]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/rtc/rtc-snvs.c
staging: board: Migrate away from __pm_genpd_name_add_device()
[mirror_ubuntu-zesty-kernel.git] / drivers / rtc / rtc-snvs.c
1 /*
2 * Copyright (C) 2011-2012 Freescale Semiconductor, Inc.
3 *
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
7 *
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
10 */
11
12 #include <linux/init.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/rtc.h>
20 #include <linux/clk.h>
21
22 /* These register offsets are relative to LP (Low Power) range */
23 #define SNVS_LPCR 0x04
24 #define SNVS_LPSR 0x18
25 #define SNVS_LPSRTCMR 0x1c
26 #define SNVS_LPSRTCLR 0x20
27 #define SNVS_LPTAR 0x24
28 #define SNVS_LPPGDR 0x30
29
30 #define SNVS_LPCR_SRTC_ENV (1 << 0)
31 #define SNVS_LPCR_LPTA_EN (1 << 1)
32 #define SNVS_LPCR_LPWUI_EN (1 << 3)
33 #define SNVS_LPSR_LPTA (1 << 0)
34
35 #define SNVS_LPPGDR_INIT 0x41736166
36 #define CNTR_TO_SECS_SH 15
37
38 struct snvs_rtc_data {
39 struct rtc_device *rtc;
40 void __iomem *ioaddr;
41 int irq;
42 spinlock_t lock;
43 struct clk *clk;
44 };
45
46 static u32 rtc_read_lp_counter(void __iomem *ioaddr)
47 {
48 u64 read1, read2;
49
50 do {
51 read1 = readl(ioaddr + SNVS_LPSRTCMR);
52 read1 <<= 32;
53 read1 |= readl(ioaddr + SNVS_LPSRTCLR);
54
55 read2 = readl(ioaddr + SNVS_LPSRTCMR);
56 read2 <<= 32;
57 read2 |= readl(ioaddr + SNVS_LPSRTCLR);
58 } while (read1 != read2);
59
60 /* Convert 47-bit counter to 32-bit raw second count */
61 return (u32) (read1 >> CNTR_TO_SECS_SH);
62 }
63
64 static void rtc_write_sync_lp(void __iomem *ioaddr)
65 {
66 u32 count1, count2, count3;
67 int i;
68
69 /* Wait for 3 CKIL cycles */
70 for (i = 0; i < 3; i++) {
71 do {
72 count1 = readl(ioaddr + SNVS_LPSRTCLR);
73 count2 = readl(ioaddr + SNVS_LPSRTCLR);
74 } while (count1 != count2);
75
76 /* Now wait until counter value changes */
77 do {
78 do {
79 count2 = readl(ioaddr + SNVS_LPSRTCLR);
80 count3 = readl(ioaddr + SNVS_LPSRTCLR);
81 } while (count2 != count3);
82 } while (count3 == count1);
83 }
84 }
85
86 static int snvs_rtc_enable(struct snvs_rtc_data *data, bool enable)
87 {
88 unsigned long flags;
89 int timeout = 1000;
90 u32 lpcr;
91
92 spin_lock_irqsave(&data->lock, flags);
93
94 lpcr = readl(data->ioaddr + SNVS_LPCR);
95 if (enable)
96 lpcr |= SNVS_LPCR_SRTC_ENV;
97 else
98 lpcr &= ~SNVS_LPCR_SRTC_ENV;
99 writel(lpcr, data->ioaddr + SNVS_LPCR);
100
101 spin_unlock_irqrestore(&data->lock, flags);
102
103 while (--timeout) {
104 lpcr = readl(data->ioaddr + SNVS_LPCR);
105
106 if (enable) {
107 if (lpcr & SNVS_LPCR_SRTC_ENV)
108 break;
109 } else {
110 if (!(lpcr & SNVS_LPCR_SRTC_ENV))
111 break;
112 }
113 }
114
115 if (!timeout)
116 return -ETIMEDOUT;
117
118 return 0;
119 }
120
121 static int snvs_rtc_read_time(struct device *dev, struct rtc_time *tm)
122 {
123 struct snvs_rtc_data *data = dev_get_drvdata(dev);
124 unsigned long time = rtc_read_lp_counter(data->ioaddr);
125
126 rtc_time_to_tm(time, tm);
127
128 return 0;
129 }
130
131 static int snvs_rtc_set_time(struct device *dev, struct rtc_time *tm)
132 {
133 struct snvs_rtc_data *data = dev_get_drvdata(dev);
134 unsigned long time;
135
136 rtc_tm_to_time(tm, &time);
137
138 /* Disable RTC first */
139 snvs_rtc_enable(data, false);
140
141 /* Write 32-bit time to 47-bit timer, leaving 15 LSBs blank */
142 writel(time << CNTR_TO_SECS_SH, data->ioaddr + SNVS_LPSRTCLR);
143 writel(time >> (32 - CNTR_TO_SECS_SH), data->ioaddr + SNVS_LPSRTCMR);
144
145 /* Enable RTC again */
146 snvs_rtc_enable(data, true);
147
148 return 0;
149 }
150
151 static int snvs_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
152 {
153 struct snvs_rtc_data *data = dev_get_drvdata(dev);
154 u32 lptar, lpsr;
155
156 lptar = readl(data->ioaddr + SNVS_LPTAR);
157 rtc_time_to_tm(lptar, &alrm->time);
158
159 lpsr = readl(data->ioaddr + SNVS_LPSR);
160 alrm->pending = (lpsr & SNVS_LPSR_LPTA) ? 1 : 0;
161
162 return 0;
163 }
164
165 static int snvs_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
166 {
167 struct snvs_rtc_data *data = dev_get_drvdata(dev);
168 u32 lpcr;
169 unsigned long flags;
170
171 spin_lock_irqsave(&data->lock, flags);
172
173 lpcr = readl(data->ioaddr + SNVS_LPCR);
174 if (enable)
175 lpcr |= (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN);
176 else
177 lpcr &= ~(SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN);
178 writel(lpcr, data->ioaddr + SNVS_LPCR);
179
180 spin_unlock_irqrestore(&data->lock, flags);
181
182 rtc_write_sync_lp(data->ioaddr);
183
184 return 0;
185 }
186
187 static int snvs_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
188 {
189 struct snvs_rtc_data *data = dev_get_drvdata(dev);
190 struct rtc_time *alrm_tm = &alrm->time;
191 unsigned long time;
192 unsigned long flags;
193 u32 lpcr;
194
195 rtc_tm_to_time(alrm_tm, &time);
196
197 spin_lock_irqsave(&data->lock, flags);
198
199 /* Have to clear LPTA_EN before programming new alarm time in LPTAR */
200 lpcr = readl(data->ioaddr + SNVS_LPCR);
201 lpcr &= ~SNVS_LPCR_LPTA_EN;
202 writel(lpcr, data->ioaddr + SNVS_LPCR);
203
204 spin_unlock_irqrestore(&data->lock, flags);
205
206 writel(time, data->ioaddr + SNVS_LPTAR);
207
208 /* Clear alarm interrupt status bit */
209 writel(SNVS_LPSR_LPTA, data->ioaddr + SNVS_LPSR);
210
211 return snvs_rtc_alarm_irq_enable(dev, alrm->enabled);
212 }
213
214 static const struct rtc_class_ops snvs_rtc_ops = {
215 .read_time = snvs_rtc_read_time,
216 .set_time = snvs_rtc_set_time,
217 .read_alarm = snvs_rtc_read_alarm,
218 .set_alarm = snvs_rtc_set_alarm,
219 .alarm_irq_enable = snvs_rtc_alarm_irq_enable,
220 };
221
222 static irqreturn_t snvs_rtc_irq_handler(int irq, void *dev_id)
223 {
224 struct device *dev = dev_id;
225 struct snvs_rtc_data *data = dev_get_drvdata(dev);
226 u32 lpsr;
227 u32 events = 0;
228
229 lpsr = readl(data->ioaddr + SNVS_LPSR);
230
231 if (lpsr & SNVS_LPSR_LPTA) {
232 events |= (RTC_AF | RTC_IRQF);
233
234 /* RTC alarm should be one-shot */
235 snvs_rtc_alarm_irq_enable(dev, 0);
236
237 rtc_update_irq(data->rtc, 1, events);
238 }
239
240 /* clear interrupt status */
241 writel(lpsr, data->ioaddr + SNVS_LPSR);
242
243 return events ? IRQ_HANDLED : IRQ_NONE;
244 }
245
246 static int snvs_rtc_probe(struct platform_device *pdev)
247 {
248 struct snvs_rtc_data *data;
249 struct resource *res;
250 int ret;
251
252 data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
253 if (!data)
254 return -ENOMEM;
255
256 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
257 data->ioaddr = devm_ioremap_resource(&pdev->dev, res);
258 if (IS_ERR(data->ioaddr))
259 return PTR_ERR(data->ioaddr);
260
261 data->irq = platform_get_irq(pdev, 0);
262 if (data->irq < 0)
263 return data->irq;
264
265 data->clk = devm_clk_get(&pdev->dev, "snvs-rtc");
266 if (IS_ERR(data->clk)) {
267 data->clk = NULL;
268 } else {
269 ret = clk_prepare_enable(data->clk);
270 if (ret) {
271 dev_err(&pdev->dev,
272 "Could not prepare or enable the snvs clock\n");
273 return ret;
274 }
275 }
276
277 platform_set_drvdata(pdev, data);
278
279 spin_lock_init(&data->lock);
280
281 /* Initialize glitch detect */
282 writel(SNVS_LPPGDR_INIT, data->ioaddr + SNVS_LPPGDR);
283
284 /* Clear interrupt status */
285 writel(0xffffffff, data->ioaddr + SNVS_LPSR);
286
287 /* Enable RTC */
288 snvs_rtc_enable(data, true);
289
290 device_init_wakeup(&pdev->dev, true);
291
292 ret = devm_request_irq(&pdev->dev, data->irq, snvs_rtc_irq_handler,
293 IRQF_SHARED, "rtc alarm", &pdev->dev);
294 if (ret) {
295 dev_err(&pdev->dev, "failed to request irq %d: %d\n",
296 data->irq, ret);
297 goto error_rtc_device_register;
298 }
299
300 data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
301 &snvs_rtc_ops, THIS_MODULE);
302 if (IS_ERR(data->rtc)) {
303 ret = PTR_ERR(data->rtc);
304 dev_err(&pdev->dev, "failed to register rtc: %d\n", ret);
305 goto error_rtc_device_register;
306 }
307
308 return 0;
309
310 error_rtc_device_register:
311 if (data->clk)
312 clk_disable_unprepare(data->clk);
313
314 return ret;
315 }
316
317 #ifdef CONFIG_PM_SLEEP
318 static int snvs_rtc_suspend(struct device *dev)
319 {
320 struct snvs_rtc_data *data = dev_get_drvdata(dev);
321
322 if (device_may_wakeup(dev))
323 enable_irq_wake(data->irq);
324
325 return 0;
326 }
327
328 static int snvs_rtc_suspend_noirq(struct device *dev)
329 {
330 struct snvs_rtc_data *data = dev_get_drvdata(dev);
331
332 if (data->clk)
333 clk_disable_unprepare(data->clk);
334
335 return 0;
336 }
337
338 static int snvs_rtc_resume(struct device *dev)
339 {
340 struct snvs_rtc_data *data = dev_get_drvdata(dev);
341
342 if (device_may_wakeup(dev))
343 return disable_irq_wake(data->irq);
344
345 return 0;
346 }
347
348 static int snvs_rtc_resume_noirq(struct device *dev)
349 {
350 struct snvs_rtc_data *data = dev_get_drvdata(dev);
351
352 if (data->clk)
353 return clk_prepare_enable(data->clk);
354
355 return 0;
356 }
357
358 static const struct dev_pm_ops snvs_rtc_pm_ops = {
359 .suspend = snvs_rtc_suspend,
360 .suspend_noirq = snvs_rtc_suspend_noirq,
361 .resume = snvs_rtc_resume,
362 .resume_noirq = snvs_rtc_resume_noirq,
363 };
364
365 #define SNVS_RTC_PM_OPS (&snvs_rtc_pm_ops)
366
367 #else
368
369 #define SNVS_RTC_PM_OPS NULL
370
371 #endif
372
373 static const struct of_device_id snvs_dt_ids[] = {
374 { .compatible = "fsl,sec-v4.0-mon-rtc-lp", },
375 { /* sentinel */ }
376 };
377 MODULE_DEVICE_TABLE(of, snvs_dt_ids);
378
379 static struct platform_driver snvs_rtc_driver = {
380 .driver = {
381 .name = "snvs_rtc",
382 .pm = SNVS_RTC_PM_OPS,
383 .of_match_table = snvs_dt_ids,
384 },
385 .probe = snvs_rtc_probe,
386 };
387 module_platform_driver(snvs_rtc_driver);
388
389 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
390 MODULE_DESCRIPTION("Freescale SNVS RTC Driver");
391 MODULE_LICENSE("GPL");