]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/aacraid/aachba.c
block: unify request timeout handling
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / aacraid / aachba.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/completion.h>
33 #include <linux/blkdev.h>
34 #include <asm/uaccess.h>
35 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
36
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_device.h>
40 #include <scsi/scsi_host.h>
41
42 #include "aacraid.h"
43
44 /* values for inqd_pdt: Peripheral device type in plain English */
45 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
46 #define INQD_PDT_PROC 0x03 /* Processor device */
47 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
48 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
49 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
50 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
51
52 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
53 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
54
55 /*
56 * Sense codes
57 */
58
59 #define SENCODE_NO_SENSE 0x00
60 #define SENCODE_END_OF_DATA 0x00
61 #define SENCODE_BECOMING_READY 0x04
62 #define SENCODE_INIT_CMD_REQUIRED 0x04
63 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
64 #define SENCODE_INVALID_COMMAND 0x20
65 #define SENCODE_LBA_OUT_OF_RANGE 0x21
66 #define SENCODE_INVALID_CDB_FIELD 0x24
67 #define SENCODE_LUN_NOT_SUPPORTED 0x25
68 #define SENCODE_INVALID_PARAM_FIELD 0x26
69 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
70 #define SENCODE_PARAM_VALUE_INVALID 0x26
71 #define SENCODE_RESET_OCCURRED 0x29
72 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
73 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
74 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
75 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
76 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
77 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
78 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
79 #define SENCODE_OVERLAPPED_COMMAND 0x4E
80
81 /*
82 * Additional sense codes
83 */
84
85 #define ASENCODE_NO_SENSE 0x00
86 #define ASENCODE_END_OF_DATA 0x05
87 #define ASENCODE_BECOMING_READY 0x01
88 #define ASENCODE_INIT_CMD_REQUIRED 0x02
89 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
90 #define ASENCODE_INVALID_COMMAND 0x00
91 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
92 #define ASENCODE_INVALID_CDB_FIELD 0x00
93 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
94 #define ASENCODE_INVALID_PARAM_FIELD 0x00
95 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
96 #define ASENCODE_PARAM_VALUE_INVALID 0x02
97 #define ASENCODE_RESET_OCCURRED 0x00
98 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
99 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
100 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
101 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
102 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
103 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
104 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
105 #define ASENCODE_OVERLAPPED_COMMAND 0x00
106
107 #define BYTE0(x) (unsigned char)(x)
108 #define BYTE1(x) (unsigned char)((x) >> 8)
109 #define BYTE2(x) (unsigned char)((x) >> 16)
110 #define BYTE3(x) (unsigned char)((x) >> 24)
111
112 /*------------------------------------------------------------------------------
113 * S T R U C T S / T Y P E D E F S
114 *----------------------------------------------------------------------------*/
115 /* SCSI inquiry data */
116 struct inquiry_data {
117 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
118 u8 inqd_dtq; /* RMB | Device Type Qualifier */
119 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
120 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
121 u8 inqd_len; /* Additional length (n-4) */
122 u8 inqd_pad1[2];/* Reserved - must be zero */
123 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
124 u8 inqd_vid[8]; /* Vendor ID */
125 u8 inqd_pid[16];/* Product ID */
126 u8 inqd_prl[4]; /* Product Revision Level */
127 };
128
129 /*
130 * M O D U L E G L O B A L S
131 */
132
133 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
134 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
135 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
136 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
137 #ifdef AAC_DETAILED_STATUS_INFO
138 static char *aac_get_status_string(u32 status);
139 #endif
140
141 /*
142 * Non dasd selection is handled entirely in aachba now
143 */
144
145 static int nondasd = -1;
146 static int aac_cache;
147 static int dacmode = -1;
148 int aac_msi;
149 int aac_commit = -1;
150 int startup_timeout = 180;
151 int aif_timeout = 120;
152
153 module_param(nondasd, int, S_IRUGO|S_IWUSR);
154 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
155 " 0=off, 1=on");
156 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
157 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
158 "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
159 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
160 "\tbit 2 - Disable only if Battery not protecting Cache");
161 module_param(dacmode, int, S_IRUGO|S_IWUSR);
162 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
163 " 0=off, 1=on");
164 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
165 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
166 " adapter for foreign arrays.\n"
167 "This is typically needed in systems that do not have a BIOS."
168 " 0=off, 1=on");
169 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
170 MODULE_PARM_DESC(msi, "IRQ handling."
171 " 0=PIC(default), 1=MSI, 2=MSI-X(unsupported, uses MSI)");
172 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
173 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
174 " adapter to have it's kernel up and\n"
175 "running. This is typically adjusted for large systems that do not"
176 " have a BIOS.");
177 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
178 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
179 " applications to pick up AIFs before\n"
180 "deregistering them. This is typically adjusted for heavily burdened"
181 " systems.");
182
183 int numacb = -1;
184 module_param(numacb, int, S_IRUGO|S_IWUSR);
185 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
186 " blocks (FIB) allocated. Valid values are 512 and down. Default is"
187 " to use suggestion from Firmware.");
188
189 int acbsize = -1;
190 module_param(acbsize, int, S_IRUGO|S_IWUSR);
191 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
192 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
193 " suggestion from Firmware.");
194
195 int update_interval = 30 * 60;
196 module_param(update_interval, int, S_IRUGO|S_IWUSR);
197 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
198 " updates issued to adapter.");
199
200 int check_interval = 24 * 60 * 60;
201 module_param(check_interval, int, S_IRUGO|S_IWUSR);
202 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
203 " checks.");
204
205 int aac_check_reset = 1;
206 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
207 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
208 " adapter. a value of -1 forces the reset to adapters programmed to"
209 " ignore it.");
210
211 int expose_physicals = -1;
212 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
213 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
214 " -1=protect 0=off, 1=on");
215
216 int aac_reset_devices;
217 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
218 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
219
220 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
221 struct fib *fibptr) {
222 struct scsi_device *device;
223
224 if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
225 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
226 aac_fib_complete(fibptr);
227 aac_fib_free(fibptr);
228 return 0;
229 }
230 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
231 device = scsicmd->device;
232 if (unlikely(!device || !scsi_device_online(device))) {
233 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
234 aac_fib_complete(fibptr);
235 aac_fib_free(fibptr);
236 return 0;
237 }
238 return 1;
239 }
240
241 /**
242 * aac_get_config_status - check the adapter configuration
243 * @common: adapter to query
244 *
245 * Query config status, and commit the configuration if needed.
246 */
247 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
248 {
249 int status = 0;
250 struct fib * fibptr;
251
252 if (!(fibptr = aac_fib_alloc(dev)))
253 return -ENOMEM;
254
255 aac_fib_init(fibptr);
256 {
257 struct aac_get_config_status *dinfo;
258 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
259
260 dinfo->command = cpu_to_le32(VM_ContainerConfig);
261 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
262 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
263 }
264
265 status = aac_fib_send(ContainerCommand,
266 fibptr,
267 sizeof (struct aac_get_config_status),
268 FsaNormal,
269 1, 1,
270 NULL, NULL);
271 if (status < 0) {
272 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
273 } else {
274 struct aac_get_config_status_resp *reply
275 = (struct aac_get_config_status_resp *) fib_data(fibptr);
276 dprintk((KERN_WARNING
277 "aac_get_config_status: response=%d status=%d action=%d\n",
278 le32_to_cpu(reply->response),
279 le32_to_cpu(reply->status),
280 le32_to_cpu(reply->data.action)));
281 if ((le32_to_cpu(reply->response) != ST_OK) ||
282 (le32_to_cpu(reply->status) != CT_OK) ||
283 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
284 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
285 status = -EINVAL;
286 }
287 }
288 aac_fib_complete(fibptr);
289 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
290 if (status >= 0) {
291 if ((aac_commit == 1) || commit_flag) {
292 struct aac_commit_config * dinfo;
293 aac_fib_init(fibptr);
294 dinfo = (struct aac_commit_config *) fib_data(fibptr);
295
296 dinfo->command = cpu_to_le32(VM_ContainerConfig);
297 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
298
299 status = aac_fib_send(ContainerCommand,
300 fibptr,
301 sizeof (struct aac_commit_config),
302 FsaNormal,
303 1, 1,
304 NULL, NULL);
305 aac_fib_complete(fibptr);
306 } else if (aac_commit == 0) {
307 printk(KERN_WARNING
308 "aac_get_config_status: Foreign device configurations are being ignored\n");
309 }
310 }
311 aac_fib_free(fibptr);
312 return status;
313 }
314
315 /**
316 * aac_get_containers - list containers
317 * @common: adapter to probe
318 *
319 * Make a list of all containers on this controller
320 */
321 int aac_get_containers(struct aac_dev *dev)
322 {
323 struct fsa_dev_info *fsa_dev_ptr;
324 u32 index;
325 int status = 0;
326 struct fib * fibptr;
327 struct aac_get_container_count *dinfo;
328 struct aac_get_container_count_resp *dresp;
329 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
330
331 if (!(fibptr = aac_fib_alloc(dev)))
332 return -ENOMEM;
333
334 aac_fib_init(fibptr);
335 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
336 dinfo->command = cpu_to_le32(VM_ContainerConfig);
337 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
338
339 status = aac_fib_send(ContainerCommand,
340 fibptr,
341 sizeof (struct aac_get_container_count),
342 FsaNormal,
343 1, 1,
344 NULL, NULL);
345 if (status >= 0) {
346 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
347 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
348 aac_fib_complete(fibptr);
349 }
350 aac_fib_free(fibptr);
351
352 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
353 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
354 fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
355 GFP_KERNEL);
356 if (!fsa_dev_ptr)
357 return -ENOMEM;
358
359 dev->fsa_dev = fsa_dev_ptr;
360 dev->maximum_num_containers = maximum_num_containers;
361
362 for (index = 0; index < dev->maximum_num_containers; ) {
363 fsa_dev_ptr[index].devname[0] = '\0';
364
365 status = aac_probe_container(dev, index);
366
367 if (status < 0) {
368 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
369 break;
370 }
371
372 /*
373 * If there are no more containers, then stop asking.
374 */
375 if (++index >= status)
376 break;
377 }
378 return status;
379 }
380
381 static void get_container_name_callback(void *context, struct fib * fibptr)
382 {
383 struct aac_get_name_resp * get_name_reply;
384 struct scsi_cmnd * scsicmd;
385
386 scsicmd = (struct scsi_cmnd *) context;
387
388 if (!aac_valid_context(scsicmd, fibptr))
389 return;
390
391 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
392 BUG_ON(fibptr == NULL);
393
394 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
395 /* Failure is irrelevant, using default value instead */
396 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
397 && (get_name_reply->data[0] != '\0')) {
398 char *sp = get_name_reply->data;
399 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
400 while (*sp == ' ')
401 ++sp;
402 if (*sp) {
403 struct inquiry_data inq;
404 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
405 int count = sizeof(d);
406 char *dp = d;
407 do {
408 *dp++ = (*sp) ? *sp++ : ' ';
409 } while (--count > 0);
410
411 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
412 memcpy(inq.inqd_pid, d, sizeof(d));
413 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
414 }
415 }
416
417 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
418
419 aac_fib_complete(fibptr);
420 aac_fib_free(fibptr);
421 scsicmd->scsi_done(scsicmd);
422 }
423
424 /**
425 * aac_get_container_name - get container name, none blocking.
426 */
427 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
428 {
429 int status;
430 struct aac_get_name *dinfo;
431 struct fib * cmd_fibcontext;
432 struct aac_dev * dev;
433
434 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
435
436 if (!(cmd_fibcontext = aac_fib_alloc(dev)))
437 return -ENOMEM;
438
439 aac_fib_init(cmd_fibcontext);
440 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
441
442 dinfo->command = cpu_to_le32(VM_ContainerConfig);
443 dinfo->type = cpu_to_le32(CT_READ_NAME);
444 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
445 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
446
447 status = aac_fib_send(ContainerCommand,
448 cmd_fibcontext,
449 sizeof (struct aac_get_name),
450 FsaNormal,
451 0, 1,
452 (fib_callback)get_container_name_callback,
453 (void *) scsicmd);
454
455 /*
456 * Check that the command queued to the controller
457 */
458 if (status == -EINPROGRESS) {
459 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
460 return 0;
461 }
462
463 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
464 aac_fib_complete(cmd_fibcontext);
465 aac_fib_free(cmd_fibcontext);
466 return -1;
467 }
468
469 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
470 {
471 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
472
473 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
474 return aac_scsi_cmd(scsicmd);
475
476 scsicmd->result = DID_NO_CONNECT << 16;
477 scsicmd->scsi_done(scsicmd);
478 return 0;
479 }
480
481 static void _aac_probe_container2(void * context, struct fib * fibptr)
482 {
483 struct fsa_dev_info *fsa_dev_ptr;
484 int (*callback)(struct scsi_cmnd *);
485 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
486
487
488 if (!aac_valid_context(scsicmd, fibptr))
489 return;
490
491 scsicmd->SCp.Status = 0;
492 fsa_dev_ptr = fibptr->dev->fsa_dev;
493 if (fsa_dev_ptr) {
494 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
495 fsa_dev_ptr += scmd_id(scsicmd);
496
497 if ((le32_to_cpu(dresp->status) == ST_OK) &&
498 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
499 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
500 fsa_dev_ptr->valid = 1;
501 /* sense_key holds the current state of the spin-up */
502 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
503 fsa_dev_ptr->sense_data.sense_key = NOT_READY;
504 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
505 fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
506 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
507 fsa_dev_ptr->size
508 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
509 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
510 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
511 }
512 if ((fsa_dev_ptr->valid & 1) == 0)
513 fsa_dev_ptr->valid = 0;
514 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
515 }
516 aac_fib_complete(fibptr);
517 aac_fib_free(fibptr);
518 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
519 scsicmd->SCp.ptr = NULL;
520 (*callback)(scsicmd);
521 return;
522 }
523
524 static void _aac_probe_container1(void * context, struct fib * fibptr)
525 {
526 struct scsi_cmnd * scsicmd;
527 struct aac_mount * dresp;
528 struct aac_query_mount *dinfo;
529 int status;
530
531 dresp = (struct aac_mount *) fib_data(fibptr);
532 dresp->mnt[0].capacityhigh = 0;
533 if ((le32_to_cpu(dresp->status) != ST_OK) ||
534 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
535 _aac_probe_container2(context, fibptr);
536 return;
537 }
538 scsicmd = (struct scsi_cmnd *) context;
539
540 if (!aac_valid_context(scsicmd, fibptr))
541 return;
542
543 aac_fib_init(fibptr);
544
545 dinfo = (struct aac_query_mount *)fib_data(fibptr);
546
547 dinfo->command = cpu_to_le32(VM_NameServe64);
548 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
549 dinfo->type = cpu_to_le32(FT_FILESYS);
550
551 status = aac_fib_send(ContainerCommand,
552 fibptr,
553 sizeof(struct aac_query_mount),
554 FsaNormal,
555 0, 1,
556 _aac_probe_container2,
557 (void *) scsicmd);
558 /*
559 * Check that the command queued to the controller
560 */
561 if (status == -EINPROGRESS)
562 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
563 else if (status < 0) {
564 /* Inherit results from VM_NameServe, if any */
565 dresp->status = cpu_to_le32(ST_OK);
566 _aac_probe_container2(context, fibptr);
567 }
568 }
569
570 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
571 {
572 struct fib * fibptr;
573 int status = -ENOMEM;
574
575 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
576 struct aac_query_mount *dinfo;
577
578 aac_fib_init(fibptr);
579
580 dinfo = (struct aac_query_mount *)fib_data(fibptr);
581
582 dinfo->command = cpu_to_le32(VM_NameServe);
583 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
584 dinfo->type = cpu_to_le32(FT_FILESYS);
585 scsicmd->SCp.ptr = (char *)callback;
586
587 status = aac_fib_send(ContainerCommand,
588 fibptr,
589 sizeof(struct aac_query_mount),
590 FsaNormal,
591 0, 1,
592 _aac_probe_container1,
593 (void *) scsicmd);
594 /*
595 * Check that the command queued to the controller
596 */
597 if (status == -EINPROGRESS) {
598 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
599 return 0;
600 }
601 if (status < 0) {
602 scsicmd->SCp.ptr = NULL;
603 aac_fib_complete(fibptr);
604 aac_fib_free(fibptr);
605 }
606 }
607 if (status < 0) {
608 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
609 if (fsa_dev_ptr) {
610 fsa_dev_ptr += scmd_id(scsicmd);
611 if ((fsa_dev_ptr->valid & 1) == 0) {
612 fsa_dev_ptr->valid = 0;
613 return (*callback)(scsicmd);
614 }
615 }
616 }
617 return status;
618 }
619
620 /**
621 * aac_probe_container - query a logical volume
622 * @dev: device to query
623 * @cid: container identifier
624 *
625 * Queries the controller about the given volume. The volume information
626 * is updated in the struct fsa_dev_info structure rather than returned.
627 */
628 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
629 {
630 scsicmd->device = NULL;
631 return 0;
632 }
633
634 int aac_probe_container(struct aac_dev *dev, int cid)
635 {
636 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
637 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
638 int status;
639
640 if (!scsicmd || !scsidev) {
641 kfree(scsicmd);
642 kfree(scsidev);
643 return -ENOMEM;
644 }
645 scsicmd->list.next = NULL;
646 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
647
648 scsicmd->device = scsidev;
649 scsidev->sdev_state = 0;
650 scsidev->id = cid;
651 scsidev->host = dev->scsi_host_ptr;
652
653 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
654 while (scsicmd->device == scsidev)
655 schedule();
656 kfree(scsidev);
657 status = scsicmd->SCp.Status;
658 kfree(scsicmd);
659 return status;
660 }
661
662 /* Local Structure to set SCSI inquiry data strings */
663 struct scsi_inq {
664 char vid[8]; /* Vendor ID */
665 char pid[16]; /* Product ID */
666 char prl[4]; /* Product Revision Level */
667 };
668
669 /**
670 * InqStrCopy - string merge
671 * @a: string to copy from
672 * @b: string to copy to
673 *
674 * Copy a String from one location to another
675 * without copying \0
676 */
677
678 static void inqstrcpy(char *a, char *b)
679 {
680
681 while (*a != (char)0)
682 *b++ = *a++;
683 }
684
685 static char *container_types[] = {
686 "None",
687 "Volume",
688 "Mirror",
689 "Stripe",
690 "RAID5",
691 "SSRW",
692 "SSRO",
693 "Morph",
694 "Legacy",
695 "RAID4",
696 "RAID10",
697 "RAID00",
698 "V-MIRRORS",
699 "PSEUDO R4",
700 "RAID50",
701 "RAID5D",
702 "RAID5D0",
703 "RAID1E",
704 "RAID6",
705 "RAID60",
706 "Unknown"
707 };
708
709 char * get_container_type(unsigned tindex)
710 {
711 if (tindex >= ARRAY_SIZE(container_types))
712 tindex = ARRAY_SIZE(container_types) - 1;
713 return container_types[tindex];
714 }
715
716 /* Function: setinqstr
717 *
718 * Arguments: [1] pointer to void [1] int
719 *
720 * Purpose: Sets SCSI inquiry data strings for vendor, product
721 * and revision level. Allows strings to be set in platform dependant
722 * files instead of in OS dependant driver source.
723 */
724
725 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
726 {
727 struct scsi_inq *str;
728
729 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
730 memset(str, ' ', sizeof(*str));
731
732 if (dev->supplement_adapter_info.AdapterTypeText[0]) {
733 char * cp = dev->supplement_adapter_info.AdapterTypeText;
734 int c;
735 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
736 inqstrcpy("SMC", str->vid);
737 else {
738 c = sizeof(str->vid);
739 while (*cp && *cp != ' ' && --c)
740 ++cp;
741 c = *cp;
742 *cp = '\0';
743 inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
744 str->vid);
745 *cp = c;
746 while (*cp && *cp != ' ')
747 ++cp;
748 }
749 while (*cp == ' ')
750 ++cp;
751 /* last six chars reserved for vol type */
752 c = 0;
753 if (strlen(cp) > sizeof(str->pid)) {
754 c = cp[sizeof(str->pid)];
755 cp[sizeof(str->pid)] = '\0';
756 }
757 inqstrcpy (cp, str->pid);
758 if (c)
759 cp[sizeof(str->pid)] = c;
760 } else {
761 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
762
763 inqstrcpy (mp->vname, str->vid);
764 /* last six chars reserved for vol type */
765 inqstrcpy (mp->model, str->pid);
766 }
767
768 if (tindex < ARRAY_SIZE(container_types)){
769 char *findit = str->pid;
770
771 for ( ; *findit != ' '; findit++); /* walk till we find a space */
772 /* RAID is superfluous in the context of a RAID device */
773 if (memcmp(findit-4, "RAID", 4) == 0)
774 *(findit -= 4) = ' ';
775 if (((findit - str->pid) + strlen(container_types[tindex]))
776 < (sizeof(str->pid) + sizeof(str->prl)))
777 inqstrcpy (container_types[tindex], findit + 1);
778 }
779 inqstrcpy ("V1.0", str->prl);
780 }
781
782 static void get_container_serial_callback(void *context, struct fib * fibptr)
783 {
784 struct aac_get_serial_resp * get_serial_reply;
785 struct scsi_cmnd * scsicmd;
786
787 BUG_ON(fibptr == NULL);
788
789 scsicmd = (struct scsi_cmnd *) context;
790 if (!aac_valid_context(scsicmd, fibptr))
791 return;
792
793 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
794 /* Failure is irrelevant, using default value instead */
795 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
796 char sp[13];
797 /* EVPD bit set */
798 sp[0] = INQD_PDT_DA;
799 sp[1] = scsicmd->cmnd[2];
800 sp[2] = 0;
801 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
802 le32_to_cpu(get_serial_reply->uid));
803 scsi_sg_copy_from_buffer(scsicmd, sp, sizeof(sp));
804 }
805
806 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
807
808 aac_fib_complete(fibptr);
809 aac_fib_free(fibptr);
810 scsicmd->scsi_done(scsicmd);
811 }
812
813 /**
814 * aac_get_container_serial - get container serial, none blocking.
815 */
816 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
817 {
818 int status;
819 struct aac_get_serial *dinfo;
820 struct fib * cmd_fibcontext;
821 struct aac_dev * dev;
822
823 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
824
825 if (!(cmd_fibcontext = aac_fib_alloc(dev)))
826 return -ENOMEM;
827
828 aac_fib_init(cmd_fibcontext);
829 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
830
831 dinfo->command = cpu_to_le32(VM_ContainerConfig);
832 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
833 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
834
835 status = aac_fib_send(ContainerCommand,
836 cmd_fibcontext,
837 sizeof (struct aac_get_serial),
838 FsaNormal,
839 0, 1,
840 (fib_callback) get_container_serial_callback,
841 (void *) scsicmd);
842
843 /*
844 * Check that the command queued to the controller
845 */
846 if (status == -EINPROGRESS) {
847 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
848 return 0;
849 }
850
851 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
852 aac_fib_complete(cmd_fibcontext);
853 aac_fib_free(cmd_fibcontext);
854 return -1;
855 }
856
857 /* Function: setinqserial
858 *
859 * Arguments: [1] pointer to void [1] int
860 *
861 * Purpose: Sets SCSI Unit Serial number.
862 * This is a fake. We should read a proper
863 * serial number from the container. <SuSE>But
864 * without docs it's quite hard to do it :-)
865 * So this will have to do in the meantime.</SuSE>
866 */
867
868 static int setinqserial(struct aac_dev *dev, void *data, int cid)
869 {
870 /*
871 * This breaks array migration.
872 */
873 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
874 le32_to_cpu(dev->adapter_info.serial[0]), cid);
875 }
876
877 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
878 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
879 {
880 u8 *sense_buf = (u8 *)sense_data;
881 /* Sense data valid, err code 70h */
882 sense_buf[0] = 0x70; /* No info field */
883 sense_buf[1] = 0; /* Segment number, always zero */
884
885 sense_buf[2] = sense_key; /* Sense key */
886
887 sense_buf[12] = sense_code; /* Additional sense code */
888 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
889
890 if (sense_key == ILLEGAL_REQUEST) {
891 sense_buf[7] = 10; /* Additional sense length */
892
893 sense_buf[15] = bit_pointer;
894 /* Illegal parameter is in the parameter block */
895 if (sense_code == SENCODE_INVALID_CDB_FIELD)
896 sense_buf[15] |= 0xc0;/* Std sense key specific field */
897 /* Illegal parameter is in the CDB block */
898 sense_buf[16] = field_pointer >> 8; /* MSB */
899 sense_buf[17] = field_pointer; /* LSB */
900 } else
901 sense_buf[7] = 6; /* Additional sense length */
902 }
903
904 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
905 {
906 if (lba & 0xffffffff00000000LL) {
907 int cid = scmd_id(cmd);
908 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
909 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
910 SAM_STAT_CHECK_CONDITION;
911 set_sense(&dev->fsa_dev[cid].sense_data,
912 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
913 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
914 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
915 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
916 SCSI_SENSE_BUFFERSIZE));
917 cmd->scsi_done(cmd);
918 return 1;
919 }
920 return 0;
921 }
922
923 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
924 {
925 return 0;
926 }
927
928 static void io_callback(void *context, struct fib * fibptr);
929
930 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
931 {
932 u16 fibsize;
933 struct aac_raw_io *readcmd;
934 aac_fib_init(fib);
935 readcmd = (struct aac_raw_io *) fib_data(fib);
936 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
937 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
938 readcmd->count = cpu_to_le32(count<<9);
939 readcmd->cid = cpu_to_le16(scmd_id(cmd));
940 readcmd->flags = cpu_to_le16(IO_TYPE_READ);
941 readcmd->bpTotal = 0;
942 readcmd->bpComplete = 0;
943
944 aac_build_sgraw(cmd, &readcmd->sg);
945 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
946 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
947 /*
948 * Now send the Fib to the adapter
949 */
950 return aac_fib_send(ContainerRawIo,
951 fib,
952 fibsize,
953 FsaNormal,
954 0, 1,
955 (fib_callback) io_callback,
956 (void *) cmd);
957 }
958
959 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
960 {
961 u16 fibsize;
962 struct aac_read64 *readcmd;
963 aac_fib_init(fib);
964 readcmd = (struct aac_read64 *) fib_data(fib);
965 readcmd->command = cpu_to_le32(VM_CtHostRead64);
966 readcmd->cid = cpu_to_le16(scmd_id(cmd));
967 readcmd->sector_count = cpu_to_le16(count);
968 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
969 readcmd->pad = 0;
970 readcmd->flags = 0;
971
972 aac_build_sg64(cmd, &readcmd->sg);
973 fibsize = sizeof(struct aac_read64) +
974 ((le32_to_cpu(readcmd->sg.count) - 1) *
975 sizeof (struct sgentry64));
976 BUG_ON (fibsize > (fib->dev->max_fib_size -
977 sizeof(struct aac_fibhdr)));
978 /*
979 * Now send the Fib to the adapter
980 */
981 return aac_fib_send(ContainerCommand64,
982 fib,
983 fibsize,
984 FsaNormal,
985 0, 1,
986 (fib_callback) io_callback,
987 (void *) cmd);
988 }
989
990 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
991 {
992 u16 fibsize;
993 struct aac_read *readcmd;
994 aac_fib_init(fib);
995 readcmd = (struct aac_read *) fib_data(fib);
996 readcmd->command = cpu_to_le32(VM_CtBlockRead);
997 readcmd->cid = cpu_to_le32(scmd_id(cmd));
998 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
999 readcmd->count = cpu_to_le32(count * 512);
1000
1001 aac_build_sg(cmd, &readcmd->sg);
1002 fibsize = sizeof(struct aac_read) +
1003 ((le32_to_cpu(readcmd->sg.count) - 1) *
1004 sizeof (struct sgentry));
1005 BUG_ON (fibsize > (fib->dev->max_fib_size -
1006 sizeof(struct aac_fibhdr)));
1007 /*
1008 * Now send the Fib to the adapter
1009 */
1010 return aac_fib_send(ContainerCommand,
1011 fib,
1012 fibsize,
1013 FsaNormal,
1014 0, 1,
1015 (fib_callback) io_callback,
1016 (void *) cmd);
1017 }
1018
1019 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1020 {
1021 u16 fibsize;
1022 struct aac_raw_io *writecmd;
1023 aac_fib_init(fib);
1024 writecmd = (struct aac_raw_io *) fib_data(fib);
1025 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1026 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1027 writecmd->count = cpu_to_le32(count<<9);
1028 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1029 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1030 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1031 cpu_to_le16(IO_TYPE_WRITE|IO_SUREWRITE) :
1032 cpu_to_le16(IO_TYPE_WRITE);
1033 writecmd->bpTotal = 0;
1034 writecmd->bpComplete = 0;
1035
1036 aac_build_sgraw(cmd, &writecmd->sg);
1037 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
1038 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1039 /*
1040 * Now send the Fib to the adapter
1041 */
1042 return aac_fib_send(ContainerRawIo,
1043 fib,
1044 fibsize,
1045 FsaNormal,
1046 0, 1,
1047 (fib_callback) io_callback,
1048 (void *) cmd);
1049 }
1050
1051 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1052 {
1053 u16 fibsize;
1054 struct aac_write64 *writecmd;
1055 aac_fib_init(fib);
1056 writecmd = (struct aac_write64 *) fib_data(fib);
1057 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1058 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1059 writecmd->sector_count = cpu_to_le16(count);
1060 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1061 writecmd->pad = 0;
1062 writecmd->flags = 0;
1063
1064 aac_build_sg64(cmd, &writecmd->sg);
1065 fibsize = sizeof(struct aac_write64) +
1066 ((le32_to_cpu(writecmd->sg.count) - 1) *
1067 sizeof (struct sgentry64));
1068 BUG_ON (fibsize > (fib->dev->max_fib_size -
1069 sizeof(struct aac_fibhdr)));
1070 /*
1071 * Now send the Fib to the adapter
1072 */
1073 return aac_fib_send(ContainerCommand64,
1074 fib,
1075 fibsize,
1076 FsaNormal,
1077 0, 1,
1078 (fib_callback) io_callback,
1079 (void *) cmd);
1080 }
1081
1082 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1083 {
1084 u16 fibsize;
1085 struct aac_write *writecmd;
1086 aac_fib_init(fib);
1087 writecmd = (struct aac_write *) fib_data(fib);
1088 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1089 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1090 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1091 writecmd->count = cpu_to_le32(count * 512);
1092 writecmd->sg.count = cpu_to_le32(1);
1093 /* ->stable is not used - it did mean which type of write */
1094
1095 aac_build_sg(cmd, &writecmd->sg);
1096 fibsize = sizeof(struct aac_write) +
1097 ((le32_to_cpu(writecmd->sg.count) - 1) *
1098 sizeof (struct sgentry));
1099 BUG_ON (fibsize > (fib->dev->max_fib_size -
1100 sizeof(struct aac_fibhdr)));
1101 /*
1102 * Now send the Fib to the adapter
1103 */
1104 return aac_fib_send(ContainerCommand,
1105 fib,
1106 fibsize,
1107 FsaNormal,
1108 0, 1,
1109 (fib_callback) io_callback,
1110 (void *) cmd);
1111 }
1112
1113 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1114 {
1115 struct aac_srb * srbcmd;
1116 u32 flag;
1117 u32 timeout;
1118
1119 aac_fib_init(fib);
1120 switch(cmd->sc_data_direction){
1121 case DMA_TO_DEVICE:
1122 flag = SRB_DataOut;
1123 break;
1124 case DMA_BIDIRECTIONAL:
1125 flag = SRB_DataIn | SRB_DataOut;
1126 break;
1127 case DMA_FROM_DEVICE:
1128 flag = SRB_DataIn;
1129 break;
1130 case DMA_NONE:
1131 default: /* shuts up some versions of gcc */
1132 flag = SRB_NoDataXfer;
1133 break;
1134 }
1135
1136 srbcmd = (struct aac_srb*) fib_data(fib);
1137 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1138 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1139 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1140 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1141 srbcmd->flags = cpu_to_le32(flag);
1142 timeout = cmd->request->timeout/HZ;
1143 if (timeout == 0)
1144 timeout = 1;
1145 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1146 srbcmd->retry_limit = 0; /* Obsolete parameter */
1147 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1148 return srbcmd;
1149 }
1150
1151 static void aac_srb_callback(void *context, struct fib * fibptr);
1152
1153 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1154 {
1155 u16 fibsize;
1156 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1157
1158 aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
1159 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1160
1161 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1162 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1163 /*
1164 * Build Scatter/Gather list
1165 */
1166 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1167 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1168 sizeof (struct sgentry64));
1169 BUG_ON (fibsize > (fib->dev->max_fib_size -
1170 sizeof(struct aac_fibhdr)));
1171
1172 /*
1173 * Now send the Fib to the adapter
1174 */
1175 return aac_fib_send(ScsiPortCommand64, fib,
1176 fibsize, FsaNormal, 0, 1,
1177 (fib_callback) aac_srb_callback,
1178 (void *) cmd);
1179 }
1180
1181 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1182 {
1183 u16 fibsize;
1184 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1185
1186 aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
1187 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1188
1189 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1190 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1191 /*
1192 * Build Scatter/Gather list
1193 */
1194 fibsize = sizeof (struct aac_srb) +
1195 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1196 sizeof (struct sgentry));
1197 BUG_ON (fibsize > (fib->dev->max_fib_size -
1198 sizeof(struct aac_fibhdr)));
1199
1200 /*
1201 * Now send the Fib to the adapter
1202 */
1203 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1204 (fib_callback) aac_srb_callback, (void *) cmd);
1205 }
1206
1207 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1208 {
1209 if ((sizeof(dma_addr_t) > 4) &&
1210 (num_physpages > (0xFFFFFFFFULL >> PAGE_SHIFT)) &&
1211 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1212 return FAILED;
1213 return aac_scsi_32(fib, cmd);
1214 }
1215
1216 int aac_get_adapter_info(struct aac_dev* dev)
1217 {
1218 struct fib* fibptr;
1219 int rcode;
1220 u32 tmp;
1221 struct aac_adapter_info *info;
1222 struct aac_bus_info *command;
1223 struct aac_bus_info_response *bus_info;
1224
1225 if (!(fibptr = aac_fib_alloc(dev)))
1226 return -ENOMEM;
1227
1228 aac_fib_init(fibptr);
1229 info = (struct aac_adapter_info *) fib_data(fibptr);
1230 memset(info,0,sizeof(*info));
1231
1232 rcode = aac_fib_send(RequestAdapterInfo,
1233 fibptr,
1234 sizeof(*info),
1235 FsaNormal,
1236 -1, 1, /* First `interrupt' command uses special wait */
1237 NULL,
1238 NULL);
1239
1240 if (rcode < 0) {
1241 aac_fib_complete(fibptr);
1242 aac_fib_free(fibptr);
1243 return rcode;
1244 }
1245 memcpy(&dev->adapter_info, info, sizeof(*info));
1246
1247 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1248 struct aac_supplement_adapter_info * sinfo;
1249
1250 aac_fib_init(fibptr);
1251
1252 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1253
1254 memset(sinfo,0,sizeof(*sinfo));
1255
1256 rcode = aac_fib_send(RequestSupplementAdapterInfo,
1257 fibptr,
1258 sizeof(*sinfo),
1259 FsaNormal,
1260 1, 1,
1261 NULL,
1262 NULL);
1263
1264 if (rcode >= 0)
1265 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1266 }
1267
1268
1269 /*
1270 * GetBusInfo
1271 */
1272
1273 aac_fib_init(fibptr);
1274
1275 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1276
1277 memset(bus_info, 0, sizeof(*bus_info));
1278
1279 command = (struct aac_bus_info *)bus_info;
1280
1281 command->Command = cpu_to_le32(VM_Ioctl);
1282 command->ObjType = cpu_to_le32(FT_DRIVE);
1283 command->MethodId = cpu_to_le32(1);
1284 command->CtlCmd = cpu_to_le32(GetBusInfo);
1285
1286 rcode = aac_fib_send(ContainerCommand,
1287 fibptr,
1288 sizeof (*bus_info),
1289 FsaNormal,
1290 1, 1,
1291 NULL, NULL);
1292
1293 /* reasoned default */
1294 dev->maximum_num_physicals = 16;
1295 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1296 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1297 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1298 }
1299
1300 if (!dev->in_reset) {
1301 char buffer[16];
1302 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1303 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1304 dev->name,
1305 dev->id,
1306 tmp>>24,
1307 (tmp>>16)&0xff,
1308 tmp&0xff,
1309 le32_to_cpu(dev->adapter_info.kernelbuild),
1310 (int)sizeof(dev->supplement_adapter_info.BuildDate),
1311 dev->supplement_adapter_info.BuildDate);
1312 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1313 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1314 dev->name, dev->id,
1315 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1316 le32_to_cpu(dev->adapter_info.monitorbuild));
1317 tmp = le32_to_cpu(dev->adapter_info.biosrev);
1318 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1319 dev->name, dev->id,
1320 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1321 le32_to_cpu(dev->adapter_info.biosbuild));
1322 buffer[0] = '\0';
1323 if (aac_get_serial_number(
1324 shost_to_class(dev->scsi_host_ptr), buffer))
1325 printk(KERN_INFO "%s%d: serial %s",
1326 dev->name, dev->id, buffer);
1327 if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1328 printk(KERN_INFO "%s%d: TSID %.*s\n",
1329 dev->name, dev->id,
1330 (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1331 dev->supplement_adapter_info.VpdInfo.Tsid);
1332 }
1333 if (!aac_check_reset || ((aac_check_reset == 1) &&
1334 (dev->supplement_adapter_info.SupportedOptions2 &
1335 AAC_OPTION_IGNORE_RESET))) {
1336 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1337 dev->name, dev->id);
1338 }
1339 }
1340
1341 dev->cache_protected = 0;
1342 dev->jbod = ((dev->supplement_adapter_info.FeatureBits &
1343 AAC_FEATURE_JBOD) != 0);
1344 dev->nondasd_support = 0;
1345 dev->raid_scsi_mode = 0;
1346 if(dev->adapter_info.options & AAC_OPT_NONDASD)
1347 dev->nondasd_support = 1;
1348
1349 /*
1350 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1351 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1352 * force nondasd support on. If we decide to allow the non-dasd flag
1353 * additional changes changes will have to be made to support
1354 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
1355 * changed to support the new dev->raid_scsi_mode flag instead of
1356 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1357 * function aac_detect will have to be modified where it sets up the
1358 * max number of channels based on the aac->nondasd_support flag only.
1359 */
1360 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1361 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1362 dev->nondasd_support = 1;
1363 dev->raid_scsi_mode = 1;
1364 }
1365 if (dev->raid_scsi_mode != 0)
1366 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1367 dev->name, dev->id);
1368
1369 if (nondasd != -1)
1370 dev->nondasd_support = (nondasd!=0);
1371 if (dev->nondasd_support && !dev->in_reset)
1372 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1373
1374 dev->dac_support = 0;
1375 if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
1376 if (!dev->in_reset)
1377 printk(KERN_INFO "%s%d: 64bit support enabled.\n",
1378 dev->name, dev->id);
1379 dev->dac_support = 1;
1380 }
1381
1382 if(dacmode != -1) {
1383 dev->dac_support = (dacmode!=0);
1384 }
1385 if(dev->dac_support != 0) {
1386 if (!pci_set_dma_mask(dev->pdev, DMA_64BIT_MASK) &&
1387 !pci_set_consistent_dma_mask(dev->pdev, DMA_64BIT_MASK)) {
1388 if (!dev->in_reset)
1389 printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1390 dev->name, dev->id);
1391 } else if (!pci_set_dma_mask(dev->pdev, DMA_32BIT_MASK) &&
1392 !pci_set_consistent_dma_mask(dev->pdev, DMA_32BIT_MASK)) {
1393 printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1394 dev->name, dev->id);
1395 dev->dac_support = 0;
1396 } else {
1397 printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1398 dev->name, dev->id);
1399 rcode = -ENOMEM;
1400 }
1401 }
1402 /*
1403 * Deal with configuring for the individualized limits of each packet
1404 * interface.
1405 */
1406 dev->a_ops.adapter_scsi = (dev->dac_support)
1407 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
1408 ? aac_scsi_32_64
1409 : aac_scsi_64)
1410 : aac_scsi_32;
1411 if (dev->raw_io_interface) {
1412 dev->a_ops.adapter_bounds = (dev->raw_io_64)
1413 ? aac_bounds_64
1414 : aac_bounds_32;
1415 dev->a_ops.adapter_read = aac_read_raw_io;
1416 dev->a_ops.adapter_write = aac_write_raw_io;
1417 } else {
1418 dev->a_ops.adapter_bounds = aac_bounds_32;
1419 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1420 sizeof(struct aac_fibhdr) -
1421 sizeof(struct aac_write) + sizeof(struct sgentry)) /
1422 sizeof(struct sgentry);
1423 if (dev->dac_support) {
1424 dev->a_ops.adapter_read = aac_read_block64;
1425 dev->a_ops.adapter_write = aac_write_block64;
1426 /*
1427 * 38 scatter gather elements
1428 */
1429 dev->scsi_host_ptr->sg_tablesize =
1430 (dev->max_fib_size -
1431 sizeof(struct aac_fibhdr) -
1432 sizeof(struct aac_write64) +
1433 sizeof(struct sgentry64)) /
1434 sizeof(struct sgentry64);
1435 } else {
1436 dev->a_ops.adapter_read = aac_read_block;
1437 dev->a_ops.adapter_write = aac_write_block;
1438 }
1439 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1440 if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1441 /*
1442 * Worst case size that could cause sg overflow when
1443 * we break up SG elements that are larger than 64KB.
1444 * Would be nice if we could tell the SCSI layer what
1445 * the maximum SG element size can be. Worst case is
1446 * (sg_tablesize-1) 4KB elements with one 64KB
1447 * element.
1448 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
1449 */
1450 dev->scsi_host_ptr->max_sectors =
1451 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1452 }
1453 }
1454
1455 aac_fib_complete(fibptr);
1456 aac_fib_free(fibptr);
1457
1458 return rcode;
1459 }
1460
1461
1462 static void io_callback(void *context, struct fib * fibptr)
1463 {
1464 struct aac_dev *dev;
1465 struct aac_read_reply *readreply;
1466 struct scsi_cmnd *scsicmd;
1467 u32 cid;
1468
1469 scsicmd = (struct scsi_cmnd *) context;
1470
1471 if (!aac_valid_context(scsicmd, fibptr))
1472 return;
1473
1474 dev = fibptr->dev;
1475 cid = scmd_id(scsicmd);
1476
1477 if (nblank(dprintk(x))) {
1478 u64 lba;
1479 switch (scsicmd->cmnd[0]) {
1480 case WRITE_6:
1481 case READ_6:
1482 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1483 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1484 break;
1485 case WRITE_16:
1486 case READ_16:
1487 lba = ((u64)scsicmd->cmnd[2] << 56) |
1488 ((u64)scsicmd->cmnd[3] << 48) |
1489 ((u64)scsicmd->cmnd[4] << 40) |
1490 ((u64)scsicmd->cmnd[5] << 32) |
1491 ((u64)scsicmd->cmnd[6] << 24) |
1492 (scsicmd->cmnd[7] << 16) |
1493 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1494 break;
1495 case WRITE_12:
1496 case READ_12:
1497 lba = ((u64)scsicmd->cmnd[2] << 24) |
1498 (scsicmd->cmnd[3] << 16) |
1499 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1500 break;
1501 default:
1502 lba = ((u64)scsicmd->cmnd[2] << 24) |
1503 (scsicmd->cmnd[3] << 16) |
1504 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1505 break;
1506 }
1507 printk(KERN_DEBUG
1508 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1509 smp_processor_id(), (unsigned long long)lba, jiffies);
1510 }
1511
1512 BUG_ON(fibptr == NULL);
1513
1514 scsi_dma_unmap(scsicmd);
1515
1516 readreply = (struct aac_read_reply *)fib_data(fibptr);
1517 switch (le32_to_cpu(readreply->status)) {
1518 case ST_OK:
1519 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1520 SAM_STAT_GOOD;
1521 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
1522 break;
1523 case ST_NOT_READY:
1524 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1525 SAM_STAT_CHECK_CONDITION;
1526 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
1527 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
1528 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1529 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1530 SCSI_SENSE_BUFFERSIZE));
1531 break;
1532 default:
1533 #ifdef AAC_DETAILED_STATUS_INFO
1534 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1535 le32_to_cpu(readreply->status));
1536 #endif
1537 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1538 SAM_STAT_CHECK_CONDITION;
1539 set_sense(&dev->fsa_dev[cid].sense_data,
1540 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1541 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1542 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1543 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1544 SCSI_SENSE_BUFFERSIZE));
1545 break;
1546 }
1547 aac_fib_complete(fibptr);
1548 aac_fib_free(fibptr);
1549
1550 scsicmd->scsi_done(scsicmd);
1551 }
1552
1553 static int aac_read(struct scsi_cmnd * scsicmd)
1554 {
1555 u64 lba;
1556 u32 count;
1557 int status;
1558 struct aac_dev *dev;
1559 struct fib * cmd_fibcontext;
1560
1561 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1562 /*
1563 * Get block address and transfer length
1564 */
1565 switch (scsicmd->cmnd[0]) {
1566 case READ_6:
1567 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1568
1569 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1570 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1571 count = scsicmd->cmnd[4];
1572
1573 if (count == 0)
1574 count = 256;
1575 break;
1576 case READ_16:
1577 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1578
1579 lba = ((u64)scsicmd->cmnd[2] << 56) |
1580 ((u64)scsicmd->cmnd[3] << 48) |
1581 ((u64)scsicmd->cmnd[4] << 40) |
1582 ((u64)scsicmd->cmnd[5] << 32) |
1583 ((u64)scsicmd->cmnd[6] << 24) |
1584 (scsicmd->cmnd[7] << 16) |
1585 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1586 count = (scsicmd->cmnd[10] << 24) |
1587 (scsicmd->cmnd[11] << 16) |
1588 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1589 break;
1590 case READ_12:
1591 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1592
1593 lba = ((u64)scsicmd->cmnd[2] << 24) |
1594 (scsicmd->cmnd[3] << 16) |
1595 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1596 count = (scsicmd->cmnd[6] << 24) |
1597 (scsicmd->cmnd[7] << 16) |
1598 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1599 break;
1600 default:
1601 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1602
1603 lba = ((u64)scsicmd->cmnd[2] << 24) |
1604 (scsicmd->cmnd[3] << 16) |
1605 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1606 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1607 break;
1608 }
1609 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1610 smp_processor_id(), (unsigned long long)lba, jiffies));
1611 if (aac_adapter_bounds(dev,scsicmd,lba))
1612 return 0;
1613 /*
1614 * Alocate and initialize a Fib
1615 */
1616 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1617 return -1;
1618 }
1619
1620 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1621
1622 /*
1623 * Check that the command queued to the controller
1624 */
1625 if (status == -EINPROGRESS) {
1626 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1627 return 0;
1628 }
1629
1630 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1631 /*
1632 * For some reason, the Fib didn't queue, return QUEUE_FULL
1633 */
1634 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1635 scsicmd->scsi_done(scsicmd);
1636 aac_fib_complete(cmd_fibcontext);
1637 aac_fib_free(cmd_fibcontext);
1638 return 0;
1639 }
1640
1641 static int aac_write(struct scsi_cmnd * scsicmd)
1642 {
1643 u64 lba;
1644 u32 count;
1645 int fua;
1646 int status;
1647 struct aac_dev *dev;
1648 struct fib * cmd_fibcontext;
1649
1650 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1651 /*
1652 * Get block address and transfer length
1653 */
1654 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
1655 {
1656 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1657 count = scsicmd->cmnd[4];
1658 if (count == 0)
1659 count = 256;
1660 fua = 0;
1661 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1662 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1663
1664 lba = ((u64)scsicmd->cmnd[2] << 56) |
1665 ((u64)scsicmd->cmnd[3] << 48) |
1666 ((u64)scsicmd->cmnd[4] << 40) |
1667 ((u64)scsicmd->cmnd[5] << 32) |
1668 ((u64)scsicmd->cmnd[6] << 24) |
1669 (scsicmd->cmnd[7] << 16) |
1670 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1671 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1672 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1673 fua = scsicmd->cmnd[1] & 0x8;
1674 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1675 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1676
1677 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1678 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1679 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1680 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1681 fua = scsicmd->cmnd[1] & 0x8;
1682 } else {
1683 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1684 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1685 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1686 fua = scsicmd->cmnd[1] & 0x8;
1687 }
1688 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1689 smp_processor_id(), (unsigned long long)lba, jiffies));
1690 if (aac_adapter_bounds(dev,scsicmd,lba))
1691 return 0;
1692 /*
1693 * Allocate and initialize a Fib then setup a BlockWrite command
1694 */
1695 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1696 scsicmd->result = DID_ERROR << 16;
1697 scsicmd->scsi_done(scsicmd);
1698 return 0;
1699 }
1700
1701 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
1702
1703 /*
1704 * Check that the command queued to the controller
1705 */
1706 if (status == -EINPROGRESS) {
1707 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1708 return 0;
1709 }
1710
1711 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1712 /*
1713 * For some reason, the Fib didn't queue, return QUEUE_FULL
1714 */
1715 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1716 scsicmd->scsi_done(scsicmd);
1717
1718 aac_fib_complete(cmd_fibcontext);
1719 aac_fib_free(cmd_fibcontext);
1720 return 0;
1721 }
1722
1723 static void synchronize_callback(void *context, struct fib *fibptr)
1724 {
1725 struct aac_synchronize_reply *synchronizereply;
1726 struct scsi_cmnd *cmd;
1727
1728 cmd = context;
1729
1730 if (!aac_valid_context(cmd, fibptr))
1731 return;
1732
1733 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1734 smp_processor_id(), jiffies));
1735 BUG_ON(fibptr == NULL);
1736
1737
1738 synchronizereply = fib_data(fibptr);
1739 if (le32_to_cpu(synchronizereply->status) == CT_OK)
1740 cmd->result = DID_OK << 16 |
1741 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1742 else {
1743 struct scsi_device *sdev = cmd->device;
1744 struct aac_dev *dev = fibptr->dev;
1745 u32 cid = sdev_id(sdev);
1746 printk(KERN_WARNING
1747 "synchronize_callback: synchronize failed, status = %d\n",
1748 le32_to_cpu(synchronizereply->status));
1749 cmd->result = DID_OK << 16 |
1750 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1751 set_sense(&dev->fsa_dev[cid].sense_data,
1752 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1753 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1754 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1755 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1756 SCSI_SENSE_BUFFERSIZE));
1757 }
1758
1759 aac_fib_complete(fibptr);
1760 aac_fib_free(fibptr);
1761 cmd->scsi_done(cmd);
1762 }
1763
1764 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1765 {
1766 int status;
1767 struct fib *cmd_fibcontext;
1768 struct aac_synchronize *synchronizecmd;
1769 struct scsi_cmnd *cmd;
1770 struct scsi_device *sdev = scsicmd->device;
1771 int active = 0;
1772 struct aac_dev *aac;
1773 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
1774 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1775 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1776 unsigned long flags;
1777
1778 /*
1779 * Wait for all outstanding queued commands to complete to this
1780 * specific target (block).
1781 */
1782 spin_lock_irqsave(&sdev->list_lock, flags);
1783 list_for_each_entry(cmd, &sdev->cmd_list, list)
1784 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1785 u64 cmnd_lba;
1786 u32 cmnd_count;
1787
1788 if (cmd->cmnd[0] == WRITE_6) {
1789 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
1790 (cmd->cmnd[2] << 8) |
1791 cmd->cmnd[3];
1792 cmnd_count = cmd->cmnd[4];
1793 if (cmnd_count == 0)
1794 cmnd_count = 256;
1795 } else if (cmd->cmnd[0] == WRITE_16) {
1796 cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
1797 ((u64)cmd->cmnd[3] << 48) |
1798 ((u64)cmd->cmnd[4] << 40) |
1799 ((u64)cmd->cmnd[5] << 32) |
1800 ((u64)cmd->cmnd[6] << 24) |
1801 (cmd->cmnd[7] << 16) |
1802 (cmd->cmnd[8] << 8) |
1803 cmd->cmnd[9];
1804 cmnd_count = (cmd->cmnd[10] << 24) |
1805 (cmd->cmnd[11] << 16) |
1806 (cmd->cmnd[12] << 8) |
1807 cmd->cmnd[13];
1808 } else if (cmd->cmnd[0] == WRITE_12) {
1809 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1810 (cmd->cmnd[3] << 16) |
1811 (cmd->cmnd[4] << 8) |
1812 cmd->cmnd[5];
1813 cmnd_count = (cmd->cmnd[6] << 24) |
1814 (cmd->cmnd[7] << 16) |
1815 (cmd->cmnd[8] << 8) |
1816 cmd->cmnd[9];
1817 } else if (cmd->cmnd[0] == WRITE_10) {
1818 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1819 (cmd->cmnd[3] << 16) |
1820 (cmd->cmnd[4] << 8) |
1821 cmd->cmnd[5];
1822 cmnd_count = (cmd->cmnd[7] << 8) |
1823 cmd->cmnd[8];
1824 } else
1825 continue;
1826 if (((cmnd_lba + cmnd_count) < lba) ||
1827 (count && ((lba + count) < cmnd_lba)))
1828 continue;
1829 ++active;
1830 break;
1831 }
1832
1833 spin_unlock_irqrestore(&sdev->list_lock, flags);
1834
1835 /*
1836 * Yield the processor (requeue for later)
1837 */
1838 if (active)
1839 return SCSI_MLQUEUE_DEVICE_BUSY;
1840
1841 aac = (struct aac_dev *)sdev->host->hostdata;
1842 if (aac->in_reset)
1843 return SCSI_MLQUEUE_HOST_BUSY;
1844
1845 /*
1846 * Allocate and initialize a Fib
1847 */
1848 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1849 return SCSI_MLQUEUE_HOST_BUSY;
1850
1851 aac_fib_init(cmd_fibcontext);
1852
1853 synchronizecmd = fib_data(cmd_fibcontext);
1854 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1855 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1856 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
1857 synchronizecmd->count =
1858 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1859
1860 /*
1861 * Now send the Fib to the adapter
1862 */
1863 status = aac_fib_send(ContainerCommand,
1864 cmd_fibcontext,
1865 sizeof(struct aac_synchronize),
1866 FsaNormal,
1867 0, 1,
1868 (fib_callback)synchronize_callback,
1869 (void *)scsicmd);
1870
1871 /*
1872 * Check that the command queued to the controller
1873 */
1874 if (status == -EINPROGRESS) {
1875 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1876 return 0;
1877 }
1878
1879 printk(KERN_WARNING
1880 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1881 aac_fib_complete(cmd_fibcontext);
1882 aac_fib_free(cmd_fibcontext);
1883 return SCSI_MLQUEUE_HOST_BUSY;
1884 }
1885
1886 static void aac_start_stop_callback(void *context, struct fib *fibptr)
1887 {
1888 struct scsi_cmnd *scsicmd = context;
1889
1890 if (!aac_valid_context(scsicmd, fibptr))
1891 return;
1892
1893 BUG_ON(fibptr == NULL);
1894
1895 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1896
1897 aac_fib_complete(fibptr);
1898 aac_fib_free(fibptr);
1899 scsicmd->scsi_done(scsicmd);
1900 }
1901
1902 static int aac_start_stop(struct scsi_cmnd *scsicmd)
1903 {
1904 int status;
1905 struct fib *cmd_fibcontext;
1906 struct aac_power_management *pmcmd;
1907 struct scsi_device *sdev = scsicmd->device;
1908 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
1909
1910 if (!(aac->supplement_adapter_info.SupportedOptions2 &
1911 AAC_OPTION_POWER_MANAGEMENT)) {
1912 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1913 SAM_STAT_GOOD;
1914 scsicmd->scsi_done(scsicmd);
1915 return 0;
1916 }
1917
1918 if (aac->in_reset)
1919 return SCSI_MLQUEUE_HOST_BUSY;
1920
1921 /*
1922 * Allocate and initialize a Fib
1923 */
1924 cmd_fibcontext = aac_fib_alloc(aac);
1925 if (!cmd_fibcontext)
1926 return SCSI_MLQUEUE_HOST_BUSY;
1927
1928 aac_fib_init(cmd_fibcontext);
1929
1930 pmcmd = fib_data(cmd_fibcontext);
1931 pmcmd->command = cpu_to_le32(VM_ContainerConfig);
1932 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
1933 /* Eject bit ignored, not relevant */
1934 pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
1935 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
1936 pmcmd->cid = cpu_to_le32(sdev_id(sdev));
1937 pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
1938 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
1939
1940 /*
1941 * Now send the Fib to the adapter
1942 */
1943 status = aac_fib_send(ContainerCommand,
1944 cmd_fibcontext,
1945 sizeof(struct aac_power_management),
1946 FsaNormal,
1947 0, 1,
1948 (fib_callback)aac_start_stop_callback,
1949 (void *)scsicmd);
1950
1951 /*
1952 * Check that the command queued to the controller
1953 */
1954 if (status == -EINPROGRESS) {
1955 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1956 return 0;
1957 }
1958
1959 aac_fib_complete(cmd_fibcontext);
1960 aac_fib_free(cmd_fibcontext);
1961 return SCSI_MLQUEUE_HOST_BUSY;
1962 }
1963
1964 /**
1965 * aac_scsi_cmd() - Process SCSI command
1966 * @scsicmd: SCSI command block
1967 *
1968 * Emulate a SCSI command and queue the required request for the
1969 * aacraid firmware.
1970 */
1971
1972 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1973 {
1974 u32 cid;
1975 struct Scsi_Host *host = scsicmd->device->host;
1976 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1977 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1978
1979 if (fsa_dev_ptr == NULL)
1980 return -1;
1981 /*
1982 * If the bus, id or lun is out of range, return fail
1983 * Test does not apply to ID 16, the pseudo id for the controller
1984 * itself.
1985 */
1986 cid = scmd_id(scsicmd);
1987 if (cid != host->this_id) {
1988 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
1989 if((cid >= dev->maximum_num_containers) ||
1990 (scsicmd->device->lun != 0)) {
1991 scsicmd->result = DID_NO_CONNECT << 16;
1992 scsicmd->scsi_done(scsicmd);
1993 return 0;
1994 }
1995
1996 /*
1997 * If the target container doesn't exist, it may have
1998 * been newly created
1999 */
2000 if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2001 (fsa_dev_ptr[cid].sense_data.sense_key ==
2002 NOT_READY)) {
2003 switch (scsicmd->cmnd[0]) {
2004 case SERVICE_ACTION_IN:
2005 if (!(dev->raw_io_interface) ||
2006 !(dev->raw_io_64) ||
2007 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2008 break;
2009 case INQUIRY:
2010 case READ_CAPACITY:
2011 case TEST_UNIT_READY:
2012 if (dev->in_reset)
2013 return -1;
2014 return _aac_probe_container(scsicmd,
2015 aac_probe_container_callback2);
2016 default:
2017 break;
2018 }
2019 }
2020 } else { /* check for physical non-dasd devices */
2021 if (dev->nondasd_support || expose_physicals ||
2022 dev->jbod) {
2023 if (dev->in_reset)
2024 return -1;
2025 return aac_send_srb_fib(scsicmd);
2026 } else {
2027 scsicmd->result = DID_NO_CONNECT << 16;
2028 scsicmd->scsi_done(scsicmd);
2029 return 0;
2030 }
2031 }
2032 }
2033 /*
2034 * else Command for the controller itself
2035 */
2036 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2037 (scsicmd->cmnd[0] != TEST_UNIT_READY))
2038 {
2039 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2040 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2041 set_sense(&dev->fsa_dev[cid].sense_data,
2042 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2043 ASENCODE_INVALID_COMMAND, 0, 0);
2044 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2045 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2046 SCSI_SENSE_BUFFERSIZE));
2047 scsicmd->scsi_done(scsicmd);
2048 return 0;
2049 }
2050
2051
2052 /* Handle commands here that don't really require going out to the adapter */
2053 switch (scsicmd->cmnd[0]) {
2054 case INQUIRY:
2055 {
2056 struct inquiry_data inq_data;
2057
2058 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2059 memset(&inq_data, 0, sizeof (struct inquiry_data));
2060
2061 if (scsicmd->cmnd[1] & 0x1) {
2062 char *arr = (char *)&inq_data;
2063
2064 /* EVPD bit set */
2065 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2066 INQD_PDT_PROC : INQD_PDT_DA;
2067 if (scsicmd->cmnd[2] == 0) {
2068 /* supported vital product data pages */
2069 arr[3] = 2;
2070 arr[4] = 0x0;
2071 arr[5] = 0x80;
2072 arr[1] = scsicmd->cmnd[2];
2073 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2074 sizeof(inq_data));
2075 scsicmd->result = DID_OK << 16 |
2076 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2077 } else if (scsicmd->cmnd[2] == 0x80) {
2078 /* unit serial number page */
2079 arr[3] = setinqserial(dev, &arr[4],
2080 scmd_id(scsicmd));
2081 arr[1] = scsicmd->cmnd[2];
2082 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2083 sizeof(inq_data));
2084 return aac_get_container_serial(scsicmd);
2085 } else {
2086 /* vpd page not implemented */
2087 scsicmd->result = DID_OK << 16 |
2088 COMMAND_COMPLETE << 8 |
2089 SAM_STAT_CHECK_CONDITION;
2090 set_sense(&dev->fsa_dev[cid].sense_data,
2091 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2092 ASENCODE_NO_SENSE, 7, 2);
2093 memcpy(scsicmd->sense_buffer,
2094 &dev->fsa_dev[cid].sense_data,
2095 min_t(size_t,
2096 sizeof(dev->fsa_dev[cid].sense_data),
2097 SCSI_SENSE_BUFFERSIZE));
2098 }
2099 scsicmd->scsi_done(scsicmd);
2100 return 0;
2101 }
2102 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
2103 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2104 inq_data.inqd_len = 31;
2105 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
2106 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
2107 /*
2108 * Set the Vendor, Product, and Revision Level
2109 * see: <vendor>.c i.e. aac.c
2110 */
2111 if (cid == host->this_id) {
2112 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2113 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
2114 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2115 sizeof(inq_data));
2116 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2117 scsicmd->scsi_done(scsicmd);
2118 return 0;
2119 }
2120 if (dev->in_reset)
2121 return -1;
2122 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2123 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
2124 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2125 return aac_get_container_name(scsicmd);
2126 }
2127 case SERVICE_ACTION_IN:
2128 if (!(dev->raw_io_interface) ||
2129 !(dev->raw_io_64) ||
2130 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2131 break;
2132 {
2133 u64 capacity;
2134 char cp[13];
2135 unsigned int alloc_len;
2136
2137 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2138 capacity = fsa_dev_ptr[cid].size - 1;
2139 cp[0] = (capacity >> 56) & 0xff;
2140 cp[1] = (capacity >> 48) & 0xff;
2141 cp[2] = (capacity >> 40) & 0xff;
2142 cp[3] = (capacity >> 32) & 0xff;
2143 cp[4] = (capacity >> 24) & 0xff;
2144 cp[5] = (capacity >> 16) & 0xff;
2145 cp[6] = (capacity >> 8) & 0xff;
2146 cp[7] = (capacity >> 0) & 0xff;
2147 cp[8] = 0;
2148 cp[9] = 0;
2149 cp[10] = 2;
2150 cp[11] = 0;
2151 cp[12] = 0;
2152
2153 alloc_len = ((scsicmd->cmnd[10] << 24)
2154 + (scsicmd->cmnd[11] << 16)
2155 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2156
2157 alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2158 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2159 if (alloc_len < scsi_bufflen(scsicmd))
2160 scsi_set_resid(scsicmd,
2161 scsi_bufflen(scsicmd) - alloc_len);
2162
2163 /* Do not cache partition table for arrays */
2164 scsicmd->device->removable = 1;
2165
2166 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2167 scsicmd->scsi_done(scsicmd);
2168
2169 return 0;
2170 }
2171
2172 case READ_CAPACITY:
2173 {
2174 u32 capacity;
2175 char cp[8];
2176
2177 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2178 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2179 capacity = fsa_dev_ptr[cid].size - 1;
2180 else
2181 capacity = (u32)-1;
2182
2183 cp[0] = (capacity >> 24) & 0xff;
2184 cp[1] = (capacity >> 16) & 0xff;
2185 cp[2] = (capacity >> 8) & 0xff;
2186 cp[3] = (capacity >> 0) & 0xff;
2187 cp[4] = 0;
2188 cp[5] = 0;
2189 cp[6] = 2;
2190 cp[7] = 0;
2191 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2192 /* Do not cache partition table for arrays */
2193 scsicmd->device->removable = 1;
2194 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2195 SAM_STAT_GOOD;
2196 scsicmd->scsi_done(scsicmd);
2197
2198 return 0;
2199 }
2200
2201 case MODE_SENSE:
2202 {
2203 char mode_buf[7];
2204 int mode_buf_length = 4;
2205
2206 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2207 mode_buf[0] = 3; /* Mode data length */
2208 mode_buf[1] = 0; /* Medium type - default */
2209 mode_buf[2] = 0; /* Device-specific param,
2210 bit 8: 0/1 = write enabled/protected
2211 bit 4: 0/1 = FUA enabled */
2212 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2213 mode_buf[2] = 0x10;
2214 mode_buf[3] = 0; /* Block descriptor length */
2215 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2216 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2217 mode_buf[0] = 6;
2218 mode_buf[4] = 8;
2219 mode_buf[5] = 1;
2220 mode_buf[6] = ((aac_cache & 6) == 2)
2221 ? 0 : 0x04; /* WCE */
2222 mode_buf_length = 7;
2223 if (mode_buf_length > scsicmd->cmnd[4])
2224 mode_buf_length = scsicmd->cmnd[4];
2225 }
2226 scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2227 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2228 scsicmd->scsi_done(scsicmd);
2229
2230 return 0;
2231 }
2232 case MODE_SENSE_10:
2233 {
2234 char mode_buf[11];
2235 int mode_buf_length = 8;
2236
2237 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2238 mode_buf[0] = 0; /* Mode data length (MSB) */
2239 mode_buf[1] = 6; /* Mode data length (LSB) */
2240 mode_buf[2] = 0; /* Medium type - default */
2241 mode_buf[3] = 0; /* Device-specific param,
2242 bit 8: 0/1 = write enabled/protected
2243 bit 4: 0/1 = FUA enabled */
2244 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2245 mode_buf[3] = 0x10;
2246 mode_buf[4] = 0; /* reserved */
2247 mode_buf[5] = 0; /* reserved */
2248 mode_buf[6] = 0; /* Block descriptor length (MSB) */
2249 mode_buf[7] = 0; /* Block descriptor length (LSB) */
2250 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2251 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2252 mode_buf[1] = 9;
2253 mode_buf[8] = 8;
2254 mode_buf[9] = 1;
2255 mode_buf[10] = ((aac_cache & 6) == 2)
2256 ? 0 : 0x04; /* WCE */
2257 mode_buf_length = 11;
2258 if (mode_buf_length > scsicmd->cmnd[8])
2259 mode_buf_length = scsicmd->cmnd[8];
2260 }
2261 scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2262
2263 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2264 scsicmd->scsi_done(scsicmd);
2265
2266 return 0;
2267 }
2268 case REQUEST_SENSE:
2269 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2270 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2271 memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2272 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2273 scsicmd->scsi_done(scsicmd);
2274 return 0;
2275
2276 case ALLOW_MEDIUM_REMOVAL:
2277 dprintk((KERN_DEBUG "LOCK command.\n"));
2278 if (scsicmd->cmnd[4])
2279 fsa_dev_ptr[cid].locked = 1;
2280 else
2281 fsa_dev_ptr[cid].locked = 0;
2282
2283 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2284 scsicmd->scsi_done(scsicmd);
2285 return 0;
2286 /*
2287 * These commands are all No-Ops
2288 */
2289 case TEST_UNIT_READY:
2290 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
2291 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2292 SAM_STAT_CHECK_CONDITION;
2293 set_sense(&dev->fsa_dev[cid].sense_data,
2294 NOT_READY, SENCODE_BECOMING_READY,
2295 ASENCODE_BECOMING_READY, 0, 0);
2296 memcpy(scsicmd->sense_buffer,
2297 &dev->fsa_dev[cid].sense_data,
2298 min_t(size_t,
2299 sizeof(dev->fsa_dev[cid].sense_data),
2300 SCSI_SENSE_BUFFERSIZE));
2301 scsicmd->scsi_done(scsicmd);
2302 return 0;
2303 }
2304 /* FALLTHRU */
2305 case RESERVE:
2306 case RELEASE:
2307 case REZERO_UNIT:
2308 case REASSIGN_BLOCKS:
2309 case SEEK_10:
2310 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2311 scsicmd->scsi_done(scsicmd);
2312 return 0;
2313
2314 case START_STOP:
2315 return aac_start_stop(scsicmd);
2316 }
2317
2318 switch (scsicmd->cmnd[0])
2319 {
2320 case READ_6:
2321 case READ_10:
2322 case READ_12:
2323 case READ_16:
2324 if (dev->in_reset)
2325 return -1;
2326 /*
2327 * Hack to keep track of ordinal number of the device that
2328 * corresponds to a container. Needed to convert
2329 * containers to /dev/sd device names
2330 */
2331
2332 if (scsicmd->request->rq_disk)
2333 strlcpy(fsa_dev_ptr[cid].devname,
2334 scsicmd->request->rq_disk->disk_name,
2335 min(sizeof(fsa_dev_ptr[cid].devname),
2336 sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2337
2338 return aac_read(scsicmd);
2339
2340 case WRITE_6:
2341 case WRITE_10:
2342 case WRITE_12:
2343 case WRITE_16:
2344 if (dev->in_reset)
2345 return -1;
2346 return aac_write(scsicmd);
2347
2348 case SYNCHRONIZE_CACHE:
2349 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2350 scsicmd->result = DID_OK << 16 |
2351 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2352 scsicmd->scsi_done(scsicmd);
2353 return 0;
2354 }
2355 /* Issue FIB to tell Firmware to flush it's cache */
2356 if ((aac_cache & 6) != 2)
2357 return aac_synchronize(scsicmd);
2358 /* FALLTHRU */
2359 default:
2360 /*
2361 * Unhandled commands
2362 */
2363 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2364 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2365 set_sense(&dev->fsa_dev[cid].sense_data,
2366 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2367 ASENCODE_INVALID_COMMAND, 0, 0);
2368 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2369 min_t(size_t,
2370 sizeof(dev->fsa_dev[cid].sense_data),
2371 SCSI_SENSE_BUFFERSIZE));
2372 scsicmd->scsi_done(scsicmd);
2373 return 0;
2374 }
2375 }
2376
2377 static int query_disk(struct aac_dev *dev, void __user *arg)
2378 {
2379 struct aac_query_disk qd;
2380 struct fsa_dev_info *fsa_dev_ptr;
2381
2382 fsa_dev_ptr = dev->fsa_dev;
2383 if (!fsa_dev_ptr)
2384 return -EBUSY;
2385 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2386 return -EFAULT;
2387 if (qd.cnum == -1)
2388 qd.cnum = qd.id;
2389 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2390 {
2391 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2392 return -EINVAL;
2393 qd.instance = dev->scsi_host_ptr->host_no;
2394 qd.bus = 0;
2395 qd.id = CONTAINER_TO_ID(qd.cnum);
2396 qd.lun = CONTAINER_TO_LUN(qd.cnum);
2397 }
2398 else return -EINVAL;
2399
2400 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2401 qd.locked = fsa_dev_ptr[qd.cnum].locked;
2402 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2403
2404 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2405 qd.unmapped = 1;
2406 else
2407 qd.unmapped = 0;
2408
2409 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2410 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2411
2412 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2413 return -EFAULT;
2414 return 0;
2415 }
2416
2417 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2418 {
2419 struct aac_delete_disk dd;
2420 struct fsa_dev_info *fsa_dev_ptr;
2421
2422 fsa_dev_ptr = dev->fsa_dev;
2423 if (!fsa_dev_ptr)
2424 return -EBUSY;
2425
2426 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2427 return -EFAULT;
2428
2429 if (dd.cnum >= dev->maximum_num_containers)
2430 return -EINVAL;
2431 /*
2432 * Mark this container as being deleted.
2433 */
2434 fsa_dev_ptr[dd.cnum].deleted = 1;
2435 /*
2436 * Mark the container as no longer valid
2437 */
2438 fsa_dev_ptr[dd.cnum].valid = 0;
2439 return 0;
2440 }
2441
2442 static int delete_disk(struct aac_dev *dev, void __user *arg)
2443 {
2444 struct aac_delete_disk dd;
2445 struct fsa_dev_info *fsa_dev_ptr;
2446
2447 fsa_dev_ptr = dev->fsa_dev;
2448 if (!fsa_dev_ptr)
2449 return -EBUSY;
2450
2451 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2452 return -EFAULT;
2453
2454 if (dd.cnum >= dev->maximum_num_containers)
2455 return -EINVAL;
2456 /*
2457 * If the container is locked, it can not be deleted by the API.
2458 */
2459 if (fsa_dev_ptr[dd.cnum].locked)
2460 return -EBUSY;
2461 else {
2462 /*
2463 * Mark the container as no longer being valid.
2464 */
2465 fsa_dev_ptr[dd.cnum].valid = 0;
2466 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2467 return 0;
2468 }
2469 }
2470
2471 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2472 {
2473 switch (cmd) {
2474 case FSACTL_QUERY_DISK:
2475 return query_disk(dev, arg);
2476 case FSACTL_DELETE_DISK:
2477 return delete_disk(dev, arg);
2478 case FSACTL_FORCE_DELETE_DISK:
2479 return force_delete_disk(dev, arg);
2480 case FSACTL_GET_CONTAINERS:
2481 return aac_get_containers(dev);
2482 default:
2483 return -ENOTTY;
2484 }
2485 }
2486
2487 /**
2488 *
2489 * aac_srb_callback
2490 * @context: the context set in the fib - here it is scsi cmd
2491 * @fibptr: pointer to the fib
2492 *
2493 * Handles the completion of a scsi command to a non dasd device
2494 *
2495 */
2496
2497 static void aac_srb_callback(void *context, struct fib * fibptr)
2498 {
2499 struct aac_dev *dev;
2500 struct aac_srb_reply *srbreply;
2501 struct scsi_cmnd *scsicmd;
2502
2503 scsicmd = (struct scsi_cmnd *) context;
2504
2505 if (!aac_valid_context(scsicmd, fibptr))
2506 return;
2507
2508 BUG_ON(fibptr == NULL);
2509
2510 dev = fibptr->dev;
2511
2512 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2513
2514 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
2515 /*
2516 * Calculate resid for sg
2517 */
2518
2519 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2520 - le32_to_cpu(srbreply->data_xfer_length));
2521
2522 scsi_dma_unmap(scsicmd);
2523
2524 /*
2525 * First check the fib status
2526 */
2527
2528 if (le32_to_cpu(srbreply->status) != ST_OK){
2529 int len;
2530 printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2531 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2532 SCSI_SENSE_BUFFERSIZE);
2533 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2534 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2535 }
2536
2537 /*
2538 * Next check the srb status
2539 */
2540 switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2541 case SRB_STATUS_ERROR_RECOVERY:
2542 case SRB_STATUS_PENDING:
2543 case SRB_STATUS_SUCCESS:
2544 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2545 break;
2546 case SRB_STATUS_DATA_OVERRUN:
2547 switch(scsicmd->cmnd[0]){
2548 case READ_6:
2549 case WRITE_6:
2550 case READ_10:
2551 case WRITE_10:
2552 case READ_12:
2553 case WRITE_12:
2554 case READ_16:
2555 case WRITE_16:
2556 if (le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow) {
2557 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2558 } else {
2559 printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2560 }
2561 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2562 break;
2563 case INQUIRY: {
2564 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2565 break;
2566 }
2567 default:
2568 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2569 break;
2570 }
2571 break;
2572 case SRB_STATUS_ABORTED:
2573 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2574 break;
2575 case SRB_STATUS_ABORT_FAILED:
2576 // Not sure about this one - but assuming the hba was trying to abort for some reason
2577 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2578 break;
2579 case SRB_STATUS_PARITY_ERROR:
2580 scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2581 break;
2582 case SRB_STATUS_NO_DEVICE:
2583 case SRB_STATUS_INVALID_PATH_ID:
2584 case SRB_STATUS_INVALID_TARGET_ID:
2585 case SRB_STATUS_INVALID_LUN:
2586 case SRB_STATUS_SELECTION_TIMEOUT:
2587 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2588 break;
2589
2590 case SRB_STATUS_COMMAND_TIMEOUT:
2591 case SRB_STATUS_TIMEOUT:
2592 scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2593 break;
2594
2595 case SRB_STATUS_BUSY:
2596 scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
2597 break;
2598
2599 case SRB_STATUS_BUS_RESET:
2600 scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2601 break;
2602
2603 case SRB_STATUS_MESSAGE_REJECTED:
2604 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2605 break;
2606 case SRB_STATUS_REQUEST_FLUSHED:
2607 case SRB_STATUS_ERROR:
2608 case SRB_STATUS_INVALID_REQUEST:
2609 case SRB_STATUS_REQUEST_SENSE_FAILED:
2610 case SRB_STATUS_NO_HBA:
2611 case SRB_STATUS_UNEXPECTED_BUS_FREE:
2612 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2613 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2614 case SRB_STATUS_DELAYED_RETRY:
2615 case SRB_STATUS_BAD_FUNCTION:
2616 case SRB_STATUS_NOT_STARTED:
2617 case SRB_STATUS_NOT_IN_USE:
2618 case SRB_STATUS_FORCE_ABORT:
2619 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2620 default:
2621 #ifdef AAC_DETAILED_STATUS_INFO
2622 printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2623 le32_to_cpu(srbreply->srb_status) & 0x3F,
2624 aac_get_status_string(
2625 le32_to_cpu(srbreply->srb_status) & 0x3F),
2626 scsicmd->cmnd[0],
2627 le32_to_cpu(srbreply->scsi_status));
2628 #endif
2629 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2630 break;
2631 }
2632 if (le32_to_cpu(srbreply->scsi_status) == SAM_STAT_CHECK_CONDITION) {
2633 int len;
2634 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2635 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2636 SCSI_SENSE_BUFFERSIZE);
2637 #ifdef AAC_DETAILED_STATUS_INFO
2638 printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2639 le32_to_cpu(srbreply->status), len);
2640 #endif
2641 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2642 }
2643 /*
2644 * OR in the scsi status (already shifted up a bit)
2645 */
2646 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2647
2648 aac_fib_complete(fibptr);
2649 aac_fib_free(fibptr);
2650 scsicmd->scsi_done(scsicmd);
2651 }
2652
2653 /**
2654 *
2655 * aac_send_scb_fib
2656 * @scsicmd: the scsi command block
2657 *
2658 * This routine will form a FIB and fill in the aac_srb from the
2659 * scsicmd passed in.
2660 */
2661
2662 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2663 {
2664 struct fib* cmd_fibcontext;
2665 struct aac_dev* dev;
2666 int status;
2667
2668 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2669 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2670 scsicmd->device->lun > 7) {
2671 scsicmd->result = DID_NO_CONNECT << 16;
2672 scsicmd->scsi_done(scsicmd);
2673 return 0;
2674 }
2675
2676 /*
2677 * Allocate and initialize a Fib then setup a BlockWrite command
2678 */
2679 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2680 return -1;
2681 }
2682 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2683
2684 /*
2685 * Check that the command queued to the controller
2686 */
2687 if (status == -EINPROGRESS) {
2688 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2689 return 0;
2690 }
2691
2692 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2693 aac_fib_complete(cmd_fibcontext);
2694 aac_fib_free(cmd_fibcontext);
2695
2696 return -1;
2697 }
2698
2699 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2700 {
2701 struct aac_dev *dev;
2702 unsigned long byte_count = 0;
2703 int nseg;
2704
2705 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2706 // Get rid of old data
2707 psg->count = 0;
2708 psg->sg[0].addr = 0;
2709 psg->sg[0].count = 0;
2710
2711 nseg = scsi_dma_map(scsicmd);
2712 BUG_ON(nseg < 0);
2713 if (nseg) {
2714 struct scatterlist *sg;
2715 int i;
2716
2717 psg->count = cpu_to_le32(nseg);
2718
2719 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2720 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2721 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2722 byte_count += sg_dma_len(sg);
2723 }
2724 /* hba wants the size to be exact */
2725 if (byte_count > scsi_bufflen(scsicmd)) {
2726 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2727 (byte_count - scsi_bufflen(scsicmd));
2728 psg->sg[i-1].count = cpu_to_le32(temp);
2729 byte_count = scsi_bufflen(scsicmd);
2730 }
2731 /* Check for command underflow */
2732 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2733 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2734 byte_count, scsicmd->underflow);
2735 }
2736 }
2737 return byte_count;
2738 }
2739
2740
2741 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2742 {
2743 struct aac_dev *dev;
2744 unsigned long byte_count = 0;
2745 u64 addr;
2746 int nseg;
2747
2748 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2749 // Get rid of old data
2750 psg->count = 0;
2751 psg->sg[0].addr[0] = 0;
2752 psg->sg[0].addr[1] = 0;
2753 psg->sg[0].count = 0;
2754
2755 nseg = scsi_dma_map(scsicmd);
2756 BUG_ON(nseg < 0);
2757 if (nseg) {
2758 struct scatterlist *sg;
2759 int i;
2760
2761 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2762 int count = sg_dma_len(sg);
2763 addr = sg_dma_address(sg);
2764 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2765 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2766 psg->sg[i].count = cpu_to_le32(count);
2767 byte_count += count;
2768 }
2769 psg->count = cpu_to_le32(nseg);
2770 /* hba wants the size to be exact */
2771 if (byte_count > scsi_bufflen(scsicmd)) {
2772 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2773 (byte_count - scsi_bufflen(scsicmd));
2774 psg->sg[i-1].count = cpu_to_le32(temp);
2775 byte_count = scsi_bufflen(scsicmd);
2776 }
2777 /* Check for command underflow */
2778 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2779 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2780 byte_count, scsicmd->underflow);
2781 }
2782 }
2783 return byte_count;
2784 }
2785
2786 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2787 {
2788 unsigned long byte_count = 0;
2789 int nseg;
2790
2791 // Get rid of old data
2792 psg->count = 0;
2793 psg->sg[0].next = 0;
2794 psg->sg[0].prev = 0;
2795 psg->sg[0].addr[0] = 0;
2796 psg->sg[0].addr[1] = 0;
2797 psg->sg[0].count = 0;
2798 psg->sg[0].flags = 0;
2799
2800 nseg = scsi_dma_map(scsicmd);
2801 BUG_ON(nseg < 0);
2802 if (nseg) {
2803 struct scatterlist *sg;
2804 int i;
2805
2806 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2807 int count = sg_dma_len(sg);
2808 u64 addr = sg_dma_address(sg);
2809 psg->sg[i].next = 0;
2810 psg->sg[i].prev = 0;
2811 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2812 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2813 psg->sg[i].count = cpu_to_le32(count);
2814 psg->sg[i].flags = 0;
2815 byte_count += count;
2816 }
2817 psg->count = cpu_to_le32(nseg);
2818 /* hba wants the size to be exact */
2819 if (byte_count > scsi_bufflen(scsicmd)) {
2820 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2821 (byte_count - scsi_bufflen(scsicmd));
2822 psg->sg[i-1].count = cpu_to_le32(temp);
2823 byte_count = scsi_bufflen(scsicmd);
2824 }
2825 /* Check for command underflow */
2826 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2827 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2828 byte_count, scsicmd->underflow);
2829 }
2830 }
2831 return byte_count;
2832 }
2833
2834 #ifdef AAC_DETAILED_STATUS_INFO
2835
2836 struct aac_srb_status_info {
2837 u32 status;
2838 char *str;
2839 };
2840
2841
2842 static struct aac_srb_status_info srb_status_info[] = {
2843 { SRB_STATUS_PENDING, "Pending Status"},
2844 { SRB_STATUS_SUCCESS, "Success"},
2845 { SRB_STATUS_ABORTED, "Aborted Command"},
2846 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
2847 { SRB_STATUS_ERROR, "Error Event"},
2848 { SRB_STATUS_BUSY, "Device Busy"},
2849 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
2850 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
2851 { SRB_STATUS_NO_DEVICE, "No Device"},
2852 { SRB_STATUS_TIMEOUT, "Timeout"},
2853 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
2854 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
2855 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
2856 { SRB_STATUS_BUS_RESET, "Bus Reset"},
2857 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
2858 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2859 { SRB_STATUS_NO_HBA, "No HBA"},
2860 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
2861 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2862 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2863 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2864 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
2865 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
2866 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
2867 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
2868 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
2869 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
2870 { SRB_STATUS_NOT_STARTED, "Not Started"},
2871 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
2872 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
2873 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2874 { 0xff, "Unknown Error"}
2875 };
2876
2877 char *aac_get_status_string(u32 status)
2878 {
2879 int i;
2880
2881 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
2882 if (srb_status_info[i].status == status)
2883 return srb_status_info[i].str;
2884
2885 return "Bad Status Code";
2886 }
2887
2888 #endif