]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/aacraid/aachba.c
4c04fd84dd81d5a0ab3ee80f091117b5438f66bd
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / aacraid / aachba.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING. If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/completion.h>
34 #include <linux/blkdev.h>
35 #include <linux/uaccess.h>
36 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
37 #include <linux/module.h>
38
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43
44 #include "aacraid.h"
45
46 /* values for inqd_pdt: Peripheral device type in plain English */
47 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
48 #define INQD_PDT_PROC 0x03 /* Processor device */
49 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
50 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
51 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
52 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
53
54 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
55 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
56
57 /*
58 * Sense codes
59 */
60
61 #define SENCODE_NO_SENSE 0x00
62 #define SENCODE_END_OF_DATA 0x00
63 #define SENCODE_BECOMING_READY 0x04
64 #define SENCODE_INIT_CMD_REQUIRED 0x04
65 #define SENCODE_UNRECOVERED_READ_ERROR 0x11
66 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
67 #define SENCODE_INVALID_COMMAND 0x20
68 #define SENCODE_LBA_OUT_OF_RANGE 0x21
69 #define SENCODE_INVALID_CDB_FIELD 0x24
70 #define SENCODE_LUN_NOT_SUPPORTED 0x25
71 #define SENCODE_INVALID_PARAM_FIELD 0x26
72 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
73 #define SENCODE_PARAM_VALUE_INVALID 0x26
74 #define SENCODE_RESET_OCCURRED 0x29
75 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
76 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
77 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
78 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
79 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
80 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
81 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
82 #define SENCODE_OVERLAPPED_COMMAND 0x4E
83
84 /*
85 * Additional sense codes
86 */
87
88 #define ASENCODE_NO_SENSE 0x00
89 #define ASENCODE_END_OF_DATA 0x05
90 #define ASENCODE_BECOMING_READY 0x01
91 #define ASENCODE_INIT_CMD_REQUIRED 0x02
92 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
93 #define ASENCODE_INVALID_COMMAND 0x00
94 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
95 #define ASENCODE_INVALID_CDB_FIELD 0x00
96 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
97 #define ASENCODE_INVALID_PARAM_FIELD 0x00
98 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
99 #define ASENCODE_PARAM_VALUE_INVALID 0x02
100 #define ASENCODE_RESET_OCCURRED 0x00
101 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
102 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
103 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
104 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
105 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
106 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
107 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
108 #define ASENCODE_OVERLAPPED_COMMAND 0x00
109
110 #define AAC_STAT_GOOD (DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD)
111
112 #define BYTE0(x) (unsigned char)(x)
113 #define BYTE1(x) (unsigned char)((x) >> 8)
114 #define BYTE2(x) (unsigned char)((x) >> 16)
115 #define BYTE3(x) (unsigned char)((x) >> 24)
116
117 /* MODE_SENSE data format */
118 typedef struct {
119 struct {
120 u8 data_length;
121 u8 med_type;
122 u8 dev_par;
123 u8 bd_length;
124 } __attribute__((packed)) hd;
125 struct {
126 u8 dens_code;
127 u8 block_count[3];
128 u8 reserved;
129 u8 block_length[3];
130 } __attribute__((packed)) bd;
131 u8 mpc_buf[3];
132 } __attribute__((packed)) aac_modep_data;
133
134 /* MODE_SENSE_10 data format */
135 typedef struct {
136 struct {
137 u8 data_length[2];
138 u8 med_type;
139 u8 dev_par;
140 u8 rsrvd[2];
141 u8 bd_length[2];
142 } __attribute__((packed)) hd;
143 struct {
144 u8 dens_code;
145 u8 block_count[3];
146 u8 reserved;
147 u8 block_length[3];
148 } __attribute__((packed)) bd;
149 u8 mpc_buf[3];
150 } __attribute__((packed)) aac_modep10_data;
151
152 /*------------------------------------------------------------------------------
153 * S T R U C T S / T Y P E D E F S
154 *----------------------------------------------------------------------------*/
155 /* SCSI inquiry data */
156 struct inquiry_data {
157 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
158 u8 inqd_dtq; /* RMB | Device Type Qualifier */
159 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
160 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
161 u8 inqd_len; /* Additional length (n-4) */
162 u8 inqd_pad1[2];/* Reserved - must be zero */
163 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
164 u8 inqd_vid[8]; /* Vendor ID */
165 u8 inqd_pid[16];/* Product ID */
166 u8 inqd_prl[4]; /* Product Revision Level */
167 };
168
169 /* Added for VPD 0x83 */
170 struct tvpd_id_descriptor_type_1 {
171 u8 codeset:4; /* VPD_CODE_SET */
172 u8 reserved:4;
173 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
174 u8 reserved2:4;
175 u8 reserved3;
176 u8 identifierlength;
177 u8 venid[8];
178 u8 productid[16];
179 u8 serialnumber[8]; /* SN in ASCII */
180
181 };
182
183 struct tvpd_id_descriptor_type_2 {
184 u8 codeset:4; /* VPD_CODE_SET */
185 u8 reserved:4;
186 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
187 u8 reserved2:4;
188 u8 reserved3;
189 u8 identifierlength;
190 struct teu64id {
191 u32 Serial;
192 /* The serial number supposed to be 40 bits,
193 * bit we only support 32, so make the last byte zero. */
194 u8 reserved;
195 u8 venid[3];
196 } eu64id;
197
198 };
199
200 struct tvpd_id_descriptor_type_3 {
201 u8 codeset : 4; /* VPD_CODE_SET */
202 u8 reserved : 4;
203 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */
204 u8 reserved2 : 4;
205 u8 reserved3;
206 u8 identifierlength;
207 u8 Identifier[16];
208 };
209
210 struct tvpd_page83 {
211 u8 DeviceType:5;
212 u8 DeviceTypeQualifier:3;
213 u8 PageCode;
214 u8 reserved;
215 u8 PageLength;
216 struct tvpd_id_descriptor_type_1 type1;
217 struct tvpd_id_descriptor_type_2 type2;
218 struct tvpd_id_descriptor_type_3 type3;
219 };
220
221 /*
222 * M O D U L E G L O B A L S
223 */
224
225 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
226 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
227 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
228 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
229 struct aac_raw_io2 *rio2, int sg_max);
230 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
231 struct aac_hba_cmd_req *hbacmd,
232 int sg_max, u64 sg_address);
233 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
234 int pages, int nseg, int nseg_new);
235 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
236 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd);
237 #ifdef AAC_DETAILED_STATUS_INFO
238 static char *aac_get_status_string(u32 status);
239 #endif
240
241 /*
242 * Non dasd selection is handled entirely in aachba now
243 */
244
245 static int nondasd = -1;
246 static int aac_cache = 2; /* WCE=0 to avoid performance problems */
247 static int dacmode = -1;
248 int aac_msi;
249 int aac_commit = -1;
250 int startup_timeout = 180;
251 int aif_timeout = 120;
252 int aac_sync_mode; /* Only Sync. transfer - disabled */
253 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */
254
255 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
256 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
257 " 0=off, 1=on");
258 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
259 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
260 " 0=off, 1=on");
261 module_param(nondasd, int, S_IRUGO|S_IWUSR);
262 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
263 " 0=off, 1=on");
264 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
265 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
266 "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
267 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
268 "\tbit 2 - Disable only if Battery is protecting Cache");
269 module_param(dacmode, int, S_IRUGO|S_IWUSR);
270 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
271 " 0=off, 1=on");
272 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
273 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
274 " adapter for foreign arrays.\n"
275 "This is typically needed in systems that do not have a BIOS."
276 " 0=off, 1=on");
277 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
278 MODULE_PARM_DESC(msi, "IRQ handling."
279 " 0=PIC(default), 1=MSI, 2=MSI-X)");
280 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
281 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
282 " adapter to have it's kernel up and\n"
283 "running. This is typically adjusted for large systems that do not"
284 " have a BIOS.");
285 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
286 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
287 " applications to pick up AIFs before\n"
288 "deregistering them. This is typically adjusted for heavily burdened"
289 " systems.");
290
291 int numacb = -1;
292 module_param(numacb, int, S_IRUGO|S_IWUSR);
293 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
294 " blocks (FIB) allocated. Valid values are 512 and down. Default is"
295 " to use suggestion from Firmware.");
296
297 int acbsize = -1;
298 module_param(acbsize, int, S_IRUGO|S_IWUSR);
299 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
300 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
301 " suggestion from Firmware.");
302
303 int update_interval = 30 * 60;
304 module_param(update_interval, int, S_IRUGO|S_IWUSR);
305 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
306 " updates issued to adapter.");
307
308 int check_interval = 24 * 60 * 60;
309 module_param(check_interval, int, S_IRUGO|S_IWUSR);
310 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
311 " checks.");
312
313 int aac_check_reset = 1;
314 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
315 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
316 " adapter. a value of -1 forces the reset to adapters programmed to"
317 " ignore it.");
318
319 int expose_physicals = -1;
320 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
321 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
322 " -1=protect 0=off, 1=on");
323
324 int aac_reset_devices;
325 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
326 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
327
328 int aac_wwn = 1;
329 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
330 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
331 "\t0 - Disable\n"
332 "\t1 - Array Meta Data Signature (default)\n"
333 "\t2 - Adapter Serial Number");
334
335
336 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
337 struct fib *fibptr) {
338 struct scsi_device *device;
339
340 if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
341 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
342 aac_fib_complete(fibptr);
343 return 0;
344 }
345 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
346 device = scsicmd->device;
347 if (unlikely(!device)) {
348 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
349 aac_fib_complete(fibptr);
350 return 0;
351 }
352 return 1;
353 }
354
355 /**
356 * aac_get_config_status - check the adapter configuration
357 * @common: adapter to query
358 *
359 * Query config status, and commit the configuration if needed.
360 */
361 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
362 {
363 int status = 0;
364 struct fib * fibptr;
365
366 if (!(fibptr = aac_fib_alloc(dev)))
367 return -ENOMEM;
368
369 aac_fib_init(fibptr);
370 {
371 struct aac_get_config_status *dinfo;
372 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
373
374 dinfo->command = cpu_to_le32(VM_ContainerConfig);
375 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
376 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
377 }
378
379 status = aac_fib_send(ContainerCommand,
380 fibptr,
381 sizeof (struct aac_get_config_status),
382 FsaNormal,
383 1, 1,
384 NULL, NULL);
385 if (status < 0) {
386 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
387 } else {
388 struct aac_get_config_status_resp *reply
389 = (struct aac_get_config_status_resp *) fib_data(fibptr);
390 dprintk((KERN_WARNING
391 "aac_get_config_status: response=%d status=%d action=%d\n",
392 le32_to_cpu(reply->response),
393 le32_to_cpu(reply->status),
394 le32_to_cpu(reply->data.action)));
395 if ((le32_to_cpu(reply->response) != ST_OK) ||
396 (le32_to_cpu(reply->status) != CT_OK) ||
397 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
398 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
399 status = -EINVAL;
400 }
401 }
402 /* Do not set XferState to zero unless receives a response from F/W */
403 if (status >= 0)
404 aac_fib_complete(fibptr);
405
406 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
407 if (status >= 0) {
408 if ((aac_commit == 1) || commit_flag) {
409 struct aac_commit_config * dinfo;
410 aac_fib_init(fibptr);
411 dinfo = (struct aac_commit_config *) fib_data(fibptr);
412
413 dinfo->command = cpu_to_le32(VM_ContainerConfig);
414 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
415
416 status = aac_fib_send(ContainerCommand,
417 fibptr,
418 sizeof (struct aac_commit_config),
419 FsaNormal,
420 1, 1,
421 NULL, NULL);
422 /* Do not set XferState to zero unless
423 * receives a response from F/W */
424 if (status >= 0)
425 aac_fib_complete(fibptr);
426 } else if (aac_commit == 0) {
427 printk(KERN_WARNING
428 "aac_get_config_status: Foreign device configurations are being ignored\n");
429 }
430 }
431 /* FIB should be freed only after getting the response from the F/W */
432 if (status != -ERESTARTSYS)
433 aac_fib_free(fibptr);
434 return status;
435 }
436
437 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
438 {
439 char inq_data;
440 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data));
441 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
442 inq_data &= 0xdf;
443 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
444 }
445 }
446
447 /**
448 * aac_get_containers - list containers
449 * @common: adapter to probe
450 *
451 * Make a list of all containers on this controller
452 */
453 int aac_get_containers(struct aac_dev *dev)
454 {
455 struct fsa_dev_info *fsa_dev_ptr;
456 u32 index;
457 int status = 0;
458 struct fib * fibptr;
459 struct aac_get_container_count *dinfo;
460 struct aac_get_container_count_resp *dresp;
461 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
462
463 if (!(fibptr = aac_fib_alloc(dev)))
464 return -ENOMEM;
465
466 aac_fib_init(fibptr);
467 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
468 dinfo->command = cpu_to_le32(VM_ContainerConfig);
469 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
470
471 status = aac_fib_send(ContainerCommand,
472 fibptr,
473 sizeof (struct aac_get_container_count),
474 FsaNormal,
475 1, 1,
476 NULL, NULL);
477 if (status >= 0) {
478 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
479 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
480 if (fibptr->dev->supplement_adapter_info.SupportedOptions2 &
481 AAC_OPTION_SUPPORTED_240_VOLUMES) {
482 maximum_num_containers =
483 le32_to_cpu(dresp->MaxSimpleVolumes);
484 }
485 aac_fib_complete(fibptr);
486 }
487 /* FIB should be freed only after getting the response from the F/W */
488 if (status != -ERESTARTSYS)
489 aac_fib_free(fibptr);
490
491 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
492 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
493 if (dev->fsa_dev == NULL ||
494 dev->maximum_num_containers != maximum_num_containers) {
495
496 fsa_dev_ptr = dev->fsa_dev;
497
498 dev->fsa_dev = kcalloc(maximum_num_containers,
499 sizeof(*fsa_dev_ptr), GFP_KERNEL);
500
501 kfree(fsa_dev_ptr);
502 fsa_dev_ptr = NULL;
503
504
505 if (!dev->fsa_dev)
506 return -ENOMEM;
507
508 dev->maximum_num_containers = maximum_num_containers;
509 }
510 for (index = 0; index < dev->maximum_num_containers; index++) {
511 dev->fsa_dev[index].devname[0] = '\0';
512 dev->fsa_dev[index].valid = 0;
513
514 status = aac_probe_container(dev, index);
515
516 if (status < 0) {
517 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
518 break;
519 }
520 }
521 return status;
522 }
523
524 static void get_container_name_callback(void *context, struct fib * fibptr)
525 {
526 struct aac_get_name_resp * get_name_reply;
527 struct scsi_cmnd * scsicmd;
528
529 scsicmd = (struct scsi_cmnd *) context;
530
531 if (!aac_valid_context(scsicmd, fibptr))
532 return;
533
534 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
535 BUG_ON(fibptr == NULL);
536
537 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
538 /* Failure is irrelevant, using default value instead */
539 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
540 && (get_name_reply->data[0] != '\0')) {
541 char *sp = get_name_reply->data;
542 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)] = '\0';
543 while (*sp == ' ')
544 ++sp;
545 if (*sp) {
546 struct inquiry_data inq;
547 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
548 int count = sizeof(d);
549 char *dp = d;
550 do {
551 *dp++ = (*sp) ? *sp++ : ' ';
552 } while (--count > 0);
553
554 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
555 memcpy(inq.inqd_pid, d, sizeof(d));
556 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
557 }
558 }
559
560 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
561
562 aac_fib_complete(fibptr);
563 scsicmd->scsi_done(scsicmd);
564 }
565
566 /**
567 * aac_get_container_name - get container name, none blocking.
568 */
569 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
570 {
571 int status;
572 struct aac_get_name *dinfo;
573 struct fib * cmd_fibcontext;
574 struct aac_dev * dev;
575
576 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
577
578 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
579
580 aac_fib_init(cmd_fibcontext);
581 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
582
583 dinfo->command = cpu_to_le32(VM_ContainerConfig);
584 dinfo->type = cpu_to_le32(CT_READ_NAME);
585 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
586 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
587
588 status = aac_fib_send(ContainerCommand,
589 cmd_fibcontext,
590 sizeof(struct aac_get_name_resp),
591 FsaNormal,
592 0, 1,
593 (fib_callback)get_container_name_callback,
594 (void *) scsicmd);
595
596 /*
597 * Check that the command queued to the controller
598 */
599 if (status == -EINPROGRESS) {
600 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
601 return 0;
602 }
603
604 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
605 aac_fib_complete(cmd_fibcontext);
606 return -1;
607 }
608
609 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
610 {
611 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
612
613 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
614 return aac_scsi_cmd(scsicmd);
615
616 scsicmd->result = DID_NO_CONNECT << 16;
617 scsicmd->scsi_done(scsicmd);
618 return 0;
619 }
620
621 static void _aac_probe_container2(void * context, struct fib * fibptr)
622 {
623 struct fsa_dev_info *fsa_dev_ptr;
624 int (*callback)(struct scsi_cmnd *);
625 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
626 int i;
627
628
629 if (!aac_valid_context(scsicmd, fibptr))
630 return;
631
632 scsicmd->SCp.Status = 0;
633 fsa_dev_ptr = fibptr->dev->fsa_dev;
634 if (fsa_dev_ptr) {
635 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
636 fsa_dev_ptr += scmd_id(scsicmd);
637
638 if ((le32_to_cpu(dresp->status) == ST_OK) &&
639 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
640 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
641 if (!(fibptr->dev->supplement_adapter_info.SupportedOptions2 &
642 AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
643 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
644 fsa_dev_ptr->block_size = 0x200;
645 } else {
646 fsa_dev_ptr->block_size =
647 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
648 }
649 for (i = 0; i < 16; i++)
650 fsa_dev_ptr->identifier[i] =
651 dresp->mnt[0].fileinfo.bdevinfo
652 .identifier[i];
653 fsa_dev_ptr->valid = 1;
654 /* sense_key holds the current state of the spin-up */
655 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
656 fsa_dev_ptr->sense_data.sense_key = NOT_READY;
657 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
658 fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
659 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
660 fsa_dev_ptr->size
661 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
662 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
663 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
664 }
665 if ((fsa_dev_ptr->valid & 1) == 0)
666 fsa_dev_ptr->valid = 0;
667 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
668 }
669 aac_fib_complete(fibptr);
670 aac_fib_free(fibptr);
671 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
672 scsicmd->SCp.ptr = NULL;
673 (*callback)(scsicmd);
674 return;
675 }
676
677 static void _aac_probe_container1(void * context, struct fib * fibptr)
678 {
679 struct scsi_cmnd * scsicmd;
680 struct aac_mount * dresp;
681 struct aac_query_mount *dinfo;
682 int status;
683
684 dresp = (struct aac_mount *) fib_data(fibptr);
685 if (!(fibptr->dev->supplement_adapter_info.SupportedOptions2 &
686 AAC_OPTION_VARIABLE_BLOCK_SIZE))
687 dresp->mnt[0].capacityhigh = 0;
688 if ((le32_to_cpu(dresp->status) != ST_OK) ||
689 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
690 _aac_probe_container2(context, fibptr);
691 return;
692 }
693 scsicmd = (struct scsi_cmnd *) context;
694
695 if (!aac_valid_context(scsicmd, fibptr))
696 return;
697
698 aac_fib_init(fibptr);
699
700 dinfo = (struct aac_query_mount *)fib_data(fibptr);
701
702 if (fibptr->dev->supplement_adapter_info.SupportedOptions2 &
703 AAC_OPTION_VARIABLE_BLOCK_SIZE)
704 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
705 else
706 dinfo->command = cpu_to_le32(VM_NameServe64);
707
708 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
709 dinfo->type = cpu_to_le32(FT_FILESYS);
710
711 status = aac_fib_send(ContainerCommand,
712 fibptr,
713 sizeof(struct aac_query_mount),
714 FsaNormal,
715 0, 1,
716 _aac_probe_container2,
717 (void *) scsicmd);
718 /*
719 * Check that the command queued to the controller
720 */
721 if (status == -EINPROGRESS)
722 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
723 else if (status < 0) {
724 /* Inherit results from VM_NameServe, if any */
725 dresp->status = cpu_to_le32(ST_OK);
726 _aac_probe_container2(context, fibptr);
727 }
728 }
729
730 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
731 {
732 struct fib * fibptr;
733 int status = -ENOMEM;
734
735 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
736 struct aac_query_mount *dinfo;
737
738 aac_fib_init(fibptr);
739
740 dinfo = (struct aac_query_mount *)fib_data(fibptr);
741
742 if (fibptr->dev->supplement_adapter_info.SupportedOptions2 &
743 AAC_OPTION_VARIABLE_BLOCK_SIZE)
744 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
745 else
746 dinfo->command = cpu_to_le32(VM_NameServe);
747
748 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
749 dinfo->type = cpu_to_le32(FT_FILESYS);
750 scsicmd->SCp.ptr = (char *)callback;
751
752 status = aac_fib_send(ContainerCommand,
753 fibptr,
754 sizeof(struct aac_query_mount),
755 FsaNormal,
756 0, 1,
757 _aac_probe_container1,
758 (void *) scsicmd);
759 /*
760 * Check that the command queued to the controller
761 */
762 if (status == -EINPROGRESS) {
763 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
764 return 0;
765 }
766 if (status < 0) {
767 scsicmd->SCp.ptr = NULL;
768 aac_fib_complete(fibptr);
769 aac_fib_free(fibptr);
770 }
771 }
772 if (status < 0) {
773 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
774 if (fsa_dev_ptr) {
775 fsa_dev_ptr += scmd_id(scsicmd);
776 if ((fsa_dev_ptr->valid & 1) == 0) {
777 fsa_dev_ptr->valid = 0;
778 return (*callback)(scsicmd);
779 }
780 }
781 }
782 return status;
783 }
784
785 /**
786 * aac_probe_container - query a logical volume
787 * @dev: device to query
788 * @cid: container identifier
789 *
790 * Queries the controller about the given volume. The volume information
791 * is updated in the struct fsa_dev_info structure rather than returned.
792 */
793 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
794 {
795 scsicmd->device = NULL;
796 return 0;
797 }
798
799 int aac_probe_container(struct aac_dev *dev, int cid)
800 {
801 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
802 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
803 int status;
804
805 if (!scsicmd || !scsidev) {
806 kfree(scsicmd);
807 kfree(scsidev);
808 return -ENOMEM;
809 }
810 scsicmd->list.next = NULL;
811 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
812
813 scsicmd->device = scsidev;
814 scsidev->sdev_state = 0;
815 scsidev->id = cid;
816 scsidev->host = dev->scsi_host_ptr;
817
818 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
819 while (scsicmd->device == scsidev)
820 schedule();
821 kfree(scsidev);
822 status = scsicmd->SCp.Status;
823 kfree(scsicmd);
824 return status;
825 }
826
827 /* Local Structure to set SCSI inquiry data strings */
828 struct scsi_inq {
829 char vid[8]; /* Vendor ID */
830 char pid[16]; /* Product ID */
831 char prl[4]; /* Product Revision Level */
832 };
833
834 /**
835 * InqStrCopy - string merge
836 * @a: string to copy from
837 * @b: string to copy to
838 *
839 * Copy a String from one location to another
840 * without copying \0
841 */
842
843 static void inqstrcpy(char *a, char *b)
844 {
845
846 while (*a != (char)0)
847 *b++ = *a++;
848 }
849
850 static char *container_types[] = {
851 "None",
852 "Volume",
853 "Mirror",
854 "Stripe",
855 "RAID5",
856 "SSRW",
857 "SSRO",
858 "Morph",
859 "Legacy",
860 "RAID4",
861 "RAID10",
862 "RAID00",
863 "V-MIRRORS",
864 "PSEUDO R4",
865 "RAID50",
866 "RAID5D",
867 "RAID5D0",
868 "RAID1E",
869 "RAID6",
870 "RAID60",
871 "Unknown"
872 };
873
874 char * get_container_type(unsigned tindex)
875 {
876 if (tindex >= ARRAY_SIZE(container_types))
877 tindex = ARRAY_SIZE(container_types) - 1;
878 return container_types[tindex];
879 }
880
881 /* Function: setinqstr
882 *
883 * Arguments: [1] pointer to void [1] int
884 *
885 * Purpose: Sets SCSI inquiry data strings for vendor, product
886 * and revision level. Allows strings to be set in platform dependent
887 * files instead of in OS dependent driver source.
888 */
889
890 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
891 {
892 struct scsi_inq *str;
893
894 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
895 memset(str, ' ', sizeof(*str));
896
897 if (dev->supplement_adapter_info.AdapterTypeText[0]) {
898 char * cp = dev->supplement_adapter_info.AdapterTypeText;
899 int c;
900 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
901 inqstrcpy("SMC", str->vid);
902 else {
903 c = sizeof(str->vid);
904 while (*cp && *cp != ' ' && --c)
905 ++cp;
906 c = *cp;
907 *cp = '\0';
908 inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
909 str->vid);
910 *cp = c;
911 while (*cp && *cp != ' ')
912 ++cp;
913 }
914 while (*cp == ' ')
915 ++cp;
916 /* last six chars reserved for vol type */
917 c = 0;
918 if (strlen(cp) > sizeof(str->pid)) {
919 c = cp[sizeof(str->pid)];
920 cp[sizeof(str->pid)] = '\0';
921 }
922 inqstrcpy (cp, str->pid);
923 if (c)
924 cp[sizeof(str->pid)] = c;
925 } else {
926 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
927
928 inqstrcpy (mp->vname, str->vid);
929 /* last six chars reserved for vol type */
930 inqstrcpy (mp->model, str->pid);
931 }
932
933 if (tindex < ARRAY_SIZE(container_types)){
934 char *findit = str->pid;
935
936 for ( ; *findit != ' '; findit++); /* walk till we find a space */
937 /* RAID is superfluous in the context of a RAID device */
938 if (memcmp(findit-4, "RAID", 4) == 0)
939 *(findit -= 4) = ' ';
940 if (((findit - str->pid) + strlen(container_types[tindex]))
941 < (sizeof(str->pid) + sizeof(str->prl)))
942 inqstrcpy (container_types[tindex], findit + 1);
943 }
944 inqstrcpy ("V1.0", str->prl);
945 }
946
947 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data,
948 struct aac_dev *dev, struct scsi_cmnd *scsicmd)
949 {
950 int container;
951
952 vpdpage83data->type3.codeset = 1;
953 vpdpage83data->type3.identifiertype = 3;
954 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3)
955 - 4;
956
957 for (container = 0; container < dev->maximum_num_containers;
958 container++) {
959
960 if (scmd_id(scsicmd) == container) {
961 memcpy(vpdpage83data->type3.Identifier,
962 dev->fsa_dev[container].identifier,
963 16);
964 break;
965 }
966 }
967 }
968
969 static void get_container_serial_callback(void *context, struct fib * fibptr)
970 {
971 struct aac_get_serial_resp * get_serial_reply;
972 struct scsi_cmnd * scsicmd;
973
974 BUG_ON(fibptr == NULL);
975
976 scsicmd = (struct scsi_cmnd *) context;
977 if (!aac_valid_context(scsicmd, fibptr))
978 return;
979
980 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
981 /* Failure is irrelevant, using default value instead */
982 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
983 /*Check to see if it's for VPD 0x83 or 0x80 */
984 if (scsicmd->cmnd[2] == 0x83) {
985 /* vpd page 0x83 - Device Identification Page */
986 struct aac_dev *dev;
987 int i;
988 struct tvpd_page83 vpdpage83data;
989
990 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
991
992 memset(((u8 *)&vpdpage83data), 0,
993 sizeof(vpdpage83data));
994
995 /* DIRECT_ACCESS_DEVIC */
996 vpdpage83data.DeviceType = 0;
997 /* DEVICE_CONNECTED */
998 vpdpage83data.DeviceTypeQualifier = 0;
999 /* VPD_DEVICE_IDENTIFIERS */
1000 vpdpage83data.PageCode = 0x83;
1001 vpdpage83data.reserved = 0;
1002 vpdpage83data.PageLength =
1003 sizeof(vpdpage83data.type1) +
1004 sizeof(vpdpage83data.type2);
1005
1006 /* VPD 83 Type 3 is not supported for ARC */
1007 if (dev->sa_firmware)
1008 vpdpage83data.PageLength +=
1009 sizeof(vpdpage83data.type3);
1010
1011 /* T10 Vendor Identifier Field Format */
1012 /* VpdcodesetAscii */
1013 vpdpage83data.type1.codeset = 2;
1014 /* VpdIdentifierTypeVendorId */
1015 vpdpage83data.type1.identifiertype = 1;
1016 vpdpage83data.type1.identifierlength =
1017 sizeof(vpdpage83data.type1) - 4;
1018
1019 /* "ADAPTEC " for adaptec */
1020 memcpy(vpdpage83data.type1.venid,
1021 "ADAPTEC ",
1022 sizeof(vpdpage83data.type1.venid));
1023 memcpy(vpdpage83data.type1.productid,
1024 "ARRAY ",
1025 sizeof(
1026 vpdpage83data.type1.productid));
1027
1028 /* Convert to ascii based serial number.
1029 * The LSB is the the end.
1030 */
1031 for (i = 0; i < 8; i++) {
1032 u8 temp =
1033 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
1034 if (temp > 0x9) {
1035 vpdpage83data.type1.serialnumber[i] =
1036 'A' + (temp - 0xA);
1037 } else {
1038 vpdpage83data.type1.serialnumber[i] =
1039 '0' + temp;
1040 }
1041 }
1042
1043 /* VpdCodeSetBinary */
1044 vpdpage83data.type2.codeset = 1;
1045 /* VpdidentifiertypeEUI64 */
1046 vpdpage83data.type2.identifiertype = 2;
1047 vpdpage83data.type2.identifierlength =
1048 sizeof(vpdpage83data.type2) - 4;
1049
1050 vpdpage83data.type2.eu64id.venid[0] = 0xD0;
1051 vpdpage83data.type2.eu64id.venid[1] = 0;
1052 vpdpage83data.type2.eu64id.venid[2] = 0;
1053
1054 vpdpage83data.type2.eu64id.Serial =
1055 get_serial_reply->uid;
1056 vpdpage83data.type2.eu64id.reserved = 0;
1057
1058 /*
1059 * VpdIdentifierTypeFCPHName
1060 * VPD 0x83 Type 3 not supported for ARC
1061 */
1062 if (dev->sa_firmware) {
1063 build_vpd83_type3(&vpdpage83data,
1064 dev, scsicmd);
1065 }
1066
1067 /* Move the inquiry data to the response buffer. */
1068 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data,
1069 sizeof(vpdpage83data));
1070 } else {
1071 /* It must be for VPD 0x80 */
1072 char sp[13];
1073 /* EVPD bit set */
1074 sp[0] = INQD_PDT_DA;
1075 sp[1] = scsicmd->cmnd[2];
1076 sp[2] = 0;
1077 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
1078 le32_to_cpu(get_serial_reply->uid));
1079 scsi_sg_copy_from_buffer(scsicmd, sp,
1080 sizeof(sp));
1081 }
1082 }
1083
1084 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1085
1086 aac_fib_complete(fibptr);
1087 scsicmd->scsi_done(scsicmd);
1088 }
1089
1090 /**
1091 * aac_get_container_serial - get container serial, none blocking.
1092 */
1093 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1094 {
1095 int status;
1096 struct aac_get_serial *dinfo;
1097 struct fib * cmd_fibcontext;
1098 struct aac_dev * dev;
1099
1100 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1101
1102 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1103
1104 aac_fib_init(cmd_fibcontext);
1105 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1106
1107 dinfo->command = cpu_to_le32(VM_ContainerConfig);
1108 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1109 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1110
1111 status = aac_fib_send(ContainerCommand,
1112 cmd_fibcontext,
1113 sizeof(struct aac_get_serial_resp),
1114 FsaNormal,
1115 0, 1,
1116 (fib_callback) get_container_serial_callback,
1117 (void *) scsicmd);
1118
1119 /*
1120 * Check that the command queued to the controller
1121 */
1122 if (status == -EINPROGRESS) {
1123 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1124 return 0;
1125 }
1126
1127 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1128 aac_fib_complete(cmd_fibcontext);
1129 return -1;
1130 }
1131
1132 /* Function: setinqserial
1133 *
1134 * Arguments: [1] pointer to void [1] int
1135 *
1136 * Purpose: Sets SCSI Unit Serial number.
1137 * This is a fake. We should read a proper
1138 * serial number from the container. <SuSE>But
1139 * without docs it's quite hard to do it :-)
1140 * So this will have to do in the meantime.</SuSE>
1141 */
1142
1143 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1144 {
1145 /*
1146 * This breaks array migration.
1147 */
1148 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1149 le32_to_cpu(dev->adapter_info.serial[0]), cid);
1150 }
1151
1152 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1153 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1154 {
1155 u8 *sense_buf = (u8 *)sense_data;
1156 /* Sense data valid, err code 70h */
1157 sense_buf[0] = 0x70; /* No info field */
1158 sense_buf[1] = 0; /* Segment number, always zero */
1159
1160 sense_buf[2] = sense_key; /* Sense key */
1161
1162 sense_buf[12] = sense_code; /* Additional sense code */
1163 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
1164
1165 if (sense_key == ILLEGAL_REQUEST) {
1166 sense_buf[7] = 10; /* Additional sense length */
1167
1168 sense_buf[15] = bit_pointer;
1169 /* Illegal parameter is in the parameter block */
1170 if (sense_code == SENCODE_INVALID_CDB_FIELD)
1171 sense_buf[15] |= 0xc0;/* Std sense key specific field */
1172 /* Illegal parameter is in the CDB block */
1173 sense_buf[16] = field_pointer >> 8; /* MSB */
1174 sense_buf[17] = field_pointer; /* LSB */
1175 } else
1176 sense_buf[7] = 6; /* Additional sense length */
1177 }
1178
1179 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1180 {
1181 if (lba & 0xffffffff00000000LL) {
1182 int cid = scmd_id(cmd);
1183 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1184 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1185 SAM_STAT_CHECK_CONDITION;
1186 set_sense(&dev->fsa_dev[cid].sense_data,
1187 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1188 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1189 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1190 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1191 SCSI_SENSE_BUFFERSIZE));
1192 cmd->scsi_done(cmd);
1193 return 1;
1194 }
1195 return 0;
1196 }
1197
1198 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1199 {
1200 return 0;
1201 }
1202
1203 static void io_callback(void *context, struct fib * fibptr);
1204
1205 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1206 {
1207 struct aac_dev *dev = fib->dev;
1208 u16 fibsize, command;
1209 long ret;
1210
1211 aac_fib_init(fib);
1212 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1213 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1214 !dev->sync_mode) {
1215 struct aac_raw_io2 *readcmd2;
1216 readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1217 memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1218 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1219 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1220 readcmd2->byteCount = cpu_to_le32(count *
1221 dev->fsa_dev[scmd_id(cmd)].block_size);
1222 readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1223 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1224 ret = aac_build_sgraw2(cmd, readcmd2,
1225 dev->scsi_host_ptr->sg_tablesize);
1226 if (ret < 0)
1227 return ret;
1228 command = ContainerRawIo2;
1229 fibsize = sizeof(struct aac_raw_io2) +
1230 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1231 } else {
1232 struct aac_raw_io *readcmd;
1233 readcmd = (struct aac_raw_io *) fib_data(fib);
1234 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1235 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1236 readcmd->count = cpu_to_le32(count *
1237 dev->fsa_dev[scmd_id(cmd)].block_size);
1238 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1239 readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1240 readcmd->bpTotal = 0;
1241 readcmd->bpComplete = 0;
1242 ret = aac_build_sgraw(cmd, &readcmd->sg);
1243 if (ret < 0)
1244 return ret;
1245 command = ContainerRawIo;
1246 fibsize = sizeof(struct aac_raw_io) +
1247 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1248 }
1249
1250 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1251 /*
1252 * Now send the Fib to the adapter
1253 */
1254 return aac_fib_send(command,
1255 fib,
1256 fibsize,
1257 FsaNormal,
1258 0, 1,
1259 (fib_callback) io_callback,
1260 (void *) cmd);
1261 }
1262
1263 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1264 {
1265 u16 fibsize;
1266 struct aac_read64 *readcmd;
1267 long ret;
1268
1269 aac_fib_init(fib);
1270 readcmd = (struct aac_read64 *) fib_data(fib);
1271 readcmd->command = cpu_to_le32(VM_CtHostRead64);
1272 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1273 readcmd->sector_count = cpu_to_le16(count);
1274 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1275 readcmd->pad = 0;
1276 readcmd->flags = 0;
1277
1278 ret = aac_build_sg64(cmd, &readcmd->sg);
1279 if (ret < 0)
1280 return ret;
1281 fibsize = sizeof(struct aac_read64) +
1282 ((le32_to_cpu(readcmd->sg.count) - 1) *
1283 sizeof (struct sgentry64));
1284 BUG_ON (fibsize > (fib->dev->max_fib_size -
1285 sizeof(struct aac_fibhdr)));
1286 /*
1287 * Now send the Fib to the adapter
1288 */
1289 return aac_fib_send(ContainerCommand64,
1290 fib,
1291 fibsize,
1292 FsaNormal,
1293 0, 1,
1294 (fib_callback) io_callback,
1295 (void *) cmd);
1296 }
1297
1298 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1299 {
1300 u16 fibsize;
1301 struct aac_read *readcmd;
1302 struct aac_dev *dev = fib->dev;
1303 long ret;
1304
1305 aac_fib_init(fib);
1306 readcmd = (struct aac_read *) fib_data(fib);
1307 readcmd->command = cpu_to_le32(VM_CtBlockRead);
1308 readcmd->cid = cpu_to_le32(scmd_id(cmd));
1309 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1310 readcmd->count = cpu_to_le32(count *
1311 dev->fsa_dev[scmd_id(cmd)].block_size);
1312
1313 ret = aac_build_sg(cmd, &readcmd->sg);
1314 if (ret < 0)
1315 return ret;
1316 fibsize = sizeof(struct aac_read) +
1317 ((le32_to_cpu(readcmd->sg.count) - 1) *
1318 sizeof (struct sgentry));
1319 BUG_ON (fibsize > (fib->dev->max_fib_size -
1320 sizeof(struct aac_fibhdr)));
1321 /*
1322 * Now send the Fib to the adapter
1323 */
1324 return aac_fib_send(ContainerCommand,
1325 fib,
1326 fibsize,
1327 FsaNormal,
1328 0, 1,
1329 (fib_callback) io_callback,
1330 (void *) cmd);
1331 }
1332
1333 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1334 {
1335 struct aac_dev *dev = fib->dev;
1336 u16 fibsize, command;
1337 long ret;
1338
1339 aac_fib_init(fib);
1340 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1341 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1342 !dev->sync_mode) {
1343 struct aac_raw_io2 *writecmd2;
1344 writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1345 memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1346 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1347 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1348 writecmd2->byteCount = cpu_to_le32(count *
1349 dev->fsa_dev[scmd_id(cmd)].block_size);
1350 writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1351 writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1352 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1353 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1354 cpu_to_le16(RIO2_IO_TYPE_WRITE);
1355 ret = aac_build_sgraw2(cmd, writecmd2,
1356 dev->scsi_host_ptr->sg_tablesize);
1357 if (ret < 0)
1358 return ret;
1359 command = ContainerRawIo2;
1360 fibsize = sizeof(struct aac_raw_io2) +
1361 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1362 } else {
1363 struct aac_raw_io *writecmd;
1364 writecmd = (struct aac_raw_io *) fib_data(fib);
1365 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1366 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1367 writecmd->count = cpu_to_le32(count *
1368 dev->fsa_dev[scmd_id(cmd)].block_size);
1369 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1370 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1371 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1372 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1373 cpu_to_le16(RIO_TYPE_WRITE);
1374 writecmd->bpTotal = 0;
1375 writecmd->bpComplete = 0;
1376 ret = aac_build_sgraw(cmd, &writecmd->sg);
1377 if (ret < 0)
1378 return ret;
1379 command = ContainerRawIo;
1380 fibsize = sizeof(struct aac_raw_io) +
1381 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1382 }
1383
1384 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1385 /*
1386 * Now send the Fib to the adapter
1387 */
1388 return aac_fib_send(command,
1389 fib,
1390 fibsize,
1391 FsaNormal,
1392 0, 1,
1393 (fib_callback) io_callback,
1394 (void *) cmd);
1395 }
1396
1397 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1398 {
1399 u16 fibsize;
1400 struct aac_write64 *writecmd;
1401 long ret;
1402
1403 aac_fib_init(fib);
1404 writecmd = (struct aac_write64 *) fib_data(fib);
1405 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1406 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1407 writecmd->sector_count = cpu_to_le16(count);
1408 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1409 writecmd->pad = 0;
1410 writecmd->flags = 0;
1411
1412 ret = aac_build_sg64(cmd, &writecmd->sg);
1413 if (ret < 0)
1414 return ret;
1415 fibsize = sizeof(struct aac_write64) +
1416 ((le32_to_cpu(writecmd->sg.count) - 1) *
1417 sizeof (struct sgentry64));
1418 BUG_ON (fibsize > (fib->dev->max_fib_size -
1419 sizeof(struct aac_fibhdr)));
1420 /*
1421 * Now send the Fib to the adapter
1422 */
1423 return aac_fib_send(ContainerCommand64,
1424 fib,
1425 fibsize,
1426 FsaNormal,
1427 0, 1,
1428 (fib_callback) io_callback,
1429 (void *) cmd);
1430 }
1431
1432 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1433 {
1434 u16 fibsize;
1435 struct aac_write *writecmd;
1436 struct aac_dev *dev = fib->dev;
1437 long ret;
1438
1439 aac_fib_init(fib);
1440 writecmd = (struct aac_write *) fib_data(fib);
1441 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1442 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1443 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1444 writecmd->count = cpu_to_le32(count *
1445 dev->fsa_dev[scmd_id(cmd)].block_size);
1446 writecmd->sg.count = cpu_to_le32(1);
1447 /* ->stable is not used - it did mean which type of write */
1448
1449 ret = aac_build_sg(cmd, &writecmd->sg);
1450 if (ret < 0)
1451 return ret;
1452 fibsize = sizeof(struct aac_write) +
1453 ((le32_to_cpu(writecmd->sg.count) - 1) *
1454 sizeof (struct sgentry));
1455 BUG_ON (fibsize > (fib->dev->max_fib_size -
1456 sizeof(struct aac_fibhdr)));
1457 /*
1458 * Now send the Fib to the adapter
1459 */
1460 return aac_fib_send(ContainerCommand,
1461 fib,
1462 fibsize,
1463 FsaNormal,
1464 0, 1,
1465 (fib_callback) io_callback,
1466 (void *) cmd);
1467 }
1468
1469 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1470 {
1471 struct aac_srb * srbcmd;
1472 u32 flag;
1473 u32 timeout;
1474
1475 aac_fib_init(fib);
1476 switch(cmd->sc_data_direction){
1477 case DMA_TO_DEVICE:
1478 flag = SRB_DataOut;
1479 break;
1480 case DMA_BIDIRECTIONAL:
1481 flag = SRB_DataIn | SRB_DataOut;
1482 break;
1483 case DMA_FROM_DEVICE:
1484 flag = SRB_DataIn;
1485 break;
1486 case DMA_NONE:
1487 default: /* shuts up some versions of gcc */
1488 flag = SRB_NoDataXfer;
1489 break;
1490 }
1491
1492 srbcmd = (struct aac_srb*) fib_data(fib);
1493 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1494 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1495 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1496 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1497 srbcmd->flags = cpu_to_le32(flag);
1498 timeout = cmd->request->timeout/HZ;
1499 if (timeout == 0)
1500 timeout = 1;
1501 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1502 srbcmd->retry_limit = 0; /* Obsolete parameter */
1503 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1504 return srbcmd;
1505 }
1506
1507 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib,
1508 struct scsi_cmnd *cmd)
1509 {
1510 struct aac_hba_cmd_req *hbacmd;
1511 struct aac_dev *dev;
1512 int bus, target;
1513 u64 address;
1514
1515 dev = (struct aac_dev *)cmd->device->host->hostdata;
1516
1517 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va;
1518 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */
1519 /* iu_type is a parameter of aac_hba_send */
1520 switch (cmd->sc_data_direction) {
1521 case DMA_TO_DEVICE:
1522 hbacmd->byte1 = 2;
1523 break;
1524 case DMA_FROM_DEVICE:
1525 case DMA_BIDIRECTIONAL:
1526 hbacmd->byte1 = 1;
1527 break;
1528 case DMA_NONE:
1529 default:
1530 break;
1531 }
1532 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun);
1533
1534 bus = aac_logical_to_phys(scmd_channel(cmd));
1535 target = scmd_id(cmd);
1536 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus;
1537
1538 /* we fill in reply_qid later in aac_src_deliver_message */
1539 /* we fill in iu_type, request_id later in aac_hba_send */
1540 /* we fill in emb_data_desc_count later in aac_build_sghba */
1541
1542 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len);
1543 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd));
1544
1545 address = (u64)fib->hw_error_pa;
1546 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
1547 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
1548 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
1549
1550 return hbacmd;
1551 }
1552
1553 static void aac_srb_callback(void *context, struct fib * fibptr);
1554
1555 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1556 {
1557 u16 fibsize;
1558 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1559 long ret;
1560
1561 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1562 if (ret < 0)
1563 return ret;
1564 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1565
1566 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1567 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1568 /*
1569 * Build Scatter/Gather list
1570 */
1571 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1572 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1573 sizeof (struct sgentry64));
1574 BUG_ON (fibsize > (fib->dev->max_fib_size -
1575 sizeof(struct aac_fibhdr)));
1576
1577 /*
1578 * Now send the Fib to the adapter
1579 */
1580 return aac_fib_send(ScsiPortCommand64, fib,
1581 fibsize, FsaNormal, 0, 1,
1582 (fib_callback) aac_srb_callback,
1583 (void *) cmd);
1584 }
1585
1586 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1587 {
1588 u16 fibsize;
1589 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1590 long ret;
1591
1592 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1593 if (ret < 0)
1594 return ret;
1595 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1596
1597 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1598 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1599 /*
1600 * Build Scatter/Gather list
1601 */
1602 fibsize = sizeof (struct aac_srb) +
1603 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1604 sizeof (struct sgentry));
1605 BUG_ON (fibsize > (fib->dev->max_fib_size -
1606 sizeof(struct aac_fibhdr)));
1607
1608 /*
1609 * Now send the Fib to the adapter
1610 */
1611 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1612 (fib_callback) aac_srb_callback, (void *) cmd);
1613 }
1614
1615 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1616 {
1617 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1618 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1619 return FAILED;
1620 return aac_scsi_32(fib, cmd);
1621 }
1622
1623 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd)
1624 {
1625 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd);
1626 struct aac_dev *dev;
1627 long ret;
1628
1629 dev = (struct aac_dev *)cmd->device->host->hostdata;
1630
1631 ret = aac_build_sghba(cmd, hbacmd,
1632 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa);
1633 if (ret < 0)
1634 return ret;
1635
1636 /*
1637 * Now send the HBA command to the adapter
1638 */
1639 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) *
1640 sizeof(struct aac_hba_sgl);
1641
1642 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib,
1643 (fib_callback) aac_hba_callback,
1644 (void *) cmd);
1645 }
1646
1647 int aac_issue_bmic_identify(struct aac_dev *dev, u32 bus, u32 target)
1648 {
1649 struct fib *fibptr;
1650 struct aac_srb *srbcmd;
1651 struct sgmap64 *sg64;
1652 struct aac_ciss_identify_pd *identify_resp;
1653 dma_addr_t addr;
1654 u32 vbus, vid;
1655 u16 fibsize, datasize;
1656 int rcode = -ENOMEM;
1657
1658
1659 fibptr = aac_fib_alloc(dev);
1660 if (!fibptr)
1661 goto out;
1662
1663 fibsize = sizeof(struct aac_srb) -
1664 sizeof(struct sgentry) + sizeof(struct sgentry64);
1665 datasize = sizeof(struct aac_ciss_identify_pd);
1666
1667 identify_resp = pci_alloc_consistent(dev->pdev, datasize, &addr);
1668
1669 if (!identify_resp)
1670 goto fib_free_ptr;
1671
1672 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.VirtDeviceBus);
1673 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.VirtDeviceTarget);
1674
1675 aac_fib_init(fibptr);
1676
1677 srbcmd = (struct aac_srb *) fib_data(fibptr);
1678 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1679 srbcmd->channel = cpu_to_le32(vbus);
1680 srbcmd->id = cpu_to_le32(vid);
1681 srbcmd->lun = 0;
1682 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1683 srbcmd->timeout = cpu_to_le32(10);
1684 srbcmd->retry_limit = 0;
1685 srbcmd->cdb_size = cpu_to_le32(12);
1686 srbcmd->count = cpu_to_le32(datasize);
1687
1688 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1689 srbcmd->cdb[0] = 0x26;
1690 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF);
1691 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE;
1692
1693 sg64 = (struct sgmap64 *)&srbcmd->sg;
1694 sg64->count = cpu_to_le32(1);
1695 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
1696 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
1697 sg64->sg[0].count = cpu_to_le32(datasize);
1698
1699 rcode = aac_fib_send(ScsiPortCommand64,
1700 fibptr, fibsize, FsaNormal, 1, 1, NULL, NULL);
1701
1702 if (identify_resp->current_queue_depth_limit <= 0 ||
1703 identify_resp->current_queue_depth_limit > 32)
1704 dev->hba_map[bus][target].qd_limit = 32;
1705 else
1706 dev->hba_map[bus][target].qd_limit =
1707 identify_resp->current_queue_depth_limit;
1708
1709 pci_free_consistent(dev->pdev, datasize, (void *)identify_resp, addr);
1710
1711 aac_fib_complete(fibptr);
1712
1713 fib_free_ptr:
1714 aac_fib_free(fibptr);
1715 out:
1716 return rcode;
1717 }
1718
1719 /**
1720 * aac_update hba_map()- update current hba map with data from FW
1721 * @dev: aac_dev structure
1722 * @phys_luns: FW information from report phys luns
1723 *
1724 * Update our hba map with the information gathered from the FW
1725 */
1726 void aac_update_hba_map(struct aac_dev *dev,
1727 struct aac_ciss_phys_luns_resp *phys_luns, int rescan)
1728 {
1729 /* ok and extended reporting */
1730 u32 lun_count, nexus;
1731 u32 i, bus, target;
1732 u8 expose_flag, attribs;
1733 u8 devtype;
1734
1735 lun_count = ((phys_luns->list_length[0] << 24)
1736 + (phys_luns->list_length[1] << 16)
1737 + (phys_luns->list_length[2] << 8)
1738 + (phys_luns->list_length[3])) / 24;
1739
1740 for (i = 0; i < lun_count; ++i) {
1741
1742 bus = phys_luns->lun[i].level2[1] & 0x3f;
1743 target = phys_luns->lun[i].level2[0];
1744 expose_flag = phys_luns->lun[i].bus >> 6;
1745 attribs = phys_luns->lun[i].node_ident[9];
1746 nexus = *((u32 *) &phys_luns->lun[i].node_ident[12]);
1747
1748 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS)
1749 continue;
1750
1751 dev->hba_map[bus][target].expose = expose_flag;
1752
1753 if (expose_flag != 0) {
1754 devtype = AAC_DEVTYPE_RAID_MEMBER;
1755 goto update_devtype;
1756 }
1757
1758 if (nexus != 0 && (attribs & 8)) {
1759 devtype = AAC_DEVTYPE_NATIVE_RAW;
1760 dev->hba_map[bus][target].rmw_nexus =
1761 nexus;
1762 } else
1763 devtype = AAC_DEVTYPE_ARC_RAW;
1764
1765 if (devtype != AAC_DEVTYPE_NATIVE_RAW)
1766 goto update_devtype;
1767
1768 if (aac_issue_bmic_identify(dev, bus, target) < 0)
1769 dev->hba_map[bus][target].qd_limit = 32;
1770
1771 update_devtype:
1772 if (rescan == AAC_INIT)
1773 dev->hba_map[bus][target].devtype = devtype;
1774 else
1775 dev->hba_map[bus][target].new_devtype = devtype;
1776 }
1777 }
1778
1779 /**
1780 * aac_report_phys_luns() Process topology change
1781 * @dev: aac_dev structure
1782 * @fibptr: fib pointer
1783 *
1784 * Execute a CISS REPORT PHYS LUNS and process the results into
1785 * the current hba_map.
1786 */
1787 int aac_report_phys_luns(struct aac_dev *dev, struct fib *fibptr, int rescan)
1788 {
1789 int fibsize, datasize;
1790 struct aac_ciss_phys_luns_resp *phys_luns;
1791 struct aac_srb *srbcmd;
1792 struct sgmap64 *sg64;
1793 dma_addr_t addr;
1794 u32 vbus, vid;
1795 u32 rcode = 0;
1796
1797 /* Thor SA Firmware -> CISS_REPORT_PHYSICAL_LUNS */
1798 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry)
1799 + sizeof(struct sgentry64);
1800 datasize = sizeof(struct aac_ciss_phys_luns_resp)
1801 + (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun);
1802
1803 phys_luns = (struct aac_ciss_phys_luns_resp *) pci_alloc_consistent(
1804 dev->pdev, datasize, &addr);
1805
1806 if (phys_luns == NULL) {
1807 rcode = -ENOMEM;
1808 goto err_out;
1809 }
1810
1811 vbus = (u32) le16_to_cpu(
1812 dev->supplement_adapter_info.VirtDeviceBus);
1813 vid = (u32) le16_to_cpu(
1814 dev->supplement_adapter_info.VirtDeviceTarget);
1815
1816 aac_fib_init(fibptr);
1817
1818 srbcmd = (struct aac_srb *) fib_data(fibptr);
1819 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1820 srbcmd->channel = cpu_to_le32(vbus);
1821 srbcmd->id = cpu_to_le32(vid);
1822 srbcmd->lun = 0;
1823 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1824 srbcmd->timeout = cpu_to_le32(10);
1825 srbcmd->retry_limit = 0;
1826 srbcmd->cdb_size = cpu_to_le32(12);
1827 srbcmd->count = cpu_to_le32(datasize);
1828
1829 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1830 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS;
1831 srbcmd->cdb[1] = 2; /* extended reporting */
1832 srbcmd->cdb[8] = (u8)(datasize >> 8);
1833 srbcmd->cdb[9] = (u8)(datasize);
1834
1835 sg64 = (struct sgmap64 *) &srbcmd->sg;
1836 sg64->count = cpu_to_le32(1);
1837 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr));
1838 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr));
1839 sg64->sg[0].count = cpu_to_le32(datasize);
1840
1841 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize,
1842 FsaNormal, 1, 1, NULL, NULL);
1843
1844 /* analyse data */
1845 if (rcode >= 0 && phys_luns->resp_flag == 2) {
1846 /* ok and extended reporting */
1847 aac_update_hba_map(dev, phys_luns, rescan);
1848 }
1849
1850 pci_free_consistent(dev->pdev, datasize, (void *) phys_luns, addr);
1851 err_out:
1852 return rcode;
1853 }
1854
1855 int aac_get_adapter_info(struct aac_dev* dev)
1856 {
1857 struct fib* fibptr;
1858 int rcode;
1859 u32 tmp, bus, target;
1860 struct aac_adapter_info *info;
1861 struct aac_bus_info *command;
1862 struct aac_bus_info_response *bus_info;
1863
1864 if (!(fibptr = aac_fib_alloc(dev)))
1865 return -ENOMEM;
1866
1867 aac_fib_init(fibptr);
1868 info = (struct aac_adapter_info *) fib_data(fibptr);
1869 memset(info,0,sizeof(*info));
1870
1871 rcode = aac_fib_send(RequestAdapterInfo,
1872 fibptr,
1873 sizeof(*info),
1874 FsaNormal,
1875 -1, 1, /* First `interrupt' command uses special wait */
1876 NULL,
1877 NULL);
1878
1879 if (rcode < 0) {
1880 /* FIB should be freed only after
1881 * getting the response from the F/W */
1882 if (rcode != -ERESTARTSYS) {
1883 aac_fib_complete(fibptr);
1884 aac_fib_free(fibptr);
1885 }
1886 return rcode;
1887 }
1888 memcpy(&dev->adapter_info, info, sizeof(*info));
1889
1890 dev->supplement_adapter_info.VirtDeviceBus = 0xffff;
1891 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1892 struct aac_supplement_adapter_info * sinfo;
1893
1894 aac_fib_init(fibptr);
1895
1896 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1897
1898 memset(sinfo,0,sizeof(*sinfo));
1899
1900 rcode = aac_fib_send(RequestSupplementAdapterInfo,
1901 fibptr,
1902 sizeof(*sinfo),
1903 FsaNormal,
1904 1, 1,
1905 NULL,
1906 NULL);
1907
1908 if (rcode >= 0)
1909 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1910 if (rcode == -ERESTARTSYS) {
1911 fibptr = aac_fib_alloc(dev);
1912 if (!fibptr)
1913 return -ENOMEM;
1914 }
1915
1916 }
1917
1918 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */
1919 for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
1920 for (target = 0; target < AAC_MAX_TARGETS; target++) {
1921 dev->hba_map[bus][target].devtype = 0;
1922 dev->hba_map[bus][target].qd_limit = 0;
1923 }
1924 }
1925
1926 /*
1927 * GetBusInfo
1928 */
1929
1930 aac_fib_init(fibptr);
1931
1932 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1933
1934 memset(bus_info, 0, sizeof(*bus_info));
1935
1936 command = (struct aac_bus_info *)bus_info;
1937
1938 command->Command = cpu_to_le32(VM_Ioctl);
1939 command->ObjType = cpu_to_le32(FT_DRIVE);
1940 command->MethodId = cpu_to_le32(1);
1941 command->CtlCmd = cpu_to_le32(GetBusInfo);
1942
1943 rcode = aac_fib_send(ContainerCommand,
1944 fibptr,
1945 sizeof (*bus_info),
1946 FsaNormal,
1947 1, 1,
1948 NULL, NULL);
1949
1950 /* reasoned default */
1951 dev->maximum_num_physicals = 16;
1952 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1953 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1954 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1955 }
1956
1957 if (!dev->sync_mode && dev->sa_firmware &&
1958 dev->supplement_adapter_info.VirtDeviceBus != 0xffff) {
1959 /* Thor SA Firmware -> CISS_REPORT_PHYSICAL_LUNS */
1960 rcode = aac_report_phys_luns(dev, fibptr, AAC_INIT);
1961 }
1962
1963 if (!dev->in_reset) {
1964 char buffer[16];
1965 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1966 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1967 dev->name,
1968 dev->id,
1969 tmp>>24,
1970 (tmp>>16)&0xff,
1971 tmp&0xff,
1972 le32_to_cpu(dev->adapter_info.kernelbuild),
1973 (int)sizeof(dev->supplement_adapter_info.BuildDate),
1974 dev->supplement_adapter_info.BuildDate);
1975 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1976 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1977 dev->name, dev->id,
1978 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1979 le32_to_cpu(dev->adapter_info.monitorbuild));
1980 tmp = le32_to_cpu(dev->adapter_info.biosrev);
1981 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1982 dev->name, dev->id,
1983 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1984 le32_to_cpu(dev->adapter_info.biosbuild));
1985 buffer[0] = '\0';
1986 if (aac_get_serial_number(
1987 shost_to_class(dev->scsi_host_ptr), buffer))
1988 printk(KERN_INFO "%s%d: serial %s",
1989 dev->name, dev->id, buffer);
1990 if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1991 printk(KERN_INFO "%s%d: TSID %.*s\n",
1992 dev->name, dev->id,
1993 (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1994 dev->supplement_adapter_info.VpdInfo.Tsid);
1995 }
1996 if (!aac_check_reset || ((aac_check_reset == 1) &&
1997 (dev->supplement_adapter_info.SupportedOptions2 &
1998 AAC_OPTION_IGNORE_RESET))) {
1999 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
2000 dev->name, dev->id);
2001 }
2002 }
2003
2004 dev->cache_protected = 0;
2005 dev->jbod = ((dev->supplement_adapter_info.FeatureBits &
2006 AAC_FEATURE_JBOD) != 0);
2007 dev->nondasd_support = 0;
2008 dev->raid_scsi_mode = 0;
2009 if(dev->adapter_info.options & AAC_OPT_NONDASD)
2010 dev->nondasd_support = 1;
2011
2012 /*
2013 * If the firmware supports ROMB RAID/SCSI mode and we are currently
2014 * in RAID/SCSI mode, set the flag. For now if in this mode we will
2015 * force nondasd support on. If we decide to allow the non-dasd flag
2016 * additional changes changes will have to be made to support
2017 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
2018 * changed to support the new dev->raid_scsi_mode flag instead of
2019 * leaching off of the dev->nondasd_support flag. Also in linit.c the
2020 * function aac_detect will have to be modified where it sets up the
2021 * max number of channels based on the aac->nondasd_support flag only.
2022 */
2023 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
2024 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
2025 dev->nondasd_support = 1;
2026 dev->raid_scsi_mode = 1;
2027 }
2028 if (dev->raid_scsi_mode != 0)
2029 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
2030 dev->name, dev->id);
2031
2032 if (nondasd != -1)
2033 dev->nondasd_support = (nondasd!=0);
2034 if (dev->nondasd_support && !dev->in_reset)
2035 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
2036
2037 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
2038 dev->needs_dac = 1;
2039 dev->dac_support = 0;
2040 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
2041 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
2042 if (!dev->in_reset)
2043 printk(KERN_INFO "%s%d: 64bit support enabled.\n",
2044 dev->name, dev->id);
2045 dev->dac_support = 1;
2046 }
2047
2048 if(dacmode != -1) {
2049 dev->dac_support = (dacmode!=0);
2050 }
2051
2052 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */
2053 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
2054 & AAC_QUIRK_SCSI_32)) {
2055 dev->nondasd_support = 0;
2056 dev->jbod = 0;
2057 expose_physicals = 0;
2058 }
2059
2060 if(dev->dac_support != 0) {
2061 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64)) &&
2062 !pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
2063 if (!dev->in_reset)
2064 printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
2065 dev->name, dev->id);
2066 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32)) &&
2067 !pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
2068 printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
2069 dev->name, dev->id);
2070 dev->dac_support = 0;
2071 } else {
2072 printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
2073 dev->name, dev->id);
2074 rcode = -ENOMEM;
2075 }
2076 }
2077 /*
2078 * Deal with configuring for the individualized limits of each packet
2079 * interface.
2080 */
2081 dev->a_ops.adapter_scsi = (dev->dac_support)
2082 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
2083 ? aac_scsi_32_64
2084 : aac_scsi_64)
2085 : aac_scsi_32;
2086 if (dev->raw_io_interface) {
2087 dev->a_ops.adapter_bounds = (dev->raw_io_64)
2088 ? aac_bounds_64
2089 : aac_bounds_32;
2090 dev->a_ops.adapter_read = aac_read_raw_io;
2091 dev->a_ops.adapter_write = aac_write_raw_io;
2092 } else {
2093 dev->a_ops.adapter_bounds = aac_bounds_32;
2094 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
2095 sizeof(struct aac_fibhdr) -
2096 sizeof(struct aac_write) + sizeof(struct sgentry)) /
2097 sizeof(struct sgentry);
2098 if (dev->dac_support) {
2099 dev->a_ops.adapter_read = aac_read_block64;
2100 dev->a_ops.adapter_write = aac_write_block64;
2101 /*
2102 * 38 scatter gather elements
2103 */
2104 dev->scsi_host_ptr->sg_tablesize =
2105 (dev->max_fib_size -
2106 sizeof(struct aac_fibhdr) -
2107 sizeof(struct aac_write64) +
2108 sizeof(struct sgentry64)) /
2109 sizeof(struct sgentry64);
2110 } else {
2111 dev->a_ops.adapter_read = aac_read_block;
2112 dev->a_ops.adapter_write = aac_write_block;
2113 }
2114 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
2115 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
2116 /*
2117 * Worst case size that could cause sg overflow when
2118 * we break up SG elements that are larger than 64KB.
2119 * Would be nice if we could tell the SCSI layer what
2120 * the maximum SG element size can be. Worst case is
2121 * (sg_tablesize-1) 4KB elements with one 64KB
2122 * element.
2123 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
2124 */
2125 dev->scsi_host_ptr->max_sectors =
2126 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
2127 }
2128 }
2129 if (!dev->sync_mode && dev->sa_firmware &&
2130 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE)
2131 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize =
2132 HBA_MAX_SG_SEPARATE;
2133
2134 /* FIB should be freed only after getting the response from the F/W */
2135 if (rcode != -ERESTARTSYS) {
2136 aac_fib_complete(fibptr);
2137 aac_fib_free(fibptr);
2138 }
2139
2140 return rcode;
2141 }
2142
2143
2144 static void io_callback(void *context, struct fib * fibptr)
2145 {
2146 struct aac_dev *dev;
2147 struct aac_read_reply *readreply;
2148 struct scsi_cmnd *scsicmd;
2149 u32 cid;
2150
2151 scsicmd = (struct scsi_cmnd *) context;
2152
2153 if (!aac_valid_context(scsicmd, fibptr))
2154 return;
2155
2156 dev = fibptr->dev;
2157 cid = scmd_id(scsicmd);
2158
2159 if (nblank(dprintk(x))) {
2160 u64 lba;
2161 switch (scsicmd->cmnd[0]) {
2162 case WRITE_6:
2163 case READ_6:
2164 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2165 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2166 break;
2167 case WRITE_16:
2168 case READ_16:
2169 lba = ((u64)scsicmd->cmnd[2] << 56) |
2170 ((u64)scsicmd->cmnd[3] << 48) |
2171 ((u64)scsicmd->cmnd[4] << 40) |
2172 ((u64)scsicmd->cmnd[5] << 32) |
2173 ((u64)scsicmd->cmnd[6] << 24) |
2174 (scsicmd->cmnd[7] << 16) |
2175 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2176 break;
2177 case WRITE_12:
2178 case READ_12:
2179 lba = ((u64)scsicmd->cmnd[2] << 24) |
2180 (scsicmd->cmnd[3] << 16) |
2181 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2182 break;
2183 default:
2184 lba = ((u64)scsicmd->cmnd[2] << 24) |
2185 (scsicmd->cmnd[3] << 16) |
2186 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2187 break;
2188 }
2189 printk(KERN_DEBUG
2190 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
2191 smp_processor_id(), (unsigned long long)lba, jiffies);
2192 }
2193
2194 BUG_ON(fibptr == NULL);
2195
2196 scsi_dma_unmap(scsicmd);
2197
2198 readreply = (struct aac_read_reply *)fib_data(fibptr);
2199 switch (le32_to_cpu(readreply->status)) {
2200 case ST_OK:
2201 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2202 SAM_STAT_GOOD;
2203 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
2204 break;
2205 case ST_NOT_READY:
2206 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2207 SAM_STAT_CHECK_CONDITION;
2208 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
2209 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
2210 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2211 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2212 SCSI_SENSE_BUFFERSIZE));
2213 break;
2214 case ST_MEDERR:
2215 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2216 SAM_STAT_CHECK_CONDITION;
2217 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR,
2218 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0);
2219 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2220 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2221 SCSI_SENSE_BUFFERSIZE));
2222 break;
2223 default:
2224 #ifdef AAC_DETAILED_STATUS_INFO
2225 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
2226 le32_to_cpu(readreply->status));
2227 #endif
2228 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2229 SAM_STAT_CHECK_CONDITION;
2230 set_sense(&dev->fsa_dev[cid].sense_data,
2231 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2232 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2233 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2234 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2235 SCSI_SENSE_BUFFERSIZE));
2236 break;
2237 }
2238 aac_fib_complete(fibptr);
2239
2240 scsicmd->scsi_done(scsicmd);
2241 }
2242
2243 static int aac_read(struct scsi_cmnd * scsicmd)
2244 {
2245 u64 lba;
2246 u32 count;
2247 int status;
2248 struct aac_dev *dev;
2249 struct fib * cmd_fibcontext;
2250 int cid;
2251
2252 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2253 /*
2254 * Get block address and transfer length
2255 */
2256 switch (scsicmd->cmnd[0]) {
2257 case READ_6:
2258 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
2259
2260 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2261 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2262 count = scsicmd->cmnd[4];
2263
2264 if (count == 0)
2265 count = 256;
2266 break;
2267 case READ_16:
2268 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
2269
2270 lba = ((u64)scsicmd->cmnd[2] << 56) |
2271 ((u64)scsicmd->cmnd[3] << 48) |
2272 ((u64)scsicmd->cmnd[4] << 40) |
2273 ((u64)scsicmd->cmnd[5] << 32) |
2274 ((u64)scsicmd->cmnd[6] << 24) |
2275 (scsicmd->cmnd[7] << 16) |
2276 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2277 count = (scsicmd->cmnd[10] << 24) |
2278 (scsicmd->cmnd[11] << 16) |
2279 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2280 break;
2281 case READ_12:
2282 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
2283
2284 lba = ((u64)scsicmd->cmnd[2] << 24) |
2285 (scsicmd->cmnd[3] << 16) |
2286 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2287 count = (scsicmd->cmnd[6] << 24) |
2288 (scsicmd->cmnd[7] << 16) |
2289 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2290 break;
2291 default:
2292 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
2293
2294 lba = ((u64)scsicmd->cmnd[2] << 24) |
2295 (scsicmd->cmnd[3] << 16) |
2296 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2297 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2298 break;
2299 }
2300
2301 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2302 cid = scmd_id(scsicmd);
2303 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2304 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2305 SAM_STAT_CHECK_CONDITION;
2306 set_sense(&dev->fsa_dev[cid].sense_data,
2307 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2308 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2309 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2310 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2311 SCSI_SENSE_BUFFERSIZE));
2312 scsicmd->scsi_done(scsicmd);
2313 return 1;
2314 }
2315
2316 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
2317 smp_processor_id(), (unsigned long long)lba, jiffies));
2318 if (aac_adapter_bounds(dev,scsicmd,lba))
2319 return 0;
2320 /*
2321 * Alocate and initialize a Fib
2322 */
2323 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2324
2325 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
2326
2327 /*
2328 * Check that the command queued to the controller
2329 */
2330 if (status == -EINPROGRESS) {
2331 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2332 return 0;
2333 }
2334
2335 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
2336 /*
2337 * For some reason, the Fib didn't queue, return QUEUE_FULL
2338 */
2339 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2340 scsicmd->scsi_done(scsicmd);
2341 aac_fib_complete(cmd_fibcontext);
2342 aac_fib_free(cmd_fibcontext);
2343 return 0;
2344 }
2345
2346 static int aac_write(struct scsi_cmnd * scsicmd)
2347 {
2348 u64 lba;
2349 u32 count;
2350 int fua;
2351 int status;
2352 struct aac_dev *dev;
2353 struct fib * cmd_fibcontext;
2354 int cid;
2355
2356 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2357 /*
2358 * Get block address and transfer length
2359 */
2360 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
2361 {
2362 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2363 count = scsicmd->cmnd[4];
2364 if (count == 0)
2365 count = 256;
2366 fua = 0;
2367 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
2368 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
2369
2370 lba = ((u64)scsicmd->cmnd[2] << 56) |
2371 ((u64)scsicmd->cmnd[3] << 48) |
2372 ((u64)scsicmd->cmnd[4] << 40) |
2373 ((u64)scsicmd->cmnd[5] << 32) |
2374 ((u64)scsicmd->cmnd[6] << 24) |
2375 (scsicmd->cmnd[7] << 16) |
2376 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2377 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2378 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2379 fua = scsicmd->cmnd[1] & 0x8;
2380 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2381 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2382
2383 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2384 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2385 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2386 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2387 fua = scsicmd->cmnd[1] & 0x8;
2388 } else {
2389 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2390 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2391 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2392 fua = scsicmd->cmnd[1] & 0x8;
2393 }
2394
2395 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2396 cid = scmd_id(scsicmd);
2397 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2398 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2399 SAM_STAT_CHECK_CONDITION;
2400 set_sense(&dev->fsa_dev[cid].sense_data,
2401 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2402 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2403 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2404 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2405 SCSI_SENSE_BUFFERSIZE));
2406 scsicmd->scsi_done(scsicmd);
2407 return 1;
2408 }
2409
2410 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2411 smp_processor_id(), (unsigned long long)lba, jiffies));
2412 if (aac_adapter_bounds(dev,scsicmd,lba))
2413 return 0;
2414 /*
2415 * Allocate and initialize a Fib then setup a BlockWrite command
2416 */
2417 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2418
2419 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2420
2421 /*
2422 * Check that the command queued to the controller
2423 */
2424 if (status == -EINPROGRESS) {
2425 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2426 return 0;
2427 }
2428
2429 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2430 /*
2431 * For some reason, the Fib didn't queue, return QUEUE_FULL
2432 */
2433 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2434 scsicmd->scsi_done(scsicmd);
2435
2436 aac_fib_complete(cmd_fibcontext);
2437 aac_fib_free(cmd_fibcontext);
2438 return 0;
2439 }
2440
2441 static void synchronize_callback(void *context, struct fib *fibptr)
2442 {
2443 struct aac_synchronize_reply *synchronizereply;
2444 struct scsi_cmnd *cmd;
2445
2446 cmd = context;
2447
2448 if (!aac_valid_context(cmd, fibptr))
2449 return;
2450
2451 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2452 smp_processor_id(), jiffies));
2453 BUG_ON(fibptr == NULL);
2454
2455
2456 synchronizereply = fib_data(fibptr);
2457 if (le32_to_cpu(synchronizereply->status) == CT_OK)
2458 cmd->result = DID_OK << 16 |
2459 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2460 else {
2461 struct scsi_device *sdev = cmd->device;
2462 struct aac_dev *dev = fibptr->dev;
2463 u32 cid = sdev_id(sdev);
2464 printk(KERN_WARNING
2465 "synchronize_callback: synchronize failed, status = %d\n",
2466 le32_to_cpu(synchronizereply->status));
2467 cmd->result = DID_OK << 16 |
2468 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2469 set_sense(&dev->fsa_dev[cid].sense_data,
2470 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2471 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2472 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2473 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2474 SCSI_SENSE_BUFFERSIZE));
2475 }
2476
2477 aac_fib_complete(fibptr);
2478 aac_fib_free(fibptr);
2479 cmd->scsi_done(cmd);
2480 }
2481
2482 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2483 {
2484 int status;
2485 struct fib *cmd_fibcontext;
2486 struct aac_synchronize *synchronizecmd;
2487 struct scsi_cmnd *cmd;
2488 struct scsi_device *sdev = scsicmd->device;
2489 int active = 0;
2490 struct aac_dev *aac;
2491 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
2492 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2493 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2494 unsigned long flags;
2495
2496 /*
2497 * Wait for all outstanding queued commands to complete to this
2498 * specific target (block).
2499 */
2500 spin_lock_irqsave(&sdev->list_lock, flags);
2501 list_for_each_entry(cmd, &sdev->cmd_list, list)
2502 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
2503 u64 cmnd_lba;
2504 u32 cmnd_count;
2505
2506 if (cmd->cmnd[0] == WRITE_6) {
2507 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
2508 (cmd->cmnd[2] << 8) |
2509 cmd->cmnd[3];
2510 cmnd_count = cmd->cmnd[4];
2511 if (cmnd_count == 0)
2512 cmnd_count = 256;
2513 } else if (cmd->cmnd[0] == WRITE_16) {
2514 cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
2515 ((u64)cmd->cmnd[3] << 48) |
2516 ((u64)cmd->cmnd[4] << 40) |
2517 ((u64)cmd->cmnd[5] << 32) |
2518 ((u64)cmd->cmnd[6] << 24) |
2519 (cmd->cmnd[7] << 16) |
2520 (cmd->cmnd[8] << 8) |
2521 cmd->cmnd[9];
2522 cmnd_count = (cmd->cmnd[10] << 24) |
2523 (cmd->cmnd[11] << 16) |
2524 (cmd->cmnd[12] << 8) |
2525 cmd->cmnd[13];
2526 } else if (cmd->cmnd[0] == WRITE_12) {
2527 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2528 (cmd->cmnd[3] << 16) |
2529 (cmd->cmnd[4] << 8) |
2530 cmd->cmnd[5];
2531 cmnd_count = (cmd->cmnd[6] << 24) |
2532 (cmd->cmnd[7] << 16) |
2533 (cmd->cmnd[8] << 8) |
2534 cmd->cmnd[9];
2535 } else if (cmd->cmnd[0] == WRITE_10) {
2536 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2537 (cmd->cmnd[3] << 16) |
2538 (cmd->cmnd[4] << 8) |
2539 cmd->cmnd[5];
2540 cmnd_count = (cmd->cmnd[7] << 8) |
2541 cmd->cmnd[8];
2542 } else
2543 continue;
2544 if (((cmnd_lba + cmnd_count) < lba) ||
2545 (count && ((lba + count) < cmnd_lba)))
2546 continue;
2547 ++active;
2548 break;
2549 }
2550
2551 spin_unlock_irqrestore(&sdev->list_lock, flags);
2552
2553 /*
2554 * Yield the processor (requeue for later)
2555 */
2556 if (active)
2557 return SCSI_MLQUEUE_DEVICE_BUSY;
2558
2559 aac = (struct aac_dev *)sdev->host->hostdata;
2560 if (aac->in_reset)
2561 return SCSI_MLQUEUE_HOST_BUSY;
2562
2563 /*
2564 * Allocate and initialize a Fib
2565 */
2566 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
2567 return SCSI_MLQUEUE_HOST_BUSY;
2568
2569 aac_fib_init(cmd_fibcontext);
2570
2571 synchronizecmd = fib_data(cmd_fibcontext);
2572 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2573 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2574 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2575 synchronizecmd->count =
2576 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2577
2578 /*
2579 * Now send the Fib to the adapter
2580 */
2581 status = aac_fib_send(ContainerCommand,
2582 cmd_fibcontext,
2583 sizeof(struct aac_synchronize),
2584 FsaNormal,
2585 0, 1,
2586 (fib_callback)synchronize_callback,
2587 (void *)scsicmd);
2588
2589 /*
2590 * Check that the command queued to the controller
2591 */
2592 if (status == -EINPROGRESS) {
2593 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2594 return 0;
2595 }
2596
2597 printk(KERN_WARNING
2598 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2599 aac_fib_complete(cmd_fibcontext);
2600 aac_fib_free(cmd_fibcontext);
2601 return SCSI_MLQUEUE_HOST_BUSY;
2602 }
2603
2604 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2605 {
2606 struct scsi_cmnd *scsicmd = context;
2607
2608 if (!aac_valid_context(scsicmd, fibptr))
2609 return;
2610
2611 BUG_ON(fibptr == NULL);
2612
2613 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2614
2615 aac_fib_complete(fibptr);
2616 aac_fib_free(fibptr);
2617 scsicmd->scsi_done(scsicmd);
2618 }
2619
2620 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2621 {
2622 int status;
2623 struct fib *cmd_fibcontext;
2624 struct aac_power_management *pmcmd;
2625 struct scsi_device *sdev = scsicmd->device;
2626 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2627
2628 if (!(aac->supplement_adapter_info.SupportedOptions2 &
2629 AAC_OPTION_POWER_MANAGEMENT)) {
2630 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2631 SAM_STAT_GOOD;
2632 scsicmd->scsi_done(scsicmd);
2633 return 0;
2634 }
2635
2636 if (aac->in_reset)
2637 return SCSI_MLQUEUE_HOST_BUSY;
2638
2639 /*
2640 * Allocate and initialize a Fib
2641 */
2642 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2643
2644 aac_fib_init(cmd_fibcontext);
2645
2646 pmcmd = fib_data(cmd_fibcontext);
2647 pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2648 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2649 /* Eject bit ignored, not relevant */
2650 pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2651 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2652 pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2653 pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2654 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2655
2656 /*
2657 * Now send the Fib to the adapter
2658 */
2659 status = aac_fib_send(ContainerCommand,
2660 cmd_fibcontext,
2661 sizeof(struct aac_power_management),
2662 FsaNormal,
2663 0, 1,
2664 (fib_callback)aac_start_stop_callback,
2665 (void *)scsicmd);
2666
2667 /*
2668 * Check that the command queued to the controller
2669 */
2670 if (status == -EINPROGRESS) {
2671 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2672 return 0;
2673 }
2674
2675 aac_fib_complete(cmd_fibcontext);
2676 aac_fib_free(cmd_fibcontext);
2677 return SCSI_MLQUEUE_HOST_BUSY;
2678 }
2679
2680 /**
2681 * aac_scsi_cmd() - Process SCSI command
2682 * @scsicmd: SCSI command block
2683 *
2684 * Emulate a SCSI command and queue the required request for the
2685 * aacraid firmware.
2686 */
2687
2688 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2689 {
2690 u32 cid, bus;
2691 struct Scsi_Host *host = scsicmd->device->host;
2692 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2693 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2694
2695 if (fsa_dev_ptr == NULL)
2696 return -1;
2697 /*
2698 * If the bus, id or lun is out of range, return fail
2699 * Test does not apply to ID 16, the pseudo id for the controller
2700 * itself.
2701 */
2702 cid = scmd_id(scsicmd);
2703 if (cid != host->this_id) {
2704 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2705 if((cid >= dev->maximum_num_containers) ||
2706 (scsicmd->device->lun != 0)) {
2707 scsicmd->result = DID_NO_CONNECT << 16;
2708 goto scsi_done_ret;
2709 }
2710
2711 /*
2712 * If the target container doesn't exist, it may have
2713 * been newly created
2714 */
2715 if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2716 (fsa_dev_ptr[cid].sense_data.sense_key ==
2717 NOT_READY)) {
2718 switch (scsicmd->cmnd[0]) {
2719 case SERVICE_ACTION_IN_16:
2720 if (!(dev->raw_io_interface) ||
2721 !(dev->raw_io_64) ||
2722 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2723 break;
2724 case INQUIRY:
2725 case READ_CAPACITY:
2726 case TEST_UNIT_READY:
2727 if (dev->in_reset)
2728 return -1;
2729 return _aac_probe_container(scsicmd,
2730 aac_probe_container_callback2);
2731 default:
2732 break;
2733 }
2734 }
2735 } else { /* check for physical non-dasd devices */
2736 bus = aac_logical_to_phys(scmd_channel(scsicmd));
2737 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2738 (dev->hba_map[bus][cid].expose
2739 == AAC_HIDE_DISK)){
2740 if (scsicmd->cmnd[0] == INQUIRY) {
2741 scsicmd->result = DID_NO_CONNECT << 16;
2742 goto scsi_done_ret;
2743 }
2744 }
2745
2746 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2747 dev->hba_map[bus][cid].devtype
2748 == AAC_DEVTYPE_NATIVE_RAW) {
2749 if (dev->in_reset)
2750 return -1;
2751 return aac_send_hba_fib(scsicmd);
2752 } else if (dev->nondasd_support || expose_physicals ||
2753 dev->jbod) {
2754 if (dev->in_reset)
2755 return -1;
2756 return aac_send_srb_fib(scsicmd);
2757 } else {
2758 scsicmd->result = DID_NO_CONNECT << 16;
2759 goto scsi_done_ret;
2760 }
2761 }
2762 }
2763 /*
2764 * else Command for the controller itself
2765 */
2766 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2767 (scsicmd->cmnd[0] != TEST_UNIT_READY))
2768 {
2769 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2770 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2771 set_sense(&dev->fsa_dev[cid].sense_data,
2772 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2773 ASENCODE_INVALID_COMMAND, 0, 0);
2774 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2775 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2776 SCSI_SENSE_BUFFERSIZE));
2777 goto scsi_done_ret;
2778 }
2779
2780 switch (scsicmd->cmnd[0]) {
2781 case READ_6:
2782 case READ_10:
2783 case READ_12:
2784 case READ_16:
2785 if (dev->in_reset)
2786 return -1;
2787 return aac_read(scsicmd);
2788
2789 case WRITE_6:
2790 case WRITE_10:
2791 case WRITE_12:
2792 case WRITE_16:
2793 if (dev->in_reset)
2794 return -1;
2795 return aac_write(scsicmd);
2796
2797 case SYNCHRONIZE_CACHE:
2798 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2799 scsicmd->result = AAC_STAT_GOOD;
2800 break;
2801 }
2802 /* Issue FIB to tell Firmware to flush it's cache */
2803 if ((aac_cache & 6) != 2)
2804 return aac_synchronize(scsicmd);
2805 case INQUIRY:
2806 {
2807 struct inquiry_data inq_data;
2808
2809 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2810 memset(&inq_data, 0, sizeof (struct inquiry_data));
2811
2812 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2813 char *arr = (char *)&inq_data;
2814
2815 /* EVPD bit set */
2816 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2817 INQD_PDT_PROC : INQD_PDT_DA;
2818 if (scsicmd->cmnd[2] == 0) {
2819 /* supported vital product data pages */
2820 arr[3] = 3;
2821 arr[4] = 0x0;
2822 arr[5] = 0x80;
2823 arr[6] = 0x83;
2824 arr[1] = scsicmd->cmnd[2];
2825 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2826 sizeof(inq_data));
2827 scsicmd->result = AAC_STAT_GOOD;
2828 } else if (scsicmd->cmnd[2] == 0x80) {
2829 /* unit serial number page */
2830 arr[3] = setinqserial(dev, &arr[4],
2831 scmd_id(scsicmd));
2832 arr[1] = scsicmd->cmnd[2];
2833 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2834 sizeof(inq_data));
2835 if (aac_wwn != 2)
2836 return aac_get_container_serial(
2837 scsicmd);
2838 scsicmd->result = AAC_STAT_GOOD;
2839 } else if (scsicmd->cmnd[2] == 0x83) {
2840 /* vpd page 0x83 - Device Identification Page */
2841 char *sno = (char *)&inq_data;
2842 sno[3] = setinqserial(dev, &sno[4],
2843 scmd_id(scsicmd));
2844 if (aac_wwn != 2)
2845 return aac_get_container_serial(
2846 scsicmd);
2847 scsicmd->result = AAC_STAT_GOOD;
2848 } else {
2849 /* vpd page not implemented */
2850 scsicmd->result = DID_OK << 16 |
2851 COMMAND_COMPLETE << 8 |
2852 SAM_STAT_CHECK_CONDITION;
2853 set_sense(&dev->fsa_dev[cid].sense_data,
2854 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2855 ASENCODE_NO_SENSE, 7, 2);
2856 memcpy(scsicmd->sense_buffer,
2857 &dev->fsa_dev[cid].sense_data,
2858 min_t(size_t,
2859 sizeof(dev->fsa_dev[cid].sense_data),
2860 SCSI_SENSE_BUFFERSIZE));
2861 }
2862 break;
2863 }
2864 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
2865 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2866 inq_data.inqd_len = 31;
2867 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
2868 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
2869 /*
2870 * Set the Vendor, Product, and Revision Level
2871 * see: <vendor>.c i.e. aac.c
2872 */
2873 if (cid == host->this_id) {
2874 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2875 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
2876 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2877 sizeof(inq_data));
2878 scsicmd->result = AAC_STAT_GOOD;
2879 break;
2880 }
2881 if (dev->in_reset)
2882 return -1;
2883 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2884 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
2885 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2886 return aac_get_container_name(scsicmd);
2887 }
2888 case SERVICE_ACTION_IN_16:
2889 if (!(dev->raw_io_interface) ||
2890 !(dev->raw_io_64) ||
2891 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2892 break;
2893 {
2894 u64 capacity;
2895 char cp[13];
2896 unsigned int alloc_len;
2897
2898 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2899 capacity = fsa_dev_ptr[cid].size - 1;
2900 cp[0] = (capacity >> 56) & 0xff;
2901 cp[1] = (capacity >> 48) & 0xff;
2902 cp[2] = (capacity >> 40) & 0xff;
2903 cp[3] = (capacity >> 32) & 0xff;
2904 cp[4] = (capacity >> 24) & 0xff;
2905 cp[5] = (capacity >> 16) & 0xff;
2906 cp[6] = (capacity >> 8) & 0xff;
2907 cp[7] = (capacity >> 0) & 0xff;
2908 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
2909 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2910 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2911 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
2912 cp[12] = 0;
2913
2914 alloc_len = ((scsicmd->cmnd[10] << 24)
2915 + (scsicmd->cmnd[11] << 16)
2916 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2917
2918 alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2919 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2920 if (alloc_len < scsi_bufflen(scsicmd))
2921 scsi_set_resid(scsicmd,
2922 scsi_bufflen(scsicmd) - alloc_len);
2923
2924 /* Do not cache partition table for arrays */
2925 scsicmd->device->removable = 1;
2926
2927 scsicmd->result = AAC_STAT_GOOD;
2928 break;
2929 }
2930
2931 case READ_CAPACITY:
2932 {
2933 u32 capacity;
2934 char cp[8];
2935
2936 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2937 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2938 capacity = fsa_dev_ptr[cid].size - 1;
2939 else
2940 capacity = (u32)-1;
2941
2942 cp[0] = (capacity >> 24) & 0xff;
2943 cp[1] = (capacity >> 16) & 0xff;
2944 cp[2] = (capacity >> 8) & 0xff;
2945 cp[3] = (capacity >> 0) & 0xff;
2946 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
2947 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2948 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2949 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
2950 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2951 /* Do not cache partition table for arrays */
2952 scsicmd->device->removable = 1;
2953 scsicmd->result = AAC_STAT_GOOD;
2954 break;
2955 }
2956
2957 case MODE_SENSE:
2958 {
2959 int mode_buf_length = 4;
2960 u32 capacity;
2961 aac_modep_data mpd;
2962
2963 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2964 capacity = fsa_dev_ptr[cid].size - 1;
2965 else
2966 capacity = (u32)-1;
2967
2968 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2969 memset((char *)&mpd, 0, sizeof(aac_modep_data));
2970
2971 /* Mode data length */
2972 mpd.hd.data_length = sizeof(mpd.hd) - 1;
2973 /* Medium type - default */
2974 mpd.hd.med_type = 0;
2975 /* Device-specific param,
2976 bit 8: 0/1 = write enabled/protected
2977 bit 4: 0/1 = FUA enabled */
2978 mpd.hd.dev_par = 0;
2979
2980 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2981 mpd.hd.dev_par = 0x10;
2982 if (scsicmd->cmnd[1] & 0x8)
2983 mpd.hd.bd_length = 0; /* Block descriptor length */
2984 else {
2985 mpd.hd.bd_length = sizeof(mpd.bd);
2986 mpd.hd.data_length += mpd.hd.bd_length;
2987 mpd.bd.block_length[0] =
2988 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2989 mpd.bd.block_length[1] =
2990 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2991 mpd.bd.block_length[2] =
2992 fsa_dev_ptr[cid].block_size & 0xff;
2993
2994 mpd.mpc_buf[0] = scsicmd->cmnd[2];
2995 if (scsicmd->cmnd[2] == 0x1C) {
2996 /* page length */
2997 mpd.mpc_buf[1] = 0xa;
2998 /* Mode data length */
2999 mpd.hd.data_length = 23;
3000 } else {
3001 /* Mode data length */
3002 mpd.hd.data_length = 15;
3003 }
3004
3005 if (capacity > 0xffffff) {
3006 mpd.bd.block_count[0] = 0xff;
3007 mpd.bd.block_count[1] = 0xff;
3008 mpd.bd.block_count[2] = 0xff;
3009 } else {
3010 mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
3011 mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
3012 mpd.bd.block_count[2] = capacity & 0xff;
3013 }
3014 }
3015 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3016 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3017 mpd.hd.data_length += 3;
3018 mpd.mpc_buf[0] = 8;
3019 mpd.mpc_buf[1] = 1;
3020 mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
3021 ? 0 : 0x04; /* WCE */
3022 mode_buf_length = sizeof(mpd);
3023 }
3024
3025 if (mode_buf_length > scsicmd->cmnd[4])
3026 mode_buf_length = scsicmd->cmnd[4];
3027 else
3028 mode_buf_length = sizeof(mpd);
3029 scsi_sg_copy_from_buffer(scsicmd,
3030 (char *)&mpd,
3031 mode_buf_length);
3032 scsicmd->result = AAC_STAT_GOOD;
3033 break;
3034 }
3035 case MODE_SENSE_10:
3036 {
3037 u32 capacity;
3038 int mode_buf_length = 8;
3039 aac_modep10_data mpd10;
3040
3041 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3042 capacity = fsa_dev_ptr[cid].size - 1;
3043 else
3044 capacity = (u32)-1;
3045
3046 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
3047 memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
3048 /* Mode data length (MSB) */
3049 mpd10.hd.data_length[0] = 0;
3050 /* Mode data length (LSB) */
3051 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
3052 /* Medium type - default */
3053 mpd10.hd.med_type = 0;
3054 /* Device-specific param,
3055 bit 8: 0/1 = write enabled/protected
3056 bit 4: 0/1 = FUA enabled */
3057 mpd10.hd.dev_par = 0;
3058
3059 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3060 mpd10.hd.dev_par = 0x10;
3061 mpd10.hd.rsrvd[0] = 0; /* reserved */
3062 mpd10.hd.rsrvd[1] = 0; /* reserved */
3063 if (scsicmd->cmnd[1] & 0x8) {
3064 /* Block descriptor length (MSB) */
3065 mpd10.hd.bd_length[0] = 0;
3066 /* Block descriptor length (LSB) */
3067 mpd10.hd.bd_length[1] = 0;
3068 } else {
3069 mpd10.hd.bd_length[0] = 0;
3070 mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
3071
3072 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
3073
3074 mpd10.bd.block_length[0] =
3075 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3076 mpd10.bd.block_length[1] =
3077 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3078 mpd10.bd.block_length[2] =
3079 fsa_dev_ptr[cid].block_size & 0xff;
3080
3081 if (capacity > 0xffffff) {
3082 mpd10.bd.block_count[0] = 0xff;
3083 mpd10.bd.block_count[1] = 0xff;
3084 mpd10.bd.block_count[2] = 0xff;
3085 } else {
3086 mpd10.bd.block_count[0] =
3087 (capacity >> 16) & 0xff;
3088 mpd10.bd.block_count[1] =
3089 (capacity >> 8) & 0xff;
3090 mpd10.bd.block_count[2] =
3091 capacity & 0xff;
3092 }
3093 }
3094 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3095 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3096 mpd10.hd.data_length[1] += 3;
3097 mpd10.mpc_buf[0] = 8;
3098 mpd10.mpc_buf[1] = 1;
3099 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
3100 ? 0 : 0x04; /* WCE */
3101 mode_buf_length = sizeof(mpd10);
3102 if (mode_buf_length > scsicmd->cmnd[8])
3103 mode_buf_length = scsicmd->cmnd[8];
3104 }
3105 scsi_sg_copy_from_buffer(scsicmd,
3106 (char *)&mpd10,
3107 mode_buf_length);
3108
3109 scsicmd->result = AAC_STAT_GOOD;
3110 break;
3111 }
3112 case REQUEST_SENSE:
3113 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
3114 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3115 sizeof(struct sense_data));
3116 memset(&dev->fsa_dev[cid].sense_data, 0,
3117 sizeof(struct sense_data));
3118 scsicmd->result = AAC_STAT_GOOD;
3119 break;
3120
3121 case ALLOW_MEDIUM_REMOVAL:
3122 dprintk((KERN_DEBUG "LOCK command.\n"));
3123 if (scsicmd->cmnd[4])
3124 fsa_dev_ptr[cid].locked = 1;
3125 else
3126 fsa_dev_ptr[cid].locked = 0;
3127
3128 scsicmd->result = AAC_STAT_GOOD;
3129 break;
3130 /*
3131 * These commands are all No-Ops
3132 */
3133 case TEST_UNIT_READY:
3134 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
3135 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3136 SAM_STAT_CHECK_CONDITION;
3137 set_sense(&dev->fsa_dev[cid].sense_data,
3138 NOT_READY, SENCODE_BECOMING_READY,
3139 ASENCODE_BECOMING_READY, 0, 0);
3140 memcpy(scsicmd->sense_buffer,
3141 &dev->fsa_dev[cid].sense_data,
3142 min_t(size_t,
3143 sizeof(dev->fsa_dev[cid].sense_data),
3144 SCSI_SENSE_BUFFERSIZE));
3145 break;
3146 }
3147 case RESERVE:
3148 case RELEASE:
3149 case REZERO_UNIT:
3150 case REASSIGN_BLOCKS:
3151 case SEEK_10:
3152 scsicmd->result = AAC_STAT_GOOD;
3153 break;
3154
3155 case START_STOP:
3156 return aac_start_stop(scsicmd);
3157
3158 /* FALLTHRU */
3159 default:
3160 /*
3161 * Unhandled commands
3162 */
3163 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n",
3164 scsicmd->cmnd[0]));
3165 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3166 SAM_STAT_CHECK_CONDITION;
3167 set_sense(&dev->fsa_dev[cid].sense_data,
3168 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
3169 ASENCODE_INVALID_COMMAND, 0, 0);
3170 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3171 min_t(size_t,
3172 sizeof(dev->fsa_dev[cid].sense_data),
3173 SCSI_SENSE_BUFFERSIZE));
3174 }
3175
3176 scsi_done_ret:
3177
3178 scsicmd->scsi_done(scsicmd);
3179 return 0;
3180 }
3181
3182 static int query_disk(struct aac_dev *dev, void __user *arg)
3183 {
3184 struct aac_query_disk qd;
3185 struct fsa_dev_info *fsa_dev_ptr;
3186
3187 fsa_dev_ptr = dev->fsa_dev;
3188 if (!fsa_dev_ptr)
3189 return -EBUSY;
3190 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
3191 return -EFAULT;
3192 if (qd.cnum == -1)
3193 qd.cnum = qd.id;
3194 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
3195 {
3196 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
3197 return -EINVAL;
3198 qd.instance = dev->scsi_host_ptr->host_no;
3199 qd.bus = 0;
3200 qd.id = CONTAINER_TO_ID(qd.cnum);
3201 qd.lun = CONTAINER_TO_LUN(qd.cnum);
3202 }
3203 else return -EINVAL;
3204
3205 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
3206 qd.locked = fsa_dev_ptr[qd.cnum].locked;
3207 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
3208
3209 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
3210 qd.unmapped = 1;
3211 else
3212 qd.unmapped = 0;
3213
3214 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
3215 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
3216
3217 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
3218 return -EFAULT;
3219 return 0;
3220 }
3221
3222 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
3223 {
3224 struct aac_delete_disk dd;
3225 struct fsa_dev_info *fsa_dev_ptr;
3226
3227 fsa_dev_ptr = dev->fsa_dev;
3228 if (!fsa_dev_ptr)
3229 return -EBUSY;
3230
3231 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3232 return -EFAULT;
3233
3234 if (dd.cnum >= dev->maximum_num_containers)
3235 return -EINVAL;
3236 /*
3237 * Mark this container as being deleted.
3238 */
3239 fsa_dev_ptr[dd.cnum].deleted = 1;
3240 /*
3241 * Mark the container as no longer valid
3242 */
3243 fsa_dev_ptr[dd.cnum].valid = 0;
3244 return 0;
3245 }
3246
3247 static int delete_disk(struct aac_dev *dev, void __user *arg)
3248 {
3249 struct aac_delete_disk dd;
3250 struct fsa_dev_info *fsa_dev_ptr;
3251
3252 fsa_dev_ptr = dev->fsa_dev;
3253 if (!fsa_dev_ptr)
3254 return -EBUSY;
3255
3256 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3257 return -EFAULT;
3258
3259 if (dd.cnum >= dev->maximum_num_containers)
3260 return -EINVAL;
3261 /*
3262 * If the container is locked, it can not be deleted by the API.
3263 */
3264 if (fsa_dev_ptr[dd.cnum].locked)
3265 return -EBUSY;
3266 else {
3267 /*
3268 * Mark the container as no longer being valid.
3269 */
3270 fsa_dev_ptr[dd.cnum].valid = 0;
3271 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
3272 return 0;
3273 }
3274 }
3275
3276 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
3277 {
3278 switch (cmd) {
3279 case FSACTL_QUERY_DISK:
3280 return query_disk(dev, arg);
3281 case FSACTL_DELETE_DISK:
3282 return delete_disk(dev, arg);
3283 case FSACTL_FORCE_DELETE_DISK:
3284 return force_delete_disk(dev, arg);
3285 case FSACTL_GET_CONTAINERS:
3286 return aac_get_containers(dev);
3287 default:
3288 return -ENOTTY;
3289 }
3290 }
3291
3292 /**
3293 *
3294 * aac_srb_callback
3295 * @context: the context set in the fib - here it is scsi cmd
3296 * @fibptr: pointer to the fib
3297 *
3298 * Handles the completion of a scsi command to a non dasd device
3299 *
3300 */
3301
3302 static void aac_srb_callback(void *context, struct fib * fibptr)
3303 {
3304 struct aac_dev *dev;
3305 struct aac_srb_reply *srbreply;
3306 struct scsi_cmnd *scsicmd;
3307
3308 scsicmd = (struct scsi_cmnd *) context;
3309
3310 if (!aac_valid_context(scsicmd, fibptr))
3311 return;
3312
3313 BUG_ON(fibptr == NULL);
3314
3315 dev = fibptr->dev;
3316
3317 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
3318
3319 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
3320
3321 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3322 /* fast response */
3323 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
3324 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
3325 } else {
3326 /*
3327 * Calculate resid for sg
3328 */
3329 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
3330 - le32_to_cpu(srbreply->data_xfer_length));
3331 }
3332
3333
3334 scsi_dma_unmap(scsicmd);
3335
3336 /* expose physical device if expose_physicald flag is on */
3337 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
3338 && expose_physicals > 0)
3339 aac_expose_phy_device(scsicmd);
3340
3341 /*
3342 * First check the fib status
3343 */
3344
3345 if (le32_to_cpu(srbreply->status) != ST_OK) {
3346 int len;
3347
3348 pr_warn("aac_srb_callback: srb failed, status = %d\n",
3349 le32_to_cpu(srbreply->status));
3350 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3351 SCSI_SENSE_BUFFERSIZE);
3352 scsicmd->result = DID_ERROR << 16
3353 | COMMAND_COMPLETE << 8
3354 | SAM_STAT_CHECK_CONDITION;
3355 memcpy(scsicmd->sense_buffer,
3356 srbreply->sense_data, len);
3357 }
3358
3359 /*
3360 * Next check the srb status
3361 */
3362 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3363 case SRB_STATUS_ERROR_RECOVERY:
3364 case SRB_STATUS_PENDING:
3365 case SRB_STATUS_SUCCESS:
3366 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3367 break;
3368 case SRB_STATUS_DATA_OVERRUN:
3369 switch (scsicmd->cmnd[0]) {
3370 case READ_6:
3371 case WRITE_6:
3372 case READ_10:
3373 case WRITE_10:
3374 case READ_12:
3375 case WRITE_12:
3376 case READ_16:
3377 case WRITE_16:
3378 if (le32_to_cpu(srbreply->data_xfer_length)
3379 < scsicmd->underflow)
3380 pr_warn("aacraid: SCSI CMD underflow\n");
3381 else
3382 pr_warn("aacraid: SCSI CMD Data Overrun\n");
3383 scsicmd->result = DID_ERROR << 16
3384 | COMMAND_COMPLETE << 8;
3385 break;
3386 case INQUIRY:
3387 scsicmd->result = DID_OK << 16
3388 | COMMAND_COMPLETE << 8;
3389 break;
3390 default:
3391 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3392 break;
3393 }
3394 break;
3395 case SRB_STATUS_ABORTED:
3396 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3397 break;
3398 case SRB_STATUS_ABORT_FAILED:
3399 /*
3400 * Not sure about this one - but assuming the
3401 * hba was trying to abort for some reason
3402 */
3403 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
3404 break;
3405 case SRB_STATUS_PARITY_ERROR:
3406 scsicmd->result = DID_PARITY << 16
3407 | MSG_PARITY_ERROR << 8;
3408 break;
3409 case SRB_STATUS_NO_DEVICE:
3410 case SRB_STATUS_INVALID_PATH_ID:
3411 case SRB_STATUS_INVALID_TARGET_ID:
3412 case SRB_STATUS_INVALID_LUN:
3413 case SRB_STATUS_SELECTION_TIMEOUT:
3414 scsicmd->result = DID_NO_CONNECT << 16
3415 | COMMAND_COMPLETE << 8;
3416 break;
3417
3418 case SRB_STATUS_COMMAND_TIMEOUT:
3419 case SRB_STATUS_TIMEOUT:
3420 scsicmd->result = DID_TIME_OUT << 16
3421 | COMMAND_COMPLETE << 8;
3422 break;
3423
3424 case SRB_STATUS_BUSY:
3425 scsicmd->result = DID_BUS_BUSY << 16
3426 | COMMAND_COMPLETE << 8;
3427 break;
3428
3429 case SRB_STATUS_BUS_RESET:
3430 scsicmd->result = DID_RESET << 16
3431 | COMMAND_COMPLETE << 8;
3432 break;
3433
3434 case SRB_STATUS_MESSAGE_REJECTED:
3435 scsicmd->result = DID_ERROR << 16
3436 | MESSAGE_REJECT << 8;
3437 break;
3438 case SRB_STATUS_REQUEST_FLUSHED:
3439 case SRB_STATUS_ERROR:
3440 case SRB_STATUS_INVALID_REQUEST:
3441 case SRB_STATUS_REQUEST_SENSE_FAILED:
3442 case SRB_STATUS_NO_HBA:
3443 case SRB_STATUS_UNEXPECTED_BUS_FREE:
3444 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3445 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3446 case SRB_STATUS_DELAYED_RETRY:
3447 case SRB_STATUS_BAD_FUNCTION:
3448 case SRB_STATUS_NOT_STARTED:
3449 case SRB_STATUS_NOT_IN_USE:
3450 case SRB_STATUS_FORCE_ABORT:
3451 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3452 default:
3453 #ifdef AAC_DETAILED_STATUS_INFO
3454 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
3455 le32_to_cpu(srbreply->srb_status) & 0x3F,
3456 aac_get_status_string(
3457 le32_to_cpu(srbreply->srb_status) & 0x3F),
3458 scsicmd->cmnd[0],
3459 le32_to_cpu(srbreply->scsi_status));
3460 #endif
3461 /*
3462 * When the CC bit is SET by the host in ATA pass thru CDB,
3463 * driver is supposed to return DID_OK
3464 *
3465 * When the CC bit is RESET by the host, driver should
3466 * return DID_ERROR
3467 */
3468 if ((scsicmd->cmnd[0] == ATA_12)
3469 || (scsicmd->cmnd[0] == ATA_16)) {
3470
3471 if (scsicmd->cmnd[2] & (0x01 << 5)) {
3472 scsicmd->result = DID_OK << 16
3473 | COMMAND_COMPLETE << 8;
3474 break;
3475 } else {
3476 scsicmd->result = DID_ERROR << 16
3477 | COMMAND_COMPLETE << 8;
3478 break;
3479 }
3480 } else {
3481 scsicmd->result = DID_ERROR << 16
3482 | COMMAND_COMPLETE << 8;
3483 break;
3484 }
3485 }
3486 if (le32_to_cpu(srbreply->scsi_status)
3487 == SAM_STAT_CHECK_CONDITION) {
3488 int len;
3489
3490 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3491 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3492 SCSI_SENSE_BUFFERSIZE);
3493 #ifdef AAC_DETAILED_STATUS_INFO
3494 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
3495 le32_to_cpu(srbreply->status), len);
3496 #endif
3497 memcpy(scsicmd->sense_buffer,
3498 srbreply->sense_data, len);
3499 }
3500
3501 /*
3502 * OR in the scsi status (already shifted up a bit)
3503 */
3504 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3505
3506 aac_fib_complete(fibptr);
3507 scsicmd->scsi_done(scsicmd);
3508 }
3509
3510 static void hba_resp_task_complete(struct aac_dev *dev,
3511 struct scsi_cmnd *scsicmd,
3512 struct aac_hba_resp *err) {
3513
3514 scsicmd->result = err->status;
3515 /* set residual count */
3516 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count));
3517
3518 switch (err->status) {
3519 case SAM_STAT_GOOD:
3520 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3521 break;
3522 case SAM_STAT_CHECK_CONDITION:
3523 {
3524 int len;
3525
3526 len = min_t(u8, err->sense_response_data_len,
3527 SCSI_SENSE_BUFFERSIZE);
3528 if (len)
3529 memcpy(scsicmd->sense_buffer,
3530 err->sense_response_buf, len);
3531 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3532 break;
3533 }
3534 case SAM_STAT_BUSY:
3535 scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
3536 break;
3537 case SAM_STAT_TASK_ABORTED:
3538 scsicmd->result |= DID_ABORT << 16 | ABORT << 8;
3539 break;
3540 case SAM_STAT_RESERVATION_CONFLICT:
3541 case SAM_STAT_TASK_SET_FULL:
3542 default:
3543 scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3544 break;
3545 }
3546 }
3547
3548 static void hba_resp_task_failure(struct aac_dev *dev,
3549 struct scsi_cmnd *scsicmd,
3550 struct aac_hba_resp *err)
3551 {
3552 switch (err->status) {
3553 case HBA_RESP_STAT_HBAMODE_DISABLED:
3554 {
3555 u32 bus, cid;
3556
3557 bus = aac_logical_to_phys(scmd_channel(scsicmd));
3558 cid = scmd_id(scsicmd);
3559 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
3560 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW;
3561 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff;
3562 }
3563 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3564 break;
3565 }
3566 case HBA_RESP_STAT_IO_ERROR:
3567 case HBA_RESP_STAT_NO_PATH_TO_DEVICE:
3568 scsicmd->result = DID_OK << 16 |
3569 COMMAND_COMPLETE << 8 | SAM_STAT_BUSY;
3570 break;
3571 case HBA_RESP_STAT_IO_ABORTED:
3572 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3573 break;
3574 case HBA_RESP_STAT_INVALID_DEVICE:
3575 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3576 break;
3577 case HBA_RESP_STAT_UNDERRUN:
3578 /* UNDERRUN is OK */
3579 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3580 break;
3581 case HBA_RESP_STAT_OVERRUN:
3582 default:
3583 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3584 break;
3585 }
3586 }
3587
3588 /**
3589 *
3590 * aac_hba_callback
3591 * @context: the context set in the fib - here it is scsi cmd
3592 * @fibptr: pointer to the fib
3593 *
3594 * Handles the completion of a native HBA scsi command
3595 *
3596 */
3597 void aac_hba_callback(void *context, struct fib *fibptr)
3598 {
3599 struct aac_dev *dev;
3600 struct scsi_cmnd *scsicmd;
3601
3602 struct aac_hba_resp *err =
3603 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
3604
3605 scsicmd = (struct scsi_cmnd *) context;
3606
3607 if (!aac_valid_context(scsicmd, fibptr))
3608 return;
3609
3610 WARN_ON(fibptr == NULL);
3611 dev = fibptr->dev;
3612
3613 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF))
3614 scsi_dma_unmap(scsicmd);
3615
3616 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3617 /* fast response */
3618 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3619 goto out;
3620 }
3621
3622 switch (err->service_response) {
3623 case HBA_RESP_SVCRES_TASK_COMPLETE:
3624 hba_resp_task_complete(dev, scsicmd, err);
3625 break;
3626 case HBA_RESP_SVCRES_FAILURE:
3627 hba_resp_task_failure(dev, scsicmd, err);
3628 break;
3629 case HBA_RESP_SVCRES_TMF_REJECTED:
3630 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
3631 break;
3632 case HBA_RESP_SVCRES_TMF_LUN_INVALID:
3633 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3634 break;
3635 case HBA_RESP_SVCRES_TMF_COMPLETE:
3636 case HBA_RESP_SVCRES_TMF_SUCCEEDED:
3637 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3638 break;
3639 default:
3640 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3641 break;
3642 }
3643
3644 out:
3645 aac_fib_complete(fibptr);
3646
3647 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)
3648 scsicmd->SCp.sent_command = 1;
3649 else
3650 scsicmd->scsi_done(scsicmd);
3651 }
3652
3653 /**
3654 *
3655 * aac_send_srb_fib
3656 * @scsicmd: the scsi command block
3657 *
3658 * This routine will form a FIB and fill in the aac_srb from the
3659 * scsicmd passed in.
3660 */
3661
3662 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3663 {
3664 struct fib* cmd_fibcontext;
3665 struct aac_dev* dev;
3666 int status;
3667
3668 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3669 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3670 scsicmd->device->lun > 7) {
3671 scsicmd->result = DID_NO_CONNECT << 16;
3672 scsicmd->scsi_done(scsicmd);
3673 return 0;
3674 }
3675
3676 /*
3677 * Allocate and initialize a Fib then setup a BlockWrite command
3678 */
3679 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3680
3681 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3682
3683 /*
3684 * Check that the command queued to the controller
3685 */
3686 if (status == -EINPROGRESS) {
3687 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3688 return 0;
3689 }
3690
3691 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3692 aac_fib_complete(cmd_fibcontext);
3693 aac_fib_free(cmd_fibcontext);
3694
3695 return -1;
3696 }
3697
3698 /**
3699 *
3700 * aac_send_hba_fib
3701 * @scsicmd: the scsi command block
3702 *
3703 * This routine will form a FIB and fill in the aac_hba_cmd_req from the
3704 * scsicmd passed in.
3705 */
3706 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd)
3707 {
3708 struct fib *cmd_fibcontext;
3709 struct aac_dev *dev;
3710 int status;
3711
3712 dev = shost_priv(scsicmd->device->host);
3713 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3714 scsicmd->device->lun > AAC_MAX_LUN - 1) {
3715 scsicmd->result = DID_NO_CONNECT << 16;
3716 scsicmd->scsi_done(scsicmd);
3717 return 0;
3718 }
3719
3720 /*
3721 * Allocate and initialize a Fib then setup a BlockWrite command
3722 */
3723 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3724 if (!cmd_fibcontext)
3725 return -1;
3726
3727 status = aac_adapter_hba(cmd_fibcontext, scsicmd);
3728
3729 /*
3730 * Check that the command queued to the controller
3731 */
3732 if (status == -EINPROGRESS) {
3733 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3734 return 0;
3735 }
3736
3737 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n",
3738 status);
3739 aac_fib_complete(cmd_fibcontext);
3740 aac_fib_free(cmd_fibcontext);
3741
3742 return -1;
3743 }
3744
3745
3746 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3747 {
3748 struct aac_dev *dev;
3749 unsigned long byte_count = 0;
3750 int nseg;
3751
3752 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3753 // Get rid of old data
3754 psg->count = 0;
3755 psg->sg[0].addr = 0;
3756 psg->sg[0].count = 0;
3757
3758 nseg = scsi_dma_map(scsicmd);
3759 if (nseg < 0)
3760 return nseg;
3761 if (nseg) {
3762 struct scatterlist *sg;
3763 int i;
3764
3765 psg->count = cpu_to_le32(nseg);
3766
3767 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3768 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3769 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3770 byte_count += sg_dma_len(sg);
3771 }
3772 /* hba wants the size to be exact */
3773 if (byte_count > scsi_bufflen(scsicmd)) {
3774 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3775 (byte_count - scsi_bufflen(scsicmd));
3776 psg->sg[i-1].count = cpu_to_le32(temp);
3777 byte_count = scsi_bufflen(scsicmd);
3778 }
3779 /* Check for command underflow */
3780 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
3781 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3782 byte_count, scsicmd->underflow);
3783 }
3784 }
3785 return byte_count;
3786 }
3787
3788
3789 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3790 {
3791 struct aac_dev *dev;
3792 unsigned long byte_count = 0;
3793 u64 addr;
3794 int nseg;
3795
3796 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3797 // Get rid of old data
3798 psg->count = 0;
3799 psg->sg[0].addr[0] = 0;
3800 psg->sg[0].addr[1] = 0;
3801 psg->sg[0].count = 0;
3802
3803 nseg = scsi_dma_map(scsicmd);
3804 if (nseg < 0)
3805 return nseg;
3806 if (nseg) {
3807 struct scatterlist *sg;
3808 int i;
3809
3810 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3811 int count = sg_dma_len(sg);
3812 addr = sg_dma_address(sg);
3813 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3814 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3815 psg->sg[i].count = cpu_to_le32(count);
3816 byte_count += count;
3817 }
3818 psg->count = cpu_to_le32(nseg);
3819 /* hba wants the size to be exact */
3820 if (byte_count > scsi_bufflen(scsicmd)) {
3821 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3822 (byte_count - scsi_bufflen(scsicmd));
3823 psg->sg[i-1].count = cpu_to_le32(temp);
3824 byte_count = scsi_bufflen(scsicmd);
3825 }
3826 /* Check for command underflow */
3827 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
3828 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3829 byte_count, scsicmd->underflow);
3830 }
3831 }
3832 return byte_count;
3833 }
3834
3835 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
3836 {
3837 unsigned long byte_count = 0;
3838 int nseg;
3839
3840 // Get rid of old data
3841 psg->count = 0;
3842 psg->sg[0].next = 0;
3843 psg->sg[0].prev = 0;
3844 psg->sg[0].addr[0] = 0;
3845 psg->sg[0].addr[1] = 0;
3846 psg->sg[0].count = 0;
3847 psg->sg[0].flags = 0;
3848
3849 nseg = scsi_dma_map(scsicmd);
3850 if (nseg < 0)
3851 return nseg;
3852 if (nseg) {
3853 struct scatterlist *sg;
3854 int i;
3855
3856 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3857 int count = sg_dma_len(sg);
3858 u64 addr = sg_dma_address(sg);
3859 psg->sg[i].next = 0;
3860 psg->sg[i].prev = 0;
3861 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
3862 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
3863 psg->sg[i].count = cpu_to_le32(count);
3864 psg->sg[i].flags = 0;
3865 byte_count += count;
3866 }
3867 psg->count = cpu_to_le32(nseg);
3868 /* hba wants the size to be exact */
3869 if (byte_count > scsi_bufflen(scsicmd)) {
3870 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3871 (byte_count - scsi_bufflen(scsicmd));
3872 psg->sg[i-1].count = cpu_to_le32(temp);
3873 byte_count = scsi_bufflen(scsicmd);
3874 }
3875 /* Check for command underflow */
3876 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
3877 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3878 byte_count, scsicmd->underflow);
3879 }
3880 }
3881 return byte_count;
3882 }
3883
3884 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
3885 struct aac_raw_io2 *rio2, int sg_max)
3886 {
3887 unsigned long byte_count = 0;
3888 int nseg;
3889
3890 nseg = scsi_dma_map(scsicmd);
3891 if (nseg < 0)
3892 return nseg;
3893 if (nseg) {
3894 struct scatterlist *sg;
3895 int i, conformable = 0;
3896 u32 min_size = PAGE_SIZE, cur_size;
3897
3898 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3899 int count = sg_dma_len(sg);
3900 u64 addr = sg_dma_address(sg);
3901
3902 BUG_ON(i >= sg_max);
3903 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
3904 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
3905 cur_size = cpu_to_le32(count);
3906 rio2->sge[i].length = cur_size;
3907 rio2->sge[i].flags = 0;
3908 if (i == 0) {
3909 conformable = 1;
3910 rio2->sgeFirstSize = cur_size;
3911 } else if (i == 1) {
3912 rio2->sgeNominalSize = cur_size;
3913 min_size = cur_size;
3914 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
3915 conformable = 0;
3916 if (cur_size < min_size)
3917 min_size = cur_size;
3918 }
3919 byte_count += count;
3920 }
3921
3922 /* hba wants the size to be exact */
3923 if (byte_count > scsi_bufflen(scsicmd)) {
3924 u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
3925 (byte_count - scsi_bufflen(scsicmd));
3926 rio2->sge[i-1].length = cpu_to_le32(temp);
3927 byte_count = scsi_bufflen(scsicmd);
3928 }
3929
3930 rio2->sgeCnt = cpu_to_le32(nseg);
3931 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
3932 /* not conformable: evaluate required sg elements */
3933 if (!conformable) {
3934 int j, nseg_new = nseg, err_found;
3935 for (i = min_size / PAGE_SIZE; i >= 1; --i) {
3936 err_found = 0;
3937 nseg_new = 2;
3938 for (j = 1; j < nseg - 1; ++j) {
3939 if (rio2->sge[j].length % (i*PAGE_SIZE)) {
3940 err_found = 1;
3941 break;
3942 }
3943 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
3944 }
3945 if (!err_found)
3946 break;
3947 }
3948 if (i > 0 && nseg_new <= sg_max)
3949 aac_convert_sgraw2(rio2, i, nseg, nseg_new);
3950 } else
3951 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3952
3953 /* Check for command underflow */
3954 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3955 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3956 byte_count, scsicmd->underflow);
3957 }
3958 }
3959
3960 return byte_count;
3961 }
3962
3963 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
3964 {
3965 struct sge_ieee1212 *sge;
3966 int i, j, pos;
3967 u32 addr_low;
3968
3969 if (aac_convert_sgl == 0)
3970 return 0;
3971
3972 sge = kmalloc(nseg_new * sizeof(struct sge_ieee1212), GFP_ATOMIC);
3973 if (sge == NULL)
3974 return -1;
3975
3976 for (i = 1, pos = 1; i < nseg-1; ++i) {
3977 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
3978 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
3979 sge[pos].addrLow = addr_low;
3980 sge[pos].addrHigh = rio2->sge[i].addrHigh;
3981 if (addr_low < rio2->sge[i].addrLow)
3982 sge[pos].addrHigh++;
3983 sge[pos].length = pages * PAGE_SIZE;
3984 sge[pos].flags = 0;
3985 pos++;
3986 }
3987 }
3988 sge[pos] = rio2->sge[nseg-1];
3989 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
3990
3991 kfree(sge);
3992 rio2->sgeCnt = cpu_to_le32(nseg_new);
3993 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3994 rio2->sgeNominalSize = pages * PAGE_SIZE;
3995 return 0;
3996 }
3997
3998 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
3999 struct aac_hba_cmd_req *hbacmd,
4000 int sg_max,
4001 u64 sg_address)
4002 {
4003 unsigned long byte_count = 0;
4004 int nseg;
4005 struct scatterlist *sg;
4006 int i;
4007 u32 cur_size;
4008 struct aac_hba_sgl *sge;
4009
4010
4011
4012 nseg = scsi_dma_map(scsicmd);
4013 if (nseg <= 0) {
4014 byte_count = nseg;
4015 goto out;
4016 }
4017
4018 if (nseg > HBA_MAX_SG_EMBEDDED)
4019 sge = &hbacmd->sge[2];
4020 else
4021 sge = &hbacmd->sge[0];
4022
4023 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4024 int count = sg_dma_len(sg);
4025 u64 addr = sg_dma_address(sg);
4026
4027 WARN_ON(i >= sg_max);
4028 sge->addr_hi = cpu_to_le32((u32)(addr>>32));
4029 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff));
4030 cur_size = cpu_to_le32(count);
4031 sge->len = cur_size;
4032 sge->flags = 0;
4033 byte_count += count;
4034 sge++;
4035 }
4036
4037 sge--;
4038 /* hba wants the size to be exact */
4039 if (byte_count > scsi_bufflen(scsicmd)) {
4040 u32 temp;
4041
4042 temp = le32_to_cpu(sge->len) - byte_count
4043 - scsi_bufflen(scsicmd);
4044 sge->len = cpu_to_le32(temp);
4045 byte_count = scsi_bufflen(scsicmd);
4046 }
4047
4048 if (nseg <= HBA_MAX_SG_EMBEDDED) {
4049 hbacmd->emb_data_desc_count = cpu_to_le32(nseg);
4050 sge->flags = cpu_to_le32(0x40000000);
4051 } else {
4052 /* not embedded */
4053 hbacmd->sge[0].flags = cpu_to_le32(0x80000000);
4054 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1);
4055 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32);
4056 hbacmd->sge[0].addr_lo =
4057 cpu_to_le32((u32)(sg_address & 0xffffffff));
4058 }
4059
4060 /* Check for command underflow */
4061 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4062 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n",
4063 byte_count, scsicmd->underflow);
4064 }
4065 out:
4066 return byte_count;
4067 }
4068
4069 #ifdef AAC_DETAILED_STATUS_INFO
4070
4071 struct aac_srb_status_info {
4072 u32 status;
4073 char *str;
4074 };
4075
4076
4077 static struct aac_srb_status_info srb_status_info[] = {
4078 { SRB_STATUS_PENDING, "Pending Status"},
4079 { SRB_STATUS_SUCCESS, "Success"},
4080 { SRB_STATUS_ABORTED, "Aborted Command"},
4081 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
4082 { SRB_STATUS_ERROR, "Error Event"},
4083 { SRB_STATUS_BUSY, "Device Busy"},
4084 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
4085 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
4086 { SRB_STATUS_NO_DEVICE, "No Device"},
4087 { SRB_STATUS_TIMEOUT, "Timeout"},
4088 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
4089 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
4090 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
4091 { SRB_STATUS_BUS_RESET, "Bus Reset"},
4092 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
4093 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
4094 { SRB_STATUS_NO_HBA, "No HBA"},
4095 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
4096 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
4097 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
4098 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
4099 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
4100 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
4101 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
4102 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
4103 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
4104 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
4105 { SRB_STATUS_NOT_STARTED, "Not Started"},
4106 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
4107 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
4108 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
4109 { 0xff, "Unknown Error"}
4110 };
4111
4112 char *aac_get_status_string(u32 status)
4113 {
4114 int i;
4115
4116 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
4117 if (srb_status_info[i].status == status)
4118 return srb_status_info[i].str;
4119
4120 return "Bad Status Code";
4121 }
4122
4123 #endif