]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/s390/block/dasd.c
block: push down BKL into .open and .release
[mirror_ubuntu-artful-kernel.git] / drivers / s390 / block / dasd.c
1 /*
2 * File...........: linux/drivers/s390/block/dasd.c
3 * Author(s)......: Holger Smolinski <Holger.Smolinski@de.ibm.com>
4 * Horst Hummel <Horst.Hummel@de.ibm.com>
5 * Carsten Otte <Cotte@de.ibm.com>
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>
7 * Bugreports.to..: <Linux390@de.ibm.com>
8 * Copyright IBM Corp. 1999, 2009
9 */
10
11 #define KMSG_COMPONENT "dasd"
12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
13
14 #include <linux/kmod.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/ctype.h>
18 #include <linux/major.h>
19 #include <linux/slab.h>
20 #include <linux/buffer_head.h>
21 #include <linux/hdreg.h>
22 #include <linux/async.h>
23 #include <linux/mutex.h>
24 #include <linux/smp_lock.h>
25
26 #include <asm/ccwdev.h>
27 #include <asm/ebcdic.h>
28 #include <asm/idals.h>
29 #include <asm/itcw.h>
30 #include <asm/diag.h>
31
32 /* This is ugly... */
33 #define PRINTK_HEADER "dasd:"
34
35 #include "dasd_int.h"
36 /*
37 * SECTION: Constant definitions to be used within this file
38 */
39 #define DASD_CHANQ_MAX_SIZE 4
40
41 #define DASD_SLEEPON_START_TAG (void *) 1
42 #define DASD_SLEEPON_END_TAG (void *) 2
43
44 /*
45 * SECTION: exported variables of dasd.c
46 */
47 debug_info_t *dasd_debug_area;
48 struct dasd_discipline *dasd_diag_discipline_pointer;
49 void dasd_int_handler(struct ccw_device *, unsigned long, struct irb *);
50
51 MODULE_AUTHOR("Holger Smolinski <Holger.Smolinski@de.ibm.com>");
52 MODULE_DESCRIPTION("Linux on S/390 DASD device driver,"
53 " Copyright 2000 IBM Corporation");
54 MODULE_SUPPORTED_DEVICE("dasd");
55 MODULE_LICENSE("GPL");
56
57 /*
58 * SECTION: prototypes for static functions of dasd.c
59 */
60 static int dasd_alloc_queue(struct dasd_block *);
61 static void dasd_setup_queue(struct dasd_block *);
62 static void dasd_free_queue(struct dasd_block *);
63 static void dasd_flush_request_queue(struct dasd_block *);
64 static int dasd_flush_block_queue(struct dasd_block *);
65 static void dasd_device_tasklet(struct dasd_device *);
66 static void dasd_block_tasklet(struct dasd_block *);
67 static void do_kick_device(struct work_struct *);
68 static void do_restore_device(struct work_struct *);
69 static void do_reload_device(struct work_struct *);
70 static void dasd_return_cqr_cb(struct dasd_ccw_req *, void *);
71 static void dasd_device_timeout(unsigned long);
72 static void dasd_block_timeout(unsigned long);
73 static void __dasd_process_erp(struct dasd_device *, struct dasd_ccw_req *);
74
75 /*
76 * SECTION: Operations on the device structure.
77 */
78 static wait_queue_head_t dasd_init_waitq;
79 static wait_queue_head_t dasd_flush_wq;
80 static wait_queue_head_t generic_waitq;
81
82 /*
83 * Allocate memory for a new device structure.
84 */
85 struct dasd_device *dasd_alloc_device(void)
86 {
87 struct dasd_device *device;
88
89 device = kzalloc(sizeof(struct dasd_device), GFP_ATOMIC);
90 if (!device)
91 return ERR_PTR(-ENOMEM);
92
93 /* Get two pages for normal block device operations. */
94 device->ccw_mem = (void *) __get_free_pages(GFP_ATOMIC | GFP_DMA, 1);
95 if (!device->ccw_mem) {
96 kfree(device);
97 return ERR_PTR(-ENOMEM);
98 }
99 /* Get one page for error recovery. */
100 device->erp_mem = (void *) get_zeroed_page(GFP_ATOMIC | GFP_DMA);
101 if (!device->erp_mem) {
102 free_pages((unsigned long) device->ccw_mem, 1);
103 kfree(device);
104 return ERR_PTR(-ENOMEM);
105 }
106
107 dasd_init_chunklist(&device->ccw_chunks, device->ccw_mem, PAGE_SIZE*2);
108 dasd_init_chunklist(&device->erp_chunks, device->erp_mem, PAGE_SIZE);
109 spin_lock_init(&device->mem_lock);
110 atomic_set(&device->tasklet_scheduled, 0);
111 tasklet_init(&device->tasklet,
112 (void (*)(unsigned long)) dasd_device_tasklet,
113 (unsigned long) device);
114 INIT_LIST_HEAD(&device->ccw_queue);
115 init_timer(&device->timer);
116 device->timer.function = dasd_device_timeout;
117 device->timer.data = (unsigned long) device;
118 INIT_WORK(&device->kick_work, do_kick_device);
119 INIT_WORK(&device->restore_device, do_restore_device);
120 INIT_WORK(&device->reload_device, do_reload_device);
121 device->state = DASD_STATE_NEW;
122 device->target = DASD_STATE_NEW;
123 mutex_init(&device->state_mutex);
124
125 return device;
126 }
127
128 /*
129 * Free memory of a device structure.
130 */
131 void dasd_free_device(struct dasd_device *device)
132 {
133 kfree(device->private);
134 free_page((unsigned long) device->erp_mem);
135 free_pages((unsigned long) device->ccw_mem, 1);
136 kfree(device);
137 }
138
139 /*
140 * Allocate memory for a new device structure.
141 */
142 struct dasd_block *dasd_alloc_block(void)
143 {
144 struct dasd_block *block;
145
146 block = kzalloc(sizeof(*block), GFP_ATOMIC);
147 if (!block)
148 return ERR_PTR(-ENOMEM);
149 /* open_count = 0 means device online but not in use */
150 atomic_set(&block->open_count, -1);
151
152 spin_lock_init(&block->request_queue_lock);
153 atomic_set(&block->tasklet_scheduled, 0);
154 tasklet_init(&block->tasklet,
155 (void (*)(unsigned long)) dasd_block_tasklet,
156 (unsigned long) block);
157 INIT_LIST_HEAD(&block->ccw_queue);
158 spin_lock_init(&block->queue_lock);
159 init_timer(&block->timer);
160 block->timer.function = dasd_block_timeout;
161 block->timer.data = (unsigned long) block;
162
163 return block;
164 }
165
166 /*
167 * Free memory of a device structure.
168 */
169 void dasd_free_block(struct dasd_block *block)
170 {
171 kfree(block);
172 }
173
174 /*
175 * Make a new device known to the system.
176 */
177 static int dasd_state_new_to_known(struct dasd_device *device)
178 {
179 int rc;
180
181 /*
182 * As long as the device is not in state DASD_STATE_NEW we want to
183 * keep the reference count > 0.
184 */
185 dasd_get_device(device);
186
187 if (device->block) {
188 rc = dasd_alloc_queue(device->block);
189 if (rc) {
190 dasd_put_device(device);
191 return rc;
192 }
193 }
194 device->state = DASD_STATE_KNOWN;
195 return 0;
196 }
197
198 /*
199 * Let the system forget about a device.
200 */
201 static int dasd_state_known_to_new(struct dasd_device *device)
202 {
203 /* Disable extended error reporting for this device. */
204 dasd_eer_disable(device);
205 /* Forget the discipline information. */
206 if (device->discipline) {
207 if (device->discipline->uncheck_device)
208 device->discipline->uncheck_device(device);
209 module_put(device->discipline->owner);
210 }
211 device->discipline = NULL;
212 if (device->base_discipline)
213 module_put(device->base_discipline->owner);
214 device->base_discipline = NULL;
215 device->state = DASD_STATE_NEW;
216
217 if (device->block)
218 dasd_free_queue(device->block);
219
220 /* Give up reference we took in dasd_state_new_to_known. */
221 dasd_put_device(device);
222 return 0;
223 }
224
225 /*
226 * Request the irq line for the device.
227 */
228 static int dasd_state_known_to_basic(struct dasd_device *device)
229 {
230 int rc;
231
232 /* Allocate and register gendisk structure. */
233 if (device->block) {
234 rc = dasd_gendisk_alloc(device->block);
235 if (rc)
236 return rc;
237 }
238 /* register 'device' debug area, used for all DBF_DEV_XXX calls */
239 device->debug_area = debug_register(dev_name(&device->cdev->dev), 4, 1,
240 8 * sizeof(long));
241 debug_register_view(device->debug_area, &debug_sprintf_view);
242 debug_set_level(device->debug_area, DBF_WARNING);
243 DBF_DEV_EVENT(DBF_EMERG, device, "%s", "debug area created");
244
245 device->state = DASD_STATE_BASIC;
246 return 0;
247 }
248
249 /*
250 * Release the irq line for the device. Terminate any running i/o.
251 */
252 static int dasd_state_basic_to_known(struct dasd_device *device)
253 {
254 int rc;
255 if (device->block) {
256 dasd_gendisk_free(device->block);
257 dasd_block_clear_timer(device->block);
258 }
259 rc = dasd_flush_device_queue(device);
260 if (rc)
261 return rc;
262 dasd_device_clear_timer(device);
263
264 DBF_DEV_EVENT(DBF_EMERG, device, "%p debug area deleted", device);
265 if (device->debug_area != NULL) {
266 debug_unregister(device->debug_area);
267 device->debug_area = NULL;
268 }
269 device->state = DASD_STATE_KNOWN;
270 return 0;
271 }
272
273 /*
274 * Do the initial analysis. The do_analysis function may return
275 * -EAGAIN in which case the device keeps the state DASD_STATE_BASIC
276 * until the discipline decides to continue the startup sequence
277 * by calling the function dasd_change_state. The eckd disciplines
278 * uses this to start a ccw that detects the format. The completion
279 * interrupt for this detection ccw uses the kernel event daemon to
280 * trigger the call to dasd_change_state. All this is done in the
281 * discipline code, see dasd_eckd.c.
282 * After the analysis ccw is done (do_analysis returned 0) the block
283 * device is setup.
284 * In case the analysis returns an error, the device setup is stopped
285 * (a fake disk was already added to allow formatting).
286 */
287 static int dasd_state_basic_to_ready(struct dasd_device *device)
288 {
289 int rc;
290 struct dasd_block *block;
291
292 rc = 0;
293 block = device->block;
294 /* make disk known with correct capacity */
295 if (block) {
296 if (block->base->discipline->do_analysis != NULL)
297 rc = block->base->discipline->do_analysis(block);
298 if (rc) {
299 if (rc != -EAGAIN)
300 device->state = DASD_STATE_UNFMT;
301 return rc;
302 }
303 dasd_setup_queue(block);
304 set_capacity(block->gdp,
305 block->blocks << block->s2b_shift);
306 device->state = DASD_STATE_READY;
307 rc = dasd_scan_partitions(block);
308 if (rc)
309 device->state = DASD_STATE_BASIC;
310 } else {
311 device->state = DASD_STATE_READY;
312 }
313 return rc;
314 }
315
316 /*
317 * Remove device from block device layer. Destroy dirty buffers.
318 * Forget format information. Check if the target level is basic
319 * and if it is create fake disk for formatting.
320 */
321 static int dasd_state_ready_to_basic(struct dasd_device *device)
322 {
323 int rc;
324
325 device->state = DASD_STATE_BASIC;
326 if (device->block) {
327 struct dasd_block *block = device->block;
328 rc = dasd_flush_block_queue(block);
329 if (rc) {
330 device->state = DASD_STATE_READY;
331 return rc;
332 }
333 dasd_flush_request_queue(block);
334 dasd_destroy_partitions(block);
335 block->blocks = 0;
336 block->bp_block = 0;
337 block->s2b_shift = 0;
338 }
339 return 0;
340 }
341
342 /*
343 * Back to basic.
344 */
345 static int dasd_state_unfmt_to_basic(struct dasd_device *device)
346 {
347 device->state = DASD_STATE_BASIC;
348 return 0;
349 }
350
351 /*
352 * Make the device online and schedule the bottom half to start
353 * the requeueing of requests from the linux request queue to the
354 * ccw queue.
355 */
356 static int
357 dasd_state_ready_to_online(struct dasd_device * device)
358 {
359 int rc;
360 struct gendisk *disk;
361 struct disk_part_iter piter;
362 struct hd_struct *part;
363
364 if (device->discipline->ready_to_online) {
365 rc = device->discipline->ready_to_online(device);
366 if (rc)
367 return rc;
368 }
369 device->state = DASD_STATE_ONLINE;
370 if (device->block) {
371 dasd_schedule_block_bh(device->block);
372 disk = device->block->bdev->bd_disk;
373 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
374 while ((part = disk_part_iter_next(&piter)))
375 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_CHANGE);
376 disk_part_iter_exit(&piter);
377 }
378 return 0;
379 }
380
381 /*
382 * Stop the requeueing of requests again.
383 */
384 static int dasd_state_online_to_ready(struct dasd_device *device)
385 {
386 int rc;
387 struct gendisk *disk;
388 struct disk_part_iter piter;
389 struct hd_struct *part;
390
391 if (device->discipline->online_to_ready) {
392 rc = device->discipline->online_to_ready(device);
393 if (rc)
394 return rc;
395 }
396 device->state = DASD_STATE_READY;
397 if (device->block) {
398 disk = device->block->bdev->bd_disk;
399 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
400 while ((part = disk_part_iter_next(&piter)))
401 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_CHANGE);
402 disk_part_iter_exit(&piter);
403 }
404 return 0;
405 }
406
407 /*
408 * Device startup state changes.
409 */
410 static int dasd_increase_state(struct dasd_device *device)
411 {
412 int rc;
413
414 rc = 0;
415 if (device->state == DASD_STATE_NEW &&
416 device->target >= DASD_STATE_KNOWN)
417 rc = dasd_state_new_to_known(device);
418
419 if (!rc &&
420 device->state == DASD_STATE_KNOWN &&
421 device->target >= DASD_STATE_BASIC)
422 rc = dasd_state_known_to_basic(device);
423
424 if (!rc &&
425 device->state == DASD_STATE_BASIC &&
426 device->target >= DASD_STATE_READY)
427 rc = dasd_state_basic_to_ready(device);
428
429 if (!rc &&
430 device->state == DASD_STATE_UNFMT &&
431 device->target > DASD_STATE_UNFMT)
432 rc = -EPERM;
433
434 if (!rc &&
435 device->state == DASD_STATE_READY &&
436 device->target >= DASD_STATE_ONLINE)
437 rc = dasd_state_ready_to_online(device);
438
439 return rc;
440 }
441
442 /*
443 * Device shutdown state changes.
444 */
445 static int dasd_decrease_state(struct dasd_device *device)
446 {
447 int rc;
448
449 rc = 0;
450 if (device->state == DASD_STATE_ONLINE &&
451 device->target <= DASD_STATE_READY)
452 rc = dasd_state_online_to_ready(device);
453
454 if (!rc &&
455 device->state == DASD_STATE_READY &&
456 device->target <= DASD_STATE_BASIC)
457 rc = dasd_state_ready_to_basic(device);
458
459 if (!rc &&
460 device->state == DASD_STATE_UNFMT &&
461 device->target <= DASD_STATE_BASIC)
462 rc = dasd_state_unfmt_to_basic(device);
463
464 if (!rc &&
465 device->state == DASD_STATE_BASIC &&
466 device->target <= DASD_STATE_KNOWN)
467 rc = dasd_state_basic_to_known(device);
468
469 if (!rc &&
470 device->state == DASD_STATE_KNOWN &&
471 device->target <= DASD_STATE_NEW)
472 rc = dasd_state_known_to_new(device);
473
474 return rc;
475 }
476
477 /*
478 * This is the main startup/shutdown routine.
479 */
480 static void dasd_change_state(struct dasd_device *device)
481 {
482 int rc;
483
484 if (device->state == device->target)
485 /* Already where we want to go today... */
486 return;
487 if (device->state < device->target)
488 rc = dasd_increase_state(device);
489 else
490 rc = dasd_decrease_state(device);
491 if (rc == -EAGAIN)
492 return;
493 if (rc)
494 device->target = device->state;
495
496 if (device->state == device->target)
497 wake_up(&dasd_init_waitq);
498
499 /* let user-space know that the device status changed */
500 kobject_uevent(&device->cdev->dev.kobj, KOBJ_CHANGE);
501 }
502
503 /*
504 * Kick starter for devices that did not complete the startup/shutdown
505 * procedure or were sleeping because of a pending state.
506 * dasd_kick_device will schedule a call do do_kick_device to the kernel
507 * event daemon.
508 */
509 static void do_kick_device(struct work_struct *work)
510 {
511 struct dasd_device *device = container_of(work, struct dasd_device, kick_work);
512 mutex_lock(&device->state_mutex);
513 dasd_change_state(device);
514 mutex_unlock(&device->state_mutex);
515 dasd_schedule_device_bh(device);
516 dasd_put_device(device);
517 }
518
519 void dasd_kick_device(struct dasd_device *device)
520 {
521 dasd_get_device(device);
522 /* queue call to dasd_kick_device to the kernel event daemon. */
523 schedule_work(&device->kick_work);
524 }
525
526 /*
527 * dasd_reload_device will schedule a call do do_reload_device to the kernel
528 * event daemon.
529 */
530 static void do_reload_device(struct work_struct *work)
531 {
532 struct dasd_device *device = container_of(work, struct dasd_device,
533 reload_device);
534 device->discipline->reload(device);
535 dasd_put_device(device);
536 }
537
538 void dasd_reload_device(struct dasd_device *device)
539 {
540 dasd_get_device(device);
541 /* queue call to dasd_reload_device to the kernel event daemon. */
542 schedule_work(&device->reload_device);
543 }
544 EXPORT_SYMBOL(dasd_reload_device);
545
546 /*
547 * dasd_restore_device will schedule a call do do_restore_device to the kernel
548 * event daemon.
549 */
550 static void do_restore_device(struct work_struct *work)
551 {
552 struct dasd_device *device = container_of(work, struct dasd_device,
553 restore_device);
554 device->cdev->drv->restore(device->cdev);
555 dasd_put_device(device);
556 }
557
558 void dasd_restore_device(struct dasd_device *device)
559 {
560 dasd_get_device(device);
561 /* queue call to dasd_restore_device to the kernel event daemon. */
562 schedule_work(&device->restore_device);
563 }
564
565 /*
566 * Set the target state for a device and starts the state change.
567 */
568 void dasd_set_target_state(struct dasd_device *device, int target)
569 {
570 dasd_get_device(device);
571 mutex_lock(&device->state_mutex);
572 /* If we are in probeonly mode stop at DASD_STATE_READY. */
573 if (dasd_probeonly && target > DASD_STATE_READY)
574 target = DASD_STATE_READY;
575 if (device->target != target) {
576 if (device->state == target)
577 wake_up(&dasd_init_waitq);
578 device->target = target;
579 }
580 if (device->state != device->target)
581 dasd_change_state(device);
582 mutex_unlock(&device->state_mutex);
583 dasd_put_device(device);
584 }
585
586 /*
587 * Enable devices with device numbers in [from..to].
588 */
589 static inline int _wait_for_device(struct dasd_device *device)
590 {
591 return (device->state == device->target);
592 }
593
594 void dasd_enable_device(struct dasd_device *device)
595 {
596 dasd_set_target_state(device, DASD_STATE_ONLINE);
597 if (device->state <= DASD_STATE_KNOWN)
598 /* No discipline for device found. */
599 dasd_set_target_state(device, DASD_STATE_NEW);
600 /* Now wait for the devices to come up. */
601 wait_event(dasd_init_waitq, _wait_for_device(device));
602 }
603
604 /*
605 * SECTION: device operation (interrupt handler, start i/o, term i/o ...)
606 */
607 #ifdef CONFIG_DASD_PROFILE
608
609 struct dasd_profile_info_t dasd_global_profile;
610 unsigned int dasd_profile_level = DASD_PROFILE_OFF;
611
612 /*
613 * Increments counter in global and local profiling structures.
614 */
615 #define dasd_profile_counter(value, counter, block) \
616 { \
617 int index; \
618 for (index = 0; index < 31 && value >> (2+index); index++); \
619 dasd_global_profile.counter[index]++; \
620 block->profile.counter[index]++; \
621 }
622
623 /*
624 * Add profiling information for cqr before execution.
625 */
626 static void dasd_profile_start(struct dasd_block *block,
627 struct dasd_ccw_req *cqr,
628 struct request *req)
629 {
630 struct list_head *l;
631 unsigned int counter;
632
633 if (dasd_profile_level != DASD_PROFILE_ON)
634 return;
635
636 /* count the length of the chanq for statistics */
637 counter = 0;
638 list_for_each(l, &block->ccw_queue)
639 if (++counter >= 31)
640 break;
641 dasd_global_profile.dasd_io_nr_req[counter]++;
642 block->profile.dasd_io_nr_req[counter]++;
643 }
644
645 /*
646 * Add profiling information for cqr after execution.
647 */
648 static void dasd_profile_end(struct dasd_block *block,
649 struct dasd_ccw_req *cqr,
650 struct request *req)
651 {
652 long strtime, irqtime, endtime, tottime; /* in microseconds */
653 long tottimeps, sectors;
654
655 if (dasd_profile_level != DASD_PROFILE_ON)
656 return;
657
658 sectors = blk_rq_sectors(req);
659 if (!cqr->buildclk || !cqr->startclk ||
660 !cqr->stopclk || !cqr->endclk ||
661 !sectors)
662 return;
663
664 strtime = ((cqr->startclk - cqr->buildclk) >> 12);
665 irqtime = ((cqr->stopclk - cqr->startclk) >> 12);
666 endtime = ((cqr->endclk - cqr->stopclk) >> 12);
667 tottime = ((cqr->endclk - cqr->buildclk) >> 12);
668 tottimeps = tottime / sectors;
669
670 if (!dasd_global_profile.dasd_io_reqs)
671 memset(&dasd_global_profile, 0,
672 sizeof(struct dasd_profile_info_t));
673 dasd_global_profile.dasd_io_reqs++;
674 dasd_global_profile.dasd_io_sects += sectors;
675
676 if (!block->profile.dasd_io_reqs)
677 memset(&block->profile, 0,
678 sizeof(struct dasd_profile_info_t));
679 block->profile.dasd_io_reqs++;
680 block->profile.dasd_io_sects += sectors;
681
682 dasd_profile_counter(sectors, dasd_io_secs, block);
683 dasd_profile_counter(tottime, dasd_io_times, block);
684 dasd_profile_counter(tottimeps, dasd_io_timps, block);
685 dasd_profile_counter(strtime, dasd_io_time1, block);
686 dasd_profile_counter(irqtime, dasd_io_time2, block);
687 dasd_profile_counter(irqtime / sectors, dasd_io_time2ps, block);
688 dasd_profile_counter(endtime, dasd_io_time3, block);
689 }
690 #else
691 #define dasd_profile_start(block, cqr, req) do {} while (0)
692 #define dasd_profile_end(block, cqr, req) do {} while (0)
693 #endif /* CONFIG_DASD_PROFILE */
694
695 /*
696 * Allocate memory for a channel program with 'cplength' channel
697 * command words and 'datasize' additional space. There are two
698 * variantes: 1) dasd_kmalloc_request uses kmalloc to get the needed
699 * memory and 2) dasd_smalloc_request uses the static ccw memory
700 * that gets allocated for each device.
701 */
702 struct dasd_ccw_req *dasd_kmalloc_request(int magic, int cplength,
703 int datasize,
704 struct dasd_device *device)
705 {
706 struct dasd_ccw_req *cqr;
707
708 /* Sanity checks */
709 BUG_ON(datasize > PAGE_SIZE ||
710 (cplength*sizeof(struct ccw1)) > PAGE_SIZE);
711
712 cqr = kzalloc(sizeof(struct dasd_ccw_req), GFP_ATOMIC);
713 if (cqr == NULL)
714 return ERR_PTR(-ENOMEM);
715 cqr->cpaddr = NULL;
716 if (cplength > 0) {
717 cqr->cpaddr = kcalloc(cplength, sizeof(struct ccw1),
718 GFP_ATOMIC | GFP_DMA);
719 if (cqr->cpaddr == NULL) {
720 kfree(cqr);
721 return ERR_PTR(-ENOMEM);
722 }
723 }
724 cqr->data = NULL;
725 if (datasize > 0) {
726 cqr->data = kzalloc(datasize, GFP_ATOMIC | GFP_DMA);
727 if (cqr->data == NULL) {
728 kfree(cqr->cpaddr);
729 kfree(cqr);
730 return ERR_PTR(-ENOMEM);
731 }
732 }
733 cqr->magic = magic;
734 set_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags);
735 dasd_get_device(device);
736 return cqr;
737 }
738
739 struct dasd_ccw_req *dasd_smalloc_request(int magic, int cplength,
740 int datasize,
741 struct dasd_device *device)
742 {
743 unsigned long flags;
744 struct dasd_ccw_req *cqr;
745 char *data;
746 int size;
747
748 /* Sanity checks */
749 BUG_ON(datasize > PAGE_SIZE ||
750 (cplength*sizeof(struct ccw1)) > PAGE_SIZE);
751
752 size = (sizeof(struct dasd_ccw_req) + 7L) & -8L;
753 if (cplength > 0)
754 size += cplength * sizeof(struct ccw1);
755 if (datasize > 0)
756 size += datasize;
757 spin_lock_irqsave(&device->mem_lock, flags);
758 cqr = (struct dasd_ccw_req *)
759 dasd_alloc_chunk(&device->ccw_chunks, size);
760 spin_unlock_irqrestore(&device->mem_lock, flags);
761 if (cqr == NULL)
762 return ERR_PTR(-ENOMEM);
763 memset(cqr, 0, sizeof(struct dasd_ccw_req));
764 data = (char *) cqr + ((sizeof(struct dasd_ccw_req) + 7L) & -8L);
765 cqr->cpaddr = NULL;
766 if (cplength > 0) {
767 cqr->cpaddr = (struct ccw1 *) data;
768 data += cplength*sizeof(struct ccw1);
769 memset(cqr->cpaddr, 0, cplength*sizeof(struct ccw1));
770 }
771 cqr->data = NULL;
772 if (datasize > 0) {
773 cqr->data = data;
774 memset(cqr->data, 0, datasize);
775 }
776 cqr->magic = magic;
777 set_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags);
778 dasd_get_device(device);
779 return cqr;
780 }
781
782 /*
783 * Free memory of a channel program. This function needs to free all the
784 * idal lists that might have been created by dasd_set_cda and the
785 * struct dasd_ccw_req itself.
786 */
787 void dasd_kfree_request(struct dasd_ccw_req *cqr, struct dasd_device *device)
788 {
789 #ifdef CONFIG_64BIT
790 struct ccw1 *ccw;
791
792 /* Clear any idals used for the request. */
793 ccw = cqr->cpaddr;
794 do {
795 clear_normalized_cda(ccw);
796 } while (ccw++->flags & (CCW_FLAG_CC | CCW_FLAG_DC));
797 #endif
798 kfree(cqr->cpaddr);
799 kfree(cqr->data);
800 kfree(cqr);
801 dasd_put_device(device);
802 }
803
804 void dasd_sfree_request(struct dasd_ccw_req *cqr, struct dasd_device *device)
805 {
806 unsigned long flags;
807
808 spin_lock_irqsave(&device->mem_lock, flags);
809 dasd_free_chunk(&device->ccw_chunks, cqr);
810 spin_unlock_irqrestore(&device->mem_lock, flags);
811 dasd_put_device(device);
812 }
813
814 /*
815 * Check discipline magic in cqr.
816 */
817 static inline int dasd_check_cqr(struct dasd_ccw_req *cqr)
818 {
819 struct dasd_device *device;
820
821 if (cqr == NULL)
822 return -EINVAL;
823 device = cqr->startdev;
824 if (strncmp((char *) &cqr->magic, device->discipline->ebcname, 4)) {
825 DBF_DEV_EVENT(DBF_WARNING, device,
826 " dasd_ccw_req 0x%08x magic doesn't match"
827 " discipline 0x%08x",
828 cqr->magic,
829 *(unsigned int *) device->discipline->name);
830 return -EINVAL;
831 }
832 return 0;
833 }
834
835 /*
836 * Terminate the current i/o and set the request to clear_pending.
837 * Timer keeps device runnig.
838 * ccw_device_clear can fail if the i/o subsystem
839 * is in a bad mood.
840 */
841 int dasd_term_IO(struct dasd_ccw_req *cqr)
842 {
843 struct dasd_device *device;
844 int retries, rc;
845 char errorstring[ERRORLENGTH];
846
847 /* Check the cqr */
848 rc = dasd_check_cqr(cqr);
849 if (rc)
850 return rc;
851 retries = 0;
852 device = (struct dasd_device *) cqr->startdev;
853 while ((retries < 5) && (cqr->status == DASD_CQR_IN_IO)) {
854 rc = ccw_device_clear(device->cdev, (long) cqr);
855 switch (rc) {
856 case 0: /* termination successful */
857 cqr->retries--;
858 cqr->status = DASD_CQR_CLEAR_PENDING;
859 cqr->stopclk = get_clock();
860 cqr->starttime = 0;
861 DBF_DEV_EVENT(DBF_DEBUG, device,
862 "terminate cqr %p successful",
863 cqr);
864 break;
865 case -ENODEV:
866 DBF_DEV_EVENT(DBF_ERR, device, "%s",
867 "device gone, retry");
868 break;
869 case -EIO:
870 DBF_DEV_EVENT(DBF_ERR, device, "%s",
871 "I/O error, retry");
872 break;
873 case -EINVAL:
874 case -EBUSY:
875 DBF_DEV_EVENT(DBF_ERR, device, "%s",
876 "device busy, retry later");
877 break;
878 default:
879 /* internal error 10 - unknown rc*/
880 snprintf(errorstring, ERRORLENGTH, "10 %d", rc);
881 dev_err(&device->cdev->dev, "An error occurred in the "
882 "DASD device driver, reason=%s\n", errorstring);
883 BUG();
884 break;
885 }
886 retries++;
887 }
888 dasd_schedule_device_bh(device);
889 return rc;
890 }
891
892 /*
893 * Start the i/o. This start_IO can fail if the channel is really busy.
894 * In that case set up a timer to start the request later.
895 */
896 int dasd_start_IO(struct dasd_ccw_req *cqr)
897 {
898 struct dasd_device *device;
899 int rc;
900 char errorstring[ERRORLENGTH];
901
902 /* Check the cqr */
903 rc = dasd_check_cqr(cqr);
904 if (rc) {
905 cqr->intrc = rc;
906 return rc;
907 }
908 device = (struct dasd_device *) cqr->startdev;
909 if (cqr->retries < 0) {
910 /* internal error 14 - start_IO run out of retries */
911 sprintf(errorstring, "14 %p", cqr);
912 dev_err(&device->cdev->dev, "An error occurred in the DASD "
913 "device driver, reason=%s\n", errorstring);
914 cqr->status = DASD_CQR_ERROR;
915 return -EIO;
916 }
917 cqr->startclk = get_clock();
918 cqr->starttime = jiffies;
919 cqr->retries--;
920 if (cqr->cpmode == 1) {
921 rc = ccw_device_tm_start(device->cdev, cqr->cpaddr,
922 (long) cqr, cqr->lpm);
923 } else {
924 rc = ccw_device_start(device->cdev, cqr->cpaddr,
925 (long) cqr, cqr->lpm, 0);
926 }
927 switch (rc) {
928 case 0:
929 cqr->status = DASD_CQR_IN_IO;
930 break;
931 case -EBUSY:
932 DBF_DEV_EVENT(DBF_DEBUG, device, "%s",
933 "start_IO: device busy, retry later");
934 break;
935 case -ETIMEDOUT:
936 DBF_DEV_EVENT(DBF_DEBUG, device, "%s",
937 "start_IO: request timeout, retry later");
938 break;
939 case -EACCES:
940 /* -EACCES indicates that the request used only a
941 * subset of the available pathes and all these
942 * pathes are gone.
943 * Do a retry with all available pathes.
944 */
945 cqr->lpm = LPM_ANYPATH;
946 DBF_DEV_EVENT(DBF_DEBUG, device, "%s",
947 "start_IO: selected pathes gone,"
948 " retry on all pathes");
949 break;
950 case -ENODEV:
951 DBF_DEV_EVENT(DBF_DEBUG, device, "%s",
952 "start_IO: -ENODEV device gone, retry");
953 break;
954 case -EIO:
955 DBF_DEV_EVENT(DBF_DEBUG, device, "%s",
956 "start_IO: -EIO device gone, retry");
957 break;
958 case -EINVAL:
959 /* most likely caused in power management context */
960 DBF_DEV_EVENT(DBF_DEBUG, device, "%s",
961 "start_IO: -EINVAL device currently "
962 "not accessible");
963 break;
964 default:
965 /* internal error 11 - unknown rc */
966 snprintf(errorstring, ERRORLENGTH, "11 %d", rc);
967 dev_err(&device->cdev->dev,
968 "An error occurred in the DASD device driver, "
969 "reason=%s\n", errorstring);
970 BUG();
971 break;
972 }
973 cqr->intrc = rc;
974 return rc;
975 }
976
977 /*
978 * Timeout function for dasd devices. This is used for different purposes
979 * 1) missing interrupt handler for normal operation
980 * 2) delayed start of request where start_IO failed with -EBUSY
981 * 3) timeout for missing state change interrupts
982 * The head of the ccw queue will have status DASD_CQR_IN_IO for 1),
983 * DASD_CQR_QUEUED for 2) and 3).
984 */
985 static void dasd_device_timeout(unsigned long ptr)
986 {
987 unsigned long flags;
988 struct dasd_device *device;
989
990 device = (struct dasd_device *) ptr;
991 spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
992 /* re-activate request queue */
993 dasd_device_remove_stop_bits(device, DASD_STOPPED_PENDING);
994 spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
995 dasd_schedule_device_bh(device);
996 }
997
998 /*
999 * Setup timeout for a device in jiffies.
1000 */
1001 void dasd_device_set_timer(struct dasd_device *device, int expires)
1002 {
1003 if (expires == 0)
1004 del_timer(&device->timer);
1005 else
1006 mod_timer(&device->timer, jiffies + expires);
1007 }
1008
1009 /*
1010 * Clear timeout for a device.
1011 */
1012 void dasd_device_clear_timer(struct dasd_device *device)
1013 {
1014 del_timer(&device->timer);
1015 }
1016
1017 static void dasd_handle_killed_request(struct ccw_device *cdev,
1018 unsigned long intparm)
1019 {
1020 struct dasd_ccw_req *cqr;
1021 struct dasd_device *device;
1022
1023 if (!intparm)
1024 return;
1025 cqr = (struct dasd_ccw_req *) intparm;
1026 if (cqr->status != DASD_CQR_IN_IO) {
1027 DBF_EVENT_DEVID(DBF_DEBUG, cdev,
1028 "invalid status in handle_killed_request: "
1029 "%02x", cqr->status);
1030 return;
1031 }
1032
1033 device = dasd_device_from_cdev_locked(cdev);
1034 if (IS_ERR(device)) {
1035 DBF_EVENT_DEVID(DBF_DEBUG, cdev, "%s",
1036 "unable to get device from cdev");
1037 return;
1038 }
1039
1040 if (!cqr->startdev ||
1041 device != cqr->startdev ||
1042 strncmp(cqr->startdev->discipline->ebcname,
1043 (char *) &cqr->magic, 4)) {
1044 DBF_EVENT_DEVID(DBF_DEBUG, cdev, "%s",
1045 "invalid device in request");
1046 dasd_put_device(device);
1047 return;
1048 }
1049
1050 /* Schedule request to be retried. */
1051 cqr->status = DASD_CQR_QUEUED;
1052
1053 dasd_device_clear_timer(device);
1054 dasd_schedule_device_bh(device);
1055 dasd_put_device(device);
1056 }
1057
1058 void dasd_generic_handle_state_change(struct dasd_device *device)
1059 {
1060 /* First of all start sense subsystem status request. */
1061 dasd_eer_snss(device);
1062
1063 dasd_device_remove_stop_bits(device, DASD_STOPPED_PENDING);
1064 dasd_schedule_device_bh(device);
1065 if (device->block)
1066 dasd_schedule_block_bh(device->block);
1067 }
1068
1069 /*
1070 * Interrupt handler for "normal" ssch-io based dasd devices.
1071 */
1072 void dasd_int_handler(struct ccw_device *cdev, unsigned long intparm,
1073 struct irb *irb)
1074 {
1075 struct dasd_ccw_req *cqr, *next;
1076 struct dasd_device *device;
1077 unsigned long long now;
1078 int expires;
1079
1080 if (IS_ERR(irb)) {
1081 switch (PTR_ERR(irb)) {
1082 case -EIO:
1083 break;
1084 case -ETIMEDOUT:
1085 DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s: "
1086 "request timed out\n", __func__);
1087 break;
1088 default:
1089 DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s: "
1090 "unknown error %ld\n", __func__,
1091 PTR_ERR(irb));
1092 }
1093 dasd_handle_killed_request(cdev, intparm);
1094 return;
1095 }
1096
1097 now = get_clock();
1098
1099 /* check for unsolicited interrupts */
1100 cqr = (struct dasd_ccw_req *) intparm;
1101 if (!cqr || ((scsw_cc(&irb->scsw) == 1) &&
1102 (scsw_fctl(&irb->scsw) & SCSW_FCTL_START_FUNC) &&
1103 (scsw_stctl(&irb->scsw) & SCSW_STCTL_STATUS_PEND))) {
1104 if (cqr && cqr->status == DASD_CQR_IN_IO)
1105 cqr->status = DASD_CQR_QUEUED;
1106 device = dasd_device_from_cdev_locked(cdev);
1107 if (!IS_ERR(device)) {
1108 dasd_device_clear_timer(device);
1109 device->discipline->handle_unsolicited_interrupt(device,
1110 irb);
1111 dasd_put_device(device);
1112 }
1113 return;
1114 }
1115
1116 device = (struct dasd_device *) cqr->startdev;
1117 if (!device ||
1118 strncmp(device->discipline->ebcname, (char *) &cqr->magic, 4)) {
1119 DBF_EVENT_DEVID(DBF_DEBUG, cdev, "%s",
1120 "invalid device in request");
1121 return;
1122 }
1123
1124 /* Check for clear pending */
1125 if (cqr->status == DASD_CQR_CLEAR_PENDING &&
1126 scsw_fctl(&irb->scsw) & SCSW_FCTL_CLEAR_FUNC) {
1127 cqr->status = DASD_CQR_CLEARED;
1128 dasd_device_clear_timer(device);
1129 wake_up(&dasd_flush_wq);
1130 dasd_schedule_device_bh(device);
1131 return;
1132 }
1133
1134 /* check status - the request might have been killed by dyn detach */
1135 if (cqr->status != DASD_CQR_IN_IO) {
1136 DBF_DEV_EVENT(DBF_DEBUG, device, "invalid status: bus_id %s, "
1137 "status %02x", dev_name(&cdev->dev), cqr->status);
1138 return;
1139 }
1140
1141 next = NULL;
1142 expires = 0;
1143 if (scsw_dstat(&irb->scsw) == (DEV_STAT_CHN_END | DEV_STAT_DEV_END) &&
1144 scsw_cstat(&irb->scsw) == 0) {
1145 /* request was completed successfully */
1146 cqr->status = DASD_CQR_SUCCESS;
1147 cqr->stopclk = now;
1148 /* Start first request on queue if possible -> fast_io. */
1149 if (cqr->devlist.next != &device->ccw_queue) {
1150 next = list_entry(cqr->devlist.next,
1151 struct dasd_ccw_req, devlist);
1152 }
1153 } else { /* error */
1154 memcpy(&cqr->irb, irb, sizeof(struct irb));
1155 /* log sense for every failed I/O to s390 debugfeature */
1156 dasd_log_sense_dbf(cqr, irb);
1157 if (device->features & DASD_FEATURE_ERPLOG) {
1158 dasd_log_sense(cqr, irb);
1159 }
1160
1161 /*
1162 * If we don't want complex ERP for this request, then just
1163 * reset this and retry it in the fastpath
1164 */
1165 if (!test_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags) &&
1166 cqr->retries > 0) {
1167 if (cqr->lpm == LPM_ANYPATH)
1168 DBF_DEV_EVENT(DBF_DEBUG, device,
1169 "default ERP in fastpath "
1170 "(%i retries left)",
1171 cqr->retries);
1172 cqr->lpm = LPM_ANYPATH;
1173 cqr->status = DASD_CQR_QUEUED;
1174 next = cqr;
1175 } else
1176 cqr->status = DASD_CQR_ERROR;
1177 }
1178 if (next && (next->status == DASD_CQR_QUEUED) &&
1179 (!device->stopped)) {
1180 if (device->discipline->start_IO(next) == 0)
1181 expires = next->expires;
1182 }
1183 if (expires != 0)
1184 dasd_device_set_timer(device, expires);
1185 else
1186 dasd_device_clear_timer(device);
1187 dasd_schedule_device_bh(device);
1188 }
1189
1190 enum uc_todo dasd_generic_uc_handler(struct ccw_device *cdev, struct irb *irb)
1191 {
1192 struct dasd_device *device;
1193
1194 device = dasd_device_from_cdev_locked(cdev);
1195
1196 if (IS_ERR(device))
1197 goto out;
1198 if (test_bit(DASD_FLAG_OFFLINE, &device->flags) ||
1199 device->state != device->target ||
1200 !device->discipline->handle_unsolicited_interrupt){
1201 dasd_put_device(device);
1202 goto out;
1203 }
1204
1205 dasd_device_clear_timer(device);
1206 device->discipline->handle_unsolicited_interrupt(device, irb);
1207 dasd_put_device(device);
1208 out:
1209 return UC_TODO_RETRY;
1210 }
1211 EXPORT_SYMBOL_GPL(dasd_generic_uc_handler);
1212
1213 /*
1214 * If we have an error on a dasd_block layer request then we cancel
1215 * and return all further requests from the same dasd_block as well.
1216 */
1217 static void __dasd_device_recovery(struct dasd_device *device,
1218 struct dasd_ccw_req *ref_cqr)
1219 {
1220 struct list_head *l, *n;
1221 struct dasd_ccw_req *cqr;
1222
1223 /*
1224 * only requeue request that came from the dasd_block layer
1225 */
1226 if (!ref_cqr->block)
1227 return;
1228
1229 list_for_each_safe(l, n, &device->ccw_queue) {
1230 cqr = list_entry(l, struct dasd_ccw_req, devlist);
1231 if (cqr->status == DASD_CQR_QUEUED &&
1232 ref_cqr->block == cqr->block) {
1233 cqr->status = DASD_CQR_CLEARED;
1234 }
1235 }
1236 };
1237
1238 /*
1239 * Remove those ccw requests from the queue that need to be returned
1240 * to the upper layer.
1241 */
1242 static void __dasd_device_process_ccw_queue(struct dasd_device *device,
1243 struct list_head *final_queue)
1244 {
1245 struct list_head *l, *n;
1246 struct dasd_ccw_req *cqr;
1247
1248 /* Process request with final status. */
1249 list_for_each_safe(l, n, &device->ccw_queue) {
1250 cqr = list_entry(l, struct dasd_ccw_req, devlist);
1251
1252 /* Stop list processing at the first non-final request. */
1253 if (cqr->status == DASD_CQR_QUEUED ||
1254 cqr->status == DASD_CQR_IN_IO ||
1255 cqr->status == DASD_CQR_CLEAR_PENDING)
1256 break;
1257 if (cqr->status == DASD_CQR_ERROR) {
1258 __dasd_device_recovery(device, cqr);
1259 }
1260 /* Rechain finished requests to final queue */
1261 list_move_tail(&cqr->devlist, final_queue);
1262 }
1263 }
1264
1265 /*
1266 * the cqrs from the final queue are returned to the upper layer
1267 * by setting a dasd_block state and calling the callback function
1268 */
1269 static void __dasd_device_process_final_queue(struct dasd_device *device,
1270 struct list_head *final_queue)
1271 {
1272 struct list_head *l, *n;
1273 struct dasd_ccw_req *cqr;
1274 struct dasd_block *block;
1275 void (*callback)(struct dasd_ccw_req *, void *data);
1276 void *callback_data;
1277 char errorstring[ERRORLENGTH];
1278
1279 list_for_each_safe(l, n, final_queue) {
1280 cqr = list_entry(l, struct dasd_ccw_req, devlist);
1281 list_del_init(&cqr->devlist);
1282 block = cqr->block;
1283 callback = cqr->callback;
1284 callback_data = cqr->callback_data;
1285 if (block)
1286 spin_lock_bh(&block->queue_lock);
1287 switch (cqr->status) {
1288 case DASD_CQR_SUCCESS:
1289 cqr->status = DASD_CQR_DONE;
1290 break;
1291 case DASD_CQR_ERROR:
1292 cqr->status = DASD_CQR_NEED_ERP;
1293 break;
1294 case DASD_CQR_CLEARED:
1295 cqr->status = DASD_CQR_TERMINATED;
1296 break;
1297 default:
1298 /* internal error 12 - wrong cqr status*/
1299 snprintf(errorstring, ERRORLENGTH, "12 %p %x02", cqr, cqr->status);
1300 dev_err(&device->cdev->dev,
1301 "An error occurred in the DASD device driver, "
1302 "reason=%s\n", errorstring);
1303 BUG();
1304 }
1305 if (cqr->callback != NULL)
1306 (callback)(cqr, callback_data);
1307 if (block)
1308 spin_unlock_bh(&block->queue_lock);
1309 }
1310 }
1311
1312 /*
1313 * Take a look at the first request on the ccw queue and check
1314 * if it reached its expire time. If so, terminate the IO.
1315 */
1316 static void __dasd_device_check_expire(struct dasd_device *device)
1317 {
1318 struct dasd_ccw_req *cqr;
1319
1320 if (list_empty(&device->ccw_queue))
1321 return;
1322 cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist);
1323 if ((cqr->status == DASD_CQR_IN_IO && cqr->expires != 0) &&
1324 (time_after_eq(jiffies, cqr->expires + cqr->starttime))) {
1325 if (device->discipline->term_IO(cqr) != 0) {
1326 /* Hmpf, try again in 5 sec */
1327 dev_err(&device->cdev->dev,
1328 "cqr %p timed out (%is) but cannot be "
1329 "ended, retrying in 5 s\n",
1330 cqr, (cqr->expires/HZ));
1331 cqr->expires += 5*HZ;
1332 dasd_device_set_timer(device, 5*HZ);
1333 } else {
1334 dev_err(&device->cdev->dev,
1335 "cqr %p timed out (%is), %i retries "
1336 "remaining\n", cqr, (cqr->expires/HZ),
1337 cqr->retries);
1338 }
1339 }
1340 }
1341
1342 /*
1343 * Take a look at the first request on the ccw queue and check
1344 * if it needs to be started.
1345 */
1346 static void __dasd_device_start_head(struct dasd_device *device)
1347 {
1348 struct dasd_ccw_req *cqr;
1349 int rc;
1350
1351 if (list_empty(&device->ccw_queue))
1352 return;
1353 cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist);
1354 if (cqr->status != DASD_CQR_QUEUED)
1355 return;
1356 /* when device is stopped, return request to previous layer */
1357 if (device->stopped) {
1358 cqr->status = DASD_CQR_CLEARED;
1359 dasd_schedule_device_bh(device);
1360 return;
1361 }
1362
1363 rc = device->discipline->start_IO(cqr);
1364 if (rc == 0)
1365 dasd_device_set_timer(device, cqr->expires);
1366 else if (rc == -EACCES) {
1367 dasd_schedule_device_bh(device);
1368 } else
1369 /* Hmpf, try again in 1/2 sec */
1370 dasd_device_set_timer(device, 50);
1371 }
1372
1373 /*
1374 * Go through all request on the dasd_device request queue,
1375 * terminate them on the cdev if necessary, and return them to the
1376 * submitting layer via callback.
1377 * Note:
1378 * Make sure that all 'submitting layers' still exist when
1379 * this function is called!. In other words, when 'device' is a base
1380 * device then all block layer requests must have been removed before
1381 * via dasd_flush_block_queue.
1382 */
1383 int dasd_flush_device_queue(struct dasd_device *device)
1384 {
1385 struct dasd_ccw_req *cqr, *n;
1386 int rc;
1387 struct list_head flush_queue;
1388
1389 INIT_LIST_HEAD(&flush_queue);
1390 spin_lock_irq(get_ccwdev_lock(device->cdev));
1391 rc = 0;
1392 list_for_each_entry_safe(cqr, n, &device->ccw_queue, devlist) {
1393 /* Check status and move request to flush_queue */
1394 switch (cqr->status) {
1395 case DASD_CQR_IN_IO:
1396 rc = device->discipline->term_IO(cqr);
1397 if (rc) {
1398 /* unable to terminate requeust */
1399 dev_err(&device->cdev->dev,
1400 "Flushing the DASD request queue "
1401 "failed for request %p\n", cqr);
1402 /* stop flush processing */
1403 goto finished;
1404 }
1405 break;
1406 case DASD_CQR_QUEUED:
1407 cqr->stopclk = get_clock();
1408 cqr->status = DASD_CQR_CLEARED;
1409 break;
1410 default: /* no need to modify the others */
1411 break;
1412 }
1413 list_move_tail(&cqr->devlist, &flush_queue);
1414 }
1415 finished:
1416 spin_unlock_irq(get_ccwdev_lock(device->cdev));
1417 /*
1418 * After this point all requests must be in state CLEAR_PENDING,
1419 * CLEARED, SUCCESS or ERROR. Now wait for CLEAR_PENDING to become
1420 * one of the others.
1421 */
1422 list_for_each_entry_safe(cqr, n, &flush_queue, devlist)
1423 wait_event(dasd_flush_wq,
1424 (cqr->status != DASD_CQR_CLEAR_PENDING));
1425 /*
1426 * Now set each request back to TERMINATED, DONE or NEED_ERP
1427 * and call the callback function of flushed requests
1428 */
1429 __dasd_device_process_final_queue(device, &flush_queue);
1430 return rc;
1431 }
1432
1433 /*
1434 * Acquire the device lock and process queues for the device.
1435 */
1436 static void dasd_device_tasklet(struct dasd_device *device)
1437 {
1438 struct list_head final_queue;
1439
1440 atomic_set (&device->tasklet_scheduled, 0);
1441 INIT_LIST_HEAD(&final_queue);
1442 spin_lock_irq(get_ccwdev_lock(device->cdev));
1443 /* Check expire time of first request on the ccw queue. */
1444 __dasd_device_check_expire(device);
1445 /* find final requests on ccw queue */
1446 __dasd_device_process_ccw_queue(device, &final_queue);
1447 spin_unlock_irq(get_ccwdev_lock(device->cdev));
1448 /* Now call the callback function of requests with final status */
1449 __dasd_device_process_final_queue(device, &final_queue);
1450 spin_lock_irq(get_ccwdev_lock(device->cdev));
1451 /* Now check if the head of the ccw queue needs to be started. */
1452 __dasd_device_start_head(device);
1453 spin_unlock_irq(get_ccwdev_lock(device->cdev));
1454 dasd_put_device(device);
1455 }
1456
1457 /*
1458 * Schedules a call to dasd_tasklet over the device tasklet.
1459 */
1460 void dasd_schedule_device_bh(struct dasd_device *device)
1461 {
1462 /* Protect against rescheduling. */
1463 if (atomic_cmpxchg (&device->tasklet_scheduled, 0, 1) != 0)
1464 return;
1465 dasd_get_device(device);
1466 tasklet_hi_schedule(&device->tasklet);
1467 }
1468
1469 void dasd_device_set_stop_bits(struct dasd_device *device, int bits)
1470 {
1471 device->stopped |= bits;
1472 }
1473 EXPORT_SYMBOL_GPL(dasd_device_set_stop_bits);
1474
1475 void dasd_device_remove_stop_bits(struct dasd_device *device, int bits)
1476 {
1477 device->stopped &= ~bits;
1478 if (!device->stopped)
1479 wake_up(&generic_waitq);
1480 }
1481 EXPORT_SYMBOL_GPL(dasd_device_remove_stop_bits);
1482
1483 /*
1484 * Queue a request to the head of the device ccw_queue.
1485 * Start the I/O if possible.
1486 */
1487 void dasd_add_request_head(struct dasd_ccw_req *cqr)
1488 {
1489 struct dasd_device *device;
1490 unsigned long flags;
1491
1492 device = cqr->startdev;
1493 spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
1494 cqr->status = DASD_CQR_QUEUED;
1495 list_add(&cqr->devlist, &device->ccw_queue);
1496 /* let the bh start the request to keep them in order */
1497 dasd_schedule_device_bh(device);
1498 spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
1499 }
1500
1501 /*
1502 * Queue a request to the tail of the device ccw_queue.
1503 * Start the I/O if possible.
1504 */
1505 void dasd_add_request_tail(struct dasd_ccw_req *cqr)
1506 {
1507 struct dasd_device *device;
1508 unsigned long flags;
1509
1510 device = cqr->startdev;
1511 spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
1512 cqr->status = DASD_CQR_QUEUED;
1513 list_add_tail(&cqr->devlist, &device->ccw_queue);
1514 /* let the bh start the request to keep them in order */
1515 dasd_schedule_device_bh(device);
1516 spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
1517 }
1518
1519 /*
1520 * Wakeup helper for the 'sleep_on' functions.
1521 */
1522 static void dasd_wakeup_cb(struct dasd_ccw_req *cqr, void *data)
1523 {
1524 spin_lock_irq(get_ccwdev_lock(cqr->startdev->cdev));
1525 cqr->callback_data = DASD_SLEEPON_END_TAG;
1526 spin_unlock_irq(get_ccwdev_lock(cqr->startdev->cdev));
1527 wake_up(&generic_waitq);
1528 }
1529
1530 static inline int _wait_for_wakeup(struct dasd_ccw_req *cqr)
1531 {
1532 struct dasd_device *device;
1533 int rc;
1534
1535 device = cqr->startdev;
1536 spin_lock_irq(get_ccwdev_lock(device->cdev));
1537 rc = (cqr->callback_data == DASD_SLEEPON_END_TAG);
1538 spin_unlock_irq(get_ccwdev_lock(device->cdev));
1539 return rc;
1540 }
1541
1542 /*
1543 * checks if error recovery is necessary, returns 1 if yes, 0 otherwise.
1544 */
1545 static int __dasd_sleep_on_erp(struct dasd_ccw_req *cqr)
1546 {
1547 struct dasd_device *device;
1548 dasd_erp_fn_t erp_fn;
1549
1550 if (cqr->status == DASD_CQR_FILLED)
1551 return 0;
1552 device = cqr->startdev;
1553 if (test_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags)) {
1554 if (cqr->status == DASD_CQR_TERMINATED) {
1555 device->discipline->handle_terminated_request(cqr);
1556 return 1;
1557 }
1558 if (cqr->status == DASD_CQR_NEED_ERP) {
1559 erp_fn = device->discipline->erp_action(cqr);
1560 erp_fn(cqr);
1561 return 1;
1562 }
1563 if (cqr->status == DASD_CQR_FAILED)
1564 dasd_log_sense(cqr, &cqr->irb);
1565 if (cqr->refers) {
1566 __dasd_process_erp(device, cqr);
1567 return 1;
1568 }
1569 }
1570 return 0;
1571 }
1572
1573 static int __dasd_sleep_on_loop_condition(struct dasd_ccw_req *cqr)
1574 {
1575 if (test_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags)) {
1576 if (cqr->refers) /* erp is not done yet */
1577 return 1;
1578 return ((cqr->status != DASD_CQR_DONE) &&
1579 (cqr->status != DASD_CQR_FAILED));
1580 } else
1581 return (cqr->status == DASD_CQR_FILLED);
1582 }
1583
1584 static int _dasd_sleep_on(struct dasd_ccw_req *maincqr, int interruptible)
1585 {
1586 struct dasd_device *device;
1587 int rc;
1588 struct list_head ccw_queue;
1589 struct dasd_ccw_req *cqr;
1590
1591 INIT_LIST_HEAD(&ccw_queue);
1592 maincqr->status = DASD_CQR_FILLED;
1593 device = maincqr->startdev;
1594 list_add(&maincqr->blocklist, &ccw_queue);
1595 for (cqr = maincqr; __dasd_sleep_on_loop_condition(cqr);
1596 cqr = list_first_entry(&ccw_queue,
1597 struct dasd_ccw_req, blocklist)) {
1598
1599 if (__dasd_sleep_on_erp(cqr))
1600 continue;
1601 if (cqr->status != DASD_CQR_FILLED) /* could be failed */
1602 continue;
1603
1604 /* Non-temporary stop condition will trigger fail fast */
1605 if (device->stopped & ~DASD_STOPPED_PENDING &&
1606 test_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags) &&
1607 (!dasd_eer_enabled(device))) {
1608 cqr->status = DASD_CQR_FAILED;
1609 continue;
1610 }
1611
1612 /* Don't try to start requests if device is stopped */
1613 if (interruptible) {
1614 rc = wait_event_interruptible(
1615 generic_waitq, !(device->stopped));
1616 if (rc == -ERESTARTSYS) {
1617 cqr->status = DASD_CQR_FAILED;
1618 maincqr->intrc = rc;
1619 continue;
1620 }
1621 } else
1622 wait_event(generic_waitq, !(device->stopped));
1623
1624 cqr->callback = dasd_wakeup_cb;
1625 cqr->callback_data = DASD_SLEEPON_START_TAG;
1626 dasd_add_request_tail(cqr);
1627 if (interruptible) {
1628 rc = wait_event_interruptible(
1629 generic_waitq, _wait_for_wakeup(cqr));
1630 if (rc == -ERESTARTSYS) {
1631 dasd_cancel_req(cqr);
1632 /* wait (non-interruptible) for final status */
1633 wait_event(generic_waitq,
1634 _wait_for_wakeup(cqr));
1635 cqr->status = DASD_CQR_FAILED;
1636 maincqr->intrc = rc;
1637 continue;
1638 }
1639 } else
1640 wait_event(generic_waitq, _wait_for_wakeup(cqr));
1641 }
1642
1643 maincqr->endclk = get_clock();
1644 if ((maincqr->status != DASD_CQR_DONE) &&
1645 (maincqr->intrc != -ERESTARTSYS))
1646 dasd_log_sense(maincqr, &maincqr->irb);
1647 if (maincqr->status == DASD_CQR_DONE)
1648 rc = 0;
1649 else if (maincqr->intrc)
1650 rc = maincqr->intrc;
1651 else
1652 rc = -EIO;
1653 return rc;
1654 }
1655
1656 /*
1657 * Queue a request to the tail of the device ccw_queue and wait for
1658 * it's completion.
1659 */
1660 int dasd_sleep_on(struct dasd_ccw_req *cqr)
1661 {
1662 return _dasd_sleep_on(cqr, 0);
1663 }
1664
1665 /*
1666 * Queue a request to the tail of the device ccw_queue and wait
1667 * interruptible for it's completion.
1668 */
1669 int dasd_sleep_on_interruptible(struct dasd_ccw_req *cqr)
1670 {
1671 return _dasd_sleep_on(cqr, 1);
1672 }
1673
1674 /*
1675 * Whoa nelly now it gets really hairy. For some functions (e.g. steal lock
1676 * for eckd devices) the currently running request has to be terminated
1677 * and be put back to status queued, before the special request is added
1678 * to the head of the queue. Then the special request is waited on normally.
1679 */
1680 static inline int _dasd_term_running_cqr(struct dasd_device *device)
1681 {
1682 struct dasd_ccw_req *cqr;
1683
1684 if (list_empty(&device->ccw_queue))
1685 return 0;
1686 cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist);
1687 return device->discipline->term_IO(cqr);
1688 }
1689
1690 int dasd_sleep_on_immediatly(struct dasd_ccw_req *cqr)
1691 {
1692 struct dasd_device *device;
1693 int rc;
1694
1695 device = cqr->startdev;
1696 spin_lock_irq(get_ccwdev_lock(device->cdev));
1697 rc = _dasd_term_running_cqr(device);
1698 if (rc) {
1699 spin_unlock_irq(get_ccwdev_lock(device->cdev));
1700 return rc;
1701 }
1702
1703 cqr->callback = dasd_wakeup_cb;
1704 cqr->callback_data = DASD_SLEEPON_START_TAG;
1705 cqr->status = DASD_CQR_QUEUED;
1706 list_add(&cqr->devlist, &device->ccw_queue);
1707
1708 /* let the bh start the request to keep them in order */
1709 dasd_schedule_device_bh(device);
1710
1711 spin_unlock_irq(get_ccwdev_lock(device->cdev));
1712
1713 wait_event(generic_waitq, _wait_for_wakeup(cqr));
1714
1715 if (cqr->status == DASD_CQR_DONE)
1716 rc = 0;
1717 else if (cqr->intrc)
1718 rc = cqr->intrc;
1719 else
1720 rc = -EIO;
1721 return rc;
1722 }
1723
1724 /*
1725 * Cancels a request that was started with dasd_sleep_on_req.
1726 * This is useful to timeout requests. The request will be
1727 * terminated if it is currently in i/o.
1728 * Returns 1 if the request has been terminated.
1729 * 0 if there was no need to terminate the request (not started yet)
1730 * negative error code if termination failed
1731 * Cancellation of a request is an asynchronous operation! The calling
1732 * function has to wait until the request is properly returned via callback.
1733 */
1734 int dasd_cancel_req(struct dasd_ccw_req *cqr)
1735 {
1736 struct dasd_device *device = cqr->startdev;
1737 unsigned long flags;
1738 int rc;
1739
1740 rc = 0;
1741 spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags);
1742 switch (cqr->status) {
1743 case DASD_CQR_QUEUED:
1744 /* request was not started - just set to cleared */
1745 cqr->status = DASD_CQR_CLEARED;
1746 break;
1747 case DASD_CQR_IN_IO:
1748 /* request in IO - terminate IO and release again */
1749 rc = device->discipline->term_IO(cqr);
1750 if (rc) {
1751 dev_err(&device->cdev->dev,
1752 "Cancelling request %p failed with rc=%d\n",
1753 cqr, rc);
1754 } else {
1755 cqr->stopclk = get_clock();
1756 }
1757 break;
1758 default: /* already finished or clear pending - do nothing */
1759 break;
1760 }
1761 spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags);
1762 dasd_schedule_device_bh(device);
1763 return rc;
1764 }
1765
1766
1767 /*
1768 * SECTION: Operations of the dasd_block layer.
1769 */
1770
1771 /*
1772 * Timeout function for dasd_block. This is used when the block layer
1773 * is waiting for something that may not come reliably, (e.g. a state
1774 * change interrupt)
1775 */
1776 static void dasd_block_timeout(unsigned long ptr)
1777 {
1778 unsigned long flags;
1779 struct dasd_block *block;
1780
1781 block = (struct dasd_block *) ptr;
1782 spin_lock_irqsave(get_ccwdev_lock(block->base->cdev), flags);
1783 /* re-activate request queue */
1784 dasd_device_remove_stop_bits(block->base, DASD_STOPPED_PENDING);
1785 spin_unlock_irqrestore(get_ccwdev_lock(block->base->cdev), flags);
1786 dasd_schedule_block_bh(block);
1787 }
1788
1789 /*
1790 * Setup timeout for a dasd_block in jiffies.
1791 */
1792 void dasd_block_set_timer(struct dasd_block *block, int expires)
1793 {
1794 if (expires == 0)
1795 del_timer(&block->timer);
1796 else
1797 mod_timer(&block->timer, jiffies + expires);
1798 }
1799
1800 /*
1801 * Clear timeout for a dasd_block.
1802 */
1803 void dasd_block_clear_timer(struct dasd_block *block)
1804 {
1805 del_timer(&block->timer);
1806 }
1807
1808 /*
1809 * Process finished error recovery ccw.
1810 */
1811 static void __dasd_process_erp(struct dasd_device *device,
1812 struct dasd_ccw_req *cqr)
1813 {
1814 dasd_erp_fn_t erp_fn;
1815
1816 if (cqr->status == DASD_CQR_DONE)
1817 DBF_DEV_EVENT(DBF_NOTICE, device, "%s", "ERP successful");
1818 else
1819 dev_err(&device->cdev->dev, "ERP failed for the DASD\n");
1820 erp_fn = device->discipline->erp_postaction(cqr);
1821 erp_fn(cqr);
1822 }
1823
1824 /*
1825 * Fetch requests from the block device queue.
1826 */
1827 static void __dasd_process_request_queue(struct dasd_block *block)
1828 {
1829 struct request_queue *queue;
1830 struct request *req;
1831 struct dasd_ccw_req *cqr;
1832 struct dasd_device *basedev;
1833 unsigned long flags;
1834 queue = block->request_queue;
1835 basedev = block->base;
1836 /* No queue ? Then there is nothing to do. */
1837 if (queue == NULL)
1838 return;
1839
1840 /*
1841 * We requeue request from the block device queue to the ccw
1842 * queue only in two states. In state DASD_STATE_READY the
1843 * partition detection is done and we need to requeue requests
1844 * for that. State DASD_STATE_ONLINE is normal block device
1845 * operation.
1846 */
1847 if (basedev->state < DASD_STATE_READY) {
1848 while ((req = blk_fetch_request(block->request_queue)))
1849 __blk_end_request_all(req, -EIO);
1850 return;
1851 }
1852 /* Now we try to fetch requests from the request queue */
1853 while (!blk_queue_plugged(queue) && (req = blk_peek_request(queue))) {
1854 if (basedev->features & DASD_FEATURE_READONLY &&
1855 rq_data_dir(req) == WRITE) {
1856 DBF_DEV_EVENT(DBF_ERR, basedev,
1857 "Rejecting write request %p",
1858 req);
1859 blk_start_request(req);
1860 __blk_end_request_all(req, -EIO);
1861 continue;
1862 }
1863 cqr = basedev->discipline->build_cp(basedev, block, req);
1864 if (IS_ERR(cqr)) {
1865 if (PTR_ERR(cqr) == -EBUSY)
1866 break; /* normal end condition */
1867 if (PTR_ERR(cqr) == -ENOMEM)
1868 break; /* terminate request queue loop */
1869 if (PTR_ERR(cqr) == -EAGAIN) {
1870 /*
1871 * The current request cannot be build right
1872 * now, we have to try later. If this request
1873 * is the head-of-queue we stop the device
1874 * for 1/2 second.
1875 */
1876 if (!list_empty(&block->ccw_queue))
1877 break;
1878 spin_lock_irqsave(
1879 get_ccwdev_lock(basedev->cdev), flags);
1880 dasd_device_set_stop_bits(basedev,
1881 DASD_STOPPED_PENDING);
1882 spin_unlock_irqrestore(
1883 get_ccwdev_lock(basedev->cdev), flags);
1884 dasd_block_set_timer(block, HZ/2);
1885 break;
1886 }
1887 DBF_DEV_EVENT(DBF_ERR, basedev,
1888 "CCW creation failed (rc=%ld) "
1889 "on request %p",
1890 PTR_ERR(cqr), req);
1891 blk_start_request(req);
1892 __blk_end_request_all(req, -EIO);
1893 continue;
1894 }
1895 /*
1896 * Note: callback is set to dasd_return_cqr_cb in
1897 * __dasd_block_start_head to cover erp requests as well
1898 */
1899 cqr->callback_data = (void *) req;
1900 cqr->status = DASD_CQR_FILLED;
1901 blk_start_request(req);
1902 list_add_tail(&cqr->blocklist, &block->ccw_queue);
1903 dasd_profile_start(block, cqr, req);
1904 }
1905 }
1906
1907 static void __dasd_cleanup_cqr(struct dasd_ccw_req *cqr)
1908 {
1909 struct request *req;
1910 int status;
1911 int error = 0;
1912
1913 req = (struct request *) cqr->callback_data;
1914 dasd_profile_end(cqr->block, cqr, req);
1915 status = cqr->block->base->discipline->free_cp(cqr, req);
1916 if (status <= 0)
1917 error = status ? status : -EIO;
1918 __blk_end_request_all(req, error);
1919 }
1920
1921 /*
1922 * Process ccw request queue.
1923 */
1924 static void __dasd_process_block_ccw_queue(struct dasd_block *block,
1925 struct list_head *final_queue)
1926 {
1927 struct list_head *l, *n;
1928 struct dasd_ccw_req *cqr;
1929 dasd_erp_fn_t erp_fn;
1930 unsigned long flags;
1931 struct dasd_device *base = block->base;
1932
1933 restart:
1934 /* Process request with final status. */
1935 list_for_each_safe(l, n, &block->ccw_queue) {
1936 cqr = list_entry(l, struct dasd_ccw_req, blocklist);
1937 if (cqr->status != DASD_CQR_DONE &&
1938 cqr->status != DASD_CQR_FAILED &&
1939 cqr->status != DASD_CQR_NEED_ERP &&
1940 cqr->status != DASD_CQR_TERMINATED)
1941 continue;
1942
1943 if (cqr->status == DASD_CQR_TERMINATED) {
1944 base->discipline->handle_terminated_request(cqr);
1945 goto restart;
1946 }
1947
1948 /* Process requests that may be recovered */
1949 if (cqr->status == DASD_CQR_NEED_ERP) {
1950 erp_fn = base->discipline->erp_action(cqr);
1951 if (IS_ERR(erp_fn(cqr)))
1952 continue;
1953 goto restart;
1954 }
1955
1956 /* log sense for fatal error */
1957 if (cqr->status == DASD_CQR_FAILED) {
1958 dasd_log_sense(cqr, &cqr->irb);
1959 }
1960
1961 /* First of all call extended error reporting. */
1962 if (dasd_eer_enabled(base) &&
1963 cqr->status == DASD_CQR_FAILED) {
1964 dasd_eer_write(base, cqr, DASD_EER_FATALERROR);
1965
1966 /* restart request */
1967 cqr->status = DASD_CQR_FILLED;
1968 cqr->retries = 255;
1969 spin_lock_irqsave(get_ccwdev_lock(base->cdev), flags);
1970 dasd_device_set_stop_bits(base, DASD_STOPPED_QUIESCE);
1971 spin_unlock_irqrestore(get_ccwdev_lock(base->cdev),
1972 flags);
1973 goto restart;
1974 }
1975
1976 /* Process finished ERP request. */
1977 if (cqr->refers) {
1978 __dasd_process_erp(base, cqr);
1979 goto restart;
1980 }
1981
1982 /* Rechain finished requests to final queue */
1983 cqr->endclk = get_clock();
1984 list_move_tail(&cqr->blocklist, final_queue);
1985 }
1986 }
1987
1988 static void dasd_return_cqr_cb(struct dasd_ccw_req *cqr, void *data)
1989 {
1990 dasd_schedule_block_bh(cqr->block);
1991 }
1992
1993 static void __dasd_block_start_head(struct dasd_block *block)
1994 {
1995 struct dasd_ccw_req *cqr;
1996
1997 if (list_empty(&block->ccw_queue))
1998 return;
1999 /* We allways begin with the first requests on the queue, as some
2000 * of previously started requests have to be enqueued on a
2001 * dasd_device again for error recovery.
2002 */
2003 list_for_each_entry(cqr, &block->ccw_queue, blocklist) {
2004 if (cqr->status != DASD_CQR_FILLED)
2005 continue;
2006 /* Non-temporary stop condition will trigger fail fast */
2007 if (block->base->stopped & ~DASD_STOPPED_PENDING &&
2008 test_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags) &&
2009 (!dasd_eer_enabled(block->base))) {
2010 cqr->status = DASD_CQR_FAILED;
2011 dasd_schedule_block_bh(block);
2012 continue;
2013 }
2014 /* Don't try to start requests if device is stopped */
2015 if (block->base->stopped)
2016 return;
2017
2018 /* just a fail safe check, should not happen */
2019 if (!cqr->startdev)
2020 cqr->startdev = block->base;
2021
2022 /* make sure that the requests we submit find their way back */
2023 cqr->callback = dasd_return_cqr_cb;
2024
2025 dasd_add_request_tail(cqr);
2026 }
2027 }
2028
2029 /*
2030 * Central dasd_block layer routine. Takes requests from the generic
2031 * block layer request queue, creates ccw requests, enqueues them on
2032 * a dasd_device and processes ccw requests that have been returned.
2033 */
2034 static void dasd_block_tasklet(struct dasd_block *block)
2035 {
2036 struct list_head final_queue;
2037 struct list_head *l, *n;
2038 struct dasd_ccw_req *cqr;
2039
2040 atomic_set(&block->tasklet_scheduled, 0);
2041 INIT_LIST_HEAD(&final_queue);
2042 spin_lock(&block->queue_lock);
2043 /* Finish off requests on ccw queue */
2044 __dasd_process_block_ccw_queue(block, &final_queue);
2045 spin_unlock(&block->queue_lock);
2046 /* Now call the callback function of requests with final status */
2047 spin_lock_irq(&block->request_queue_lock);
2048 list_for_each_safe(l, n, &final_queue) {
2049 cqr = list_entry(l, struct dasd_ccw_req, blocklist);
2050 list_del_init(&cqr->blocklist);
2051 __dasd_cleanup_cqr(cqr);
2052 }
2053 spin_lock(&block->queue_lock);
2054 /* Get new request from the block device request queue */
2055 __dasd_process_request_queue(block);
2056 /* Now check if the head of the ccw queue needs to be started. */
2057 __dasd_block_start_head(block);
2058 spin_unlock(&block->queue_lock);
2059 spin_unlock_irq(&block->request_queue_lock);
2060 dasd_put_device(block->base);
2061 }
2062
2063 static void _dasd_wake_block_flush_cb(struct dasd_ccw_req *cqr, void *data)
2064 {
2065 wake_up(&dasd_flush_wq);
2066 }
2067
2068 /*
2069 * Go through all request on the dasd_block request queue, cancel them
2070 * on the respective dasd_device, and return them to the generic
2071 * block layer.
2072 */
2073 static int dasd_flush_block_queue(struct dasd_block *block)
2074 {
2075 struct dasd_ccw_req *cqr, *n;
2076 int rc, i;
2077 struct list_head flush_queue;
2078
2079 INIT_LIST_HEAD(&flush_queue);
2080 spin_lock_bh(&block->queue_lock);
2081 rc = 0;
2082 restart:
2083 list_for_each_entry_safe(cqr, n, &block->ccw_queue, blocklist) {
2084 /* if this request currently owned by a dasd_device cancel it */
2085 if (cqr->status >= DASD_CQR_QUEUED)
2086 rc = dasd_cancel_req(cqr);
2087 if (rc < 0)
2088 break;
2089 /* Rechain request (including erp chain) so it won't be
2090 * touched by the dasd_block_tasklet anymore.
2091 * Replace the callback so we notice when the request
2092 * is returned from the dasd_device layer.
2093 */
2094 cqr->callback = _dasd_wake_block_flush_cb;
2095 for (i = 0; cqr != NULL; cqr = cqr->refers, i++)
2096 list_move_tail(&cqr->blocklist, &flush_queue);
2097 if (i > 1)
2098 /* moved more than one request - need to restart */
2099 goto restart;
2100 }
2101 spin_unlock_bh(&block->queue_lock);
2102 /* Now call the callback function of flushed requests */
2103 restart_cb:
2104 list_for_each_entry_safe(cqr, n, &flush_queue, blocklist) {
2105 wait_event(dasd_flush_wq, (cqr->status < DASD_CQR_QUEUED));
2106 /* Process finished ERP request. */
2107 if (cqr->refers) {
2108 spin_lock_bh(&block->queue_lock);
2109 __dasd_process_erp(block->base, cqr);
2110 spin_unlock_bh(&block->queue_lock);
2111 /* restart list_for_xx loop since dasd_process_erp
2112 * might remove multiple elements */
2113 goto restart_cb;
2114 }
2115 /* call the callback function */
2116 spin_lock_irq(&block->request_queue_lock);
2117 cqr->endclk = get_clock();
2118 list_del_init(&cqr->blocklist);
2119 __dasd_cleanup_cqr(cqr);
2120 spin_unlock_irq(&block->request_queue_lock);
2121 }
2122 return rc;
2123 }
2124
2125 /*
2126 * Schedules a call to dasd_tasklet over the device tasklet.
2127 */
2128 void dasd_schedule_block_bh(struct dasd_block *block)
2129 {
2130 /* Protect against rescheduling. */
2131 if (atomic_cmpxchg(&block->tasklet_scheduled, 0, 1) != 0)
2132 return;
2133 /* life cycle of block is bound to it's base device */
2134 dasd_get_device(block->base);
2135 tasklet_hi_schedule(&block->tasklet);
2136 }
2137
2138
2139 /*
2140 * SECTION: external block device operations
2141 * (request queue handling, open, release, etc.)
2142 */
2143
2144 /*
2145 * Dasd request queue function. Called from ll_rw_blk.c
2146 */
2147 static void do_dasd_request(struct request_queue *queue)
2148 {
2149 struct dasd_block *block;
2150
2151 block = queue->queuedata;
2152 spin_lock(&block->queue_lock);
2153 /* Get new request from the block device request queue */
2154 __dasd_process_request_queue(block);
2155 /* Now check if the head of the ccw queue needs to be started. */
2156 __dasd_block_start_head(block);
2157 spin_unlock(&block->queue_lock);
2158 }
2159
2160 /*
2161 * Allocate and initialize request queue and default I/O scheduler.
2162 */
2163 static int dasd_alloc_queue(struct dasd_block *block)
2164 {
2165 int rc;
2166
2167 block->request_queue = blk_init_queue(do_dasd_request,
2168 &block->request_queue_lock);
2169 if (block->request_queue == NULL)
2170 return -ENOMEM;
2171
2172 block->request_queue->queuedata = block;
2173
2174 elevator_exit(block->request_queue->elevator);
2175 block->request_queue->elevator = NULL;
2176 rc = elevator_init(block->request_queue, "deadline");
2177 if (rc) {
2178 blk_cleanup_queue(block->request_queue);
2179 return rc;
2180 }
2181 return 0;
2182 }
2183
2184 /*
2185 * Allocate and initialize request queue.
2186 */
2187 static void dasd_setup_queue(struct dasd_block *block)
2188 {
2189 int max;
2190
2191 blk_queue_logical_block_size(block->request_queue, block->bp_block);
2192 max = block->base->discipline->max_blocks << block->s2b_shift;
2193 blk_queue_max_hw_sectors(block->request_queue, max);
2194 blk_queue_max_segments(block->request_queue, -1L);
2195 /* with page sized segments we can translate each segement into
2196 * one idaw/tidaw
2197 */
2198 blk_queue_max_segment_size(block->request_queue, PAGE_SIZE);
2199 blk_queue_segment_boundary(block->request_queue, PAGE_SIZE - 1);
2200 blk_queue_ordered(block->request_queue, QUEUE_ORDERED_DRAIN);
2201 }
2202
2203 /*
2204 * Deactivate and free request queue.
2205 */
2206 static void dasd_free_queue(struct dasd_block *block)
2207 {
2208 if (block->request_queue) {
2209 blk_cleanup_queue(block->request_queue);
2210 block->request_queue = NULL;
2211 }
2212 }
2213
2214 /*
2215 * Flush request on the request queue.
2216 */
2217 static void dasd_flush_request_queue(struct dasd_block *block)
2218 {
2219 struct request *req;
2220
2221 if (!block->request_queue)
2222 return;
2223
2224 spin_lock_irq(&block->request_queue_lock);
2225 while ((req = blk_fetch_request(block->request_queue)))
2226 __blk_end_request_all(req, -EIO);
2227 spin_unlock_irq(&block->request_queue_lock);
2228 }
2229
2230 static int dasd_open(struct block_device *bdev, fmode_t mode)
2231 {
2232 struct dasd_block *block = bdev->bd_disk->private_data;
2233 struct dasd_device *base;
2234 int rc;
2235
2236 if (!block)
2237 return -ENODEV;
2238
2239 lock_kernel();
2240 base = block->base;
2241 atomic_inc(&block->open_count);
2242 if (test_bit(DASD_FLAG_OFFLINE, &base->flags)) {
2243 rc = -ENODEV;
2244 goto unlock;
2245 }
2246
2247 if (!try_module_get(base->discipline->owner)) {
2248 rc = -EINVAL;
2249 goto unlock;
2250 }
2251
2252 if (dasd_probeonly) {
2253 dev_info(&base->cdev->dev,
2254 "Accessing the DASD failed because it is in "
2255 "probeonly mode\n");
2256 rc = -EPERM;
2257 goto out;
2258 }
2259
2260 if (base->state <= DASD_STATE_BASIC) {
2261 DBF_DEV_EVENT(DBF_ERR, base, " %s",
2262 " Cannot open unrecognized device");
2263 rc = -ENODEV;
2264 goto out;
2265 }
2266
2267 if ((mode & FMODE_WRITE) &&
2268 (test_bit(DASD_FLAG_DEVICE_RO, &base->flags) ||
2269 (base->features & DASD_FEATURE_READONLY))) {
2270 rc = -EROFS;
2271 goto out;
2272 }
2273
2274 unlock_kernel();
2275 return 0;
2276
2277 out:
2278 module_put(base->discipline->owner);
2279 unlock:
2280 atomic_dec(&block->open_count);
2281 unlock_kernel();
2282 return rc;
2283 }
2284
2285 static int dasd_release(struct gendisk *disk, fmode_t mode)
2286 {
2287 struct dasd_block *block = disk->private_data;
2288
2289 lock_kernel();
2290 atomic_dec(&block->open_count);
2291 module_put(block->base->discipline->owner);
2292 unlock_kernel();
2293 return 0;
2294 }
2295
2296 /*
2297 * Return disk geometry.
2298 */
2299 static int dasd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
2300 {
2301 struct dasd_block *block;
2302 struct dasd_device *base;
2303
2304 block = bdev->bd_disk->private_data;
2305 if (!block)
2306 return -ENODEV;
2307 base = block->base;
2308
2309 if (!base->discipline ||
2310 !base->discipline->fill_geometry)
2311 return -EINVAL;
2312
2313 base->discipline->fill_geometry(block, geo);
2314 geo->start = get_start_sect(bdev) >> block->s2b_shift;
2315 return 0;
2316 }
2317
2318 const struct block_device_operations
2319 dasd_device_operations = {
2320 .owner = THIS_MODULE,
2321 .open = dasd_open,
2322 .release = dasd_release,
2323 .ioctl = dasd_ioctl,
2324 .compat_ioctl = dasd_ioctl,
2325 .getgeo = dasd_getgeo,
2326 };
2327
2328 /*******************************************************************************
2329 * end of block device operations
2330 */
2331
2332 static void
2333 dasd_exit(void)
2334 {
2335 #ifdef CONFIG_PROC_FS
2336 dasd_proc_exit();
2337 #endif
2338 dasd_eer_exit();
2339 if (dasd_page_cache != NULL) {
2340 kmem_cache_destroy(dasd_page_cache);
2341 dasd_page_cache = NULL;
2342 }
2343 dasd_gendisk_exit();
2344 dasd_devmap_exit();
2345 if (dasd_debug_area != NULL) {
2346 debug_unregister(dasd_debug_area);
2347 dasd_debug_area = NULL;
2348 }
2349 }
2350
2351 /*
2352 * SECTION: common functions for ccw_driver use
2353 */
2354
2355 /*
2356 * Is the device read-only?
2357 * Note that this function does not report the setting of the
2358 * readonly device attribute, but how it is configured in z/VM.
2359 */
2360 int dasd_device_is_ro(struct dasd_device *device)
2361 {
2362 struct ccw_dev_id dev_id;
2363 struct diag210 diag_data;
2364 int rc;
2365
2366 if (!MACHINE_IS_VM)
2367 return 0;
2368 ccw_device_get_id(device->cdev, &dev_id);
2369 memset(&diag_data, 0, sizeof(diag_data));
2370 diag_data.vrdcdvno = dev_id.devno;
2371 diag_data.vrdclen = sizeof(diag_data);
2372 rc = diag210(&diag_data);
2373 if (rc == 0 || rc == 2) {
2374 return diag_data.vrdcvfla & 0x80;
2375 } else {
2376 DBF_EVENT(DBF_WARNING, "diag210 failed for dev=%04x with rc=%d",
2377 dev_id.devno, rc);
2378 return 0;
2379 }
2380 }
2381 EXPORT_SYMBOL_GPL(dasd_device_is_ro);
2382
2383 static void dasd_generic_auto_online(void *data, async_cookie_t cookie)
2384 {
2385 struct ccw_device *cdev = data;
2386 int ret;
2387
2388 ret = ccw_device_set_online(cdev);
2389 if (ret)
2390 pr_warning("%s: Setting the DASD online failed with rc=%d\n",
2391 dev_name(&cdev->dev), ret);
2392 }
2393
2394 /*
2395 * Initial attempt at a probe function. this can be simplified once
2396 * the other detection code is gone.
2397 */
2398 int dasd_generic_probe(struct ccw_device *cdev,
2399 struct dasd_discipline *discipline)
2400 {
2401 int ret;
2402
2403 ret = dasd_add_sysfs_files(cdev);
2404 if (ret) {
2405 DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s",
2406 "dasd_generic_probe: could not add "
2407 "sysfs entries");
2408 return ret;
2409 }
2410 cdev->handler = &dasd_int_handler;
2411
2412 /*
2413 * Automatically online either all dasd devices (dasd_autodetect)
2414 * or all devices specified with dasd= parameters during
2415 * initial probe.
2416 */
2417 if ((dasd_get_feature(cdev, DASD_FEATURE_INITIAL_ONLINE) > 0 ) ||
2418 (dasd_autodetect && dasd_busid_known(dev_name(&cdev->dev)) != 0))
2419 async_schedule(dasd_generic_auto_online, cdev);
2420 return 0;
2421 }
2422
2423 /*
2424 * This will one day be called from a global not_oper handler.
2425 * It is also used by driver_unregister during module unload.
2426 */
2427 void dasd_generic_remove(struct ccw_device *cdev)
2428 {
2429 struct dasd_device *device;
2430 struct dasd_block *block;
2431
2432 cdev->handler = NULL;
2433
2434 dasd_remove_sysfs_files(cdev);
2435 device = dasd_device_from_cdev(cdev);
2436 if (IS_ERR(device))
2437 return;
2438 if (test_and_set_bit(DASD_FLAG_OFFLINE, &device->flags)) {
2439 /* Already doing offline processing */
2440 dasd_put_device(device);
2441 return;
2442 }
2443 /*
2444 * This device is removed unconditionally. Set offline
2445 * flag to prevent dasd_open from opening it while it is
2446 * no quite down yet.
2447 */
2448 dasd_set_target_state(device, DASD_STATE_NEW);
2449 /* dasd_delete_device destroys the device reference. */
2450 block = device->block;
2451 device->block = NULL;
2452 dasd_delete_device(device);
2453 /*
2454 * life cycle of block is bound to device, so delete it after
2455 * device was safely removed
2456 */
2457 if (block)
2458 dasd_free_block(block);
2459 }
2460
2461 /*
2462 * Activate a device. This is called from dasd_{eckd,fba}_probe() when either
2463 * the device is detected for the first time and is supposed to be used
2464 * or the user has started activation through sysfs.
2465 */
2466 int dasd_generic_set_online(struct ccw_device *cdev,
2467 struct dasd_discipline *base_discipline)
2468 {
2469 struct dasd_discipline *discipline;
2470 struct dasd_device *device;
2471 int rc;
2472
2473 /* first online clears initial online feature flag */
2474 dasd_set_feature(cdev, DASD_FEATURE_INITIAL_ONLINE, 0);
2475 device = dasd_create_device(cdev);
2476 if (IS_ERR(device))
2477 return PTR_ERR(device);
2478
2479 discipline = base_discipline;
2480 if (device->features & DASD_FEATURE_USEDIAG) {
2481 if (!dasd_diag_discipline_pointer) {
2482 pr_warning("%s Setting the DASD online failed because "
2483 "of missing DIAG discipline\n",
2484 dev_name(&cdev->dev));
2485 dasd_delete_device(device);
2486 return -ENODEV;
2487 }
2488 discipline = dasd_diag_discipline_pointer;
2489 }
2490 if (!try_module_get(base_discipline->owner)) {
2491 dasd_delete_device(device);
2492 return -EINVAL;
2493 }
2494 if (!try_module_get(discipline->owner)) {
2495 module_put(base_discipline->owner);
2496 dasd_delete_device(device);
2497 return -EINVAL;
2498 }
2499 device->base_discipline = base_discipline;
2500 device->discipline = discipline;
2501
2502 /* check_device will allocate block device if necessary */
2503 rc = discipline->check_device(device);
2504 if (rc) {
2505 pr_warning("%s Setting the DASD online with discipline %s "
2506 "failed with rc=%i\n",
2507 dev_name(&cdev->dev), discipline->name, rc);
2508 module_put(discipline->owner);
2509 module_put(base_discipline->owner);
2510 dasd_delete_device(device);
2511 return rc;
2512 }
2513
2514 dasd_set_target_state(device, DASD_STATE_ONLINE);
2515 if (device->state <= DASD_STATE_KNOWN) {
2516 pr_warning("%s Setting the DASD online failed because of a "
2517 "missing discipline\n", dev_name(&cdev->dev));
2518 rc = -ENODEV;
2519 dasd_set_target_state(device, DASD_STATE_NEW);
2520 if (device->block)
2521 dasd_free_block(device->block);
2522 dasd_delete_device(device);
2523 } else
2524 pr_debug("dasd_generic device %s found\n",
2525 dev_name(&cdev->dev));
2526
2527 wait_event(dasd_init_waitq, _wait_for_device(device));
2528
2529 dasd_put_device(device);
2530 return rc;
2531 }
2532
2533 int dasd_generic_set_offline(struct ccw_device *cdev)
2534 {
2535 struct dasd_device *device;
2536 struct dasd_block *block;
2537 int max_count, open_count;
2538
2539 device = dasd_device_from_cdev(cdev);
2540 if (IS_ERR(device))
2541 return PTR_ERR(device);
2542 if (test_and_set_bit(DASD_FLAG_OFFLINE, &device->flags)) {
2543 /* Already doing offline processing */
2544 dasd_put_device(device);
2545 return 0;
2546 }
2547 /*
2548 * We must make sure that this device is currently not in use.
2549 * The open_count is increased for every opener, that includes
2550 * the blkdev_get in dasd_scan_partitions. We are only interested
2551 * in the other openers.
2552 */
2553 if (device->block) {
2554 max_count = device->block->bdev ? 0 : -1;
2555 open_count = atomic_read(&device->block->open_count);
2556 if (open_count > max_count) {
2557 if (open_count > 0)
2558 pr_warning("%s: The DASD cannot be set offline "
2559 "with open count %i\n",
2560 dev_name(&cdev->dev), open_count);
2561 else
2562 pr_warning("%s: The DASD cannot be set offline "
2563 "while it is in use\n",
2564 dev_name(&cdev->dev));
2565 clear_bit(DASD_FLAG_OFFLINE, &device->flags);
2566 dasd_put_device(device);
2567 return -EBUSY;
2568 }
2569 }
2570 dasd_set_target_state(device, DASD_STATE_NEW);
2571 /* dasd_delete_device destroys the device reference. */
2572 block = device->block;
2573 device->block = NULL;
2574 dasd_delete_device(device);
2575 /*
2576 * life cycle of block is bound to device, so delete it after
2577 * device was safely removed
2578 */
2579 if (block)
2580 dasd_free_block(block);
2581 return 0;
2582 }
2583
2584 int dasd_generic_notify(struct ccw_device *cdev, int event)
2585 {
2586 struct dasd_device *device;
2587 struct dasd_ccw_req *cqr;
2588 int ret;
2589
2590 device = dasd_device_from_cdev_locked(cdev);
2591 if (IS_ERR(device))
2592 return 0;
2593 ret = 0;
2594 switch (event) {
2595 case CIO_GONE:
2596 case CIO_BOXED:
2597 case CIO_NO_PATH:
2598 /* First of all call extended error reporting. */
2599 dasd_eer_write(device, NULL, DASD_EER_NOPATH);
2600
2601 if (device->state < DASD_STATE_BASIC)
2602 break;
2603 /* Device is active. We want to keep it. */
2604 list_for_each_entry(cqr, &device->ccw_queue, devlist)
2605 if (cqr->status == DASD_CQR_IN_IO) {
2606 cqr->status = DASD_CQR_QUEUED;
2607 cqr->retries++;
2608 }
2609 dasd_device_set_stop_bits(device, DASD_STOPPED_DC_WAIT);
2610 dasd_device_clear_timer(device);
2611 dasd_schedule_device_bh(device);
2612 ret = 1;
2613 break;
2614 case CIO_OPER:
2615 /* FIXME: add a sanity check. */
2616 dasd_device_remove_stop_bits(device, DASD_STOPPED_DC_WAIT);
2617 if (device->stopped & DASD_UNRESUMED_PM) {
2618 dasd_device_remove_stop_bits(device, DASD_UNRESUMED_PM);
2619 dasd_restore_device(device);
2620 ret = 1;
2621 break;
2622 }
2623 dasd_schedule_device_bh(device);
2624 if (device->block)
2625 dasd_schedule_block_bh(device->block);
2626 ret = 1;
2627 break;
2628 }
2629 dasd_put_device(device);
2630 return ret;
2631 }
2632
2633 int dasd_generic_pm_freeze(struct ccw_device *cdev)
2634 {
2635 struct dasd_ccw_req *cqr, *n;
2636 int rc;
2637 struct list_head freeze_queue;
2638 struct dasd_device *device = dasd_device_from_cdev(cdev);
2639
2640 if (IS_ERR(device))
2641 return PTR_ERR(device);
2642 /* disallow new I/O */
2643 dasd_device_set_stop_bits(device, DASD_STOPPED_PM);
2644 /* clear active requests */
2645 INIT_LIST_HEAD(&freeze_queue);
2646 spin_lock_irq(get_ccwdev_lock(cdev));
2647 rc = 0;
2648 list_for_each_entry_safe(cqr, n, &device->ccw_queue, devlist) {
2649 /* Check status and move request to flush_queue */
2650 if (cqr->status == DASD_CQR_IN_IO) {
2651 rc = device->discipline->term_IO(cqr);
2652 if (rc) {
2653 /* unable to terminate requeust */
2654 dev_err(&device->cdev->dev,
2655 "Unable to terminate request %p "
2656 "on suspend\n", cqr);
2657 spin_unlock_irq(get_ccwdev_lock(cdev));
2658 dasd_put_device(device);
2659 return rc;
2660 }
2661 }
2662 list_move_tail(&cqr->devlist, &freeze_queue);
2663 }
2664
2665 spin_unlock_irq(get_ccwdev_lock(cdev));
2666
2667 list_for_each_entry_safe(cqr, n, &freeze_queue, devlist) {
2668 wait_event(dasd_flush_wq,
2669 (cqr->status != DASD_CQR_CLEAR_PENDING));
2670 if (cqr->status == DASD_CQR_CLEARED)
2671 cqr->status = DASD_CQR_QUEUED;
2672 }
2673 /* move freeze_queue to start of the ccw_queue */
2674 spin_lock_irq(get_ccwdev_lock(cdev));
2675 list_splice_tail(&freeze_queue, &device->ccw_queue);
2676 spin_unlock_irq(get_ccwdev_lock(cdev));
2677
2678 if (device->discipline->freeze)
2679 rc = device->discipline->freeze(device);
2680
2681 dasd_put_device(device);
2682 return rc;
2683 }
2684 EXPORT_SYMBOL_GPL(dasd_generic_pm_freeze);
2685
2686 int dasd_generic_restore_device(struct ccw_device *cdev)
2687 {
2688 struct dasd_device *device = dasd_device_from_cdev(cdev);
2689 int rc = 0;
2690
2691 if (IS_ERR(device))
2692 return PTR_ERR(device);
2693
2694 /* allow new IO again */
2695 dasd_device_remove_stop_bits(device,
2696 (DASD_STOPPED_PM | DASD_UNRESUMED_PM));
2697
2698 dasd_schedule_device_bh(device);
2699
2700 /*
2701 * call discipline restore function
2702 * if device is stopped do nothing e.g. for disconnected devices
2703 */
2704 if (device->discipline->restore && !(device->stopped))
2705 rc = device->discipline->restore(device);
2706 if (rc || device->stopped)
2707 /*
2708 * if the resume failed for the DASD we put it in
2709 * an UNRESUMED stop state
2710 */
2711 device->stopped |= DASD_UNRESUMED_PM;
2712
2713 if (device->block)
2714 dasd_schedule_block_bh(device->block);
2715
2716 dasd_put_device(device);
2717 return 0;
2718 }
2719 EXPORT_SYMBOL_GPL(dasd_generic_restore_device);
2720
2721 static struct dasd_ccw_req *dasd_generic_build_rdc(struct dasd_device *device,
2722 void *rdc_buffer,
2723 int rdc_buffer_size,
2724 int magic)
2725 {
2726 struct dasd_ccw_req *cqr;
2727 struct ccw1 *ccw;
2728 unsigned long *idaw;
2729
2730 cqr = dasd_smalloc_request(magic, 1 /* RDC */, rdc_buffer_size, device);
2731
2732 if (IS_ERR(cqr)) {
2733 /* internal error 13 - Allocating the RDC request failed*/
2734 dev_err(&device->cdev->dev,
2735 "An error occurred in the DASD device driver, "
2736 "reason=%s\n", "13");
2737 return cqr;
2738 }
2739
2740 ccw = cqr->cpaddr;
2741 ccw->cmd_code = CCW_CMD_RDC;
2742 if (idal_is_needed(rdc_buffer, rdc_buffer_size)) {
2743 idaw = (unsigned long *) (cqr->data);
2744 ccw->cda = (__u32)(addr_t) idaw;
2745 ccw->flags = CCW_FLAG_IDA;
2746 idaw = idal_create_words(idaw, rdc_buffer, rdc_buffer_size);
2747 } else {
2748 ccw->cda = (__u32)(addr_t) rdc_buffer;
2749 ccw->flags = 0;
2750 }
2751
2752 ccw->count = rdc_buffer_size;
2753 cqr->startdev = device;
2754 cqr->memdev = device;
2755 cqr->expires = 10*HZ;
2756 cqr->retries = 256;
2757 cqr->buildclk = get_clock();
2758 cqr->status = DASD_CQR_FILLED;
2759 return cqr;
2760 }
2761
2762
2763 int dasd_generic_read_dev_chars(struct dasd_device *device, int magic,
2764 void *rdc_buffer, int rdc_buffer_size)
2765 {
2766 int ret;
2767 struct dasd_ccw_req *cqr;
2768
2769 cqr = dasd_generic_build_rdc(device, rdc_buffer, rdc_buffer_size,
2770 magic);
2771 if (IS_ERR(cqr))
2772 return PTR_ERR(cqr);
2773
2774 ret = dasd_sleep_on(cqr);
2775 dasd_sfree_request(cqr, cqr->memdev);
2776 return ret;
2777 }
2778 EXPORT_SYMBOL_GPL(dasd_generic_read_dev_chars);
2779
2780 /*
2781 * In command mode and transport mode we need to look for sense
2782 * data in different places. The sense data itself is allways
2783 * an array of 32 bytes, so we can unify the sense data access
2784 * for both modes.
2785 */
2786 char *dasd_get_sense(struct irb *irb)
2787 {
2788 struct tsb *tsb = NULL;
2789 char *sense = NULL;
2790
2791 if (scsw_is_tm(&irb->scsw) && (irb->scsw.tm.fcxs == 0x01)) {
2792 if (irb->scsw.tm.tcw)
2793 tsb = tcw_get_tsb((struct tcw *)(unsigned long)
2794 irb->scsw.tm.tcw);
2795 if (tsb && tsb->length == 64 && tsb->flags)
2796 switch (tsb->flags & 0x07) {
2797 case 1: /* tsa_iostat */
2798 sense = tsb->tsa.iostat.sense;
2799 break;
2800 case 2: /* tsa_ddpc */
2801 sense = tsb->tsa.ddpc.sense;
2802 break;
2803 default:
2804 /* currently we don't use interrogate data */
2805 break;
2806 }
2807 } else if (irb->esw.esw0.erw.cons) {
2808 sense = irb->ecw;
2809 }
2810 return sense;
2811 }
2812 EXPORT_SYMBOL_GPL(dasd_get_sense);
2813
2814 static int __init dasd_init(void)
2815 {
2816 int rc;
2817
2818 init_waitqueue_head(&dasd_init_waitq);
2819 init_waitqueue_head(&dasd_flush_wq);
2820 init_waitqueue_head(&generic_waitq);
2821
2822 /* register 'common' DASD debug area, used for all DBF_XXX calls */
2823 dasd_debug_area = debug_register("dasd", 1, 1, 8 * sizeof(long));
2824 if (dasd_debug_area == NULL) {
2825 rc = -ENOMEM;
2826 goto failed;
2827 }
2828 debug_register_view(dasd_debug_area, &debug_sprintf_view);
2829 debug_set_level(dasd_debug_area, DBF_WARNING);
2830
2831 DBF_EVENT(DBF_EMERG, "%s", "debug area created");
2832
2833 dasd_diag_discipline_pointer = NULL;
2834
2835 rc = dasd_devmap_init();
2836 if (rc)
2837 goto failed;
2838 rc = dasd_gendisk_init();
2839 if (rc)
2840 goto failed;
2841 rc = dasd_parse();
2842 if (rc)
2843 goto failed;
2844 rc = dasd_eer_init();
2845 if (rc)
2846 goto failed;
2847 #ifdef CONFIG_PROC_FS
2848 rc = dasd_proc_init();
2849 if (rc)
2850 goto failed;
2851 #endif
2852
2853 return 0;
2854 failed:
2855 pr_info("The DASD device driver could not be initialized\n");
2856 dasd_exit();
2857 return rc;
2858 }
2859
2860 module_init(dasd_init);
2861 module_exit(dasd_exit);
2862
2863 EXPORT_SYMBOL(dasd_debug_area);
2864 EXPORT_SYMBOL(dasd_diag_discipline_pointer);
2865
2866 EXPORT_SYMBOL(dasd_add_request_head);
2867 EXPORT_SYMBOL(dasd_add_request_tail);
2868 EXPORT_SYMBOL(dasd_cancel_req);
2869 EXPORT_SYMBOL(dasd_device_clear_timer);
2870 EXPORT_SYMBOL(dasd_block_clear_timer);
2871 EXPORT_SYMBOL(dasd_enable_device);
2872 EXPORT_SYMBOL(dasd_int_handler);
2873 EXPORT_SYMBOL(dasd_kfree_request);
2874 EXPORT_SYMBOL(dasd_kick_device);
2875 EXPORT_SYMBOL(dasd_kmalloc_request);
2876 EXPORT_SYMBOL(dasd_schedule_device_bh);
2877 EXPORT_SYMBOL(dasd_schedule_block_bh);
2878 EXPORT_SYMBOL(dasd_set_target_state);
2879 EXPORT_SYMBOL(dasd_device_set_timer);
2880 EXPORT_SYMBOL(dasd_block_set_timer);
2881 EXPORT_SYMBOL(dasd_sfree_request);
2882 EXPORT_SYMBOL(dasd_sleep_on);
2883 EXPORT_SYMBOL(dasd_sleep_on_immediatly);
2884 EXPORT_SYMBOL(dasd_sleep_on_interruptible);
2885 EXPORT_SYMBOL(dasd_smalloc_request);
2886 EXPORT_SYMBOL(dasd_start_IO);
2887 EXPORT_SYMBOL(dasd_term_IO);
2888
2889 EXPORT_SYMBOL_GPL(dasd_generic_probe);
2890 EXPORT_SYMBOL_GPL(dasd_generic_remove);
2891 EXPORT_SYMBOL_GPL(dasd_generic_notify);
2892 EXPORT_SYMBOL_GPL(dasd_generic_set_online);
2893 EXPORT_SYMBOL_GPL(dasd_generic_set_offline);
2894 EXPORT_SYMBOL_GPL(dasd_generic_handle_state_change);
2895 EXPORT_SYMBOL_GPL(dasd_flush_device_queue);
2896 EXPORT_SYMBOL_GPL(dasd_alloc_block);
2897 EXPORT_SYMBOL_GPL(dasd_free_block);