]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/aacraid/aachba.c
scsi: aacraid: Log count info of scsi cmds before reset
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / aacraid / aachba.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 * Module Name:
27 * aachba.c
28 *
29 * Abstract: Contains Interfaces to manage IOs.
30 *
31 */
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/uaccess.h>
42 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
43 #include <linux/module.h>
44
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49
50 #include "aacraid.h"
51
52 /* values for inqd_pdt: Peripheral device type in plain English */
53 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
54 #define INQD_PDT_PROC 0x03 /* Processor device */
55 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
56 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
57 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
58 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
59
60 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
61 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
62
63 /*
64 * Sense codes
65 */
66
67 #define SENCODE_NO_SENSE 0x00
68 #define SENCODE_END_OF_DATA 0x00
69 #define SENCODE_BECOMING_READY 0x04
70 #define SENCODE_INIT_CMD_REQUIRED 0x04
71 #define SENCODE_UNRECOVERED_READ_ERROR 0x11
72 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
73 #define SENCODE_INVALID_COMMAND 0x20
74 #define SENCODE_LBA_OUT_OF_RANGE 0x21
75 #define SENCODE_INVALID_CDB_FIELD 0x24
76 #define SENCODE_LUN_NOT_SUPPORTED 0x25
77 #define SENCODE_INVALID_PARAM_FIELD 0x26
78 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
79 #define SENCODE_PARAM_VALUE_INVALID 0x26
80 #define SENCODE_RESET_OCCURRED 0x29
81 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
82 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
83 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
84 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
85 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
86 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
87 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
88 #define SENCODE_OVERLAPPED_COMMAND 0x4E
89
90 /*
91 * Additional sense codes
92 */
93
94 #define ASENCODE_NO_SENSE 0x00
95 #define ASENCODE_END_OF_DATA 0x05
96 #define ASENCODE_BECOMING_READY 0x01
97 #define ASENCODE_INIT_CMD_REQUIRED 0x02
98 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
99 #define ASENCODE_INVALID_COMMAND 0x00
100 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
101 #define ASENCODE_INVALID_CDB_FIELD 0x00
102 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
103 #define ASENCODE_INVALID_PARAM_FIELD 0x00
104 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
105 #define ASENCODE_PARAM_VALUE_INVALID 0x02
106 #define ASENCODE_RESET_OCCURRED 0x00
107 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
108 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
109 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
110 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
111 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
112 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
113 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
114 #define ASENCODE_OVERLAPPED_COMMAND 0x00
115
116 #define AAC_STAT_GOOD (DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD)
117
118 #define BYTE0(x) (unsigned char)(x)
119 #define BYTE1(x) (unsigned char)((x) >> 8)
120 #define BYTE2(x) (unsigned char)((x) >> 16)
121 #define BYTE3(x) (unsigned char)((x) >> 24)
122
123 /* MODE_SENSE data format */
124 typedef struct {
125 struct {
126 u8 data_length;
127 u8 med_type;
128 u8 dev_par;
129 u8 bd_length;
130 } __attribute__((packed)) hd;
131 struct {
132 u8 dens_code;
133 u8 block_count[3];
134 u8 reserved;
135 u8 block_length[3];
136 } __attribute__((packed)) bd;
137 u8 mpc_buf[3];
138 } __attribute__((packed)) aac_modep_data;
139
140 /* MODE_SENSE_10 data format */
141 typedef struct {
142 struct {
143 u8 data_length[2];
144 u8 med_type;
145 u8 dev_par;
146 u8 rsrvd[2];
147 u8 bd_length[2];
148 } __attribute__((packed)) hd;
149 struct {
150 u8 dens_code;
151 u8 block_count[3];
152 u8 reserved;
153 u8 block_length[3];
154 } __attribute__((packed)) bd;
155 u8 mpc_buf[3];
156 } __attribute__((packed)) aac_modep10_data;
157
158 /*------------------------------------------------------------------------------
159 * S T R U C T S / T Y P E D E F S
160 *----------------------------------------------------------------------------*/
161 /* SCSI inquiry data */
162 struct inquiry_data {
163 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
164 u8 inqd_dtq; /* RMB | Device Type Qualifier */
165 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
166 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
167 u8 inqd_len; /* Additional length (n-4) */
168 u8 inqd_pad1[2];/* Reserved - must be zero */
169 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
170 u8 inqd_vid[8]; /* Vendor ID */
171 u8 inqd_pid[16];/* Product ID */
172 u8 inqd_prl[4]; /* Product Revision Level */
173 };
174
175 /* Added for VPD 0x83 */
176 struct tvpd_id_descriptor_type_1 {
177 u8 codeset:4; /* VPD_CODE_SET */
178 u8 reserved:4;
179 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
180 u8 reserved2:4;
181 u8 reserved3;
182 u8 identifierlength;
183 u8 venid[8];
184 u8 productid[16];
185 u8 serialnumber[8]; /* SN in ASCII */
186
187 };
188
189 struct tvpd_id_descriptor_type_2 {
190 u8 codeset:4; /* VPD_CODE_SET */
191 u8 reserved:4;
192 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
193 u8 reserved2:4;
194 u8 reserved3;
195 u8 identifierlength;
196 struct teu64id {
197 u32 Serial;
198 /* The serial number supposed to be 40 bits,
199 * bit we only support 32, so make the last byte zero. */
200 u8 reserved;
201 u8 venid[3];
202 } eu64id;
203
204 };
205
206 struct tvpd_id_descriptor_type_3 {
207 u8 codeset : 4; /* VPD_CODE_SET */
208 u8 reserved : 4;
209 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */
210 u8 reserved2 : 4;
211 u8 reserved3;
212 u8 identifierlength;
213 u8 Identifier[16];
214 };
215
216 struct tvpd_page83 {
217 u8 DeviceType:5;
218 u8 DeviceTypeQualifier:3;
219 u8 PageCode;
220 u8 reserved;
221 u8 PageLength;
222 struct tvpd_id_descriptor_type_1 type1;
223 struct tvpd_id_descriptor_type_2 type2;
224 struct tvpd_id_descriptor_type_3 type3;
225 };
226
227 /*
228 * M O D U L E G L O B A L S
229 */
230
231 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
232 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
233 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
234 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
235 struct aac_raw_io2 *rio2, int sg_max);
236 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
237 struct aac_hba_cmd_req *hbacmd,
238 int sg_max, u64 sg_address);
239 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
240 int pages, int nseg, int nseg_new);
241 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
242 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd);
243 #ifdef AAC_DETAILED_STATUS_INFO
244 static char *aac_get_status_string(u32 status);
245 #endif
246
247 /*
248 * Non dasd selection is handled entirely in aachba now
249 */
250
251 static int nondasd = -1;
252 static int aac_cache = 2; /* WCE=0 to avoid performance problems */
253 static int dacmode = -1;
254 int aac_msi;
255 int aac_commit = -1;
256 int startup_timeout = 180;
257 int aif_timeout = 120;
258 int aac_sync_mode; /* Only Sync. transfer - disabled */
259 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */
260
261 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
262 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
263 " 0=off, 1=on");
264 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
265 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
266 " 0=off, 1=on");
267 module_param(nondasd, int, S_IRUGO|S_IWUSR);
268 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
269 " 0=off, 1=on");
270 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
271 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
272 "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
273 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
274 "\tbit 2 - Disable only if Battery is protecting Cache");
275 module_param(dacmode, int, S_IRUGO|S_IWUSR);
276 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
277 " 0=off, 1=on");
278 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
279 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
280 " adapter for foreign arrays.\n"
281 "This is typically needed in systems that do not have a BIOS."
282 " 0=off, 1=on");
283 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
284 MODULE_PARM_DESC(msi, "IRQ handling."
285 " 0=PIC(default), 1=MSI, 2=MSI-X)");
286 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
287 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
288 " adapter to have it's kernel up and\n"
289 "running. This is typically adjusted for large systems that do not"
290 " have a BIOS.");
291 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
292 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
293 " applications to pick up AIFs before\n"
294 "deregistering them. This is typically adjusted for heavily burdened"
295 " systems.");
296
297 int aac_fib_dump;
298 module_param(aac_fib_dump, int, 0644);
299 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on");
300
301 int numacb = -1;
302 module_param(numacb, int, S_IRUGO|S_IWUSR);
303 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
304 " blocks (FIB) allocated. Valid values are 512 and down. Default is"
305 " to use suggestion from Firmware.");
306
307 int acbsize = -1;
308 module_param(acbsize, int, S_IRUGO|S_IWUSR);
309 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
310 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
311 " suggestion from Firmware.");
312
313 int update_interval = 30 * 60;
314 module_param(update_interval, int, S_IRUGO|S_IWUSR);
315 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
316 " updates issued to adapter.");
317
318 int check_interval = 60;
319 module_param(check_interval, int, S_IRUGO|S_IWUSR);
320 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
321 " checks.");
322
323 int aac_check_reset = 1;
324 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
325 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
326 " adapter. a value of -1 forces the reset to adapters programmed to"
327 " ignore it.");
328
329 int expose_physicals = -1;
330 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
331 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
332 " -1=protect 0=off, 1=on");
333
334 int aac_reset_devices;
335 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
336 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
337
338 int aac_wwn = 1;
339 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
340 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
341 "\t0 - Disable\n"
342 "\t1 - Array Meta Data Signature (default)\n"
343 "\t2 - Adapter Serial Number");
344
345
346 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
347 struct fib *fibptr) {
348 struct scsi_device *device;
349
350 if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
351 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
352 aac_fib_complete(fibptr);
353 return 0;
354 }
355 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
356 device = scsicmd->device;
357 if (unlikely(!device)) {
358 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
359 aac_fib_complete(fibptr);
360 return 0;
361 }
362 return 1;
363 }
364
365 /**
366 * aac_get_config_status - check the adapter configuration
367 * @common: adapter to query
368 *
369 * Query config status, and commit the configuration if needed.
370 */
371 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
372 {
373 int status = 0;
374 struct fib * fibptr;
375
376 if (!(fibptr = aac_fib_alloc(dev)))
377 return -ENOMEM;
378
379 aac_fib_init(fibptr);
380 {
381 struct aac_get_config_status *dinfo;
382 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
383
384 dinfo->command = cpu_to_le32(VM_ContainerConfig);
385 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
386 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
387 }
388
389 status = aac_fib_send(ContainerCommand,
390 fibptr,
391 sizeof (struct aac_get_config_status),
392 FsaNormal,
393 1, 1,
394 NULL, NULL);
395 if (status < 0) {
396 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
397 } else {
398 struct aac_get_config_status_resp *reply
399 = (struct aac_get_config_status_resp *) fib_data(fibptr);
400 dprintk((KERN_WARNING
401 "aac_get_config_status: response=%d status=%d action=%d\n",
402 le32_to_cpu(reply->response),
403 le32_to_cpu(reply->status),
404 le32_to_cpu(reply->data.action)));
405 if ((le32_to_cpu(reply->response) != ST_OK) ||
406 (le32_to_cpu(reply->status) != CT_OK) ||
407 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
408 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
409 status = -EINVAL;
410 }
411 }
412 /* Do not set XferState to zero unless receives a response from F/W */
413 if (status >= 0)
414 aac_fib_complete(fibptr);
415
416 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
417 if (status >= 0) {
418 if ((aac_commit == 1) || commit_flag) {
419 struct aac_commit_config * dinfo;
420 aac_fib_init(fibptr);
421 dinfo = (struct aac_commit_config *) fib_data(fibptr);
422
423 dinfo->command = cpu_to_le32(VM_ContainerConfig);
424 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
425
426 status = aac_fib_send(ContainerCommand,
427 fibptr,
428 sizeof (struct aac_commit_config),
429 FsaNormal,
430 1, 1,
431 NULL, NULL);
432 /* Do not set XferState to zero unless
433 * receives a response from F/W */
434 if (status >= 0)
435 aac_fib_complete(fibptr);
436 } else if (aac_commit == 0) {
437 printk(KERN_WARNING
438 "aac_get_config_status: Foreign device configurations are being ignored\n");
439 }
440 }
441 /* FIB should be freed only after getting the response from the F/W */
442 if (status != -ERESTARTSYS)
443 aac_fib_free(fibptr);
444 return status;
445 }
446
447 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
448 {
449 char inq_data;
450 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data));
451 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
452 inq_data &= 0xdf;
453 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
454 }
455 }
456
457 /**
458 * aac_get_containers - list containers
459 * @common: adapter to probe
460 *
461 * Make a list of all containers on this controller
462 */
463 int aac_get_containers(struct aac_dev *dev)
464 {
465 struct fsa_dev_info *fsa_dev_ptr;
466 u32 index;
467 int status = 0;
468 struct fib * fibptr;
469 struct aac_get_container_count *dinfo;
470 struct aac_get_container_count_resp *dresp;
471 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
472
473 if (!(fibptr = aac_fib_alloc(dev)))
474 return -ENOMEM;
475
476 aac_fib_init(fibptr);
477 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
478 dinfo->command = cpu_to_le32(VM_ContainerConfig);
479 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
480
481 status = aac_fib_send(ContainerCommand,
482 fibptr,
483 sizeof (struct aac_get_container_count),
484 FsaNormal,
485 1, 1,
486 NULL, NULL);
487 if (status >= 0) {
488 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
489 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
490 if (fibptr->dev->supplement_adapter_info.supported_options2 &
491 AAC_OPTION_SUPPORTED_240_VOLUMES) {
492 maximum_num_containers =
493 le32_to_cpu(dresp->MaxSimpleVolumes);
494 }
495 aac_fib_complete(fibptr);
496 }
497 /* FIB should be freed only after getting the response from the F/W */
498 if (status != -ERESTARTSYS)
499 aac_fib_free(fibptr);
500
501 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
502 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
503 if (dev->fsa_dev == NULL ||
504 dev->maximum_num_containers != maximum_num_containers) {
505
506 fsa_dev_ptr = dev->fsa_dev;
507
508 dev->fsa_dev = kcalloc(maximum_num_containers,
509 sizeof(*fsa_dev_ptr), GFP_KERNEL);
510
511 kfree(fsa_dev_ptr);
512 fsa_dev_ptr = NULL;
513
514
515 if (!dev->fsa_dev)
516 return -ENOMEM;
517
518 dev->maximum_num_containers = maximum_num_containers;
519 }
520 for (index = 0; index < dev->maximum_num_containers; index++) {
521 dev->fsa_dev[index].devname[0] = '\0';
522 dev->fsa_dev[index].valid = 0;
523
524 status = aac_probe_container(dev, index);
525
526 if (status < 0) {
527 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
528 break;
529 }
530 }
531 return status;
532 }
533
534 static void get_container_name_callback(void *context, struct fib * fibptr)
535 {
536 struct aac_get_name_resp * get_name_reply;
537 struct scsi_cmnd * scsicmd;
538
539 scsicmd = (struct scsi_cmnd *) context;
540
541 if (!aac_valid_context(scsicmd, fibptr))
542 return;
543
544 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
545 BUG_ON(fibptr == NULL);
546
547 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
548 /* Failure is irrelevant, using default value instead */
549 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
550 && (get_name_reply->data[0] != '\0')) {
551 char *sp = get_name_reply->data;
552 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)] = '\0';
553 while (*sp == ' ')
554 ++sp;
555 if (*sp) {
556 struct inquiry_data inq;
557 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
558 int count = sizeof(d);
559 char *dp = d;
560 do {
561 *dp++ = (*sp) ? *sp++ : ' ';
562 } while (--count > 0);
563
564 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
565 memcpy(inq.inqd_pid, d, sizeof(d));
566 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
567 }
568 }
569
570 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
571
572 aac_fib_complete(fibptr);
573 scsicmd->scsi_done(scsicmd);
574 }
575
576 /**
577 * aac_get_container_name - get container name, none blocking.
578 */
579 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
580 {
581 int status;
582 struct aac_get_name *dinfo;
583 struct fib * cmd_fibcontext;
584 struct aac_dev * dev;
585
586 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
587
588 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
589
590 aac_fib_init(cmd_fibcontext);
591 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
592
593 dinfo->command = cpu_to_le32(VM_ContainerConfig);
594 dinfo->type = cpu_to_le32(CT_READ_NAME);
595 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
596 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
597
598 status = aac_fib_send(ContainerCommand,
599 cmd_fibcontext,
600 sizeof(struct aac_get_name_resp),
601 FsaNormal,
602 0, 1,
603 (fib_callback)get_container_name_callback,
604 (void *) scsicmd);
605
606 /*
607 * Check that the command queued to the controller
608 */
609 if (status == -EINPROGRESS) {
610 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
611 return 0;
612 }
613
614 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
615 aac_fib_complete(cmd_fibcontext);
616 return -1;
617 }
618
619 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
620 {
621 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
622
623 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
624 return aac_scsi_cmd(scsicmd);
625
626 scsicmd->result = DID_NO_CONNECT << 16;
627 scsicmd->scsi_done(scsicmd);
628 return 0;
629 }
630
631 static void _aac_probe_container2(void * context, struct fib * fibptr)
632 {
633 struct fsa_dev_info *fsa_dev_ptr;
634 int (*callback)(struct scsi_cmnd *);
635 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
636 int i;
637
638
639 if (!aac_valid_context(scsicmd, fibptr))
640 return;
641
642 scsicmd->SCp.Status = 0;
643 fsa_dev_ptr = fibptr->dev->fsa_dev;
644 if (fsa_dev_ptr) {
645 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
646 __le32 sup_options2;
647
648 fsa_dev_ptr += scmd_id(scsicmd);
649 sup_options2 =
650 fibptr->dev->supplement_adapter_info.supported_options2;
651
652 if ((le32_to_cpu(dresp->status) == ST_OK) &&
653 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
654 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
655 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
656 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
657 fsa_dev_ptr->block_size = 0x200;
658 } else {
659 fsa_dev_ptr->block_size =
660 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
661 }
662 for (i = 0; i < 16; i++)
663 fsa_dev_ptr->identifier[i] =
664 dresp->mnt[0].fileinfo.bdevinfo
665 .identifier[i];
666 fsa_dev_ptr->valid = 1;
667 /* sense_key holds the current state of the spin-up */
668 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
669 fsa_dev_ptr->sense_data.sense_key = NOT_READY;
670 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
671 fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
672 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
673 fsa_dev_ptr->size
674 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
675 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
676 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
677 }
678 if ((fsa_dev_ptr->valid & 1) == 0)
679 fsa_dev_ptr->valid = 0;
680 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
681 }
682 aac_fib_complete(fibptr);
683 aac_fib_free(fibptr);
684 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
685 scsicmd->SCp.ptr = NULL;
686 (*callback)(scsicmd);
687 return;
688 }
689
690 static void _aac_probe_container1(void * context, struct fib * fibptr)
691 {
692 struct scsi_cmnd * scsicmd;
693 struct aac_mount * dresp;
694 struct aac_query_mount *dinfo;
695 int status;
696
697 dresp = (struct aac_mount *) fib_data(fibptr);
698 if (!(fibptr->dev->supplement_adapter_info.supported_options2 &
699 AAC_OPTION_VARIABLE_BLOCK_SIZE))
700 dresp->mnt[0].capacityhigh = 0;
701 if ((le32_to_cpu(dresp->status) != ST_OK) ||
702 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
703 _aac_probe_container2(context, fibptr);
704 return;
705 }
706 scsicmd = (struct scsi_cmnd *) context;
707
708 if (!aac_valid_context(scsicmd, fibptr))
709 return;
710
711 aac_fib_init(fibptr);
712
713 dinfo = (struct aac_query_mount *)fib_data(fibptr);
714
715 if (fibptr->dev->supplement_adapter_info.supported_options2 &
716 AAC_OPTION_VARIABLE_BLOCK_SIZE)
717 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
718 else
719 dinfo->command = cpu_to_le32(VM_NameServe64);
720
721 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
722 dinfo->type = cpu_to_le32(FT_FILESYS);
723
724 status = aac_fib_send(ContainerCommand,
725 fibptr,
726 sizeof(struct aac_query_mount),
727 FsaNormal,
728 0, 1,
729 _aac_probe_container2,
730 (void *) scsicmd);
731 /*
732 * Check that the command queued to the controller
733 */
734 if (status == -EINPROGRESS)
735 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
736 else if (status < 0) {
737 /* Inherit results from VM_NameServe, if any */
738 dresp->status = cpu_to_le32(ST_OK);
739 _aac_probe_container2(context, fibptr);
740 }
741 }
742
743 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
744 {
745 struct fib * fibptr;
746 int status = -ENOMEM;
747
748 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
749 struct aac_query_mount *dinfo;
750
751 aac_fib_init(fibptr);
752
753 dinfo = (struct aac_query_mount *)fib_data(fibptr);
754
755 if (fibptr->dev->supplement_adapter_info.supported_options2 &
756 AAC_OPTION_VARIABLE_BLOCK_SIZE)
757 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
758 else
759 dinfo->command = cpu_to_le32(VM_NameServe);
760
761 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
762 dinfo->type = cpu_to_le32(FT_FILESYS);
763 scsicmd->SCp.ptr = (char *)callback;
764
765 status = aac_fib_send(ContainerCommand,
766 fibptr,
767 sizeof(struct aac_query_mount),
768 FsaNormal,
769 0, 1,
770 _aac_probe_container1,
771 (void *) scsicmd);
772 /*
773 * Check that the command queued to the controller
774 */
775 if (status == -EINPROGRESS) {
776 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
777 return 0;
778 }
779 if (status < 0) {
780 scsicmd->SCp.ptr = NULL;
781 aac_fib_complete(fibptr);
782 aac_fib_free(fibptr);
783 }
784 }
785 if (status < 0) {
786 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
787 if (fsa_dev_ptr) {
788 fsa_dev_ptr += scmd_id(scsicmd);
789 if ((fsa_dev_ptr->valid & 1) == 0) {
790 fsa_dev_ptr->valid = 0;
791 return (*callback)(scsicmd);
792 }
793 }
794 }
795 return status;
796 }
797
798 /**
799 * aac_probe_container - query a logical volume
800 * @dev: device to query
801 * @cid: container identifier
802 *
803 * Queries the controller about the given volume. The volume information
804 * is updated in the struct fsa_dev_info structure rather than returned.
805 */
806 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
807 {
808 scsicmd->device = NULL;
809 return 0;
810 }
811
812 int aac_probe_container(struct aac_dev *dev, int cid)
813 {
814 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
815 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
816 int status;
817
818 if (!scsicmd || !scsidev) {
819 kfree(scsicmd);
820 kfree(scsidev);
821 return -ENOMEM;
822 }
823 scsicmd->list.next = NULL;
824 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
825
826 scsicmd->device = scsidev;
827 scsidev->sdev_state = 0;
828 scsidev->id = cid;
829 scsidev->host = dev->scsi_host_ptr;
830
831 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
832 while (scsicmd->device == scsidev)
833 schedule();
834 kfree(scsidev);
835 status = scsicmd->SCp.Status;
836 kfree(scsicmd);
837 return status;
838 }
839
840 /* Local Structure to set SCSI inquiry data strings */
841 struct scsi_inq {
842 char vid[8]; /* Vendor ID */
843 char pid[16]; /* Product ID */
844 char prl[4]; /* Product Revision Level */
845 };
846
847 /**
848 * InqStrCopy - string merge
849 * @a: string to copy from
850 * @b: string to copy to
851 *
852 * Copy a String from one location to another
853 * without copying \0
854 */
855
856 static void inqstrcpy(char *a, char *b)
857 {
858
859 while (*a != (char)0)
860 *b++ = *a++;
861 }
862
863 static char *container_types[] = {
864 "None",
865 "Volume",
866 "Mirror",
867 "Stripe",
868 "RAID5",
869 "SSRW",
870 "SSRO",
871 "Morph",
872 "Legacy",
873 "RAID4",
874 "RAID10",
875 "RAID00",
876 "V-MIRRORS",
877 "PSEUDO R4",
878 "RAID50",
879 "RAID5D",
880 "RAID5D0",
881 "RAID1E",
882 "RAID6",
883 "RAID60",
884 "Unknown"
885 };
886
887 char * get_container_type(unsigned tindex)
888 {
889 if (tindex >= ARRAY_SIZE(container_types))
890 tindex = ARRAY_SIZE(container_types) - 1;
891 return container_types[tindex];
892 }
893
894 /* Function: setinqstr
895 *
896 * Arguments: [1] pointer to void [1] int
897 *
898 * Purpose: Sets SCSI inquiry data strings for vendor, product
899 * and revision level. Allows strings to be set in platform dependent
900 * files instead of in OS dependent driver source.
901 */
902
903 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
904 {
905 struct scsi_inq *str;
906 struct aac_supplement_adapter_info *sup_adap_info;
907
908 sup_adap_info = &dev->supplement_adapter_info;
909 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
910 memset(str, ' ', sizeof(*str));
911
912 if (sup_adap_info->adapter_type_text[0]) {
913 char *cp = sup_adap_info->adapter_type_text;
914 int c;
915 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
916 inqstrcpy("SMC", str->vid);
917 else {
918 c = sizeof(str->vid);
919 while (*cp && *cp != ' ' && --c)
920 ++cp;
921 c = *cp;
922 *cp = '\0';
923 inqstrcpy(sup_adap_info->adapter_type_text, str->vid);
924 *cp = c;
925 while (*cp && *cp != ' ')
926 ++cp;
927 }
928 while (*cp == ' ')
929 ++cp;
930 /* last six chars reserved for vol type */
931 c = 0;
932 if (strlen(cp) > sizeof(str->pid)) {
933 c = cp[sizeof(str->pid)];
934 cp[sizeof(str->pid)] = '\0';
935 }
936 inqstrcpy (cp, str->pid);
937 if (c)
938 cp[sizeof(str->pid)] = c;
939 } else {
940 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
941
942 inqstrcpy (mp->vname, str->vid);
943 /* last six chars reserved for vol type */
944 inqstrcpy (mp->model, str->pid);
945 }
946
947 if (tindex < ARRAY_SIZE(container_types)){
948 char *findit = str->pid;
949
950 for ( ; *findit != ' '; findit++); /* walk till we find a space */
951 /* RAID is superfluous in the context of a RAID device */
952 if (memcmp(findit-4, "RAID", 4) == 0)
953 *(findit -= 4) = ' ';
954 if (((findit - str->pid) + strlen(container_types[tindex]))
955 < (sizeof(str->pid) + sizeof(str->prl)))
956 inqstrcpy (container_types[tindex], findit + 1);
957 }
958 inqstrcpy ("V1.0", str->prl);
959 }
960
961 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data,
962 struct aac_dev *dev, struct scsi_cmnd *scsicmd)
963 {
964 int container;
965
966 vpdpage83data->type3.codeset = 1;
967 vpdpage83data->type3.identifiertype = 3;
968 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3)
969 - 4;
970
971 for (container = 0; container < dev->maximum_num_containers;
972 container++) {
973
974 if (scmd_id(scsicmd) == container) {
975 memcpy(vpdpage83data->type3.Identifier,
976 dev->fsa_dev[container].identifier,
977 16);
978 break;
979 }
980 }
981 }
982
983 static void get_container_serial_callback(void *context, struct fib * fibptr)
984 {
985 struct aac_get_serial_resp * get_serial_reply;
986 struct scsi_cmnd * scsicmd;
987
988 BUG_ON(fibptr == NULL);
989
990 scsicmd = (struct scsi_cmnd *) context;
991 if (!aac_valid_context(scsicmd, fibptr))
992 return;
993
994 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
995 /* Failure is irrelevant, using default value instead */
996 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
997 /*Check to see if it's for VPD 0x83 or 0x80 */
998 if (scsicmd->cmnd[2] == 0x83) {
999 /* vpd page 0x83 - Device Identification Page */
1000 struct aac_dev *dev;
1001 int i;
1002 struct tvpd_page83 vpdpage83data;
1003
1004 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1005
1006 memset(((u8 *)&vpdpage83data), 0,
1007 sizeof(vpdpage83data));
1008
1009 /* DIRECT_ACCESS_DEVIC */
1010 vpdpage83data.DeviceType = 0;
1011 /* DEVICE_CONNECTED */
1012 vpdpage83data.DeviceTypeQualifier = 0;
1013 /* VPD_DEVICE_IDENTIFIERS */
1014 vpdpage83data.PageCode = 0x83;
1015 vpdpage83data.reserved = 0;
1016 vpdpage83data.PageLength =
1017 sizeof(vpdpage83data.type1) +
1018 sizeof(vpdpage83data.type2);
1019
1020 /* VPD 83 Type 3 is not supported for ARC */
1021 if (dev->sa_firmware)
1022 vpdpage83data.PageLength +=
1023 sizeof(vpdpage83data.type3);
1024
1025 /* T10 Vendor Identifier Field Format */
1026 /* VpdcodesetAscii */
1027 vpdpage83data.type1.codeset = 2;
1028 /* VpdIdentifierTypeVendorId */
1029 vpdpage83data.type1.identifiertype = 1;
1030 vpdpage83data.type1.identifierlength =
1031 sizeof(vpdpage83data.type1) - 4;
1032
1033 /* "ADAPTEC " for adaptec */
1034 memcpy(vpdpage83data.type1.venid,
1035 "ADAPTEC ",
1036 sizeof(vpdpage83data.type1.venid));
1037 memcpy(vpdpage83data.type1.productid,
1038 "ARRAY ",
1039 sizeof(
1040 vpdpage83data.type1.productid));
1041
1042 /* Convert to ascii based serial number.
1043 * The LSB is the the end.
1044 */
1045 for (i = 0; i < 8; i++) {
1046 u8 temp =
1047 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
1048 if (temp > 0x9) {
1049 vpdpage83data.type1.serialnumber[i] =
1050 'A' + (temp - 0xA);
1051 } else {
1052 vpdpage83data.type1.serialnumber[i] =
1053 '0' + temp;
1054 }
1055 }
1056
1057 /* VpdCodeSetBinary */
1058 vpdpage83data.type2.codeset = 1;
1059 /* VpdidentifiertypeEUI64 */
1060 vpdpage83data.type2.identifiertype = 2;
1061 vpdpage83data.type2.identifierlength =
1062 sizeof(vpdpage83data.type2) - 4;
1063
1064 vpdpage83data.type2.eu64id.venid[0] = 0xD0;
1065 vpdpage83data.type2.eu64id.venid[1] = 0;
1066 vpdpage83data.type2.eu64id.venid[2] = 0;
1067
1068 vpdpage83data.type2.eu64id.Serial =
1069 get_serial_reply->uid;
1070 vpdpage83data.type2.eu64id.reserved = 0;
1071
1072 /*
1073 * VpdIdentifierTypeFCPHName
1074 * VPD 0x83 Type 3 not supported for ARC
1075 */
1076 if (dev->sa_firmware) {
1077 build_vpd83_type3(&vpdpage83data,
1078 dev, scsicmd);
1079 }
1080
1081 /* Move the inquiry data to the response buffer. */
1082 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data,
1083 sizeof(vpdpage83data));
1084 } else {
1085 /* It must be for VPD 0x80 */
1086 char sp[13];
1087 /* EVPD bit set */
1088 sp[0] = INQD_PDT_DA;
1089 sp[1] = scsicmd->cmnd[2];
1090 sp[2] = 0;
1091 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
1092 le32_to_cpu(get_serial_reply->uid));
1093 scsi_sg_copy_from_buffer(scsicmd, sp,
1094 sizeof(sp));
1095 }
1096 }
1097
1098 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1099
1100 aac_fib_complete(fibptr);
1101 scsicmd->scsi_done(scsicmd);
1102 }
1103
1104 /**
1105 * aac_get_container_serial - get container serial, none blocking.
1106 */
1107 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1108 {
1109 int status;
1110 struct aac_get_serial *dinfo;
1111 struct fib * cmd_fibcontext;
1112 struct aac_dev * dev;
1113
1114 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1115
1116 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1117
1118 aac_fib_init(cmd_fibcontext);
1119 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1120
1121 dinfo->command = cpu_to_le32(VM_ContainerConfig);
1122 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1123 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1124
1125 status = aac_fib_send(ContainerCommand,
1126 cmd_fibcontext,
1127 sizeof(struct aac_get_serial_resp),
1128 FsaNormal,
1129 0, 1,
1130 (fib_callback) get_container_serial_callback,
1131 (void *) scsicmd);
1132
1133 /*
1134 * Check that the command queued to the controller
1135 */
1136 if (status == -EINPROGRESS) {
1137 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1138 return 0;
1139 }
1140
1141 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1142 aac_fib_complete(cmd_fibcontext);
1143 return -1;
1144 }
1145
1146 /* Function: setinqserial
1147 *
1148 * Arguments: [1] pointer to void [1] int
1149 *
1150 * Purpose: Sets SCSI Unit Serial number.
1151 * This is a fake. We should read a proper
1152 * serial number from the container. <SuSE>But
1153 * without docs it's quite hard to do it :-)
1154 * So this will have to do in the meantime.</SuSE>
1155 */
1156
1157 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1158 {
1159 /*
1160 * This breaks array migration.
1161 */
1162 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1163 le32_to_cpu(dev->adapter_info.serial[0]), cid);
1164 }
1165
1166 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1167 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1168 {
1169 u8 *sense_buf = (u8 *)sense_data;
1170 /* Sense data valid, err code 70h */
1171 sense_buf[0] = 0x70; /* No info field */
1172 sense_buf[1] = 0; /* Segment number, always zero */
1173
1174 sense_buf[2] = sense_key; /* Sense key */
1175
1176 sense_buf[12] = sense_code; /* Additional sense code */
1177 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
1178
1179 if (sense_key == ILLEGAL_REQUEST) {
1180 sense_buf[7] = 10; /* Additional sense length */
1181
1182 sense_buf[15] = bit_pointer;
1183 /* Illegal parameter is in the parameter block */
1184 if (sense_code == SENCODE_INVALID_CDB_FIELD)
1185 sense_buf[15] |= 0xc0;/* Std sense key specific field */
1186 /* Illegal parameter is in the CDB block */
1187 sense_buf[16] = field_pointer >> 8; /* MSB */
1188 sense_buf[17] = field_pointer; /* LSB */
1189 } else
1190 sense_buf[7] = 6; /* Additional sense length */
1191 }
1192
1193 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1194 {
1195 if (lba & 0xffffffff00000000LL) {
1196 int cid = scmd_id(cmd);
1197 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1198 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1199 SAM_STAT_CHECK_CONDITION;
1200 set_sense(&dev->fsa_dev[cid].sense_data,
1201 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1202 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1203 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1204 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1205 SCSI_SENSE_BUFFERSIZE));
1206 cmd->scsi_done(cmd);
1207 return 1;
1208 }
1209 return 0;
1210 }
1211
1212 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1213 {
1214 return 0;
1215 }
1216
1217 static void io_callback(void *context, struct fib * fibptr);
1218
1219 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1220 {
1221 struct aac_dev *dev = fib->dev;
1222 u16 fibsize, command;
1223 long ret;
1224
1225 aac_fib_init(fib);
1226 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1227 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1228 !dev->sync_mode) {
1229 struct aac_raw_io2 *readcmd2;
1230 readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1231 memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1232 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1233 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1234 readcmd2->byteCount = cpu_to_le32(count *
1235 dev->fsa_dev[scmd_id(cmd)].block_size);
1236 readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1237 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1238 ret = aac_build_sgraw2(cmd, readcmd2,
1239 dev->scsi_host_ptr->sg_tablesize);
1240 if (ret < 0)
1241 return ret;
1242 command = ContainerRawIo2;
1243 fibsize = sizeof(struct aac_raw_io2) +
1244 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1245 } else {
1246 struct aac_raw_io *readcmd;
1247 readcmd = (struct aac_raw_io *) fib_data(fib);
1248 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1249 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1250 readcmd->count = cpu_to_le32(count *
1251 dev->fsa_dev[scmd_id(cmd)].block_size);
1252 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1253 readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1254 readcmd->bpTotal = 0;
1255 readcmd->bpComplete = 0;
1256 ret = aac_build_sgraw(cmd, &readcmd->sg);
1257 if (ret < 0)
1258 return ret;
1259 command = ContainerRawIo;
1260 fibsize = sizeof(struct aac_raw_io) +
1261 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1262 }
1263
1264 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1265 /*
1266 * Now send the Fib to the adapter
1267 */
1268 return aac_fib_send(command,
1269 fib,
1270 fibsize,
1271 FsaNormal,
1272 0, 1,
1273 (fib_callback) io_callback,
1274 (void *) cmd);
1275 }
1276
1277 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1278 {
1279 u16 fibsize;
1280 struct aac_read64 *readcmd;
1281 long ret;
1282
1283 aac_fib_init(fib);
1284 readcmd = (struct aac_read64 *) fib_data(fib);
1285 readcmd->command = cpu_to_le32(VM_CtHostRead64);
1286 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1287 readcmd->sector_count = cpu_to_le16(count);
1288 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1289 readcmd->pad = 0;
1290 readcmd->flags = 0;
1291
1292 ret = aac_build_sg64(cmd, &readcmd->sg);
1293 if (ret < 0)
1294 return ret;
1295 fibsize = sizeof(struct aac_read64) +
1296 ((le32_to_cpu(readcmd->sg.count) - 1) *
1297 sizeof (struct sgentry64));
1298 BUG_ON (fibsize > (fib->dev->max_fib_size -
1299 sizeof(struct aac_fibhdr)));
1300 /*
1301 * Now send the Fib to the adapter
1302 */
1303 return aac_fib_send(ContainerCommand64,
1304 fib,
1305 fibsize,
1306 FsaNormal,
1307 0, 1,
1308 (fib_callback) io_callback,
1309 (void *) cmd);
1310 }
1311
1312 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1313 {
1314 u16 fibsize;
1315 struct aac_read *readcmd;
1316 struct aac_dev *dev = fib->dev;
1317 long ret;
1318
1319 aac_fib_init(fib);
1320 readcmd = (struct aac_read *) fib_data(fib);
1321 readcmd->command = cpu_to_le32(VM_CtBlockRead);
1322 readcmd->cid = cpu_to_le32(scmd_id(cmd));
1323 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1324 readcmd->count = cpu_to_le32(count *
1325 dev->fsa_dev[scmd_id(cmd)].block_size);
1326
1327 ret = aac_build_sg(cmd, &readcmd->sg);
1328 if (ret < 0)
1329 return ret;
1330 fibsize = sizeof(struct aac_read) +
1331 ((le32_to_cpu(readcmd->sg.count) - 1) *
1332 sizeof (struct sgentry));
1333 BUG_ON (fibsize > (fib->dev->max_fib_size -
1334 sizeof(struct aac_fibhdr)));
1335 /*
1336 * Now send the Fib to the adapter
1337 */
1338 return aac_fib_send(ContainerCommand,
1339 fib,
1340 fibsize,
1341 FsaNormal,
1342 0, 1,
1343 (fib_callback) io_callback,
1344 (void *) cmd);
1345 }
1346
1347 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1348 {
1349 struct aac_dev *dev = fib->dev;
1350 u16 fibsize, command;
1351 long ret;
1352
1353 aac_fib_init(fib);
1354 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1355 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1356 !dev->sync_mode) {
1357 struct aac_raw_io2 *writecmd2;
1358 writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1359 memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1360 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1361 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1362 writecmd2->byteCount = cpu_to_le32(count *
1363 dev->fsa_dev[scmd_id(cmd)].block_size);
1364 writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1365 writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1366 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1367 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1368 cpu_to_le16(RIO2_IO_TYPE_WRITE);
1369 ret = aac_build_sgraw2(cmd, writecmd2,
1370 dev->scsi_host_ptr->sg_tablesize);
1371 if (ret < 0)
1372 return ret;
1373 command = ContainerRawIo2;
1374 fibsize = sizeof(struct aac_raw_io2) +
1375 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1376 } else {
1377 struct aac_raw_io *writecmd;
1378 writecmd = (struct aac_raw_io *) fib_data(fib);
1379 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1380 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1381 writecmd->count = cpu_to_le32(count *
1382 dev->fsa_dev[scmd_id(cmd)].block_size);
1383 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1384 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1385 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1386 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1387 cpu_to_le16(RIO_TYPE_WRITE);
1388 writecmd->bpTotal = 0;
1389 writecmd->bpComplete = 0;
1390 ret = aac_build_sgraw(cmd, &writecmd->sg);
1391 if (ret < 0)
1392 return ret;
1393 command = ContainerRawIo;
1394 fibsize = sizeof(struct aac_raw_io) +
1395 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1396 }
1397
1398 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1399 /*
1400 * Now send the Fib to the adapter
1401 */
1402 return aac_fib_send(command,
1403 fib,
1404 fibsize,
1405 FsaNormal,
1406 0, 1,
1407 (fib_callback) io_callback,
1408 (void *) cmd);
1409 }
1410
1411 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1412 {
1413 u16 fibsize;
1414 struct aac_write64 *writecmd;
1415 long ret;
1416
1417 aac_fib_init(fib);
1418 writecmd = (struct aac_write64 *) fib_data(fib);
1419 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1420 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1421 writecmd->sector_count = cpu_to_le16(count);
1422 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1423 writecmd->pad = 0;
1424 writecmd->flags = 0;
1425
1426 ret = aac_build_sg64(cmd, &writecmd->sg);
1427 if (ret < 0)
1428 return ret;
1429 fibsize = sizeof(struct aac_write64) +
1430 ((le32_to_cpu(writecmd->sg.count) - 1) *
1431 sizeof (struct sgentry64));
1432 BUG_ON (fibsize > (fib->dev->max_fib_size -
1433 sizeof(struct aac_fibhdr)));
1434 /*
1435 * Now send the Fib to the adapter
1436 */
1437 return aac_fib_send(ContainerCommand64,
1438 fib,
1439 fibsize,
1440 FsaNormal,
1441 0, 1,
1442 (fib_callback) io_callback,
1443 (void *) cmd);
1444 }
1445
1446 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1447 {
1448 u16 fibsize;
1449 struct aac_write *writecmd;
1450 struct aac_dev *dev = fib->dev;
1451 long ret;
1452
1453 aac_fib_init(fib);
1454 writecmd = (struct aac_write *) fib_data(fib);
1455 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1456 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1457 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1458 writecmd->count = cpu_to_le32(count *
1459 dev->fsa_dev[scmd_id(cmd)].block_size);
1460 writecmd->sg.count = cpu_to_le32(1);
1461 /* ->stable is not used - it did mean which type of write */
1462
1463 ret = aac_build_sg(cmd, &writecmd->sg);
1464 if (ret < 0)
1465 return ret;
1466 fibsize = sizeof(struct aac_write) +
1467 ((le32_to_cpu(writecmd->sg.count) - 1) *
1468 sizeof (struct sgentry));
1469 BUG_ON (fibsize > (fib->dev->max_fib_size -
1470 sizeof(struct aac_fibhdr)));
1471 /*
1472 * Now send the Fib to the adapter
1473 */
1474 return aac_fib_send(ContainerCommand,
1475 fib,
1476 fibsize,
1477 FsaNormal,
1478 0, 1,
1479 (fib_callback) io_callback,
1480 (void *) cmd);
1481 }
1482
1483 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1484 {
1485 struct aac_srb * srbcmd;
1486 u32 flag;
1487 u32 timeout;
1488
1489 aac_fib_init(fib);
1490 switch(cmd->sc_data_direction){
1491 case DMA_TO_DEVICE:
1492 flag = SRB_DataOut;
1493 break;
1494 case DMA_BIDIRECTIONAL:
1495 flag = SRB_DataIn | SRB_DataOut;
1496 break;
1497 case DMA_FROM_DEVICE:
1498 flag = SRB_DataIn;
1499 break;
1500 case DMA_NONE:
1501 default: /* shuts up some versions of gcc */
1502 flag = SRB_NoDataXfer;
1503 break;
1504 }
1505
1506 srbcmd = (struct aac_srb*) fib_data(fib);
1507 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1508 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1509 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1510 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1511 srbcmd->flags = cpu_to_le32(flag);
1512 timeout = cmd->request->timeout/HZ;
1513 if (timeout == 0)
1514 timeout = 1;
1515 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1516 srbcmd->retry_limit = 0; /* Obsolete parameter */
1517 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1518 return srbcmd;
1519 }
1520
1521 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib,
1522 struct scsi_cmnd *cmd)
1523 {
1524 struct aac_hba_cmd_req *hbacmd;
1525 struct aac_dev *dev;
1526 int bus, target;
1527 u64 address;
1528
1529 dev = (struct aac_dev *)cmd->device->host->hostdata;
1530
1531 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va;
1532 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */
1533 /* iu_type is a parameter of aac_hba_send */
1534 switch (cmd->sc_data_direction) {
1535 case DMA_TO_DEVICE:
1536 hbacmd->byte1 = 2;
1537 break;
1538 case DMA_FROM_DEVICE:
1539 case DMA_BIDIRECTIONAL:
1540 hbacmd->byte1 = 1;
1541 break;
1542 case DMA_NONE:
1543 default:
1544 break;
1545 }
1546 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun);
1547
1548 bus = aac_logical_to_phys(scmd_channel(cmd));
1549 target = scmd_id(cmd);
1550 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus;
1551
1552 /* we fill in reply_qid later in aac_src_deliver_message */
1553 /* we fill in iu_type, request_id later in aac_hba_send */
1554 /* we fill in emb_data_desc_count later in aac_build_sghba */
1555
1556 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len);
1557 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd));
1558
1559 address = (u64)fib->hw_error_pa;
1560 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
1561 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
1562 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
1563
1564 return hbacmd;
1565 }
1566
1567 static void aac_srb_callback(void *context, struct fib * fibptr);
1568
1569 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1570 {
1571 u16 fibsize;
1572 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1573 long ret;
1574
1575 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1576 if (ret < 0)
1577 return ret;
1578 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1579
1580 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1581 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1582 /*
1583 * Build Scatter/Gather list
1584 */
1585 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1586 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1587 sizeof (struct sgentry64));
1588 BUG_ON (fibsize > (fib->dev->max_fib_size -
1589 sizeof(struct aac_fibhdr)));
1590
1591 /*
1592 * Now send the Fib to the adapter
1593 */
1594 return aac_fib_send(ScsiPortCommand64, fib,
1595 fibsize, FsaNormal, 0, 1,
1596 (fib_callback) aac_srb_callback,
1597 (void *) cmd);
1598 }
1599
1600 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1601 {
1602 u16 fibsize;
1603 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1604 long ret;
1605
1606 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1607 if (ret < 0)
1608 return ret;
1609 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1610
1611 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1612 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1613 /*
1614 * Build Scatter/Gather list
1615 */
1616 fibsize = sizeof (struct aac_srb) +
1617 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1618 sizeof (struct sgentry));
1619 BUG_ON (fibsize > (fib->dev->max_fib_size -
1620 sizeof(struct aac_fibhdr)));
1621
1622 /*
1623 * Now send the Fib to the adapter
1624 */
1625 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1626 (fib_callback) aac_srb_callback, (void *) cmd);
1627 }
1628
1629 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1630 {
1631 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1632 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1633 return FAILED;
1634 return aac_scsi_32(fib, cmd);
1635 }
1636
1637 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd)
1638 {
1639 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd);
1640 struct aac_dev *dev;
1641 long ret;
1642
1643 dev = (struct aac_dev *)cmd->device->host->hostdata;
1644
1645 ret = aac_build_sghba(cmd, hbacmd,
1646 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa);
1647 if (ret < 0)
1648 return ret;
1649
1650 /*
1651 * Now send the HBA command to the adapter
1652 */
1653 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) *
1654 sizeof(struct aac_hba_sgl);
1655
1656 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib,
1657 (fib_callback) aac_hba_callback,
1658 (void *) cmd);
1659 }
1660
1661 int aac_issue_bmic_identify(struct aac_dev *dev, u32 bus, u32 target)
1662 {
1663 struct fib *fibptr;
1664 struct aac_srb *srbcmd;
1665 struct sgmap64 *sg64;
1666 struct aac_ciss_identify_pd *identify_resp;
1667 dma_addr_t addr;
1668 u32 vbus, vid;
1669 u16 fibsize, datasize;
1670 int rcode = -ENOMEM;
1671
1672
1673 fibptr = aac_fib_alloc(dev);
1674 if (!fibptr)
1675 goto out;
1676
1677 fibsize = sizeof(struct aac_srb) -
1678 sizeof(struct sgentry) + sizeof(struct sgentry64);
1679 datasize = sizeof(struct aac_ciss_identify_pd);
1680
1681 identify_resp = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
1682 GFP_KERNEL);
1683 if (!identify_resp)
1684 goto fib_free_ptr;
1685
1686 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
1687 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
1688
1689 aac_fib_init(fibptr);
1690
1691 srbcmd = (struct aac_srb *) fib_data(fibptr);
1692 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1693 srbcmd->channel = cpu_to_le32(vbus);
1694 srbcmd->id = cpu_to_le32(vid);
1695 srbcmd->lun = 0;
1696 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1697 srbcmd->timeout = cpu_to_le32(10);
1698 srbcmd->retry_limit = 0;
1699 srbcmd->cdb_size = cpu_to_le32(12);
1700 srbcmd->count = cpu_to_le32(datasize);
1701
1702 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1703 srbcmd->cdb[0] = 0x26;
1704 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF);
1705 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE;
1706
1707 sg64 = (struct sgmap64 *)&srbcmd->sg;
1708 sg64->count = cpu_to_le32(1);
1709 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
1710 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
1711 sg64->sg[0].count = cpu_to_le32(datasize);
1712
1713 rcode = aac_fib_send(ScsiPortCommand64,
1714 fibptr, fibsize, FsaNormal, 1, 1, NULL, NULL);
1715
1716 if (identify_resp->current_queue_depth_limit <= 0 ||
1717 identify_resp->current_queue_depth_limit > 32)
1718 dev->hba_map[bus][target].qd_limit = 32;
1719 else
1720 dev->hba_map[bus][target].qd_limit =
1721 identify_resp->current_queue_depth_limit;
1722
1723 dma_free_coherent(&dev->pdev->dev, datasize, identify_resp, addr);
1724
1725 aac_fib_complete(fibptr);
1726
1727 fib_free_ptr:
1728 aac_fib_free(fibptr);
1729 out:
1730 return rcode;
1731 }
1732
1733 /**
1734 * aac_update hba_map()- update current hba map with data from FW
1735 * @dev: aac_dev structure
1736 * @phys_luns: FW information from report phys luns
1737 *
1738 * Update our hba map with the information gathered from the FW
1739 */
1740 void aac_update_hba_map(struct aac_dev *dev,
1741 struct aac_ciss_phys_luns_resp *phys_luns, int rescan)
1742 {
1743 /* ok and extended reporting */
1744 u32 lun_count, nexus;
1745 u32 i, bus, target;
1746 u8 expose_flag, attribs;
1747 u8 devtype;
1748
1749 lun_count = ((phys_luns->list_length[0] << 24)
1750 + (phys_luns->list_length[1] << 16)
1751 + (phys_luns->list_length[2] << 8)
1752 + (phys_luns->list_length[3])) / 24;
1753
1754 for (i = 0; i < lun_count; ++i) {
1755
1756 bus = phys_luns->lun[i].level2[1] & 0x3f;
1757 target = phys_luns->lun[i].level2[0];
1758 expose_flag = phys_luns->lun[i].bus >> 6;
1759 attribs = phys_luns->lun[i].node_ident[9];
1760 nexus = *((u32 *) &phys_luns->lun[i].node_ident[12]);
1761
1762 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS)
1763 continue;
1764
1765 dev->hba_map[bus][target].expose = expose_flag;
1766
1767 if (expose_flag != 0) {
1768 devtype = AAC_DEVTYPE_RAID_MEMBER;
1769 goto update_devtype;
1770 }
1771
1772 if (nexus != 0 && (attribs & 8)) {
1773 devtype = AAC_DEVTYPE_NATIVE_RAW;
1774 dev->hba_map[bus][target].rmw_nexus =
1775 nexus;
1776 } else
1777 devtype = AAC_DEVTYPE_ARC_RAW;
1778
1779 if (devtype != AAC_DEVTYPE_NATIVE_RAW)
1780 goto update_devtype;
1781
1782 if (aac_issue_bmic_identify(dev, bus, target) < 0)
1783 dev->hba_map[bus][target].qd_limit = 32;
1784
1785 update_devtype:
1786 if (rescan == AAC_INIT)
1787 dev->hba_map[bus][target].devtype = devtype;
1788 else
1789 dev->hba_map[bus][target].new_devtype = devtype;
1790 }
1791 }
1792
1793 /**
1794 * aac_report_phys_luns() Process topology change
1795 * @dev: aac_dev structure
1796 * @fibptr: fib pointer
1797 *
1798 * Execute a CISS REPORT PHYS LUNS and process the results into
1799 * the current hba_map.
1800 */
1801 int aac_report_phys_luns(struct aac_dev *dev, struct fib *fibptr, int rescan)
1802 {
1803 int fibsize, datasize;
1804 struct aac_ciss_phys_luns_resp *phys_luns;
1805 struct aac_srb *srbcmd;
1806 struct sgmap64 *sg64;
1807 dma_addr_t addr;
1808 u32 vbus, vid;
1809 int rcode = 0;
1810
1811 /* Thor SA Firmware -> CISS_REPORT_PHYSICAL_LUNS */
1812 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry)
1813 + sizeof(struct sgentry64);
1814 datasize = sizeof(struct aac_ciss_phys_luns_resp)
1815 + (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun);
1816
1817 phys_luns = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
1818 GFP_KERNEL);
1819 if (phys_luns == NULL) {
1820 rcode = -ENOMEM;
1821 goto err_out;
1822 }
1823
1824 vbus = (u32) le16_to_cpu(
1825 dev->supplement_adapter_info.virt_device_bus);
1826 vid = (u32) le16_to_cpu(
1827 dev->supplement_adapter_info.virt_device_target);
1828
1829 aac_fib_init(fibptr);
1830
1831 srbcmd = (struct aac_srb *) fib_data(fibptr);
1832 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1833 srbcmd->channel = cpu_to_le32(vbus);
1834 srbcmd->id = cpu_to_le32(vid);
1835 srbcmd->lun = 0;
1836 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1837 srbcmd->timeout = cpu_to_le32(10);
1838 srbcmd->retry_limit = 0;
1839 srbcmd->cdb_size = cpu_to_le32(12);
1840 srbcmd->count = cpu_to_le32(datasize);
1841
1842 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1843 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS;
1844 srbcmd->cdb[1] = 2; /* extended reporting */
1845 srbcmd->cdb[8] = (u8)(datasize >> 8);
1846 srbcmd->cdb[9] = (u8)(datasize);
1847
1848 sg64 = (struct sgmap64 *) &srbcmd->sg;
1849 sg64->count = cpu_to_le32(1);
1850 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr));
1851 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr));
1852 sg64->sg[0].count = cpu_to_le32(datasize);
1853
1854 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize,
1855 FsaNormal, 1, 1, NULL, NULL);
1856
1857 /* analyse data */
1858 if (rcode >= 0 && phys_luns->resp_flag == 2) {
1859 /* ok and extended reporting */
1860 aac_update_hba_map(dev, phys_luns, rescan);
1861 }
1862
1863 dma_free_coherent(&dev->pdev->dev, datasize, phys_luns, addr);
1864 err_out:
1865 return rcode;
1866 }
1867
1868 int aac_get_adapter_info(struct aac_dev* dev)
1869 {
1870 struct fib* fibptr;
1871 int rcode;
1872 u32 tmp, bus, target;
1873 struct aac_adapter_info *info;
1874 struct aac_bus_info *command;
1875 struct aac_bus_info_response *bus_info;
1876
1877 if (!(fibptr = aac_fib_alloc(dev)))
1878 return -ENOMEM;
1879
1880 aac_fib_init(fibptr);
1881 info = (struct aac_adapter_info *) fib_data(fibptr);
1882 memset(info,0,sizeof(*info));
1883
1884 rcode = aac_fib_send(RequestAdapterInfo,
1885 fibptr,
1886 sizeof(*info),
1887 FsaNormal,
1888 -1, 1, /* First `interrupt' command uses special wait */
1889 NULL,
1890 NULL);
1891
1892 if (rcode < 0) {
1893 /* FIB should be freed only after
1894 * getting the response from the F/W */
1895 if (rcode != -ERESTARTSYS) {
1896 aac_fib_complete(fibptr);
1897 aac_fib_free(fibptr);
1898 }
1899 return rcode;
1900 }
1901 memcpy(&dev->adapter_info, info, sizeof(*info));
1902
1903 dev->supplement_adapter_info.virt_device_bus = 0xffff;
1904 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1905 struct aac_supplement_adapter_info * sinfo;
1906
1907 aac_fib_init(fibptr);
1908
1909 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1910
1911 memset(sinfo,0,sizeof(*sinfo));
1912
1913 rcode = aac_fib_send(RequestSupplementAdapterInfo,
1914 fibptr,
1915 sizeof(*sinfo),
1916 FsaNormal,
1917 1, 1,
1918 NULL,
1919 NULL);
1920
1921 if (rcode >= 0)
1922 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1923 if (rcode == -ERESTARTSYS) {
1924 fibptr = aac_fib_alloc(dev);
1925 if (!fibptr)
1926 return -ENOMEM;
1927 }
1928
1929 }
1930
1931 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */
1932 for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
1933 for (target = 0; target < AAC_MAX_TARGETS; target++) {
1934 dev->hba_map[bus][target].devtype = 0;
1935 dev->hba_map[bus][target].qd_limit = 0;
1936 }
1937 }
1938
1939 /*
1940 * GetBusInfo
1941 */
1942
1943 aac_fib_init(fibptr);
1944
1945 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1946
1947 memset(bus_info, 0, sizeof(*bus_info));
1948
1949 command = (struct aac_bus_info *)bus_info;
1950
1951 command->Command = cpu_to_le32(VM_Ioctl);
1952 command->ObjType = cpu_to_le32(FT_DRIVE);
1953 command->MethodId = cpu_to_le32(1);
1954 command->CtlCmd = cpu_to_le32(GetBusInfo);
1955
1956 rcode = aac_fib_send(ContainerCommand,
1957 fibptr,
1958 sizeof (*bus_info),
1959 FsaNormal,
1960 1, 1,
1961 NULL, NULL);
1962
1963 /* reasoned default */
1964 dev->maximum_num_physicals = 16;
1965 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1966 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1967 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1968 }
1969
1970 if (!dev->sync_mode && dev->sa_firmware &&
1971 dev->supplement_adapter_info.virt_device_bus != 0xffff) {
1972 /* Thor SA Firmware -> CISS_REPORT_PHYSICAL_LUNS */
1973 rcode = aac_report_phys_luns(dev, fibptr, AAC_INIT);
1974 }
1975
1976 if (!dev->in_reset) {
1977 char buffer[16];
1978 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1979 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1980 dev->name,
1981 dev->id,
1982 tmp>>24,
1983 (tmp>>16)&0xff,
1984 tmp&0xff,
1985 le32_to_cpu(dev->adapter_info.kernelbuild),
1986 (int)sizeof(dev->supplement_adapter_info.build_date),
1987 dev->supplement_adapter_info.build_date);
1988 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1989 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1990 dev->name, dev->id,
1991 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1992 le32_to_cpu(dev->adapter_info.monitorbuild));
1993 tmp = le32_to_cpu(dev->adapter_info.biosrev);
1994 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1995 dev->name, dev->id,
1996 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1997 le32_to_cpu(dev->adapter_info.biosbuild));
1998 buffer[0] = '\0';
1999 if (aac_get_serial_number(
2000 shost_to_class(dev->scsi_host_ptr), buffer))
2001 printk(KERN_INFO "%s%d: serial %s",
2002 dev->name, dev->id, buffer);
2003 if (dev->supplement_adapter_info.vpd_info.tsid[0]) {
2004 printk(KERN_INFO "%s%d: TSID %.*s\n",
2005 dev->name, dev->id,
2006 (int)sizeof(dev->supplement_adapter_info
2007 .vpd_info.tsid),
2008 dev->supplement_adapter_info.vpd_info.tsid);
2009 }
2010 if (!aac_check_reset || ((aac_check_reset == 1) &&
2011 (dev->supplement_adapter_info.supported_options2 &
2012 AAC_OPTION_IGNORE_RESET))) {
2013 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
2014 dev->name, dev->id);
2015 }
2016 }
2017
2018 dev->cache_protected = 0;
2019 dev->jbod = ((dev->supplement_adapter_info.feature_bits &
2020 AAC_FEATURE_JBOD) != 0);
2021 dev->nondasd_support = 0;
2022 dev->raid_scsi_mode = 0;
2023 if(dev->adapter_info.options & AAC_OPT_NONDASD)
2024 dev->nondasd_support = 1;
2025
2026 /*
2027 * If the firmware supports ROMB RAID/SCSI mode and we are currently
2028 * in RAID/SCSI mode, set the flag. For now if in this mode we will
2029 * force nondasd support on. If we decide to allow the non-dasd flag
2030 * additional changes changes will have to be made to support
2031 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
2032 * changed to support the new dev->raid_scsi_mode flag instead of
2033 * leaching off of the dev->nondasd_support flag. Also in linit.c the
2034 * function aac_detect will have to be modified where it sets up the
2035 * max number of channels based on the aac->nondasd_support flag only.
2036 */
2037 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
2038 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
2039 dev->nondasd_support = 1;
2040 dev->raid_scsi_mode = 1;
2041 }
2042 if (dev->raid_scsi_mode != 0)
2043 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
2044 dev->name, dev->id);
2045
2046 if (nondasd != -1)
2047 dev->nondasd_support = (nondasd!=0);
2048 if (dev->nondasd_support && !dev->in_reset)
2049 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
2050
2051 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
2052 dev->needs_dac = 1;
2053 dev->dac_support = 0;
2054 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
2055 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
2056 if (!dev->in_reset)
2057 printk(KERN_INFO "%s%d: 64bit support enabled.\n",
2058 dev->name, dev->id);
2059 dev->dac_support = 1;
2060 }
2061
2062 if(dacmode != -1) {
2063 dev->dac_support = (dacmode!=0);
2064 }
2065
2066 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */
2067 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
2068 & AAC_QUIRK_SCSI_32)) {
2069 dev->nondasd_support = 0;
2070 dev->jbod = 0;
2071 expose_physicals = 0;
2072 }
2073
2074 if (dev->dac_support) {
2075 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
2076 if (!dev->in_reset)
2077 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n");
2078 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
2079 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n");
2080 dev->dac_support = 0;
2081 } else {
2082 dev_info(&dev->pdev->dev, "No suitable DMA available\n");
2083 rcode = -ENOMEM;
2084 }
2085 }
2086 /*
2087 * Deal with configuring for the individualized limits of each packet
2088 * interface.
2089 */
2090 dev->a_ops.adapter_scsi = (dev->dac_support)
2091 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
2092 ? aac_scsi_32_64
2093 : aac_scsi_64)
2094 : aac_scsi_32;
2095 if (dev->raw_io_interface) {
2096 dev->a_ops.adapter_bounds = (dev->raw_io_64)
2097 ? aac_bounds_64
2098 : aac_bounds_32;
2099 dev->a_ops.adapter_read = aac_read_raw_io;
2100 dev->a_ops.adapter_write = aac_write_raw_io;
2101 } else {
2102 dev->a_ops.adapter_bounds = aac_bounds_32;
2103 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
2104 sizeof(struct aac_fibhdr) -
2105 sizeof(struct aac_write) + sizeof(struct sgentry)) /
2106 sizeof(struct sgentry);
2107 if (dev->dac_support) {
2108 dev->a_ops.adapter_read = aac_read_block64;
2109 dev->a_ops.adapter_write = aac_write_block64;
2110 /*
2111 * 38 scatter gather elements
2112 */
2113 dev->scsi_host_ptr->sg_tablesize =
2114 (dev->max_fib_size -
2115 sizeof(struct aac_fibhdr) -
2116 sizeof(struct aac_write64) +
2117 sizeof(struct sgentry64)) /
2118 sizeof(struct sgentry64);
2119 } else {
2120 dev->a_ops.adapter_read = aac_read_block;
2121 dev->a_ops.adapter_write = aac_write_block;
2122 }
2123 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
2124 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
2125 /*
2126 * Worst case size that could cause sg overflow when
2127 * we break up SG elements that are larger than 64KB.
2128 * Would be nice if we could tell the SCSI layer what
2129 * the maximum SG element size can be. Worst case is
2130 * (sg_tablesize-1) 4KB elements with one 64KB
2131 * element.
2132 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
2133 */
2134 dev->scsi_host_ptr->max_sectors =
2135 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
2136 }
2137 }
2138 if (!dev->sync_mode && dev->sa_firmware &&
2139 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE)
2140 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize =
2141 HBA_MAX_SG_SEPARATE;
2142
2143 /* FIB should be freed only after getting the response from the F/W */
2144 if (rcode != -ERESTARTSYS) {
2145 aac_fib_complete(fibptr);
2146 aac_fib_free(fibptr);
2147 }
2148
2149 return rcode;
2150 }
2151
2152
2153 static void io_callback(void *context, struct fib * fibptr)
2154 {
2155 struct aac_dev *dev;
2156 struct aac_read_reply *readreply;
2157 struct scsi_cmnd *scsicmd;
2158 u32 cid;
2159
2160 scsicmd = (struct scsi_cmnd *) context;
2161
2162 if (!aac_valid_context(scsicmd, fibptr))
2163 return;
2164
2165 dev = fibptr->dev;
2166 cid = scmd_id(scsicmd);
2167
2168 if (nblank(dprintk(x))) {
2169 u64 lba;
2170 switch (scsicmd->cmnd[0]) {
2171 case WRITE_6:
2172 case READ_6:
2173 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2174 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2175 break;
2176 case WRITE_16:
2177 case READ_16:
2178 lba = ((u64)scsicmd->cmnd[2] << 56) |
2179 ((u64)scsicmd->cmnd[3] << 48) |
2180 ((u64)scsicmd->cmnd[4] << 40) |
2181 ((u64)scsicmd->cmnd[5] << 32) |
2182 ((u64)scsicmd->cmnd[6] << 24) |
2183 (scsicmd->cmnd[7] << 16) |
2184 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2185 break;
2186 case WRITE_12:
2187 case READ_12:
2188 lba = ((u64)scsicmd->cmnd[2] << 24) |
2189 (scsicmd->cmnd[3] << 16) |
2190 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2191 break;
2192 default:
2193 lba = ((u64)scsicmd->cmnd[2] << 24) |
2194 (scsicmd->cmnd[3] << 16) |
2195 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2196 break;
2197 }
2198 printk(KERN_DEBUG
2199 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
2200 smp_processor_id(), (unsigned long long)lba, jiffies);
2201 }
2202
2203 BUG_ON(fibptr == NULL);
2204
2205 scsi_dma_unmap(scsicmd);
2206
2207 readreply = (struct aac_read_reply *)fib_data(fibptr);
2208 switch (le32_to_cpu(readreply->status)) {
2209 case ST_OK:
2210 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2211 SAM_STAT_GOOD;
2212 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
2213 break;
2214 case ST_NOT_READY:
2215 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2216 SAM_STAT_CHECK_CONDITION;
2217 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
2218 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
2219 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2220 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2221 SCSI_SENSE_BUFFERSIZE));
2222 break;
2223 case ST_MEDERR:
2224 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2225 SAM_STAT_CHECK_CONDITION;
2226 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR,
2227 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0);
2228 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2229 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2230 SCSI_SENSE_BUFFERSIZE));
2231 break;
2232 default:
2233 #ifdef AAC_DETAILED_STATUS_INFO
2234 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
2235 le32_to_cpu(readreply->status));
2236 #endif
2237 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2238 SAM_STAT_CHECK_CONDITION;
2239 set_sense(&dev->fsa_dev[cid].sense_data,
2240 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2241 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2242 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2243 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2244 SCSI_SENSE_BUFFERSIZE));
2245 break;
2246 }
2247 aac_fib_complete(fibptr);
2248
2249 scsicmd->scsi_done(scsicmd);
2250 }
2251
2252 static int aac_read(struct scsi_cmnd * scsicmd)
2253 {
2254 u64 lba;
2255 u32 count;
2256 int status;
2257 struct aac_dev *dev;
2258 struct fib * cmd_fibcontext;
2259 int cid;
2260
2261 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2262 /*
2263 * Get block address and transfer length
2264 */
2265 switch (scsicmd->cmnd[0]) {
2266 case READ_6:
2267 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
2268
2269 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2270 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2271 count = scsicmd->cmnd[4];
2272
2273 if (count == 0)
2274 count = 256;
2275 break;
2276 case READ_16:
2277 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
2278
2279 lba = ((u64)scsicmd->cmnd[2] << 56) |
2280 ((u64)scsicmd->cmnd[3] << 48) |
2281 ((u64)scsicmd->cmnd[4] << 40) |
2282 ((u64)scsicmd->cmnd[5] << 32) |
2283 ((u64)scsicmd->cmnd[6] << 24) |
2284 (scsicmd->cmnd[7] << 16) |
2285 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2286 count = (scsicmd->cmnd[10] << 24) |
2287 (scsicmd->cmnd[11] << 16) |
2288 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2289 break;
2290 case READ_12:
2291 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
2292
2293 lba = ((u64)scsicmd->cmnd[2] << 24) |
2294 (scsicmd->cmnd[3] << 16) |
2295 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2296 count = (scsicmd->cmnd[6] << 24) |
2297 (scsicmd->cmnd[7] << 16) |
2298 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2299 break;
2300 default:
2301 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
2302
2303 lba = ((u64)scsicmd->cmnd[2] << 24) |
2304 (scsicmd->cmnd[3] << 16) |
2305 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2306 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2307 break;
2308 }
2309
2310 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2311 cid = scmd_id(scsicmd);
2312 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2313 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2314 SAM_STAT_CHECK_CONDITION;
2315 set_sense(&dev->fsa_dev[cid].sense_data,
2316 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2317 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2318 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2319 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2320 SCSI_SENSE_BUFFERSIZE));
2321 scsicmd->scsi_done(scsicmd);
2322 return 1;
2323 }
2324
2325 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
2326 smp_processor_id(), (unsigned long long)lba, jiffies));
2327 if (aac_adapter_bounds(dev,scsicmd,lba))
2328 return 0;
2329 /*
2330 * Alocate and initialize a Fib
2331 */
2332 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2333
2334 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
2335
2336 /*
2337 * Check that the command queued to the controller
2338 */
2339 if (status == -EINPROGRESS) {
2340 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2341 return 0;
2342 }
2343
2344 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
2345 /*
2346 * For some reason, the Fib didn't queue, return QUEUE_FULL
2347 */
2348 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2349 scsicmd->scsi_done(scsicmd);
2350 aac_fib_complete(cmd_fibcontext);
2351 aac_fib_free(cmd_fibcontext);
2352 return 0;
2353 }
2354
2355 static int aac_write(struct scsi_cmnd * scsicmd)
2356 {
2357 u64 lba;
2358 u32 count;
2359 int fua;
2360 int status;
2361 struct aac_dev *dev;
2362 struct fib * cmd_fibcontext;
2363 int cid;
2364
2365 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2366 /*
2367 * Get block address and transfer length
2368 */
2369 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
2370 {
2371 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2372 count = scsicmd->cmnd[4];
2373 if (count == 0)
2374 count = 256;
2375 fua = 0;
2376 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
2377 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
2378
2379 lba = ((u64)scsicmd->cmnd[2] << 56) |
2380 ((u64)scsicmd->cmnd[3] << 48) |
2381 ((u64)scsicmd->cmnd[4] << 40) |
2382 ((u64)scsicmd->cmnd[5] << 32) |
2383 ((u64)scsicmd->cmnd[6] << 24) |
2384 (scsicmd->cmnd[7] << 16) |
2385 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2386 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2387 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2388 fua = scsicmd->cmnd[1] & 0x8;
2389 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2390 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2391
2392 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2393 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2394 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2395 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2396 fua = scsicmd->cmnd[1] & 0x8;
2397 } else {
2398 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2399 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2400 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2401 fua = scsicmd->cmnd[1] & 0x8;
2402 }
2403
2404 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2405 cid = scmd_id(scsicmd);
2406 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2407 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2408 SAM_STAT_CHECK_CONDITION;
2409 set_sense(&dev->fsa_dev[cid].sense_data,
2410 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2411 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2412 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2413 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2414 SCSI_SENSE_BUFFERSIZE));
2415 scsicmd->scsi_done(scsicmd);
2416 return 1;
2417 }
2418
2419 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2420 smp_processor_id(), (unsigned long long)lba, jiffies));
2421 if (aac_adapter_bounds(dev,scsicmd,lba))
2422 return 0;
2423 /*
2424 * Allocate and initialize a Fib then setup a BlockWrite command
2425 */
2426 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2427
2428 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2429
2430 /*
2431 * Check that the command queued to the controller
2432 */
2433 if (status == -EINPROGRESS) {
2434 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2435 return 0;
2436 }
2437
2438 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2439 /*
2440 * For some reason, the Fib didn't queue, return QUEUE_FULL
2441 */
2442 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2443 scsicmd->scsi_done(scsicmd);
2444
2445 aac_fib_complete(cmd_fibcontext);
2446 aac_fib_free(cmd_fibcontext);
2447 return 0;
2448 }
2449
2450 static void synchronize_callback(void *context, struct fib *fibptr)
2451 {
2452 struct aac_synchronize_reply *synchronizereply;
2453 struct scsi_cmnd *cmd;
2454
2455 cmd = context;
2456
2457 if (!aac_valid_context(cmd, fibptr))
2458 return;
2459
2460 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2461 smp_processor_id(), jiffies));
2462 BUG_ON(fibptr == NULL);
2463
2464
2465 synchronizereply = fib_data(fibptr);
2466 if (le32_to_cpu(synchronizereply->status) == CT_OK)
2467 cmd->result = DID_OK << 16 |
2468 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2469 else {
2470 struct scsi_device *sdev = cmd->device;
2471 struct aac_dev *dev = fibptr->dev;
2472 u32 cid = sdev_id(sdev);
2473 printk(KERN_WARNING
2474 "synchronize_callback: synchronize failed, status = %d\n",
2475 le32_to_cpu(synchronizereply->status));
2476 cmd->result = DID_OK << 16 |
2477 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2478 set_sense(&dev->fsa_dev[cid].sense_data,
2479 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2480 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2481 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2482 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2483 SCSI_SENSE_BUFFERSIZE));
2484 }
2485
2486 aac_fib_complete(fibptr);
2487 aac_fib_free(fibptr);
2488 cmd->scsi_done(cmd);
2489 }
2490
2491 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2492 {
2493 int status;
2494 struct fib *cmd_fibcontext;
2495 struct aac_synchronize *synchronizecmd;
2496 struct scsi_cmnd *cmd;
2497 struct scsi_device *sdev = scsicmd->device;
2498 int active = 0;
2499 struct aac_dev *aac;
2500 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
2501 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2502 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2503 unsigned long flags;
2504
2505 /*
2506 * Wait for all outstanding queued commands to complete to this
2507 * specific target (block).
2508 */
2509 spin_lock_irqsave(&sdev->list_lock, flags);
2510 list_for_each_entry(cmd, &sdev->cmd_list, list)
2511 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
2512 u64 cmnd_lba;
2513 u32 cmnd_count;
2514
2515 if (cmd->cmnd[0] == WRITE_6) {
2516 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
2517 (cmd->cmnd[2] << 8) |
2518 cmd->cmnd[3];
2519 cmnd_count = cmd->cmnd[4];
2520 if (cmnd_count == 0)
2521 cmnd_count = 256;
2522 } else if (cmd->cmnd[0] == WRITE_16) {
2523 cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
2524 ((u64)cmd->cmnd[3] << 48) |
2525 ((u64)cmd->cmnd[4] << 40) |
2526 ((u64)cmd->cmnd[5] << 32) |
2527 ((u64)cmd->cmnd[6] << 24) |
2528 (cmd->cmnd[7] << 16) |
2529 (cmd->cmnd[8] << 8) |
2530 cmd->cmnd[9];
2531 cmnd_count = (cmd->cmnd[10] << 24) |
2532 (cmd->cmnd[11] << 16) |
2533 (cmd->cmnd[12] << 8) |
2534 cmd->cmnd[13];
2535 } else if (cmd->cmnd[0] == WRITE_12) {
2536 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2537 (cmd->cmnd[3] << 16) |
2538 (cmd->cmnd[4] << 8) |
2539 cmd->cmnd[5];
2540 cmnd_count = (cmd->cmnd[6] << 24) |
2541 (cmd->cmnd[7] << 16) |
2542 (cmd->cmnd[8] << 8) |
2543 cmd->cmnd[9];
2544 } else if (cmd->cmnd[0] == WRITE_10) {
2545 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2546 (cmd->cmnd[3] << 16) |
2547 (cmd->cmnd[4] << 8) |
2548 cmd->cmnd[5];
2549 cmnd_count = (cmd->cmnd[7] << 8) |
2550 cmd->cmnd[8];
2551 } else
2552 continue;
2553 if (((cmnd_lba + cmnd_count) < lba) ||
2554 (count && ((lba + count) < cmnd_lba)))
2555 continue;
2556 ++active;
2557 break;
2558 }
2559
2560 spin_unlock_irqrestore(&sdev->list_lock, flags);
2561
2562 /*
2563 * Yield the processor (requeue for later)
2564 */
2565 if (active)
2566 return SCSI_MLQUEUE_DEVICE_BUSY;
2567
2568 aac = (struct aac_dev *)sdev->host->hostdata;
2569 if (aac->in_reset)
2570 return SCSI_MLQUEUE_HOST_BUSY;
2571
2572 /*
2573 * Allocate and initialize a Fib
2574 */
2575 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
2576 return SCSI_MLQUEUE_HOST_BUSY;
2577
2578 aac_fib_init(cmd_fibcontext);
2579
2580 synchronizecmd = fib_data(cmd_fibcontext);
2581 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2582 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2583 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2584 synchronizecmd->count =
2585 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2586
2587 /*
2588 * Now send the Fib to the adapter
2589 */
2590 status = aac_fib_send(ContainerCommand,
2591 cmd_fibcontext,
2592 sizeof(struct aac_synchronize),
2593 FsaNormal,
2594 0, 1,
2595 (fib_callback)synchronize_callback,
2596 (void *)scsicmd);
2597
2598 /*
2599 * Check that the command queued to the controller
2600 */
2601 if (status == -EINPROGRESS) {
2602 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2603 return 0;
2604 }
2605
2606 printk(KERN_WARNING
2607 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2608 aac_fib_complete(cmd_fibcontext);
2609 aac_fib_free(cmd_fibcontext);
2610 return SCSI_MLQUEUE_HOST_BUSY;
2611 }
2612
2613 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2614 {
2615 struct scsi_cmnd *scsicmd = context;
2616
2617 if (!aac_valid_context(scsicmd, fibptr))
2618 return;
2619
2620 BUG_ON(fibptr == NULL);
2621
2622 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2623
2624 aac_fib_complete(fibptr);
2625 aac_fib_free(fibptr);
2626 scsicmd->scsi_done(scsicmd);
2627 }
2628
2629 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2630 {
2631 int status;
2632 struct fib *cmd_fibcontext;
2633 struct aac_power_management *pmcmd;
2634 struct scsi_device *sdev = scsicmd->device;
2635 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2636
2637 if (!(aac->supplement_adapter_info.supported_options2 &
2638 AAC_OPTION_POWER_MANAGEMENT)) {
2639 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2640 SAM_STAT_GOOD;
2641 scsicmd->scsi_done(scsicmd);
2642 return 0;
2643 }
2644
2645 if (aac->in_reset)
2646 return SCSI_MLQUEUE_HOST_BUSY;
2647
2648 /*
2649 * Allocate and initialize a Fib
2650 */
2651 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2652
2653 aac_fib_init(cmd_fibcontext);
2654
2655 pmcmd = fib_data(cmd_fibcontext);
2656 pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2657 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2658 /* Eject bit ignored, not relevant */
2659 pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2660 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2661 pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2662 pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2663 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2664
2665 /*
2666 * Now send the Fib to the adapter
2667 */
2668 status = aac_fib_send(ContainerCommand,
2669 cmd_fibcontext,
2670 sizeof(struct aac_power_management),
2671 FsaNormal,
2672 0, 1,
2673 (fib_callback)aac_start_stop_callback,
2674 (void *)scsicmd);
2675
2676 /*
2677 * Check that the command queued to the controller
2678 */
2679 if (status == -EINPROGRESS) {
2680 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2681 return 0;
2682 }
2683
2684 aac_fib_complete(cmd_fibcontext);
2685 aac_fib_free(cmd_fibcontext);
2686 return SCSI_MLQUEUE_HOST_BUSY;
2687 }
2688
2689 /**
2690 * aac_scsi_cmd() - Process SCSI command
2691 * @scsicmd: SCSI command block
2692 *
2693 * Emulate a SCSI command and queue the required request for the
2694 * aacraid firmware.
2695 */
2696
2697 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2698 {
2699 u32 cid, bus;
2700 struct Scsi_Host *host = scsicmd->device->host;
2701 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2702 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2703
2704 if (fsa_dev_ptr == NULL)
2705 return -1;
2706 /*
2707 * If the bus, id or lun is out of range, return fail
2708 * Test does not apply to ID 16, the pseudo id for the controller
2709 * itself.
2710 */
2711 cid = scmd_id(scsicmd);
2712 if (cid != host->this_id) {
2713 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2714 if((cid >= dev->maximum_num_containers) ||
2715 (scsicmd->device->lun != 0)) {
2716 scsicmd->result = DID_NO_CONNECT << 16;
2717 goto scsi_done_ret;
2718 }
2719
2720 /*
2721 * If the target container doesn't exist, it may have
2722 * been newly created
2723 */
2724 if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2725 (fsa_dev_ptr[cid].sense_data.sense_key ==
2726 NOT_READY)) {
2727 switch (scsicmd->cmnd[0]) {
2728 case SERVICE_ACTION_IN_16:
2729 if (!(dev->raw_io_interface) ||
2730 !(dev->raw_io_64) ||
2731 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2732 break;
2733 case INQUIRY:
2734 case READ_CAPACITY:
2735 case TEST_UNIT_READY:
2736 if (dev->in_reset)
2737 return -1;
2738 return _aac_probe_container(scsicmd,
2739 aac_probe_container_callback2);
2740 default:
2741 break;
2742 }
2743 }
2744 } else { /* check for physical non-dasd devices */
2745 bus = aac_logical_to_phys(scmd_channel(scsicmd));
2746 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2747 (dev->hba_map[bus][cid].expose
2748 == AAC_HIDE_DISK)){
2749 if (scsicmd->cmnd[0] == INQUIRY) {
2750 scsicmd->result = DID_NO_CONNECT << 16;
2751 goto scsi_done_ret;
2752 }
2753 }
2754
2755 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2756 dev->hba_map[bus][cid].devtype
2757 == AAC_DEVTYPE_NATIVE_RAW) {
2758 if (dev->in_reset)
2759 return -1;
2760 return aac_send_hba_fib(scsicmd);
2761 } else if (dev->nondasd_support || expose_physicals ||
2762 dev->jbod) {
2763 if (dev->in_reset)
2764 return -1;
2765 return aac_send_srb_fib(scsicmd);
2766 } else {
2767 scsicmd->result = DID_NO_CONNECT << 16;
2768 goto scsi_done_ret;
2769 }
2770 }
2771 }
2772 /*
2773 * else Command for the controller itself
2774 */
2775 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2776 (scsicmd->cmnd[0] != TEST_UNIT_READY))
2777 {
2778 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2779 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2780 set_sense(&dev->fsa_dev[cid].sense_data,
2781 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2782 ASENCODE_INVALID_COMMAND, 0, 0);
2783 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2784 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2785 SCSI_SENSE_BUFFERSIZE));
2786 goto scsi_done_ret;
2787 }
2788
2789 switch (scsicmd->cmnd[0]) {
2790 case READ_6:
2791 case READ_10:
2792 case READ_12:
2793 case READ_16:
2794 if (dev->in_reset)
2795 return -1;
2796 return aac_read(scsicmd);
2797
2798 case WRITE_6:
2799 case WRITE_10:
2800 case WRITE_12:
2801 case WRITE_16:
2802 if (dev->in_reset)
2803 return -1;
2804 return aac_write(scsicmd);
2805
2806 case SYNCHRONIZE_CACHE:
2807 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2808 scsicmd->result = AAC_STAT_GOOD;
2809 break;
2810 }
2811 /* Issue FIB to tell Firmware to flush it's cache */
2812 if ((aac_cache & 6) != 2)
2813 return aac_synchronize(scsicmd);
2814 case INQUIRY:
2815 {
2816 struct inquiry_data inq_data;
2817
2818 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2819 memset(&inq_data, 0, sizeof (struct inquiry_data));
2820
2821 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2822 char *arr = (char *)&inq_data;
2823
2824 /* EVPD bit set */
2825 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2826 INQD_PDT_PROC : INQD_PDT_DA;
2827 if (scsicmd->cmnd[2] == 0) {
2828 /* supported vital product data pages */
2829 arr[3] = 3;
2830 arr[4] = 0x0;
2831 arr[5] = 0x80;
2832 arr[6] = 0x83;
2833 arr[1] = scsicmd->cmnd[2];
2834 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2835 sizeof(inq_data));
2836 scsicmd->result = AAC_STAT_GOOD;
2837 } else if (scsicmd->cmnd[2] == 0x80) {
2838 /* unit serial number page */
2839 arr[3] = setinqserial(dev, &arr[4],
2840 scmd_id(scsicmd));
2841 arr[1] = scsicmd->cmnd[2];
2842 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2843 sizeof(inq_data));
2844 if (aac_wwn != 2)
2845 return aac_get_container_serial(
2846 scsicmd);
2847 scsicmd->result = AAC_STAT_GOOD;
2848 } else if (scsicmd->cmnd[2] == 0x83) {
2849 /* vpd page 0x83 - Device Identification Page */
2850 char *sno = (char *)&inq_data;
2851 sno[3] = setinqserial(dev, &sno[4],
2852 scmd_id(scsicmd));
2853 if (aac_wwn != 2)
2854 return aac_get_container_serial(
2855 scsicmd);
2856 scsicmd->result = AAC_STAT_GOOD;
2857 } else {
2858 /* vpd page not implemented */
2859 scsicmd->result = DID_OK << 16 |
2860 COMMAND_COMPLETE << 8 |
2861 SAM_STAT_CHECK_CONDITION;
2862 set_sense(&dev->fsa_dev[cid].sense_data,
2863 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2864 ASENCODE_NO_SENSE, 7, 2);
2865 memcpy(scsicmd->sense_buffer,
2866 &dev->fsa_dev[cid].sense_data,
2867 min_t(size_t,
2868 sizeof(dev->fsa_dev[cid].sense_data),
2869 SCSI_SENSE_BUFFERSIZE));
2870 }
2871 break;
2872 }
2873 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
2874 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2875 inq_data.inqd_len = 31;
2876 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
2877 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
2878 /*
2879 * Set the Vendor, Product, and Revision Level
2880 * see: <vendor>.c i.e. aac.c
2881 */
2882 if (cid == host->this_id) {
2883 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2884 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
2885 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2886 sizeof(inq_data));
2887 scsicmd->result = AAC_STAT_GOOD;
2888 break;
2889 }
2890 if (dev->in_reset)
2891 return -1;
2892 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2893 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
2894 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2895 return aac_get_container_name(scsicmd);
2896 }
2897 case SERVICE_ACTION_IN_16:
2898 if (!(dev->raw_io_interface) ||
2899 !(dev->raw_io_64) ||
2900 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2901 break;
2902 {
2903 u64 capacity;
2904 char cp[13];
2905 unsigned int alloc_len;
2906
2907 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2908 capacity = fsa_dev_ptr[cid].size - 1;
2909 cp[0] = (capacity >> 56) & 0xff;
2910 cp[1] = (capacity >> 48) & 0xff;
2911 cp[2] = (capacity >> 40) & 0xff;
2912 cp[3] = (capacity >> 32) & 0xff;
2913 cp[4] = (capacity >> 24) & 0xff;
2914 cp[5] = (capacity >> 16) & 0xff;
2915 cp[6] = (capacity >> 8) & 0xff;
2916 cp[7] = (capacity >> 0) & 0xff;
2917 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
2918 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2919 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2920 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
2921 cp[12] = 0;
2922
2923 alloc_len = ((scsicmd->cmnd[10] << 24)
2924 + (scsicmd->cmnd[11] << 16)
2925 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2926
2927 alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2928 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2929 if (alloc_len < scsi_bufflen(scsicmd))
2930 scsi_set_resid(scsicmd,
2931 scsi_bufflen(scsicmd) - alloc_len);
2932
2933 /* Do not cache partition table for arrays */
2934 scsicmd->device->removable = 1;
2935
2936 scsicmd->result = AAC_STAT_GOOD;
2937 break;
2938 }
2939
2940 case READ_CAPACITY:
2941 {
2942 u32 capacity;
2943 char cp[8];
2944
2945 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2946 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2947 capacity = fsa_dev_ptr[cid].size - 1;
2948 else
2949 capacity = (u32)-1;
2950
2951 cp[0] = (capacity >> 24) & 0xff;
2952 cp[1] = (capacity >> 16) & 0xff;
2953 cp[2] = (capacity >> 8) & 0xff;
2954 cp[3] = (capacity >> 0) & 0xff;
2955 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
2956 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2957 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2958 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
2959 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2960 /* Do not cache partition table for arrays */
2961 scsicmd->device->removable = 1;
2962 scsicmd->result = AAC_STAT_GOOD;
2963 break;
2964 }
2965
2966 case MODE_SENSE:
2967 {
2968 int mode_buf_length = 4;
2969 u32 capacity;
2970 aac_modep_data mpd;
2971
2972 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2973 capacity = fsa_dev_ptr[cid].size - 1;
2974 else
2975 capacity = (u32)-1;
2976
2977 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2978 memset((char *)&mpd, 0, sizeof(aac_modep_data));
2979
2980 /* Mode data length */
2981 mpd.hd.data_length = sizeof(mpd.hd) - 1;
2982 /* Medium type - default */
2983 mpd.hd.med_type = 0;
2984 /* Device-specific param,
2985 bit 8: 0/1 = write enabled/protected
2986 bit 4: 0/1 = FUA enabled */
2987 mpd.hd.dev_par = 0;
2988
2989 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2990 mpd.hd.dev_par = 0x10;
2991 if (scsicmd->cmnd[1] & 0x8)
2992 mpd.hd.bd_length = 0; /* Block descriptor length */
2993 else {
2994 mpd.hd.bd_length = sizeof(mpd.bd);
2995 mpd.hd.data_length += mpd.hd.bd_length;
2996 mpd.bd.block_length[0] =
2997 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2998 mpd.bd.block_length[1] =
2999 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3000 mpd.bd.block_length[2] =
3001 fsa_dev_ptr[cid].block_size & 0xff;
3002
3003 mpd.mpc_buf[0] = scsicmd->cmnd[2];
3004 if (scsicmd->cmnd[2] == 0x1C) {
3005 /* page length */
3006 mpd.mpc_buf[1] = 0xa;
3007 /* Mode data length */
3008 mpd.hd.data_length = 23;
3009 } else {
3010 /* Mode data length */
3011 mpd.hd.data_length = 15;
3012 }
3013
3014 if (capacity > 0xffffff) {
3015 mpd.bd.block_count[0] = 0xff;
3016 mpd.bd.block_count[1] = 0xff;
3017 mpd.bd.block_count[2] = 0xff;
3018 } else {
3019 mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
3020 mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
3021 mpd.bd.block_count[2] = capacity & 0xff;
3022 }
3023 }
3024 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3025 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3026 mpd.hd.data_length += 3;
3027 mpd.mpc_buf[0] = 8;
3028 mpd.mpc_buf[1] = 1;
3029 mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
3030 ? 0 : 0x04; /* WCE */
3031 mode_buf_length = sizeof(mpd);
3032 }
3033
3034 if (mode_buf_length > scsicmd->cmnd[4])
3035 mode_buf_length = scsicmd->cmnd[4];
3036 else
3037 mode_buf_length = sizeof(mpd);
3038 scsi_sg_copy_from_buffer(scsicmd,
3039 (char *)&mpd,
3040 mode_buf_length);
3041 scsicmd->result = AAC_STAT_GOOD;
3042 break;
3043 }
3044 case MODE_SENSE_10:
3045 {
3046 u32 capacity;
3047 int mode_buf_length = 8;
3048 aac_modep10_data mpd10;
3049
3050 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3051 capacity = fsa_dev_ptr[cid].size - 1;
3052 else
3053 capacity = (u32)-1;
3054
3055 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
3056 memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
3057 /* Mode data length (MSB) */
3058 mpd10.hd.data_length[0] = 0;
3059 /* Mode data length (LSB) */
3060 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
3061 /* Medium type - default */
3062 mpd10.hd.med_type = 0;
3063 /* Device-specific param,
3064 bit 8: 0/1 = write enabled/protected
3065 bit 4: 0/1 = FUA enabled */
3066 mpd10.hd.dev_par = 0;
3067
3068 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3069 mpd10.hd.dev_par = 0x10;
3070 mpd10.hd.rsrvd[0] = 0; /* reserved */
3071 mpd10.hd.rsrvd[1] = 0; /* reserved */
3072 if (scsicmd->cmnd[1] & 0x8) {
3073 /* Block descriptor length (MSB) */
3074 mpd10.hd.bd_length[0] = 0;
3075 /* Block descriptor length (LSB) */
3076 mpd10.hd.bd_length[1] = 0;
3077 } else {
3078 mpd10.hd.bd_length[0] = 0;
3079 mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
3080
3081 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
3082
3083 mpd10.bd.block_length[0] =
3084 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3085 mpd10.bd.block_length[1] =
3086 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3087 mpd10.bd.block_length[2] =
3088 fsa_dev_ptr[cid].block_size & 0xff;
3089
3090 if (capacity > 0xffffff) {
3091 mpd10.bd.block_count[0] = 0xff;
3092 mpd10.bd.block_count[1] = 0xff;
3093 mpd10.bd.block_count[2] = 0xff;
3094 } else {
3095 mpd10.bd.block_count[0] =
3096 (capacity >> 16) & 0xff;
3097 mpd10.bd.block_count[1] =
3098 (capacity >> 8) & 0xff;
3099 mpd10.bd.block_count[2] =
3100 capacity & 0xff;
3101 }
3102 }
3103 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3104 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3105 mpd10.hd.data_length[1] += 3;
3106 mpd10.mpc_buf[0] = 8;
3107 mpd10.mpc_buf[1] = 1;
3108 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
3109 ? 0 : 0x04; /* WCE */
3110 mode_buf_length = sizeof(mpd10);
3111 if (mode_buf_length > scsicmd->cmnd[8])
3112 mode_buf_length = scsicmd->cmnd[8];
3113 }
3114 scsi_sg_copy_from_buffer(scsicmd,
3115 (char *)&mpd10,
3116 mode_buf_length);
3117
3118 scsicmd->result = AAC_STAT_GOOD;
3119 break;
3120 }
3121 case REQUEST_SENSE:
3122 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
3123 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3124 sizeof(struct sense_data));
3125 memset(&dev->fsa_dev[cid].sense_data, 0,
3126 sizeof(struct sense_data));
3127 scsicmd->result = AAC_STAT_GOOD;
3128 break;
3129
3130 case ALLOW_MEDIUM_REMOVAL:
3131 dprintk((KERN_DEBUG "LOCK command.\n"));
3132 if (scsicmd->cmnd[4])
3133 fsa_dev_ptr[cid].locked = 1;
3134 else
3135 fsa_dev_ptr[cid].locked = 0;
3136
3137 scsicmd->result = AAC_STAT_GOOD;
3138 break;
3139 /*
3140 * These commands are all No-Ops
3141 */
3142 case TEST_UNIT_READY:
3143 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
3144 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3145 SAM_STAT_CHECK_CONDITION;
3146 set_sense(&dev->fsa_dev[cid].sense_data,
3147 NOT_READY, SENCODE_BECOMING_READY,
3148 ASENCODE_BECOMING_READY, 0, 0);
3149 memcpy(scsicmd->sense_buffer,
3150 &dev->fsa_dev[cid].sense_data,
3151 min_t(size_t,
3152 sizeof(dev->fsa_dev[cid].sense_data),
3153 SCSI_SENSE_BUFFERSIZE));
3154 break;
3155 }
3156 case RESERVE:
3157 case RELEASE:
3158 case REZERO_UNIT:
3159 case REASSIGN_BLOCKS:
3160 case SEEK_10:
3161 scsicmd->result = AAC_STAT_GOOD;
3162 break;
3163
3164 case START_STOP:
3165 return aac_start_stop(scsicmd);
3166
3167 /* FALLTHRU */
3168 default:
3169 /*
3170 * Unhandled commands
3171 */
3172 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n",
3173 scsicmd->cmnd[0]));
3174 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3175 SAM_STAT_CHECK_CONDITION;
3176 set_sense(&dev->fsa_dev[cid].sense_data,
3177 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
3178 ASENCODE_INVALID_COMMAND, 0, 0);
3179 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3180 min_t(size_t,
3181 sizeof(dev->fsa_dev[cid].sense_data),
3182 SCSI_SENSE_BUFFERSIZE));
3183 }
3184
3185 scsi_done_ret:
3186
3187 scsicmd->scsi_done(scsicmd);
3188 return 0;
3189 }
3190
3191 static int query_disk(struct aac_dev *dev, void __user *arg)
3192 {
3193 struct aac_query_disk qd;
3194 struct fsa_dev_info *fsa_dev_ptr;
3195
3196 fsa_dev_ptr = dev->fsa_dev;
3197 if (!fsa_dev_ptr)
3198 return -EBUSY;
3199 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
3200 return -EFAULT;
3201 if (qd.cnum == -1)
3202 qd.cnum = qd.id;
3203 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
3204 {
3205 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
3206 return -EINVAL;
3207 qd.instance = dev->scsi_host_ptr->host_no;
3208 qd.bus = 0;
3209 qd.id = CONTAINER_TO_ID(qd.cnum);
3210 qd.lun = CONTAINER_TO_LUN(qd.cnum);
3211 }
3212 else return -EINVAL;
3213
3214 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
3215 qd.locked = fsa_dev_ptr[qd.cnum].locked;
3216 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
3217
3218 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
3219 qd.unmapped = 1;
3220 else
3221 qd.unmapped = 0;
3222
3223 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
3224 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
3225
3226 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
3227 return -EFAULT;
3228 return 0;
3229 }
3230
3231 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
3232 {
3233 struct aac_delete_disk dd;
3234 struct fsa_dev_info *fsa_dev_ptr;
3235
3236 fsa_dev_ptr = dev->fsa_dev;
3237 if (!fsa_dev_ptr)
3238 return -EBUSY;
3239
3240 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3241 return -EFAULT;
3242
3243 if (dd.cnum >= dev->maximum_num_containers)
3244 return -EINVAL;
3245 /*
3246 * Mark this container as being deleted.
3247 */
3248 fsa_dev_ptr[dd.cnum].deleted = 1;
3249 /*
3250 * Mark the container as no longer valid
3251 */
3252 fsa_dev_ptr[dd.cnum].valid = 0;
3253 return 0;
3254 }
3255
3256 static int delete_disk(struct aac_dev *dev, void __user *arg)
3257 {
3258 struct aac_delete_disk dd;
3259 struct fsa_dev_info *fsa_dev_ptr;
3260
3261 fsa_dev_ptr = dev->fsa_dev;
3262 if (!fsa_dev_ptr)
3263 return -EBUSY;
3264
3265 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3266 return -EFAULT;
3267
3268 if (dd.cnum >= dev->maximum_num_containers)
3269 return -EINVAL;
3270 /*
3271 * If the container is locked, it can not be deleted by the API.
3272 */
3273 if (fsa_dev_ptr[dd.cnum].locked)
3274 return -EBUSY;
3275 else {
3276 /*
3277 * Mark the container as no longer being valid.
3278 */
3279 fsa_dev_ptr[dd.cnum].valid = 0;
3280 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
3281 return 0;
3282 }
3283 }
3284
3285 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
3286 {
3287 switch (cmd) {
3288 case FSACTL_QUERY_DISK:
3289 return query_disk(dev, arg);
3290 case FSACTL_DELETE_DISK:
3291 return delete_disk(dev, arg);
3292 case FSACTL_FORCE_DELETE_DISK:
3293 return force_delete_disk(dev, arg);
3294 case FSACTL_GET_CONTAINERS:
3295 return aac_get_containers(dev);
3296 default:
3297 return -ENOTTY;
3298 }
3299 }
3300
3301 /**
3302 *
3303 * aac_srb_callback
3304 * @context: the context set in the fib - here it is scsi cmd
3305 * @fibptr: pointer to the fib
3306 *
3307 * Handles the completion of a scsi command to a non dasd device
3308 *
3309 */
3310
3311 static void aac_srb_callback(void *context, struct fib * fibptr)
3312 {
3313 struct aac_dev *dev;
3314 struct aac_srb_reply *srbreply;
3315 struct scsi_cmnd *scsicmd;
3316
3317 scsicmd = (struct scsi_cmnd *) context;
3318
3319 if (!aac_valid_context(scsicmd, fibptr))
3320 return;
3321
3322 BUG_ON(fibptr == NULL);
3323
3324 dev = fibptr->dev;
3325
3326 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
3327
3328 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
3329
3330 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3331 /* fast response */
3332 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
3333 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
3334 } else {
3335 /*
3336 * Calculate resid for sg
3337 */
3338 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
3339 - le32_to_cpu(srbreply->data_xfer_length));
3340 }
3341
3342
3343 scsi_dma_unmap(scsicmd);
3344
3345 /* expose physical device if expose_physicald flag is on */
3346 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
3347 && expose_physicals > 0)
3348 aac_expose_phy_device(scsicmd);
3349
3350 /*
3351 * First check the fib status
3352 */
3353
3354 if (le32_to_cpu(srbreply->status) != ST_OK) {
3355 int len;
3356
3357 pr_warn("aac_srb_callback: srb failed, status = %d\n",
3358 le32_to_cpu(srbreply->status));
3359 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3360 SCSI_SENSE_BUFFERSIZE);
3361 scsicmd->result = DID_ERROR << 16
3362 | COMMAND_COMPLETE << 8
3363 | SAM_STAT_CHECK_CONDITION;
3364 memcpy(scsicmd->sense_buffer,
3365 srbreply->sense_data, len);
3366 }
3367
3368 /*
3369 * Next check the srb status
3370 */
3371 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3372 case SRB_STATUS_ERROR_RECOVERY:
3373 case SRB_STATUS_PENDING:
3374 case SRB_STATUS_SUCCESS:
3375 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3376 break;
3377 case SRB_STATUS_DATA_OVERRUN:
3378 switch (scsicmd->cmnd[0]) {
3379 case READ_6:
3380 case WRITE_6:
3381 case READ_10:
3382 case WRITE_10:
3383 case READ_12:
3384 case WRITE_12:
3385 case READ_16:
3386 case WRITE_16:
3387 if (le32_to_cpu(srbreply->data_xfer_length)
3388 < scsicmd->underflow)
3389 pr_warn("aacraid: SCSI CMD underflow\n");
3390 else
3391 pr_warn("aacraid: SCSI CMD Data Overrun\n");
3392 scsicmd->result = DID_ERROR << 16
3393 | COMMAND_COMPLETE << 8;
3394 break;
3395 case INQUIRY:
3396 scsicmd->result = DID_OK << 16
3397 | COMMAND_COMPLETE << 8;
3398 break;
3399 default:
3400 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3401 break;
3402 }
3403 break;
3404 case SRB_STATUS_ABORTED:
3405 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3406 break;
3407 case SRB_STATUS_ABORT_FAILED:
3408 /*
3409 * Not sure about this one - but assuming the
3410 * hba was trying to abort for some reason
3411 */
3412 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
3413 break;
3414 case SRB_STATUS_PARITY_ERROR:
3415 scsicmd->result = DID_PARITY << 16
3416 | MSG_PARITY_ERROR << 8;
3417 break;
3418 case SRB_STATUS_NO_DEVICE:
3419 case SRB_STATUS_INVALID_PATH_ID:
3420 case SRB_STATUS_INVALID_TARGET_ID:
3421 case SRB_STATUS_INVALID_LUN:
3422 case SRB_STATUS_SELECTION_TIMEOUT:
3423 scsicmd->result = DID_NO_CONNECT << 16
3424 | COMMAND_COMPLETE << 8;
3425 break;
3426
3427 case SRB_STATUS_COMMAND_TIMEOUT:
3428 case SRB_STATUS_TIMEOUT:
3429 scsicmd->result = DID_TIME_OUT << 16
3430 | COMMAND_COMPLETE << 8;
3431 break;
3432
3433 case SRB_STATUS_BUSY:
3434 scsicmd->result = DID_BUS_BUSY << 16
3435 | COMMAND_COMPLETE << 8;
3436 break;
3437
3438 case SRB_STATUS_BUS_RESET:
3439 scsicmd->result = DID_RESET << 16
3440 | COMMAND_COMPLETE << 8;
3441 break;
3442
3443 case SRB_STATUS_MESSAGE_REJECTED:
3444 scsicmd->result = DID_ERROR << 16
3445 | MESSAGE_REJECT << 8;
3446 break;
3447 case SRB_STATUS_REQUEST_FLUSHED:
3448 case SRB_STATUS_ERROR:
3449 case SRB_STATUS_INVALID_REQUEST:
3450 case SRB_STATUS_REQUEST_SENSE_FAILED:
3451 case SRB_STATUS_NO_HBA:
3452 case SRB_STATUS_UNEXPECTED_BUS_FREE:
3453 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3454 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3455 case SRB_STATUS_DELAYED_RETRY:
3456 case SRB_STATUS_BAD_FUNCTION:
3457 case SRB_STATUS_NOT_STARTED:
3458 case SRB_STATUS_NOT_IN_USE:
3459 case SRB_STATUS_FORCE_ABORT:
3460 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3461 default:
3462 #ifdef AAC_DETAILED_STATUS_INFO
3463 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
3464 le32_to_cpu(srbreply->srb_status) & 0x3F,
3465 aac_get_status_string(
3466 le32_to_cpu(srbreply->srb_status) & 0x3F),
3467 scsicmd->cmnd[0],
3468 le32_to_cpu(srbreply->scsi_status));
3469 #endif
3470 /*
3471 * When the CC bit is SET by the host in ATA pass thru CDB,
3472 * driver is supposed to return DID_OK
3473 *
3474 * When the CC bit is RESET by the host, driver should
3475 * return DID_ERROR
3476 */
3477 if ((scsicmd->cmnd[0] == ATA_12)
3478 || (scsicmd->cmnd[0] == ATA_16)) {
3479
3480 if (scsicmd->cmnd[2] & (0x01 << 5)) {
3481 scsicmd->result = DID_OK << 16
3482 | COMMAND_COMPLETE << 8;
3483 break;
3484 } else {
3485 scsicmd->result = DID_ERROR << 16
3486 | COMMAND_COMPLETE << 8;
3487 break;
3488 }
3489 } else {
3490 scsicmd->result = DID_ERROR << 16
3491 | COMMAND_COMPLETE << 8;
3492 break;
3493 }
3494 }
3495 if (le32_to_cpu(srbreply->scsi_status)
3496 == SAM_STAT_CHECK_CONDITION) {
3497 int len;
3498
3499 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3500 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3501 SCSI_SENSE_BUFFERSIZE);
3502 #ifdef AAC_DETAILED_STATUS_INFO
3503 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
3504 le32_to_cpu(srbreply->status), len);
3505 #endif
3506 memcpy(scsicmd->sense_buffer,
3507 srbreply->sense_data, len);
3508 }
3509
3510 /*
3511 * OR in the scsi status (already shifted up a bit)
3512 */
3513 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3514
3515 aac_fib_complete(fibptr);
3516 scsicmd->scsi_done(scsicmd);
3517 }
3518
3519 static void hba_resp_task_complete(struct aac_dev *dev,
3520 struct scsi_cmnd *scsicmd,
3521 struct aac_hba_resp *err) {
3522
3523 scsicmd->result = err->status;
3524 /* set residual count */
3525 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count));
3526
3527 switch (err->status) {
3528 case SAM_STAT_GOOD:
3529 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3530 break;
3531 case SAM_STAT_CHECK_CONDITION:
3532 {
3533 int len;
3534
3535 len = min_t(u8, err->sense_response_data_len,
3536 SCSI_SENSE_BUFFERSIZE);
3537 if (len)
3538 memcpy(scsicmd->sense_buffer,
3539 err->sense_response_buf, len);
3540 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3541 break;
3542 }
3543 case SAM_STAT_BUSY:
3544 scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
3545 break;
3546 case SAM_STAT_TASK_ABORTED:
3547 scsicmd->result |= DID_ABORT << 16 | ABORT << 8;
3548 break;
3549 case SAM_STAT_RESERVATION_CONFLICT:
3550 case SAM_STAT_TASK_SET_FULL:
3551 default:
3552 scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3553 break;
3554 }
3555 }
3556
3557 static void hba_resp_task_failure(struct aac_dev *dev,
3558 struct scsi_cmnd *scsicmd,
3559 struct aac_hba_resp *err)
3560 {
3561 switch (err->status) {
3562 case HBA_RESP_STAT_HBAMODE_DISABLED:
3563 {
3564 u32 bus, cid;
3565
3566 bus = aac_logical_to_phys(scmd_channel(scsicmd));
3567 cid = scmd_id(scsicmd);
3568 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
3569 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW;
3570 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff;
3571 }
3572 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3573 break;
3574 }
3575 case HBA_RESP_STAT_IO_ERROR:
3576 case HBA_RESP_STAT_NO_PATH_TO_DEVICE:
3577 scsicmd->result = DID_OK << 16 |
3578 COMMAND_COMPLETE << 8 | SAM_STAT_BUSY;
3579 break;
3580 case HBA_RESP_STAT_IO_ABORTED:
3581 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3582 break;
3583 case HBA_RESP_STAT_INVALID_DEVICE:
3584 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3585 break;
3586 case HBA_RESP_STAT_UNDERRUN:
3587 /* UNDERRUN is OK */
3588 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3589 break;
3590 case HBA_RESP_STAT_OVERRUN:
3591 default:
3592 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3593 break;
3594 }
3595 }
3596
3597 /**
3598 *
3599 * aac_hba_callback
3600 * @context: the context set in the fib - here it is scsi cmd
3601 * @fibptr: pointer to the fib
3602 *
3603 * Handles the completion of a native HBA scsi command
3604 *
3605 */
3606 void aac_hba_callback(void *context, struct fib *fibptr)
3607 {
3608 struct aac_dev *dev;
3609 struct scsi_cmnd *scsicmd;
3610
3611 struct aac_hba_resp *err =
3612 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
3613
3614 scsicmd = (struct scsi_cmnd *) context;
3615
3616 if (!aac_valid_context(scsicmd, fibptr))
3617 return;
3618
3619 WARN_ON(fibptr == NULL);
3620 dev = fibptr->dev;
3621
3622 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF))
3623 scsi_dma_unmap(scsicmd);
3624
3625 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3626 /* fast response */
3627 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3628 goto out;
3629 }
3630
3631 switch (err->service_response) {
3632 case HBA_RESP_SVCRES_TASK_COMPLETE:
3633 hba_resp_task_complete(dev, scsicmd, err);
3634 break;
3635 case HBA_RESP_SVCRES_FAILURE:
3636 hba_resp_task_failure(dev, scsicmd, err);
3637 break;
3638 case HBA_RESP_SVCRES_TMF_REJECTED:
3639 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
3640 break;
3641 case HBA_RESP_SVCRES_TMF_LUN_INVALID:
3642 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3643 break;
3644 case HBA_RESP_SVCRES_TMF_COMPLETE:
3645 case HBA_RESP_SVCRES_TMF_SUCCEEDED:
3646 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3647 break;
3648 default:
3649 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3650 break;
3651 }
3652
3653 out:
3654 aac_fib_complete(fibptr);
3655
3656 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)
3657 scsicmd->SCp.sent_command = 1;
3658 else
3659 scsicmd->scsi_done(scsicmd);
3660 }
3661
3662 /**
3663 *
3664 * aac_send_srb_fib
3665 * @scsicmd: the scsi command block
3666 *
3667 * This routine will form a FIB and fill in the aac_srb from the
3668 * scsicmd passed in.
3669 */
3670
3671 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3672 {
3673 struct fib* cmd_fibcontext;
3674 struct aac_dev* dev;
3675 int status;
3676
3677 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3678 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3679 scsicmd->device->lun > 7) {
3680 scsicmd->result = DID_NO_CONNECT << 16;
3681 scsicmd->scsi_done(scsicmd);
3682 return 0;
3683 }
3684
3685 /*
3686 * Allocate and initialize a Fib then setup a BlockWrite command
3687 */
3688 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3689
3690 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3691
3692 /*
3693 * Check that the command queued to the controller
3694 */
3695 if (status == -EINPROGRESS) {
3696 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3697 return 0;
3698 }
3699
3700 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3701 aac_fib_complete(cmd_fibcontext);
3702 aac_fib_free(cmd_fibcontext);
3703
3704 return -1;
3705 }
3706
3707 /**
3708 *
3709 * aac_send_hba_fib
3710 * @scsicmd: the scsi command block
3711 *
3712 * This routine will form a FIB and fill in the aac_hba_cmd_req from the
3713 * scsicmd passed in.
3714 */
3715 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd)
3716 {
3717 struct fib *cmd_fibcontext;
3718 struct aac_dev *dev;
3719 int status;
3720
3721 dev = shost_priv(scsicmd->device->host);
3722 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3723 scsicmd->device->lun > AAC_MAX_LUN - 1) {
3724 scsicmd->result = DID_NO_CONNECT << 16;
3725 scsicmd->scsi_done(scsicmd);
3726 return 0;
3727 }
3728
3729 /*
3730 * Allocate and initialize a Fib then setup a BlockWrite command
3731 */
3732 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3733 if (!cmd_fibcontext)
3734 return -1;
3735
3736 status = aac_adapter_hba(cmd_fibcontext, scsicmd);
3737
3738 /*
3739 * Check that the command queued to the controller
3740 */
3741 if (status == -EINPROGRESS) {
3742 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3743 return 0;
3744 }
3745
3746 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n",
3747 status);
3748 aac_fib_complete(cmd_fibcontext);
3749 aac_fib_free(cmd_fibcontext);
3750
3751 return -1;
3752 }
3753
3754
3755 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3756 {
3757 struct aac_dev *dev;
3758 unsigned long byte_count = 0;
3759 int nseg;
3760
3761 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3762 // Get rid of old data
3763 psg->count = 0;
3764 psg->sg[0].addr = 0;
3765 psg->sg[0].count = 0;
3766
3767 nseg = scsi_dma_map(scsicmd);
3768 if (nseg < 0)
3769 return nseg;
3770 if (nseg) {
3771 struct scatterlist *sg;
3772 int i;
3773
3774 psg->count = cpu_to_le32(nseg);
3775
3776 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3777 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3778 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3779 byte_count += sg_dma_len(sg);
3780 }
3781 /* hba wants the size to be exact */
3782 if (byte_count > scsi_bufflen(scsicmd)) {
3783 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3784 (byte_count - scsi_bufflen(scsicmd));
3785 psg->sg[i-1].count = cpu_to_le32(temp);
3786 byte_count = scsi_bufflen(scsicmd);
3787 }
3788 /* Check for command underflow */
3789 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
3790 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3791 byte_count, scsicmd->underflow);
3792 }
3793 }
3794 return byte_count;
3795 }
3796
3797
3798 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3799 {
3800 struct aac_dev *dev;
3801 unsigned long byte_count = 0;
3802 u64 addr;
3803 int nseg;
3804
3805 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3806 // Get rid of old data
3807 psg->count = 0;
3808 psg->sg[0].addr[0] = 0;
3809 psg->sg[0].addr[1] = 0;
3810 psg->sg[0].count = 0;
3811
3812 nseg = scsi_dma_map(scsicmd);
3813 if (nseg < 0)
3814 return nseg;
3815 if (nseg) {
3816 struct scatterlist *sg;
3817 int i;
3818
3819 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3820 int count = sg_dma_len(sg);
3821 addr = sg_dma_address(sg);
3822 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3823 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3824 psg->sg[i].count = cpu_to_le32(count);
3825 byte_count += count;
3826 }
3827 psg->count = cpu_to_le32(nseg);
3828 /* hba wants the size to be exact */
3829 if (byte_count > scsi_bufflen(scsicmd)) {
3830 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3831 (byte_count - scsi_bufflen(scsicmd));
3832 psg->sg[i-1].count = cpu_to_le32(temp);
3833 byte_count = scsi_bufflen(scsicmd);
3834 }
3835 /* Check for command underflow */
3836 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
3837 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3838 byte_count, scsicmd->underflow);
3839 }
3840 }
3841 return byte_count;
3842 }
3843
3844 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
3845 {
3846 unsigned long byte_count = 0;
3847 int nseg;
3848
3849 // Get rid of old data
3850 psg->count = 0;
3851 psg->sg[0].next = 0;
3852 psg->sg[0].prev = 0;
3853 psg->sg[0].addr[0] = 0;
3854 psg->sg[0].addr[1] = 0;
3855 psg->sg[0].count = 0;
3856 psg->sg[0].flags = 0;
3857
3858 nseg = scsi_dma_map(scsicmd);
3859 if (nseg < 0)
3860 return nseg;
3861 if (nseg) {
3862 struct scatterlist *sg;
3863 int i;
3864
3865 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3866 int count = sg_dma_len(sg);
3867 u64 addr = sg_dma_address(sg);
3868 psg->sg[i].next = 0;
3869 psg->sg[i].prev = 0;
3870 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
3871 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
3872 psg->sg[i].count = cpu_to_le32(count);
3873 psg->sg[i].flags = 0;
3874 byte_count += count;
3875 }
3876 psg->count = cpu_to_le32(nseg);
3877 /* hba wants the size to be exact */
3878 if (byte_count > scsi_bufflen(scsicmd)) {
3879 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3880 (byte_count - scsi_bufflen(scsicmd));
3881 psg->sg[i-1].count = cpu_to_le32(temp);
3882 byte_count = scsi_bufflen(scsicmd);
3883 }
3884 /* Check for command underflow */
3885 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
3886 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3887 byte_count, scsicmd->underflow);
3888 }
3889 }
3890 return byte_count;
3891 }
3892
3893 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
3894 struct aac_raw_io2 *rio2, int sg_max)
3895 {
3896 unsigned long byte_count = 0;
3897 int nseg;
3898
3899 nseg = scsi_dma_map(scsicmd);
3900 if (nseg < 0)
3901 return nseg;
3902 if (nseg) {
3903 struct scatterlist *sg;
3904 int i, conformable = 0;
3905 u32 min_size = PAGE_SIZE, cur_size;
3906
3907 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3908 int count = sg_dma_len(sg);
3909 u64 addr = sg_dma_address(sg);
3910
3911 BUG_ON(i >= sg_max);
3912 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
3913 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
3914 cur_size = cpu_to_le32(count);
3915 rio2->sge[i].length = cur_size;
3916 rio2->sge[i].flags = 0;
3917 if (i == 0) {
3918 conformable = 1;
3919 rio2->sgeFirstSize = cur_size;
3920 } else if (i == 1) {
3921 rio2->sgeNominalSize = cur_size;
3922 min_size = cur_size;
3923 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
3924 conformable = 0;
3925 if (cur_size < min_size)
3926 min_size = cur_size;
3927 }
3928 byte_count += count;
3929 }
3930
3931 /* hba wants the size to be exact */
3932 if (byte_count > scsi_bufflen(scsicmd)) {
3933 u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
3934 (byte_count - scsi_bufflen(scsicmd));
3935 rio2->sge[i-1].length = cpu_to_le32(temp);
3936 byte_count = scsi_bufflen(scsicmd);
3937 }
3938
3939 rio2->sgeCnt = cpu_to_le32(nseg);
3940 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
3941 /* not conformable: evaluate required sg elements */
3942 if (!conformable) {
3943 int j, nseg_new = nseg, err_found;
3944 for (i = min_size / PAGE_SIZE; i >= 1; --i) {
3945 err_found = 0;
3946 nseg_new = 2;
3947 for (j = 1; j < nseg - 1; ++j) {
3948 if (rio2->sge[j].length % (i*PAGE_SIZE)) {
3949 err_found = 1;
3950 break;
3951 }
3952 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
3953 }
3954 if (!err_found)
3955 break;
3956 }
3957 if (i > 0 && nseg_new <= sg_max)
3958 aac_convert_sgraw2(rio2, i, nseg, nseg_new);
3959 } else
3960 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3961
3962 /* Check for command underflow */
3963 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3964 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3965 byte_count, scsicmd->underflow);
3966 }
3967 }
3968
3969 return byte_count;
3970 }
3971
3972 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
3973 {
3974 struct sge_ieee1212 *sge;
3975 int i, j, pos;
3976 u32 addr_low;
3977
3978 if (aac_convert_sgl == 0)
3979 return 0;
3980
3981 sge = kmalloc(nseg_new * sizeof(struct sge_ieee1212), GFP_ATOMIC);
3982 if (sge == NULL)
3983 return -1;
3984
3985 for (i = 1, pos = 1; i < nseg-1; ++i) {
3986 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
3987 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
3988 sge[pos].addrLow = addr_low;
3989 sge[pos].addrHigh = rio2->sge[i].addrHigh;
3990 if (addr_low < rio2->sge[i].addrLow)
3991 sge[pos].addrHigh++;
3992 sge[pos].length = pages * PAGE_SIZE;
3993 sge[pos].flags = 0;
3994 pos++;
3995 }
3996 }
3997 sge[pos] = rio2->sge[nseg-1];
3998 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
3999
4000 kfree(sge);
4001 rio2->sgeCnt = cpu_to_le32(nseg_new);
4002 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4003 rio2->sgeNominalSize = pages * PAGE_SIZE;
4004 return 0;
4005 }
4006
4007 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
4008 struct aac_hba_cmd_req *hbacmd,
4009 int sg_max,
4010 u64 sg_address)
4011 {
4012 unsigned long byte_count = 0;
4013 int nseg;
4014 struct scatterlist *sg;
4015 int i;
4016 u32 cur_size;
4017 struct aac_hba_sgl *sge;
4018
4019 nseg = scsi_dma_map(scsicmd);
4020 if (nseg <= 0) {
4021 byte_count = nseg;
4022 goto out;
4023 }
4024
4025 if (nseg > HBA_MAX_SG_EMBEDDED)
4026 sge = &hbacmd->sge[2];
4027 else
4028 sge = &hbacmd->sge[0];
4029
4030 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4031 int count = sg_dma_len(sg);
4032 u64 addr = sg_dma_address(sg);
4033
4034 WARN_ON(i >= sg_max);
4035 sge->addr_hi = cpu_to_le32((u32)(addr>>32));
4036 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff));
4037 cur_size = cpu_to_le32(count);
4038 sge->len = cur_size;
4039 sge->flags = 0;
4040 byte_count += count;
4041 sge++;
4042 }
4043
4044 sge--;
4045 /* hba wants the size to be exact */
4046 if (byte_count > scsi_bufflen(scsicmd)) {
4047 u32 temp;
4048
4049 temp = le32_to_cpu(sge->len) - byte_count
4050 - scsi_bufflen(scsicmd);
4051 sge->len = cpu_to_le32(temp);
4052 byte_count = scsi_bufflen(scsicmd);
4053 }
4054
4055 if (nseg <= HBA_MAX_SG_EMBEDDED) {
4056 hbacmd->emb_data_desc_count = cpu_to_le32(nseg);
4057 sge->flags = cpu_to_le32(0x40000000);
4058 } else {
4059 /* not embedded */
4060 hbacmd->sge[0].flags = cpu_to_le32(0x80000000);
4061 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1);
4062 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32);
4063 hbacmd->sge[0].addr_lo =
4064 cpu_to_le32((u32)(sg_address & 0xffffffff));
4065 }
4066
4067 /* Check for command underflow */
4068 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4069 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n",
4070 byte_count, scsicmd->underflow);
4071 }
4072 out:
4073 return byte_count;
4074 }
4075
4076 #ifdef AAC_DETAILED_STATUS_INFO
4077
4078 struct aac_srb_status_info {
4079 u32 status;
4080 char *str;
4081 };
4082
4083
4084 static struct aac_srb_status_info srb_status_info[] = {
4085 { SRB_STATUS_PENDING, "Pending Status"},
4086 { SRB_STATUS_SUCCESS, "Success"},
4087 { SRB_STATUS_ABORTED, "Aborted Command"},
4088 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
4089 { SRB_STATUS_ERROR, "Error Event"},
4090 { SRB_STATUS_BUSY, "Device Busy"},
4091 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
4092 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
4093 { SRB_STATUS_NO_DEVICE, "No Device"},
4094 { SRB_STATUS_TIMEOUT, "Timeout"},
4095 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
4096 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
4097 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
4098 { SRB_STATUS_BUS_RESET, "Bus Reset"},
4099 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
4100 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
4101 { SRB_STATUS_NO_HBA, "No HBA"},
4102 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
4103 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
4104 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
4105 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
4106 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
4107 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
4108 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
4109 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
4110 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
4111 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
4112 { SRB_STATUS_NOT_STARTED, "Not Started"},
4113 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
4114 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
4115 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
4116 { 0xff, "Unknown Error"}
4117 };
4118
4119 char *aac_get_status_string(u32 status)
4120 {
4121 int i;
4122
4123 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
4124 if (srb_status_info[i].status == status)
4125 return srb_status_info[i].str;
4126
4127 return "Bad Status Code";
4128 }
4129
4130 #endif