]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/rtc/rtc-sh.c
Merge branch 'topic/asoc' into for-linus
[mirror_ubuntu-artful-kernel.git] / drivers / rtc / rtc-sh.c
1 /*
2 * SuperH On-Chip RTC Support
3 *
4 * Copyright (C) 2006 - 2009 Paul Mundt
5 * Copyright (C) 2006 Jamie Lenehan
6 * Copyright (C) 2008 Angelo Castello
7 *
8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
9 *
10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
12 *
13 * This file is subject to the terms and conditions of the GNU General Public
14 * License. See the file "COPYING" in the main directory of this archive
15 * for more details.
16 */
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/io.h>
27 #include <linux/log2.h>
28 #include <linux/clk.h>
29 #include <linux/slab.h>
30 #include <asm/rtc.h>
31
32 #define DRV_NAME "sh-rtc"
33 #define DRV_VERSION "0.2.3"
34
35 #define RTC_REG(r) ((r) * rtc_reg_size)
36
37 #define R64CNT RTC_REG(0)
38
39 #define RSECCNT RTC_REG(1) /* RTC sec */
40 #define RMINCNT RTC_REG(2) /* RTC min */
41 #define RHRCNT RTC_REG(3) /* RTC hour */
42 #define RWKCNT RTC_REG(4) /* RTC week */
43 #define RDAYCNT RTC_REG(5) /* RTC day */
44 #define RMONCNT RTC_REG(6) /* RTC month */
45 #define RYRCNT RTC_REG(7) /* RTC year */
46 #define RSECAR RTC_REG(8) /* ALARM sec */
47 #define RMINAR RTC_REG(9) /* ALARM min */
48 #define RHRAR RTC_REG(10) /* ALARM hour */
49 #define RWKAR RTC_REG(11) /* ALARM week */
50 #define RDAYAR RTC_REG(12) /* ALARM day */
51 #define RMONAR RTC_REG(13) /* ALARM month */
52 #define RCR1 RTC_REG(14) /* Control */
53 #define RCR2 RTC_REG(15) /* Control */
54
55 /*
56 * Note on RYRAR and RCR3: Up until this point most of the register
57 * definitions are consistent across all of the available parts. However,
58 * the placement of the optional RYRAR and RCR3 (the RYRAR control
59 * register used to control RYRCNT/RYRAR compare) varies considerably
60 * across various parts, occasionally being mapped in to a completely
61 * unrelated address space. For proper RYRAR support a separate resource
62 * would have to be handed off, but as this is purely optional in
63 * practice, we simply opt not to support it, thereby keeping the code
64 * quite a bit more simplified.
65 */
66
67 /* ALARM Bits - or with BCD encoded value */
68 #define AR_ENB 0x80 /* Enable for alarm cmp */
69
70 /* Period Bits */
71 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */
72 #define PF_COUNT 0x200 /* Half periodic counter */
73 #define PF_OXS 0x400 /* Periodic One x Second */
74 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */
75 #define PF_MASK 0xf00
76
77 /* RCR1 Bits */
78 #define RCR1_CF 0x80 /* Carry Flag */
79 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
80 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
81 #define RCR1_AF 0x01 /* Alarm Flag */
82
83 /* RCR2 Bits */
84 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
85 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
86 #define RCR2_RTCEN 0x08 /* ENable RTC */
87 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
88 #define RCR2_RESET 0x02 /* Reset bit */
89 #define RCR2_START 0x01 /* Start bit */
90
91 struct sh_rtc {
92 void __iomem *regbase;
93 unsigned long regsize;
94 struct resource *res;
95 int alarm_irq;
96 int periodic_irq;
97 int carry_irq;
98 struct clk *clk;
99 struct rtc_device *rtc_dev;
100 spinlock_t lock;
101 unsigned long capabilities; /* See asm/rtc.h for cap bits */
102 unsigned short periodic_freq;
103 };
104
105 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
106 {
107 unsigned int tmp, pending;
108
109 tmp = readb(rtc->regbase + RCR1);
110 pending = tmp & RCR1_CF;
111 tmp &= ~RCR1_CF;
112 writeb(tmp, rtc->regbase + RCR1);
113
114 /* Users have requested One x Second IRQ */
115 if (pending && rtc->periodic_freq & PF_OXS)
116 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
117
118 return pending;
119 }
120
121 static int __sh_rtc_alarm(struct sh_rtc *rtc)
122 {
123 unsigned int tmp, pending;
124
125 tmp = readb(rtc->regbase + RCR1);
126 pending = tmp & RCR1_AF;
127 tmp &= ~(RCR1_AF | RCR1_AIE);
128 writeb(tmp, rtc->regbase + RCR1);
129
130 if (pending)
131 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
132
133 return pending;
134 }
135
136 static int __sh_rtc_periodic(struct sh_rtc *rtc)
137 {
138 struct rtc_device *rtc_dev = rtc->rtc_dev;
139 struct rtc_task *irq_task;
140 unsigned int tmp, pending;
141
142 tmp = readb(rtc->regbase + RCR2);
143 pending = tmp & RCR2_PEF;
144 tmp &= ~RCR2_PEF;
145 writeb(tmp, rtc->regbase + RCR2);
146
147 if (!pending)
148 return 0;
149
150 /* Half period enabled than one skipped and the next notified */
151 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
152 rtc->periodic_freq &= ~PF_COUNT;
153 else {
154 if (rtc->periodic_freq & PF_HP)
155 rtc->periodic_freq |= PF_COUNT;
156 if (rtc->periodic_freq & PF_KOU) {
157 spin_lock(&rtc_dev->irq_task_lock);
158 irq_task = rtc_dev->irq_task;
159 if (irq_task)
160 irq_task->func(irq_task->private_data);
161 spin_unlock(&rtc_dev->irq_task_lock);
162 } else
163 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
164 }
165
166 return pending;
167 }
168
169 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
170 {
171 struct sh_rtc *rtc = dev_id;
172 int ret;
173
174 spin_lock(&rtc->lock);
175 ret = __sh_rtc_interrupt(rtc);
176 spin_unlock(&rtc->lock);
177
178 return IRQ_RETVAL(ret);
179 }
180
181 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
182 {
183 struct sh_rtc *rtc = dev_id;
184 int ret;
185
186 spin_lock(&rtc->lock);
187 ret = __sh_rtc_alarm(rtc);
188 spin_unlock(&rtc->lock);
189
190 return IRQ_RETVAL(ret);
191 }
192
193 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
194 {
195 struct sh_rtc *rtc = dev_id;
196 int ret;
197
198 spin_lock(&rtc->lock);
199 ret = __sh_rtc_periodic(rtc);
200 spin_unlock(&rtc->lock);
201
202 return IRQ_RETVAL(ret);
203 }
204
205 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
206 {
207 struct sh_rtc *rtc = dev_id;
208 int ret;
209
210 spin_lock(&rtc->lock);
211 ret = __sh_rtc_interrupt(rtc);
212 ret |= __sh_rtc_alarm(rtc);
213 ret |= __sh_rtc_periodic(rtc);
214 spin_unlock(&rtc->lock);
215
216 return IRQ_RETVAL(ret);
217 }
218
219 static int sh_rtc_irq_set_state(struct device *dev, int enable)
220 {
221 struct sh_rtc *rtc = dev_get_drvdata(dev);
222 unsigned int tmp;
223
224 spin_lock_irq(&rtc->lock);
225
226 tmp = readb(rtc->regbase + RCR2);
227
228 if (enable) {
229 rtc->periodic_freq |= PF_KOU;
230 tmp &= ~RCR2_PEF; /* Clear PES bit */
231 tmp |= (rtc->periodic_freq & ~PF_HP); /* Set PES2-0 */
232 } else {
233 rtc->periodic_freq &= ~PF_KOU;
234 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
235 }
236
237 writeb(tmp, rtc->regbase + RCR2);
238
239 spin_unlock_irq(&rtc->lock);
240
241 return 0;
242 }
243
244 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
245 {
246 struct sh_rtc *rtc = dev_get_drvdata(dev);
247 int tmp, ret = 0;
248
249 spin_lock_irq(&rtc->lock);
250 tmp = rtc->periodic_freq & PF_MASK;
251
252 switch (freq) {
253 case 0:
254 rtc->periodic_freq = 0x00;
255 break;
256 case 1:
257 rtc->periodic_freq = 0x60;
258 break;
259 case 2:
260 rtc->periodic_freq = 0x50;
261 break;
262 case 4:
263 rtc->periodic_freq = 0x40;
264 break;
265 case 8:
266 rtc->periodic_freq = 0x30 | PF_HP;
267 break;
268 case 16:
269 rtc->periodic_freq = 0x30;
270 break;
271 case 32:
272 rtc->periodic_freq = 0x20 | PF_HP;
273 break;
274 case 64:
275 rtc->periodic_freq = 0x20;
276 break;
277 case 128:
278 rtc->periodic_freq = 0x10 | PF_HP;
279 break;
280 case 256:
281 rtc->periodic_freq = 0x10;
282 break;
283 default:
284 ret = -ENOTSUPP;
285 }
286
287 if (ret == 0)
288 rtc->periodic_freq |= tmp;
289
290 spin_unlock_irq(&rtc->lock);
291 return ret;
292 }
293
294 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
295 {
296 struct sh_rtc *rtc = dev_get_drvdata(dev);
297 unsigned int tmp;
298
299 spin_lock_irq(&rtc->lock);
300
301 tmp = readb(rtc->regbase + RCR1);
302
303 if (enable)
304 tmp |= RCR1_AIE;
305 else
306 tmp &= ~RCR1_AIE;
307
308 writeb(tmp, rtc->regbase + RCR1);
309
310 spin_unlock_irq(&rtc->lock);
311 }
312
313 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
314 {
315 struct sh_rtc *rtc = dev_get_drvdata(dev);
316 unsigned int tmp;
317
318 tmp = readb(rtc->regbase + RCR1);
319 seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
320
321 tmp = readb(rtc->regbase + RCR2);
322 seq_printf(seq, "periodic_IRQ\t: %s\n",
323 (tmp & RCR2_PESMASK) ? "yes" : "no");
324
325 return 0;
326 }
327
328 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
329 {
330 struct sh_rtc *rtc = dev_get_drvdata(dev);
331 unsigned int tmp;
332
333 spin_lock_irq(&rtc->lock);
334
335 tmp = readb(rtc->regbase + RCR1);
336
337 if (!enable)
338 tmp &= ~RCR1_CIE;
339 else
340 tmp |= RCR1_CIE;
341
342 writeb(tmp, rtc->regbase + RCR1);
343
344 spin_unlock_irq(&rtc->lock);
345 }
346
347 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
348 {
349 struct sh_rtc *rtc = dev_get_drvdata(dev);
350 unsigned int ret = 0;
351
352 switch (cmd) {
353 case RTC_UIE_OFF:
354 rtc->periodic_freq &= ~PF_OXS;
355 sh_rtc_setcie(dev, 0);
356 break;
357 case RTC_UIE_ON:
358 rtc->periodic_freq |= PF_OXS;
359 sh_rtc_setcie(dev, 1);
360 break;
361 default:
362 ret = -ENOIOCTLCMD;
363 }
364
365 return ret;
366 }
367
368 static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
369 {
370 sh_rtc_setaie(dev, enabled);
371 return 0;
372 }
373
374 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
375 {
376 struct platform_device *pdev = to_platform_device(dev);
377 struct sh_rtc *rtc = platform_get_drvdata(pdev);
378 unsigned int sec128, sec2, yr, yr100, cf_bit;
379
380 do {
381 unsigned int tmp;
382
383 spin_lock_irq(&rtc->lock);
384
385 tmp = readb(rtc->regbase + RCR1);
386 tmp &= ~RCR1_CF; /* Clear CF-bit */
387 tmp |= RCR1_CIE;
388 writeb(tmp, rtc->regbase + RCR1);
389
390 sec128 = readb(rtc->regbase + R64CNT);
391
392 tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT));
393 tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT));
394 tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT));
395 tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT));
396 tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT));
397 tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
398
399 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
400 yr = readw(rtc->regbase + RYRCNT);
401 yr100 = bcd2bin(yr >> 8);
402 yr &= 0xff;
403 } else {
404 yr = readb(rtc->regbase + RYRCNT);
405 yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
406 }
407
408 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
409
410 sec2 = readb(rtc->regbase + R64CNT);
411 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
412
413 spin_unlock_irq(&rtc->lock);
414 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
415
416 #if RTC_BIT_INVERTED != 0
417 if ((sec128 & RTC_BIT_INVERTED))
418 tm->tm_sec--;
419 #endif
420
421 /* only keep the carry interrupt enabled if UIE is on */
422 if (!(rtc->periodic_freq & PF_OXS))
423 sh_rtc_setcie(dev, 0);
424
425 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
426 "mday=%d, mon=%d, year=%d, wday=%d\n",
427 __func__,
428 tm->tm_sec, tm->tm_min, tm->tm_hour,
429 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
430
431 return rtc_valid_tm(tm);
432 }
433
434 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
435 {
436 struct platform_device *pdev = to_platform_device(dev);
437 struct sh_rtc *rtc = platform_get_drvdata(pdev);
438 unsigned int tmp;
439 int year;
440
441 spin_lock_irq(&rtc->lock);
442
443 /* Reset pre-scaler & stop RTC */
444 tmp = readb(rtc->regbase + RCR2);
445 tmp |= RCR2_RESET;
446 tmp &= ~RCR2_START;
447 writeb(tmp, rtc->regbase + RCR2);
448
449 writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT);
450 writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT);
451 writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
452 writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
453 writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
454 writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
455
456 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
457 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
458 bin2bcd(tm->tm_year % 100);
459 writew(year, rtc->regbase + RYRCNT);
460 } else {
461 year = tm->tm_year % 100;
462 writeb(bin2bcd(year), rtc->regbase + RYRCNT);
463 }
464
465 /* Start RTC */
466 tmp = readb(rtc->regbase + RCR2);
467 tmp &= ~RCR2_RESET;
468 tmp |= RCR2_RTCEN | RCR2_START;
469 writeb(tmp, rtc->regbase + RCR2);
470
471 spin_unlock_irq(&rtc->lock);
472
473 return 0;
474 }
475
476 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
477 {
478 unsigned int byte;
479 int value = 0xff; /* return 0xff for ignored values */
480
481 byte = readb(rtc->regbase + reg_off);
482 if (byte & AR_ENB) {
483 byte &= ~AR_ENB; /* strip the enable bit */
484 value = bcd2bin(byte);
485 }
486
487 return value;
488 }
489
490 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
491 {
492 struct platform_device *pdev = to_platform_device(dev);
493 struct sh_rtc *rtc = platform_get_drvdata(pdev);
494 struct rtc_time *tm = &wkalrm->time;
495
496 spin_lock_irq(&rtc->lock);
497
498 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
499 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
500 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
501 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
502 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
503 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
504 if (tm->tm_mon > 0)
505 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
506 tm->tm_year = 0xffff;
507
508 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
509
510 spin_unlock_irq(&rtc->lock);
511
512 return 0;
513 }
514
515 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
516 int value, int reg_off)
517 {
518 /* < 0 for a value that is ignored */
519 if (value < 0)
520 writeb(0, rtc->regbase + reg_off);
521 else
522 writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off);
523 }
524
525 static int sh_rtc_check_alarm(struct rtc_time *tm)
526 {
527 /*
528 * The original rtc says anything > 0xc0 is "don't care" or "match
529 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
530 * The original rtc doesn't support years - some things use -1 and
531 * some 0xffff. We use -1 to make out tests easier.
532 */
533 if (tm->tm_year == 0xffff)
534 tm->tm_year = -1;
535 if (tm->tm_mon >= 0xff)
536 tm->tm_mon = -1;
537 if (tm->tm_mday >= 0xff)
538 tm->tm_mday = -1;
539 if (tm->tm_wday >= 0xff)
540 tm->tm_wday = -1;
541 if (tm->tm_hour >= 0xff)
542 tm->tm_hour = -1;
543 if (tm->tm_min >= 0xff)
544 tm->tm_min = -1;
545 if (tm->tm_sec >= 0xff)
546 tm->tm_sec = -1;
547
548 if (tm->tm_year > 9999 ||
549 tm->tm_mon >= 12 ||
550 tm->tm_mday == 0 || tm->tm_mday >= 32 ||
551 tm->tm_wday >= 7 ||
552 tm->tm_hour >= 24 ||
553 tm->tm_min >= 60 ||
554 tm->tm_sec >= 60)
555 return -EINVAL;
556
557 return 0;
558 }
559
560 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
561 {
562 struct platform_device *pdev = to_platform_device(dev);
563 struct sh_rtc *rtc = platform_get_drvdata(pdev);
564 unsigned int rcr1;
565 struct rtc_time *tm = &wkalrm->time;
566 int mon, err;
567
568 err = sh_rtc_check_alarm(tm);
569 if (unlikely(err < 0))
570 return err;
571
572 spin_lock_irq(&rtc->lock);
573
574 /* disable alarm interrupt and clear the alarm flag */
575 rcr1 = readb(rtc->regbase + RCR1);
576 rcr1 &= ~(RCR1_AF | RCR1_AIE);
577 writeb(rcr1, rtc->regbase + RCR1);
578
579 /* set alarm time */
580 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
581 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
582 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
583 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
584 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
585 mon = tm->tm_mon;
586 if (mon >= 0)
587 mon += 1;
588 sh_rtc_write_alarm_value(rtc, mon, RMONAR);
589
590 if (wkalrm->enabled) {
591 rcr1 |= RCR1_AIE;
592 writeb(rcr1, rtc->regbase + RCR1);
593 }
594
595 spin_unlock_irq(&rtc->lock);
596
597 return 0;
598 }
599
600 static struct rtc_class_ops sh_rtc_ops = {
601 .ioctl = sh_rtc_ioctl,
602 .read_time = sh_rtc_read_time,
603 .set_time = sh_rtc_set_time,
604 .read_alarm = sh_rtc_read_alarm,
605 .set_alarm = sh_rtc_set_alarm,
606 .irq_set_state = sh_rtc_irq_set_state,
607 .irq_set_freq = sh_rtc_irq_set_freq,
608 .proc = sh_rtc_proc,
609 .alarm_irq_enable = sh_rtc_alarm_irq_enable,
610 };
611
612 static int __init sh_rtc_probe(struct platform_device *pdev)
613 {
614 struct sh_rtc *rtc;
615 struct resource *res;
616 struct rtc_time r;
617 char clk_name[6];
618 int clk_id, ret;
619
620 rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
621 if (unlikely(!rtc))
622 return -ENOMEM;
623
624 spin_lock_init(&rtc->lock);
625
626 /* get periodic/carry/alarm irqs */
627 ret = platform_get_irq(pdev, 0);
628 if (unlikely(ret <= 0)) {
629 ret = -ENOENT;
630 dev_err(&pdev->dev, "No IRQ resource\n");
631 goto err_badres;
632 }
633
634 rtc->periodic_irq = ret;
635 rtc->carry_irq = platform_get_irq(pdev, 1);
636 rtc->alarm_irq = platform_get_irq(pdev, 2);
637
638 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
639 if (unlikely(res == NULL)) {
640 ret = -ENOENT;
641 dev_err(&pdev->dev, "No IO resource\n");
642 goto err_badres;
643 }
644
645 rtc->regsize = resource_size(res);
646
647 rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
648 if (unlikely(!rtc->res)) {
649 ret = -EBUSY;
650 goto err_badres;
651 }
652
653 rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
654 if (unlikely(!rtc->regbase)) {
655 ret = -EINVAL;
656 goto err_badmap;
657 }
658
659 clk_id = pdev->id;
660 /* With a single device, the clock id is still "rtc0" */
661 if (clk_id < 0)
662 clk_id = 0;
663
664 snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
665
666 rtc->clk = clk_get(&pdev->dev, clk_name);
667 if (IS_ERR(rtc->clk)) {
668 /*
669 * No error handling for rtc->clk intentionally, not all
670 * platforms will have a unique clock for the RTC, and
671 * the clk API can handle the struct clk pointer being
672 * NULL.
673 */
674 rtc->clk = NULL;
675 }
676
677 clk_enable(rtc->clk);
678
679 rtc->capabilities = RTC_DEF_CAPABILITIES;
680 if (pdev->dev.platform_data) {
681 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
682
683 /*
684 * Some CPUs have special capabilities in addition to the
685 * default set. Add those in here.
686 */
687 rtc->capabilities |= pinfo->capabilities;
688 }
689
690 if (rtc->carry_irq <= 0) {
691 /* register shared periodic/carry/alarm irq */
692 ret = request_irq(rtc->periodic_irq, sh_rtc_shared,
693 IRQF_DISABLED, "sh-rtc", rtc);
694 if (unlikely(ret)) {
695 dev_err(&pdev->dev,
696 "request IRQ failed with %d, IRQ %d\n", ret,
697 rtc->periodic_irq);
698 goto err_unmap;
699 }
700 } else {
701 /* register periodic/carry/alarm irqs */
702 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic,
703 IRQF_DISABLED, "sh-rtc period", rtc);
704 if (unlikely(ret)) {
705 dev_err(&pdev->dev,
706 "request period IRQ failed with %d, IRQ %d\n",
707 ret, rtc->periodic_irq);
708 goto err_unmap;
709 }
710
711 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt,
712 IRQF_DISABLED, "sh-rtc carry", rtc);
713 if (unlikely(ret)) {
714 dev_err(&pdev->dev,
715 "request carry IRQ failed with %d, IRQ %d\n",
716 ret, rtc->carry_irq);
717 free_irq(rtc->periodic_irq, rtc);
718 goto err_unmap;
719 }
720
721 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm,
722 IRQF_DISABLED, "sh-rtc alarm", rtc);
723 if (unlikely(ret)) {
724 dev_err(&pdev->dev,
725 "request alarm IRQ failed with %d, IRQ %d\n",
726 ret, rtc->alarm_irq);
727 free_irq(rtc->carry_irq, rtc);
728 free_irq(rtc->periodic_irq, rtc);
729 goto err_unmap;
730 }
731 }
732
733 platform_set_drvdata(pdev, rtc);
734
735 /* everything disabled by default */
736 sh_rtc_irq_set_freq(&pdev->dev, 0);
737 sh_rtc_irq_set_state(&pdev->dev, 0);
738 sh_rtc_setaie(&pdev->dev, 0);
739 sh_rtc_setcie(&pdev->dev, 0);
740
741 rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
742 &sh_rtc_ops, THIS_MODULE);
743 if (IS_ERR(rtc->rtc_dev)) {
744 ret = PTR_ERR(rtc->rtc_dev);
745 free_irq(rtc->periodic_irq, rtc);
746 free_irq(rtc->carry_irq, rtc);
747 free_irq(rtc->alarm_irq, rtc);
748 goto err_unmap;
749 }
750
751 rtc->rtc_dev->max_user_freq = 256;
752
753 /* reset rtc to epoch 0 if time is invalid */
754 if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
755 rtc_time_to_tm(0, &r);
756 rtc_set_time(rtc->rtc_dev, &r);
757 }
758
759 device_init_wakeup(&pdev->dev, 1);
760 return 0;
761
762 err_unmap:
763 clk_disable(rtc->clk);
764 clk_put(rtc->clk);
765 iounmap(rtc->regbase);
766 err_badmap:
767 release_mem_region(rtc->res->start, rtc->regsize);
768 err_badres:
769 kfree(rtc);
770
771 return ret;
772 }
773
774 static int __exit sh_rtc_remove(struct platform_device *pdev)
775 {
776 struct sh_rtc *rtc = platform_get_drvdata(pdev);
777
778 rtc_device_unregister(rtc->rtc_dev);
779 sh_rtc_irq_set_state(&pdev->dev, 0);
780
781 sh_rtc_setaie(&pdev->dev, 0);
782 sh_rtc_setcie(&pdev->dev, 0);
783
784 free_irq(rtc->periodic_irq, rtc);
785
786 if (rtc->carry_irq > 0) {
787 free_irq(rtc->carry_irq, rtc);
788 free_irq(rtc->alarm_irq, rtc);
789 }
790
791 iounmap(rtc->regbase);
792 release_mem_region(rtc->res->start, rtc->regsize);
793
794 clk_disable(rtc->clk);
795 clk_put(rtc->clk);
796
797 platform_set_drvdata(pdev, NULL);
798
799 kfree(rtc);
800
801 return 0;
802 }
803
804 static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
805 {
806 struct platform_device *pdev = to_platform_device(dev);
807 struct sh_rtc *rtc = platform_get_drvdata(pdev);
808
809 set_irq_wake(rtc->periodic_irq, enabled);
810
811 if (rtc->carry_irq > 0) {
812 set_irq_wake(rtc->carry_irq, enabled);
813 set_irq_wake(rtc->alarm_irq, enabled);
814 }
815 }
816
817 static int sh_rtc_suspend(struct device *dev)
818 {
819 if (device_may_wakeup(dev))
820 sh_rtc_set_irq_wake(dev, 1);
821
822 return 0;
823 }
824
825 static int sh_rtc_resume(struct device *dev)
826 {
827 if (device_may_wakeup(dev))
828 sh_rtc_set_irq_wake(dev, 0);
829
830 return 0;
831 }
832
833 static const struct dev_pm_ops sh_rtc_dev_pm_ops = {
834 .suspend = sh_rtc_suspend,
835 .resume = sh_rtc_resume,
836 };
837
838 static struct platform_driver sh_rtc_platform_driver = {
839 .driver = {
840 .name = DRV_NAME,
841 .owner = THIS_MODULE,
842 .pm = &sh_rtc_dev_pm_ops,
843 },
844 .remove = __exit_p(sh_rtc_remove),
845 };
846
847 static int __init sh_rtc_init(void)
848 {
849 return platform_driver_probe(&sh_rtc_platform_driver, sh_rtc_probe);
850 }
851
852 static void __exit sh_rtc_exit(void)
853 {
854 platform_driver_unregister(&sh_rtc_platform_driver);
855 }
856
857 module_init(sh_rtc_init);
858 module_exit(sh_rtc_exit);
859
860 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
861 MODULE_VERSION(DRV_VERSION);
862 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
863 "Jamie Lenehan <lenehan@twibble.org>, "
864 "Angelo Castello <angelo.castello@st.com>");
865 MODULE_LICENSE("GPL");
866 MODULE_ALIAS("platform:" DRV_NAME);