]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/rtc/rtc-sun6i.c
Merge branch 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[mirror_ubuntu-hirsute-kernel.git] / drivers / rtc / rtc-sun6i.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * An RTC driver for Allwinner A31/A23
4 *
5 * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
6 *
7 * based on rtc-sunxi.c
8 *
9 * An RTC driver for Allwinner A10/A20
10 *
11 * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
12 */
13
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/fs.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/rtc.h>
29 #include <linux/slab.h>
30 #include <linux/types.h>
31
32 /* Control register */
33 #define SUN6I_LOSC_CTRL 0x0000
34 #define SUN6I_LOSC_CTRL_KEY (0x16aa << 16)
35 #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS BIT(15)
36 #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC BIT(9)
37 #define SUN6I_LOSC_CTRL_RTC_HMS_ACC BIT(8)
38 #define SUN6I_LOSC_CTRL_RTC_YMD_ACC BIT(7)
39 #define SUN6I_LOSC_CTRL_EXT_LOSC_EN BIT(4)
40 #define SUN6I_LOSC_CTRL_EXT_OSC BIT(0)
41 #define SUN6I_LOSC_CTRL_ACC_MASK GENMASK(9, 7)
42
43 #define SUN6I_LOSC_CLK_PRESCAL 0x0008
44
45 /* RTC */
46 #define SUN6I_RTC_YMD 0x0010
47 #define SUN6I_RTC_HMS 0x0014
48
49 /* Alarm 0 (counter) */
50 #define SUN6I_ALRM_COUNTER 0x0020
51 #define SUN6I_ALRM_CUR_VAL 0x0024
52 #define SUN6I_ALRM_EN 0x0028
53 #define SUN6I_ALRM_EN_CNT_EN BIT(0)
54 #define SUN6I_ALRM_IRQ_EN 0x002c
55 #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN BIT(0)
56 #define SUN6I_ALRM_IRQ_STA 0x0030
57 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND BIT(0)
58
59 /* Alarm 1 (wall clock) */
60 #define SUN6I_ALRM1_EN 0x0044
61 #define SUN6I_ALRM1_IRQ_EN 0x0048
62 #define SUN6I_ALRM1_IRQ_STA 0x004c
63 #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND BIT(0)
64
65 /* Alarm config */
66 #define SUN6I_ALARM_CONFIG 0x0050
67 #define SUN6I_ALARM_CONFIG_WAKEUP BIT(0)
68
69 #define SUN6I_LOSC_OUT_GATING 0x0060
70 #define SUN6I_LOSC_OUT_GATING_EN_OFFSET 0
71
72 /*
73 * Get date values
74 */
75 #define SUN6I_DATE_GET_DAY_VALUE(x) ((x) & 0x0000001f)
76 #define SUN6I_DATE_GET_MON_VALUE(x) (((x) & 0x00000f00) >> 8)
77 #define SUN6I_DATE_GET_YEAR_VALUE(x) (((x) & 0x003f0000) >> 16)
78 #define SUN6I_LEAP_GET_VALUE(x) (((x) & 0x00400000) >> 22)
79
80 /*
81 * Get time values
82 */
83 #define SUN6I_TIME_GET_SEC_VALUE(x) ((x) & 0x0000003f)
84 #define SUN6I_TIME_GET_MIN_VALUE(x) (((x) & 0x00003f00) >> 8)
85 #define SUN6I_TIME_GET_HOUR_VALUE(x) (((x) & 0x001f0000) >> 16)
86
87 /*
88 * Set date values
89 */
90 #define SUN6I_DATE_SET_DAY_VALUE(x) ((x) & 0x0000001f)
91 #define SUN6I_DATE_SET_MON_VALUE(x) ((x) << 8 & 0x00000f00)
92 #define SUN6I_DATE_SET_YEAR_VALUE(x) ((x) << 16 & 0x003f0000)
93 #define SUN6I_LEAP_SET_VALUE(x) ((x) << 22 & 0x00400000)
94
95 /*
96 * Set time values
97 */
98 #define SUN6I_TIME_SET_SEC_VALUE(x) ((x) & 0x0000003f)
99 #define SUN6I_TIME_SET_MIN_VALUE(x) ((x) << 8 & 0x00003f00)
100 #define SUN6I_TIME_SET_HOUR_VALUE(x) ((x) << 16 & 0x001f0000)
101
102 /*
103 * The year parameter passed to the driver is usually an offset relative to
104 * the year 1900. This macro is used to convert this offset to another one
105 * relative to the minimum year allowed by the hardware.
106 *
107 * The year range is 1970 - 2033. This range is selected to match Allwinner's
108 * driver, even though it is somewhat limited.
109 */
110 #define SUN6I_YEAR_MIN 1970
111 #define SUN6I_YEAR_OFF (SUN6I_YEAR_MIN - 1900)
112
113 /*
114 * There are other differences between models, including:
115 *
116 * - number of GPIO pins that can be configured to hold a certain level
117 * - crypto-key related registers (H5, H6)
118 * - boot process related (super standby, secondary processor entry address)
119 * registers (R40, H6)
120 * - SYS power domain controls (R40)
121 * - DCXO controls (H6)
122 * - RC oscillator calibration (H6)
123 *
124 * These functions are not covered by this driver.
125 */
126 struct sun6i_rtc_clk_data {
127 unsigned long rc_osc_rate;
128 unsigned int fixed_prescaler : 16;
129 unsigned int has_prescaler : 1;
130 unsigned int has_out_clk : 1;
131 unsigned int export_iosc : 1;
132 unsigned int has_losc_en : 1;
133 unsigned int has_auto_swt : 1;
134 };
135
136 struct sun6i_rtc_dev {
137 struct rtc_device *rtc;
138 const struct sun6i_rtc_clk_data *data;
139 void __iomem *base;
140 int irq;
141 unsigned long alarm;
142
143 struct clk_hw hw;
144 struct clk_hw *int_osc;
145 struct clk *losc;
146 struct clk *ext_losc;
147
148 spinlock_t lock;
149 };
150
151 static struct sun6i_rtc_dev *sun6i_rtc;
152
153 static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
154 unsigned long parent_rate)
155 {
156 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
157 u32 val = 0;
158
159 val = readl(rtc->base + SUN6I_LOSC_CTRL);
160 if (val & SUN6I_LOSC_CTRL_EXT_OSC)
161 return parent_rate;
162
163 if (rtc->data->fixed_prescaler)
164 parent_rate /= rtc->data->fixed_prescaler;
165
166 if (rtc->data->has_prescaler) {
167 val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
168 val &= GENMASK(4, 0);
169 }
170
171 return parent_rate / (val + 1);
172 }
173
174 static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
175 {
176 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
177
178 return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
179 }
180
181 static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
182 {
183 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
184 unsigned long flags;
185 u32 val;
186
187 if (index > 1)
188 return -EINVAL;
189
190 spin_lock_irqsave(&rtc->lock, flags);
191 val = readl(rtc->base + SUN6I_LOSC_CTRL);
192 val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
193 val |= SUN6I_LOSC_CTRL_KEY;
194 val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
195 if (rtc->data->has_losc_en) {
196 val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
197 val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
198 }
199 writel(val, rtc->base + SUN6I_LOSC_CTRL);
200 spin_unlock_irqrestore(&rtc->lock, flags);
201
202 return 0;
203 }
204
205 static const struct clk_ops sun6i_rtc_osc_ops = {
206 .recalc_rate = sun6i_rtc_osc_recalc_rate,
207
208 .get_parent = sun6i_rtc_osc_get_parent,
209 .set_parent = sun6i_rtc_osc_set_parent,
210 };
211
212 static void __init sun6i_rtc_clk_init(struct device_node *node,
213 const struct sun6i_rtc_clk_data *data)
214 {
215 struct clk_hw_onecell_data *clk_data;
216 struct sun6i_rtc_dev *rtc;
217 struct clk_init_data init = {
218 .ops = &sun6i_rtc_osc_ops,
219 .name = "losc",
220 };
221 const char *iosc_name = "rtc-int-osc";
222 const char *clkout_name = "osc32k-out";
223 const char *parents[2];
224 u32 reg;
225
226 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
227 if (!rtc)
228 return;
229
230 rtc->data = data;
231 clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
232 if (!clk_data) {
233 kfree(rtc);
234 return;
235 }
236
237 spin_lock_init(&rtc->lock);
238
239 rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
240 if (IS_ERR(rtc->base)) {
241 pr_crit("Can't map RTC registers");
242 goto err;
243 }
244
245 reg = SUN6I_LOSC_CTRL_KEY;
246 if (rtc->data->has_auto_swt) {
247 /* Bypass auto-switch to int osc, on ext losc failure */
248 reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
249 writel(reg, rtc->base + SUN6I_LOSC_CTRL);
250 }
251
252 /* Switch to the external, more precise, oscillator, if present */
253 if (of_get_property(node, "clocks", NULL)) {
254 reg |= SUN6I_LOSC_CTRL_EXT_OSC;
255 if (rtc->data->has_losc_en)
256 reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
257 }
258 writel(reg, rtc->base + SUN6I_LOSC_CTRL);
259
260 /* Yes, I know, this is ugly. */
261 sun6i_rtc = rtc;
262
263 /* Only read IOSC name from device tree if it is exported */
264 if (rtc->data->export_iosc)
265 of_property_read_string_index(node, "clock-output-names", 2,
266 &iosc_name);
267
268 rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
269 iosc_name,
270 NULL, 0,
271 rtc->data->rc_osc_rate,
272 300000000);
273 if (IS_ERR(rtc->int_osc)) {
274 pr_crit("Couldn't register the internal oscillator\n");
275 return;
276 }
277
278 parents[0] = clk_hw_get_name(rtc->int_osc);
279 /* If there is no external oscillator, this will be NULL and ... */
280 parents[1] = of_clk_get_parent_name(node, 0);
281
282 rtc->hw.init = &init;
283
284 init.parent_names = parents;
285 /* ... number of clock parents will be 1. */
286 init.num_parents = of_clk_get_parent_count(node) + 1;
287 of_property_read_string_index(node, "clock-output-names", 0,
288 &init.name);
289
290 rtc->losc = clk_register(NULL, &rtc->hw);
291 if (IS_ERR(rtc->losc)) {
292 pr_crit("Couldn't register the LOSC clock\n");
293 return;
294 }
295
296 of_property_read_string_index(node, "clock-output-names", 1,
297 &clkout_name);
298 rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
299 0, rtc->base + SUN6I_LOSC_OUT_GATING,
300 SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
301 &rtc->lock);
302 if (IS_ERR(rtc->ext_losc)) {
303 pr_crit("Couldn't register the LOSC external gate\n");
304 return;
305 }
306
307 clk_data->num = 2;
308 clk_data->hws[0] = &rtc->hw;
309 clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
310 if (rtc->data->export_iosc) {
311 clk_data->hws[2] = rtc->int_osc;
312 clk_data->num = 3;
313 }
314 of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
315 return;
316
317 err:
318 kfree(clk_data);
319 }
320
321 static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
322 .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
323 .has_prescaler = 1,
324 };
325
326 static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
327 {
328 sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
329 }
330 CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
331 sun6i_a31_rtc_clk_init);
332
333 static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
334 .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
335 .has_prescaler = 1,
336 .has_out_clk = 1,
337 };
338
339 static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
340 {
341 sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
342 }
343 CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
344 sun8i_a23_rtc_clk_init);
345
346 static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
347 .rc_osc_rate = 16000000,
348 .fixed_prescaler = 32,
349 .has_prescaler = 1,
350 .has_out_clk = 1,
351 .export_iosc = 1,
352 };
353
354 static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
355 {
356 sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
357 }
358 CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
359 sun8i_h3_rtc_clk_init);
360 /* As far as we are concerned, clocks for H5 are the same as H3 */
361 CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
362 sun8i_h3_rtc_clk_init);
363
364 static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
365 .rc_osc_rate = 16000000,
366 .fixed_prescaler = 32,
367 .has_prescaler = 1,
368 .has_out_clk = 1,
369 .export_iosc = 1,
370 .has_losc_en = 1,
371 .has_auto_swt = 1,
372 };
373
374 static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
375 {
376 sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
377 }
378 CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
379 sun50i_h6_rtc_clk_init);
380
381 /*
382 * The R40 user manual is self-conflicting on whether the prescaler is
383 * fixed or configurable. The clock diagram shows it as fixed, but there
384 * is also a configurable divider in the RTC block.
385 */
386 static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
387 .rc_osc_rate = 16000000,
388 .fixed_prescaler = 512,
389 };
390 static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
391 {
392 sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
393 }
394 CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
395 sun8i_r40_rtc_clk_init);
396
397 static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
398 .rc_osc_rate = 32000,
399 .has_out_clk = 1,
400 };
401
402 static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
403 {
404 sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
405 }
406 CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
407 sun8i_v3_rtc_clk_init);
408
409 static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
410 {
411 struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
412 irqreturn_t ret = IRQ_NONE;
413 u32 val;
414
415 spin_lock(&chip->lock);
416 val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
417
418 if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
419 val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
420 writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
421
422 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
423
424 ret = IRQ_HANDLED;
425 }
426 spin_unlock(&chip->lock);
427
428 return ret;
429 }
430
431 static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
432 {
433 u32 alrm_val = 0;
434 u32 alrm_irq_val = 0;
435 u32 alrm_wake_val = 0;
436 unsigned long flags;
437
438 if (to) {
439 alrm_val = SUN6I_ALRM_EN_CNT_EN;
440 alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
441 alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
442 } else {
443 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
444 chip->base + SUN6I_ALRM_IRQ_STA);
445 }
446
447 spin_lock_irqsave(&chip->lock, flags);
448 writel(alrm_val, chip->base + SUN6I_ALRM_EN);
449 writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
450 writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
451 spin_unlock_irqrestore(&chip->lock, flags);
452 }
453
454 static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
455 {
456 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
457 u32 date, time;
458
459 /*
460 * read again in case it changes
461 */
462 do {
463 date = readl(chip->base + SUN6I_RTC_YMD);
464 time = readl(chip->base + SUN6I_RTC_HMS);
465 } while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
466 (time != readl(chip->base + SUN6I_RTC_HMS)));
467
468 rtc_tm->tm_sec = SUN6I_TIME_GET_SEC_VALUE(time);
469 rtc_tm->tm_min = SUN6I_TIME_GET_MIN_VALUE(time);
470 rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
471
472 rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
473 rtc_tm->tm_mon = SUN6I_DATE_GET_MON_VALUE(date);
474 rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
475
476 rtc_tm->tm_mon -= 1;
477
478 /*
479 * switch from (data_year->min)-relative offset to
480 * a (1900)-relative one
481 */
482 rtc_tm->tm_year += SUN6I_YEAR_OFF;
483
484 return 0;
485 }
486
487 static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
488 {
489 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
490 unsigned long flags;
491 u32 alrm_st;
492 u32 alrm_en;
493
494 spin_lock_irqsave(&chip->lock, flags);
495 alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
496 alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
497 spin_unlock_irqrestore(&chip->lock, flags);
498
499 wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
500 wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
501 rtc_time64_to_tm(chip->alarm, &wkalrm->time);
502
503 return 0;
504 }
505
506 static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
507 {
508 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
509 struct rtc_time *alrm_tm = &wkalrm->time;
510 struct rtc_time tm_now;
511 unsigned long time_now = 0;
512 unsigned long time_set = 0;
513 unsigned long time_gap = 0;
514 int ret = 0;
515
516 ret = sun6i_rtc_gettime(dev, &tm_now);
517 if (ret < 0) {
518 dev_err(dev, "Error in getting time\n");
519 return -EINVAL;
520 }
521
522 time_set = rtc_tm_to_time64(alrm_tm);
523 time_now = rtc_tm_to_time64(&tm_now);
524 if (time_set <= time_now) {
525 dev_err(dev, "Date to set in the past\n");
526 return -EINVAL;
527 }
528
529 time_gap = time_set - time_now;
530
531 if (time_gap > U32_MAX) {
532 dev_err(dev, "Date too far in the future\n");
533 return -EINVAL;
534 }
535
536 sun6i_rtc_setaie(0, chip);
537 writel(0, chip->base + SUN6I_ALRM_COUNTER);
538 usleep_range(100, 300);
539
540 writel(time_gap, chip->base + SUN6I_ALRM_COUNTER);
541 chip->alarm = time_set;
542
543 sun6i_rtc_setaie(wkalrm->enabled, chip);
544
545 return 0;
546 }
547
548 static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
549 unsigned int mask, unsigned int ms_timeout)
550 {
551 const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
552 u32 reg;
553
554 do {
555 reg = readl(chip->base + offset);
556 reg &= mask;
557
558 if (!reg)
559 return 0;
560
561 } while (time_before(jiffies, timeout));
562
563 return -ETIMEDOUT;
564 }
565
566 static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
567 {
568 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
569 u32 date = 0;
570 u32 time = 0;
571
572 rtc_tm->tm_year -= SUN6I_YEAR_OFF;
573 rtc_tm->tm_mon += 1;
574
575 date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
576 SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon) |
577 SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
578
579 if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
580 date |= SUN6I_LEAP_SET_VALUE(1);
581
582 time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec) |
583 SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min) |
584 SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
585
586 /* Check whether registers are writable */
587 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
588 SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
589 dev_err(dev, "rtc is still busy.\n");
590 return -EBUSY;
591 }
592
593 writel(time, chip->base + SUN6I_RTC_HMS);
594
595 /*
596 * After writing the RTC HH-MM-SS register, the
597 * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
598 * be cleared until the real writing operation is finished
599 */
600
601 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
602 SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
603 dev_err(dev, "Failed to set rtc time.\n");
604 return -ETIMEDOUT;
605 }
606
607 writel(date, chip->base + SUN6I_RTC_YMD);
608
609 /*
610 * After writing the RTC YY-MM-DD register, the
611 * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
612 * be cleared until the real writing operation is finished
613 */
614
615 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
616 SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
617 dev_err(dev, "Failed to set rtc time.\n");
618 return -ETIMEDOUT;
619 }
620
621 return 0;
622 }
623
624 static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
625 {
626 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
627
628 if (!enabled)
629 sun6i_rtc_setaie(enabled, chip);
630
631 return 0;
632 }
633
634 static const struct rtc_class_ops sun6i_rtc_ops = {
635 .read_time = sun6i_rtc_gettime,
636 .set_time = sun6i_rtc_settime,
637 .read_alarm = sun6i_rtc_getalarm,
638 .set_alarm = sun6i_rtc_setalarm,
639 .alarm_irq_enable = sun6i_rtc_alarm_irq_enable
640 };
641
642 #ifdef CONFIG_PM_SLEEP
643 /* Enable IRQ wake on suspend, to wake up from RTC. */
644 static int sun6i_rtc_suspend(struct device *dev)
645 {
646 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
647
648 if (device_may_wakeup(dev))
649 enable_irq_wake(chip->irq);
650
651 return 0;
652 }
653
654 /* Disable IRQ wake on resume. */
655 static int sun6i_rtc_resume(struct device *dev)
656 {
657 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
658
659 if (device_may_wakeup(dev))
660 disable_irq_wake(chip->irq);
661
662 return 0;
663 }
664 #endif
665
666 static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
667 sun6i_rtc_suspend, sun6i_rtc_resume);
668
669 static int sun6i_rtc_probe(struct platform_device *pdev)
670 {
671 struct sun6i_rtc_dev *chip = sun6i_rtc;
672 int ret;
673
674 if (!chip)
675 return -ENODEV;
676
677 platform_set_drvdata(pdev, chip);
678
679 chip->irq = platform_get_irq(pdev, 0);
680 if (chip->irq < 0)
681 return chip->irq;
682
683 ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
684 0, dev_name(&pdev->dev), chip);
685 if (ret) {
686 dev_err(&pdev->dev, "Could not request IRQ\n");
687 return ret;
688 }
689
690 /* clear the alarm counter value */
691 writel(0, chip->base + SUN6I_ALRM_COUNTER);
692
693 /* disable counter alarm */
694 writel(0, chip->base + SUN6I_ALRM_EN);
695
696 /* disable counter alarm interrupt */
697 writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
698
699 /* disable week alarm */
700 writel(0, chip->base + SUN6I_ALRM1_EN);
701
702 /* disable week alarm interrupt */
703 writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
704
705 /* clear counter alarm pending interrupts */
706 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
707 chip->base + SUN6I_ALRM_IRQ_STA);
708
709 /* clear week alarm pending interrupts */
710 writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
711 chip->base + SUN6I_ALRM1_IRQ_STA);
712
713 /* disable alarm wakeup */
714 writel(0, chip->base + SUN6I_ALARM_CONFIG);
715
716 clk_prepare_enable(chip->losc);
717
718 device_init_wakeup(&pdev->dev, 1);
719
720 chip->rtc = devm_rtc_allocate_device(&pdev->dev);
721 if (IS_ERR(chip->rtc))
722 return PTR_ERR(chip->rtc);
723
724 chip->rtc->ops = &sun6i_rtc_ops;
725 chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
726
727 ret = rtc_register_device(chip->rtc);
728 if (ret)
729 return ret;
730
731 dev_info(&pdev->dev, "RTC enabled\n");
732
733 return 0;
734 }
735
736 /*
737 * As far as RTC functionality goes, all models are the same. The
738 * datasheets claim that different models have different number of
739 * registers available for non-volatile storage, but experiments show
740 * that all SoCs have 16 registers available for this purpose.
741 */
742 static const struct of_device_id sun6i_rtc_dt_ids[] = {
743 { .compatible = "allwinner,sun6i-a31-rtc" },
744 { .compatible = "allwinner,sun8i-a23-rtc" },
745 { .compatible = "allwinner,sun8i-h3-rtc" },
746 { .compatible = "allwinner,sun8i-r40-rtc" },
747 { .compatible = "allwinner,sun8i-v3-rtc" },
748 { .compatible = "allwinner,sun50i-h5-rtc" },
749 { .compatible = "allwinner,sun50i-h6-rtc" },
750 { /* sentinel */ },
751 };
752 MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
753
754 static struct platform_driver sun6i_rtc_driver = {
755 .probe = sun6i_rtc_probe,
756 .driver = {
757 .name = "sun6i-rtc",
758 .of_match_table = sun6i_rtc_dt_ids,
759 .pm = &sun6i_rtc_pm_ops,
760 },
761 };
762 builtin_platform_driver(sun6i_rtc_driver);