
724 if (device_may_wakeup(dev))
725 sh_rtc_set_irq_wake(dev, 1);
726
727 return 0;
728 }
729
730 static int sh_rtc_resume(struct device *dev)
731 {
732 if (device_may_wakeup(dev))
733 sh_rtc_set_irq_wake(dev, 0);
734
735 return 0;
736 }
737 #endif
738
739 static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume);
740
741 static struct platform_driver sh_rtc_platform_driver = {
742 .driver = {
743 .name = DRV_NAME,
744 .pm = &sh_rtc_pm_ops,
745 },
746 .remove = __exit_p(sh_rtc_remove),
747 };
748
749 module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe);
750
751 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
752 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
753 "Jamie Lenehan <lenehan@twibble.org>, "
754 "Angelo Castello <angelo.castello@st.com>");
755 MODULE_LICENSE("GPL");
756 MODULE_ALIAS("platform:" DRV_NAME);