]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/scsi/aacraid/aachba.c
[SCSI] aacraid: rework packet support code
[mirror_ubuntu-jammy-kernel.git] / drivers / scsi / aacraid / aachba.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/sched.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/completion.h>
34 #include <linux/blkdev.h>
35 #include <linux/dma-mapping.h>
36 #include <asm/semaphore.h>
37 #include <asm/uaccess.h>
38
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43
44 #include "aacraid.h"
45
46 /* values for inqd_pdt: Peripheral device type in plain English */
47 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
48 #define INQD_PDT_PROC 0x03 /* Processor device */
49 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
50 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
51 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
52 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
53
54 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
55 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
56
57 /*
58 * Sense codes
59 */
60
61 #define SENCODE_NO_SENSE 0x00
62 #define SENCODE_END_OF_DATA 0x00
63 #define SENCODE_BECOMING_READY 0x04
64 #define SENCODE_INIT_CMD_REQUIRED 0x04
65 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
66 #define SENCODE_INVALID_COMMAND 0x20
67 #define SENCODE_LBA_OUT_OF_RANGE 0x21
68 #define SENCODE_INVALID_CDB_FIELD 0x24
69 #define SENCODE_LUN_NOT_SUPPORTED 0x25
70 #define SENCODE_INVALID_PARAM_FIELD 0x26
71 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
72 #define SENCODE_PARAM_VALUE_INVALID 0x26
73 #define SENCODE_RESET_OCCURRED 0x29
74 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
75 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
76 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
77 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
78 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
79 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
80 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
81 #define SENCODE_OVERLAPPED_COMMAND 0x4E
82
83 /*
84 * Additional sense codes
85 */
86
87 #define ASENCODE_NO_SENSE 0x00
88 #define ASENCODE_END_OF_DATA 0x05
89 #define ASENCODE_BECOMING_READY 0x01
90 #define ASENCODE_INIT_CMD_REQUIRED 0x02
91 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
92 #define ASENCODE_INVALID_COMMAND 0x00
93 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
94 #define ASENCODE_INVALID_CDB_FIELD 0x00
95 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
96 #define ASENCODE_INVALID_PARAM_FIELD 0x00
97 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
98 #define ASENCODE_PARAM_VALUE_INVALID 0x02
99 #define ASENCODE_RESET_OCCURRED 0x00
100 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
101 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
102 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
103 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
104 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
105 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
106 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
107 #define ASENCODE_OVERLAPPED_COMMAND 0x00
108
109 #define BYTE0(x) (unsigned char)(x)
110 #define BYTE1(x) (unsigned char)((x) >> 8)
111 #define BYTE2(x) (unsigned char)((x) >> 16)
112 #define BYTE3(x) (unsigned char)((x) >> 24)
113
114 /*------------------------------------------------------------------------------
115 * S T R U C T S / T Y P E D E F S
116 *----------------------------------------------------------------------------*/
117 /* SCSI inquiry data */
118 struct inquiry_data {
119 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
120 u8 inqd_dtq; /* RMB | Device Type Qualifier */
121 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
122 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
123 u8 inqd_len; /* Additional length (n-4) */
124 u8 inqd_pad1[2];/* Reserved - must be zero */
125 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
126 u8 inqd_vid[8]; /* Vendor ID */
127 u8 inqd_pid[16];/* Product ID */
128 u8 inqd_prl[4]; /* Product Revision Level */
129 };
130
131 /*
132 * M O D U L E G L O B A L S
133 */
134
135 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
136 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
137 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
138 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
139 #ifdef AAC_DETAILED_STATUS_INFO
140 static char *aac_get_status_string(u32 status);
141 #endif
142
143 /*
144 * Non dasd selection is handled entirely in aachba now
145 */
146
147 static int nondasd = -1;
148 static int dacmode = -1;
149
150 static int commit = -1;
151 int startup_timeout = 180;
152 int aif_timeout = 120;
153
154 module_param(nondasd, int, S_IRUGO|S_IWUSR);
155 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
156 module_param(dacmode, int, S_IRUGO|S_IWUSR);
157 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
158 module_param(commit, int, S_IRUGO|S_IWUSR);
159 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
160 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
161 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for adapter to have it's kernel up and\nrunning. This is typically adjusted for large systems that do not have a BIOS.");
162 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
163 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for applications to pick up AIFs before\nderegistering them. This is typically adjusted for heavily burdened systems.");
164
165 int numacb = -1;
166 module_param(numacb, int, S_IRUGO|S_IWUSR);
167 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid values are 512 and down. Default is to use suggestion from Firmware.");
168
169 int acbsize = -1;
170 module_param(acbsize, int, S_IRUGO|S_IWUSR);
171 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512, 2048, 4096 and 8192. Default is to use suggestion from Firmware.");
172
173 int expose_physicals = 0;
174 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
175 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays. 0=off, 1=on");
176 /**
177 * aac_get_config_status - check the adapter configuration
178 * @common: adapter to query
179 *
180 * Query config status, and commit the configuration if needed.
181 */
182 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
183 {
184 int status = 0;
185 struct fib * fibptr;
186
187 if (!(fibptr = aac_fib_alloc(dev)))
188 return -ENOMEM;
189
190 aac_fib_init(fibptr);
191 {
192 struct aac_get_config_status *dinfo;
193 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
194
195 dinfo->command = cpu_to_le32(VM_ContainerConfig);
196 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
197 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
198 }
199
200 status = aac_fib_send(ContainerCommand,
201 fibptr,
202 sizeof (struct aac_get_config_status),
203 FsaNormal,
204 1, 1,
205 NULL, NULL);
206 if (status < 0 ) {
207 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
208 } else {
209 struct aac_get_config_status_resp *reply
210 = (struct aac_get_config_status_resp *) fib_data(fibptr);
211 dprintk((KERN_WARNING
212 "aac_get_config_status: response=%d status=%d action=%d\n",
213 le32_to_cpu(reply->response),
214 le32_to_cpu(reply->status),
215 le32_to_cpu(reply->data.action)));
216 if ((le32_to_cpu(reply->response) != ST_OK) ||
217 (le32_to_cpu(reply->status) != CT_OK) ||
218 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
219 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
220 status = -EINVAL;
221 }
222 }
223 aac_fib_complete(fibptr);
224 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
225 if (status >= 0) {
226 if ((commit == 1) || commit_flag) {
227 struct aac_commit_config * dinfo;
228 aac_fib_init(fibptr);
229 dinfo = (struct aac_commit_config *) fib_data(fibptr);
230
231 dinfo->command = cpu_to_le32(VM_ContainerConfig);
232 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
233
234 status = aac_fib_send(ContainerCommand,
235 fibptr,
236 sizeof (struct aac_commit_config),
237 FsaNormal,
238 1, 1,
239 NULL, NULL);
240 aac_fib_complete(fibptr);
241 } else if (commit == 0) {
242 printk(KERN_WARNING
243 "aac_get_config_status: Foreign device configurations are being ignored\n");
244 }
245 }
246 aac_fib_free(fibptr);
247 return status;
248 }
249
250 /**
251 * aac_get_containers - list containers
252 * @common: adapter to probe
253 *
254 * Make a list of all containers on this controller
255 */
256 int aac_get_containers(struct aac_dev *dev)
257 {
258 struct fsa_dev_info *fsa_dev_ptr;
259 u32 index;
260 int status = 0;
261 struct fib * fibptr;
262 unsigned instance;
263 struct aac_get_container_count *dinfo;
264 struct aac_get_container_count_resp *dresp;
265 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
266
267 instance = dev->scsi_host_ptr->unique_id;
268
269 if (!(fibptr = aac_fib_alloc(dev)))
270 return -ENOMEM;
271
272 aac_fib_init(fibptr);
273 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
274 dinfo->command = cpu_to_le32(VM_ContainerConfig);
275 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
276
277 status = aac_fib_send(ContainerCommand,
278 fibptr,
279 sizeof (struct aac_get_container_count),
280 FsaNormal,
281 1, 1,
282 NULL, NULL);
283 if (status >= 0) {
284 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
285 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
286 aac_fib_complete(fibptr);
287 }
288
289 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
290 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
291 fsa_dev_ptr = kmalloc(
292 sizeof(*fsa_dev_ptr) * maximum_num_containers, GFP_KERNEL);
293 if (!fsa_dev_ptr) {
294 aac_fib_free(fibptr);
295 return -ENOMEM;
296 }
297 memset(fsa_dev_ptr, 0, sizeof(*fsa_dev_ptr) * maximum_num_containers);
298
299 dev->fsa_dev = fsa_dev_ptr;
300 dev->maximum_num_containers = maximum_num_containers;
301
302 for (index = 0; index < dev->maximum_num_containers; index++) {
303 struct aac_query_mount *dinfo;
304 struct aac_mount *dresp;
305
306 fsa_dev_ptr[index].devname[0] = '\0';
307
308 aac_fib_init(fibptr);
309 dinfo = (struct aac_query_mount *) fib_data(fibptr);
310
311 dinfo->command = cpu_to_le32(VM_NameServe);
312 dinfo->count = cpu_to_le32(index);
313 dinfo->type = cpu_to_le32(FT_FILESYS);
314
315 status = aac_fib_send(ContainerCommand,
316 fibptr,
317 sizeof (struct aac_query_mount),
318 FsaNormal,
319 1, 1,
320 NULL, NULL);
321 if (status < 0 ) {
322 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
323 break;
324 }
325 dresp = (struct aac_mount *)fib_data(fibptr);
326
327 if ((le32_to_cpu(dresp->status) == ST_OK) &&
328 (le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) {
329 dinfo->command = cpu_to_le32(VM_NameServe64);
330 dinfo->count = cpu_to_le32(index);
331 dinfo->type = cpu_to_le32(FT_FILESYS);
332
333 if (aac_fib_send(ContainerCommand,
334 fibptr,
335 sizeof(struct aac_query_mount),
336 FsaNormal,
337 1, 1,
338 NULL, NULL) < 0)
339 continue;
340 } else
341 dresp->mnt[0].capacityhigh = 0;
342
343 dprintk ((KERN_DEBUG
344 "VM_NameServe cid=%d status=%d vol=%d state=%d cap=%llu\n",
345 (int)index, (int)le32_to_cpu(dresp->status),
346 (int)le32_to_cpu(dresp->mnt[0].vol),
347 (int)le32_to_cpu(dresp->mnt[0].state),
348 ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
349 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32)));
350 if ((le32_to_cpu(dresp->status) == ST_OK) &&
351 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
352 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
353 fsa_dev_ptr[index].valid = 1;
354 fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol);
355 fsa_dev_ptr[index].size
356 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
357 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
358 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
359 fsa_dev_ptr[index].ro = 1;
360 }
361 aac_fib_complete(fibptr);
362 /*
363 * If there are no more containers, then stop asking.
364 */
365 if ((index + 1) >= le32_to_cpu(dresp->count)){
366 break;
367 }
368 }
369 aac_fib_free(fibptr);
370 return status;
371 }
372
373 static void aac_internal_transfer(struct scsi_cmnd *scsicmd, void *data, unsigned int offset, unsigned int len)
374 {
375 void *buf;
376 unsigned int transfer_len;
377 struct scatterlist *sg = scsicmd->request_buffer;
378
379 if (scsicmd->use_sg) {
380 buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset;
381 transfer_len = min(sg->length, len + offset);
382 } else {
383 buf = scsicmd->request_buffer;
384 transfer_len = min(scsicmd->request_bufflen, len + offset);
385 }
386
387 memcpy(buf + offset, data, transfer_len - offset);
388
389 if (scsicmd->use_sg)
390 kunmap_atomic(buf - sg->offset, KM_IRQ0);
391
392 }
393
394 static void get_container_name_callback(void *context, struct fib * fibptr)
395 {
396 struct aac_get_name_resp * get_name_reply;
397 struct scsi_cmnd * scsicmd;
398
399 scsicmd = (struct scsi_cmnd *) context;
400 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
401
402 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
403 BUG_ON(fibptr == NULL);
404
405 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
406 /* Failure is irrelevant, using default value instead */
407 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
408 && (get_name_reply->data[0] != '\0')) {
409 char *sp = get_name_reply->data;
410 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
411 while (*sp == ' ')
412 ++sp;
413 if (*sp) {
414 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
415 int count = sizeof(d);
416 char *dp = d;
417 do {
418 *dp++ = (*sp) ? *sp++ : ' ';
419 } while (--count > 0);
420 aac_internal_transfer(scsicmd, d,
421 offsetof(struct inquiry_data, inqd_pid), sizeof(d));
422 }
423 }
424
425 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
426
427 aac_fib_complete(fibptr);
428 aac_fib_free(fibptr);
429 scsicmd->scsi_done(scsicmd);
430 }
431
432 /**
433 * aac_get_container_name - get container name, none blocking.
434 */
435 static int aac_get_container_name(struct scsi_cmnd * scsicmd, int cid)
436 {
437 int status;
438 struct aac_get_name *dinfo;
439 struct fib * cmd_fibcontext;
440 struct aac_dev * dev;
441
442 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
443
444 if (!(cmd_fibcontext = aac_fib_alloc(dev)))
445 return -ENOMEM;
446
447 aac_fib_init(cmd_fibcontext);
448 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
449
450 dinfo->command = cpu_to_le32(VM_ContainerConfig);
451 dinfo->type = cpu_to_le32(CT_READ_NAME);
452 dinfo->cid = cpu_to_le32(cid);
453 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
454
455 status = aac_fib_send(ContainerCommand,
456 cmd_fibcontext,
457 sizeof (struct aac_get_name),
458 FsaNormal,
459 0, 1,
460 (fib_callback) get_container_name_callback,
461 (void *) scsicmd);
462
463 /*
464 * Check that the command queued to the controller
465 */
466 if (status == -EINPROGRESS) {
467 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
468 return 0;
469 }
470
471 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
472 aac_fib_complete(cmd_fibcontext);
473 aac_fib_free(cmd_fibcontext);
474 return -1;
475 }
476
477 /**
478 * aac_probe_container - query a logical volume
479 * @dev: device to query
480 * @cid: container identifier
481 *
482 * Queries the controller about the given volume. The volume information
483 * is updated in the struct fsa_dev_info structure rather than returned.
484 */
485
486 int aac_probe_container(struct aac_dev *dev, int cid)
487 {
488 struct fsa_dev_info *fsa_dev_ptr;
489 int status;
490 struct aac_query_mount *dinfo;
491 struct aac_mount *dresp;
492 struct fib * fibptr;
493 unsigned instance;
494
495 fsa_dev_ptr = dev->fsa_dev;
496 if (!fsa_dev_ptr)
497 return -ENOMEM;
498 instance = dev->scsi_host_ptr->unique_id;
499
500 if (!(fibptr = aac_fib_alloc(dev)))
501 return -ENOMEM;
502
503 aac_fib_init(fibptr);
504
505 dinfo = (struct aac_query_mount *)fib_data(fibptr);
506
507 dinfo->command = cpu_to_le32(VM_NameServe);
508 dinfo->count = cpu_to_le32(cid);
509 dinfo->type = cpu_to_le32(FT_FILESYS);
510
511 status = aac_fib_send(ContainerCommand,
512 fibptr,
513 sizeof(struct aac_query_mount),
514 FsaNormal,
515 1, 1,
516 NULL, NULL);
517 if (status < 0) {
518 printk(KERN_WARNING "aacraid: aac_probe_container query failed.\n");
519 goto error;
520 }
521
522 dresp = (struct aac_mount *) fib_data(fibptr);
523
524 if ((le32_to_cpu(dresp->status) == ST_OK) &&
525 (le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) {
526 dinfo->command = cpu_to_le32(VM_NameServe64);
527 dinfo->count = cpu_to_le32(cid);
528 dinfo->type = cpu_to_le32(FT_FILESYS);
529
530 if (aac_fib_send(ContainerCommand,
531 fibptr,
532 sizeof(struct aac_query_mount),
533 FsaNormal,
534 1, 1,
535 NULL, NULL) < 0)
536 goto error;
537 } else
538 dresp->mnt[0].capacityhigh = 0;
539
540 if ((le32_to_cpu(dresp->status) == ST_OK) &&
541 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
542 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
543 fsa_dev_ptr[cid].valid = 1;
544 fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol);
545 fsa_dev_ptr[cid].size
546 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
547 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
548 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
549 fsa_dev_ptr[cid].ro = 1;
550 }
551
552 error:
553 aac_fib_complete(fibptr);
554 aac_fib_free(fibptr);
555
556 return status;
557 }
558
559 /* Local Structure to set SCSI inquiry data strings */
560 struct scsi_inq {
561 char vid[8]; /* Vendor ID */
562 char pid[16]; /* Product ID */
563 char prl[4]; /* Product Revision Level */
564 };
565
566 /**
567 * InqStrCopy - string merge
568 * @a: string to copy from
569 * @b: string to copy to
570 *
571 * Copy a String from one location to another
572 * without copying \0
573 */
574
575 static void inqstrcpy(char *a, char *b)
576 {
577
578 while(*a != (char)0)
579 *b++ = *a++;
580 }
581
582 static char *container_types[] = {
583 "None",
584 "Volume",
585 "Mirror",
586 "Stripe",
587 "RAID5",
588 "SSRW",
589 "SSRO",
590 "Morph",
591 "Legacy",
592 "RAID4",
593 "RAID10",
594 "RAID00",
595 "V-MIRRORS",
596 "PSEUDO R4",
597 "RAID50",
598 "RAID5D",
599 "RAID5D0",
600 "RAID1E",
601 "RAID6",
602 "RAID60",
603 "Unknown"
604 };
605
606
607
608 /* Function: setinqstr
609 *
610 * Arguments: [1] pointer to void [1] int
611 *
612 * Purpose: Sets SCSI inquiry data strings for vendor, product
613 * and revision level. Allows strings to be set in platform dependant
614 * files instead of in OS dependant driver source.
615 */
616
617 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
618 {
619 struct scsi_inq *str;
620
621 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
622 memset(str, ' ', sizeof(*str));
623
624 if (dev->supplement_adapter_info.AdapterTypeText[0]) {
625 char * cp = dev->supplement_adapter_info.AdapterTypeText;
626 int c = sizeof(str->vid);
627 while (*cp && *cp != ' ' && --c)
628 ++cp;
629 c = *cp;
630 *cp = '\0';
631 inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
632 str->vid);
633 *cp = c;
634 while (*cp && *cp != ' ')
635 ++cp;
636 while (*cp == ' ')
637 ++cp;
638 /* last six chars reserved for vol type */
639 c = 0;
640 if (strlen(cp) > sizeof(str->pid)) {
641 c = cp[sizeof(str->pid)];
642 cp[sizeof(str->pid)] = '\0';
643 }
644 inqstrcpy (cp, str->pid);
645 if (c)
646 cp[sizeof(str->pid)] = c;
647 } else {
648 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
649
650 inqstrcpy (mp->vname, str->vid);
651 /* last six chars reserved for vol type */
652 inqstrcpy (mp->model, str->pid);
653 }
654
655 if (tindex < ARRAY_SIZE(container_types)){
656 char *findit = str->pid;
657
658 for ( ; *findit != ' '; findit++); /* walk till we find a space */
659 /* RAID is superfluous in the context of a RAID device */
660 if (memcmp(findit-4, "RAID", 4) == 0)
661 *(findit -= 4) = ' ';
662 if (((findit - str->pid) + strlen(container_types[tindex]))
663 < (sizeof(str->pid) + sizeof(str->prl)))
664 inqstrcpy (container_types[tindex], findit + 1);
665 }
666 inqstrcpy ("V1.0", str->prl);
667 }
668
669 static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
670 u8 a_sense_code, u8 incorrect_length,
671 u8 bit_pointer, u16 field_pointer,
672 u32 residue)
673 {
674 sense_buf[0] = 0xF0; /* Sense data valid, err code 70h (current error) */
675 sense_buf[1] = 0; /* Segment number, always zero */
676
677 if (incorrect_length) {
678 sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
679 sense_buf[3] = BYTE3(residue);
680 sense_buf[4] = BYTE2(residue);
681 sense_buf[5] = BYTE1(residue);
682 sense_buf[6] = BYTE0(residue);
683 } else
684 sense_buf[2] = sense_key; /* Sense key */
685
686 if (sense_key == ILLEGAL_REQUEST)
687 sense_buf[7] = 10; /* Additional sense length */
688 else
689 sense_buf[7] = 6; /* Additional sense length */
690
691 sense_buf[12] = sense_code; /* Additional sense code */
692 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
693 if (sense_key == ILLEGAL_REQUEST) {
694 sense_buf[15] = 0;
695
696 if (sense_code == SENCODE_INVALID_PARAM_FIELD)
697 sense_buf[15] = 0x80;/* Std sense key specific field */
698 /* Illegal parameter is in the parameter block */
699
700 if (sense_code == SENCODE_INVALID_CDB_FIELD)
701 sense_buf[15] = 0xc0;/* Std sense key specific field */
702 /* Illegal parameter is in the CDB block */
703 sense_buf[15] |= bit_pointer;
704 sense_buf[16] = field_pointer >> 8; /* MSB */
705 sense_buf[17] = field_pointer; /* LSB */
706 }
707 }
708
709 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
710 {
711 if (lba & 0xffffffff00000000LL) {
712 int cid = scmd_id(cmd);
713 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
714 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
715 SAM_STAT_CHECK_CONDITION;
716 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
717 HARDWARE_ERROR,
718 SENCODE_INTERNAL_TARGET_FAILURE,
719 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
720 0, 0);
721 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
722 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(cmd->sense_buffer))
723 ? sizeof(cmd->sense_buffer)
724 : sizeof(dev->fsa_dev[cid].sense_data));
725 cmd->scsi_done(cmd);
726 return 1;
727 }
728 return 0;
729 }
730
731 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
732 {
733 return 0;
734 }
735
736 static void io_callback(void *context, struct fib * fibptr);
737
738 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
739 {
740 u16 fibsize;
741 struct aac_raw_io *readcmd;
742 aac_fib_init(fib);
743 readcmd = (struct aac_raw_io *) fib_data(fib);
744 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
745 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
746 readcmd->count = cpu_to_le32(count<<9);
747 readcmd->cid = cpu_to_le16(scmd_id(cmd));
748 readcmd->flags = cpu_to_le16(1);
749 readcmd->bpTotal = 0;
750 readcmd->bpComplete = 0;
751
752 aac_build_sgraw(cmd, &readcmd->sg);
753 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
754 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
755 /*
756 * Now send the Fib to the adapter
757 */
758 return aac_fib_send(ContainerRawIo,
759 fib,
760 fibsize,
761 FsaNormal,
762 0, 1,
763 (fib_callback) io_callback,
764 (void *) cmd);
765 }
766
767 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
768 {
769 u16 fibsize;
770 struct aac_read64 *readcmd;
771 aac_fib_init(fib);
772 readcmd = (struct aac_read64 *) fib_data(fib);
773 readcmd->command = cpu_to_le32(VM_CtHostRead64);
774 readcmd->cid = cpu_to_le16(scmd_id(cmd));
775 readcmd->sector_count = cpu_to_le16(count);
776 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
777 readcmd->pad = 0;
778 readcmd->flags = 0;
779
780 aac_build_sg64(cmd, &readcmd->sg);
781 fibsize = sizeof(struct aac_read64) +
782 ((le32_to_cpu(readcmd->sg.count) - 1) *
783 sizeof (struct sgentry64));
784 BUG_ON (fibsize > (fib->dev->max_fib_size -
785 sizeof(struct aac_fibhdr)));
786 /*
787 * Now send the Fib to the adapter
788 */
789 return aac_fib_send(ContainerCommand64,
790 fib,
791 fibsize,
792 FsaNormal,
793 0, 1,
794 (fib_callback) io_callback,
795 (void *) cmd);
796 }
797
798 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
799 {
800 u16 fibsize;
801 struct aac_read *readcmd;
802 aac_fib_init(fib);
803 readcmd = (struct aac_read *) fib_data(fib);
804 readcmd->command = cpu_to_le32(VM_CtBlockRead);
805 readcmd->cid = cpu_to_le16(scmd_id(cmd));
806 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
807 readcmd->count = cpu_to_le32(count * 512);
808
809 aac_build_sg(cmd, &readcmd->sg);
810 fibsize = sizeof(struct aac_read) +
811 ((le32_to_cpu(readcmd->sg.count) - 1) *
812 sizeof (struct sgentry));
813 BUG_ON (fibsize > (fib->dev->max_fib_size -
814 sizeof(struct aac_fibhdr)));
815 /*
816 * Now send the Fib to the adapter
817 */
818 return aac_fib_send(ContainerCommand,
819 fib,
820 fibsize,
821 FsaNormal,
822 0, 1,
823 (fib_callback) io_callback,
824 (void *) cmd);
825 }
826
827 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
828 {
829 u16 fibsize;
830 struct aac_raw_io *writecmd;
831 aac_fib_init(fib);
832 writecmd = (struct aac_raw_io *) fib_data(fib);
833 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
834 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
835 writecmd->count = cpu_to_le32(count<<9);
836 writecmd->cid = cpu_to_le16(scmd_id(cmd));
837 writecmd->flags = 0;
838 writecmd->bpTotal = 0;
839 writecmd->bpComplete = 0;
840
841 aac_build_sgraw(cmd, &writecmd->sg);
842 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
843 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
844 /*
845 * Now send the Fib to the adapter
846 */
847 return aac_fib_send(ContainerRawIo,
848 fib,
849 fibsize,
850 FsaNormal,
851 0, 1,
852 (fib_callback) io_callback,
853 (void *) cmd);
854 }
855
856 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
857 {
858 u16 fibsize;
859 struct aac_write64 *writecmd;
860 aac_fib_init(fib);
861 writecmd = (struct aac_write64 *) fib_data(fib);
862 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
863 writecmd->cid = cpu_to_le16(scmd_id(cmd));
864 writecmd->sector_count = cpu_to_le16(count);
865 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
866 writecmd->pad = 0;
867 writecmd->flags = 0;
868
869 aac_build_sg64(cmd, &writecmd->sg);
870 fibsize = sizeof(struct aac_write64) +
871 ((le32_to_cpu(writecmd->sg.count) - 1) *
872 sizeof (struct sgentry64));
873 BUG_ON (fibsize > (fib->dev->max_fib_size -
874 sizeof(struct aac_fibhdr)));
875 /*
876 * Now send the Fib to the adapter
877 */
878 return aac_fib_send(ContainerCommand64,
879 fib,
880 fibsize,
881 FsaNormal,
882 0, 1,
883 (fib_callback) io_callback,
884 (void *) cmd);
885 }
886
887 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
888 {
889 u16 fibsize;
890 struct aac_write *writecmd;
891 aac_fib_init(fib);
892 writecmd = (struct aac_write *) fib_data(fib);
893 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
894 writecmd->cid = cpu_to_le16(scmd_id(cmd));
895 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
896 writecmd->count = cpu_to_le32(count * 512);
897 writecmd->sg.count = cpu_to_le32(1);
898 /* ->stable is not used - it did mean which type of write */
899
900 aac_build_sg(cmd, &writecmd->sg);
901 fibsize = sizeof(struct aac_write) +
902 ((le32_to_cpu(writecmd->sg.count) - 1) *
903 sizeof (struct sgentry));
904 BUG_ON (fibsize > (fib->dev->max_fib_size -
905 sizeof(struct aac_fibhdr)));
906 /*
907 * Now send the Fib to the adapter
908 */
909 return aac_fib_send(ContainerCommand,
910 fib,
911 fibsize,
912 FsaNormal,
913 0, 1,
914 (fib_callback) io_callback,
915 (void *) cmd);
916 }
917
918 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
919 {
920 struct aac_srb * srbcmd;
921 u32 flag;
922 u32 timeout;
923
924 aac_fib_init(fib);
925 switch(cmd->sc_data_direction){
926 case DMA_TO_DEVICE:
927 flag = SRB_DataOut;
928 break;
929 case DMA_BIDIRECTIONAL:
930 flag = SRB_DataIn | SRB_DataOut;
931 break;
932 case DMA_FROM_DEVICE:
933 flag = SRB_DataIn;
934 break;
935 case DMA_NONE:
936 default: /* shuts up some versions of gcc */
937 flag = SRB_NoDataXfer;
938 break;
939 }
940
941 srbcmd = (struct aac_srb*) fib_data(fib);
942 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
943 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
944 srbcmd->id = cpu_to_le32(scmd_id(cmd));
945 srbcmd->lun = cpu_to_le32(cmd->device->lun);
946 srbcmd->flags = cpu_to_le32(flag);
947 timeout = cmd->timeout_per_command/HZ;
948 if (timeout == 0)
949 timeout = 1;
950 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
951 srbcmd->retry_limit = 0; /* Obsolete parameter */
952 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
953 return srbcmd;
954 }
955
956 static void aac_srb_callback(void *context, struct fib * fibptr);
957
958 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
959 {
960 u16 fibsize;
961 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
962
963 aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
964 srbcmd->count = cpu_to_le32(cmd->request_bufflen);
965
966 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
967 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
968 /*
969 * Build Scatter/Gather list
970 */
971 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
972 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
973 sizeof (struct sgentry64));
974 BUG_ON (fibsize > (fib->dev->max_fib_size -
975 sizeof(struct aac_fibhdr)));
976
977 /*
978 * Now send the Fib to the adapter
979 */
980 return aac_fib_send(ScsiPortCommand64, fib,
981 fibsize, FsaNormal, 0, 1,
982 (fib_callback) aac_srb_callback,
983 (void *) cmd);
984 }
985
986 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
987 {
988 u16 fibsize;
989 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
990
991 aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
992 srbcmd->count = cpu_to_le32(cmd->request_bufflen);
993
994 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
995 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
996 /*
997 * Build Scatter/Gather list
998 */
999 fibsize = sizeof (struct aac_srb) +
1000 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1001 sizeof (struct sgentry));
1002 BUG_ON (fibsize > (fib->dev->max_fib_size -
1003 sizeof(struct aac_fibhdr)));
1004
1005 /*
1006 * Now send the Fib to the adapter
1007 */
1008 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1009 (fib_callback) aac_srb_callback, (void *) cmd);
1010 }
1011
1012 int aac_get_adapter_info(struct aac_dev* dev)
1013 {
1014 struct fib* fibptr;
1015 int rcode;
1016 u32 tmp;
1017 struct aac_adapter_info *info;
1018 struct aac_bus_info *command;
1019 struct aac_bus_info_response *bus_info;
1020
1021 if (!(fibptr = aac_fib_alloc(dev)))
1022 return -ENOMEM;
1023
1024 aac_fib_init(fibptr);
1025 info = (struct aac_adapter_info *) fib_data(fibptr);
1026 memset(info,0,sizeof(*info));
1027
1028 rcode = aac_fib_send(RequestAdapterInfo,
1029 fibptr,
1030 sizeof(*info),
1031 FsaNormal,
1032 -1, 1, /* First `interrupt' command uses special wait */
1033 NULL,
1034 NULL);
1035
1036 if (rcode < 0) {
1037 aac_fib_complete(fibptr);
1038 aac_fib_free(fibptr);
1039 return rcode;
1040 }
1041 memcpy(&dev->adapter_info, info, sizeof(*info));
1042
1043 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1044 struct aac_supplement_adapter_info * info;
1045
1046 aac_fib_init(fibptr);
1047
1048 info = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1049
1050 memset(info,0,sizeof(*info));
1051
1052 rcode = aac_fib_send(RequestSupplementAdapterInfo,
1053 fibptr,
1054 sizeof(*info),
1055 FsaNormal,
1056 1, 1,
1057 NULL,
1058 NULL);
1059
1060 if (rcode >= 0)
1061 memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
1062 }
1063
1064
1065 /*
1066 * GetBusInfo
1067 */
1068
1069 aac_fib_init(fibptr);
1070
1071 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1072
1073 memset(bus_info, 0, sizeof(*bus_info));
1074
1075 command = (struct aac_bus_info *)bus_info;
1076
1077 command->Command = cpu_to_le32(VM_Ioctl);
1078 command->ObjType = cpu_to_le32(FT_DRIVE);
1079 command->MethodId = cpu_to_le32(1);
1080 command->CtlCmd = cpu_to_le32(GetBusInfo);
1081
1082 rcode = aac_fib_send(ContainerCommand,
1083 fibptr,
1084 sizeof (*bus_info),
1085 FsaNormal,
1086 1, 1,
1087 NULL, NULL);
1088
1089 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1090 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1091 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1092 }
1093
1094 if (!dev->in_reset) {
1095 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1096 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1097 dev->name,
1098 dev->id,
1099 tmp>>24,
1100 (tmp>>16)&0xff,
1101 tmp&0xff,
1102 le32_to_cpu(dev->adapter_info.kernelbuild),
1103 (int)sizeof(dev->supplement_adapter_info.BuildDate),
1104 dev->supplement_adapter_info.BuildDate);
1105 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1106 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1107 dev->name, dev->id,
1108 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1109 le32_to_cpu(dev->adapter_info.monitorbuild));
1110 tmp = le32_to_cpu(dev->adapter_info.biosrev);
1111 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1112 dev->name, dev->id,
1113 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1114 le32_to_cpu(dev->adapter_info.biosbuild));
1115 if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
1116 printk(KERN_INFO "%s%d: serial %x\n",
1117 dev->name, dev->id,
1118 le32_to_cpu(dev->adapter_info.serial[0]));
1119 }
1120
1121 dev->nondasd_support = 0;
1122 dev->raid_scsi_mode = 0;
1123 if(dev->adapter_info.options & AAC_OPT_NONDASD){
1124 dev->nondasd_support = 1;
1125 }
1126
1127 /*
1128 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1129 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1130 * force nondasd support on. If we decide to allow the non-dasd flag
1131 * additional changes changes will have to be made to support
1132 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
1133 * changed to support the new dev->raid_scsi_mode flag instead of
1134 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1135 * function aac_detect will have to be modified where it sets up the
1136 * max number of channels based on the aac->nondasd_support flag only.
1137 */
1138 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1139 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1140 dev->nondasd_support = 1;
1141 dev->raid_scsi_mode = 1;
1142 }
1143 if (dev->raid_scsi_mode != 0)
1144 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1145 dev->name, dev->id);
1146
1147 if(nondasd != -1) {
1148 dev->nondasd_support = (nondasd!=0);
1149 }
1150 if(dev->nondasd_support != 0){
1151 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1152 }
1153
1154 dev->dac_support = 0;
1155 if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
1156 printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
1157 dev->dac_support = 1;
1158 }
1159
1160 if(dacmode != -1) {
1161 dev->dac_support = (dacmode!=0);
1162 }
1163 if(dev->dac_support != 0) {
1164 if (!pci_set_dma_mask(dev->pdev, DMA_64BIT_MASK) &&
1165 !pci_set_consistent_dma_mask(dev->pdev, DMA_64BIT_MASK)) {
1166 printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1167 dev->name, dev->id);
1168 } else if (!pci_set_dma_mask(dev->pdev, DMA_32BIT_MASK) &&
1169 !pci_set_consistent_dma_mask(dev->pdev, DMA_32BIT_MASK)) {
1170 printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1171 dev->name, dev->id);
1172 dev->dac_support = 0;
1173 } else {
1174 printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1175 dev->name, dev->id);
1176 rcode = -ENOMEM;
1177 }
1178 }
1179 /*
1180 * Deal with configuring for the individualized limits of each packet
1181 * interface.
1182 */
1183 dev->a_ops.adapter_scsi = (dev->dac_support)
1184 ? aac_scsi_64
1185 : aac_scsi_32;
1186 if (dev->raw_io_interface) {
1187 dev->a_ops.adapter_bounds = (dev->raw_io_64)
1188 ? aac_bounds_64
1189 : aac_bounds_32;
1190 dev->a_ops.adapter_read = aac_read_raw_io;
1191 dev->a_ops.adapter_write = aac_write_raw_io;
1192 } else {
1193 dev->a_ops.adapter_bounds = aac_bounds_32;
1194 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1195 sizeof(struct aac_fibhdr) -
1196 sizeof(struct aac_write) + sizeof(struct sgentry)) /
1197 sizeof(struct sgentry);
1198 if (dev->dac_support) {
1199 dev->a_ops.adapter_read = aac_read_block64;
1200 dev->a_ops.adapter_write = aac_write_block64;
1201 /*
1202 * 38 scatter gather elements
1203 */
1204 dev->scsi_host_ptr->sg_tablesize =
1205 (dev->max_fib_size -
1206 sizeof(struct aac_fibhdr) -
1207 sizeof(struct aac_write64) +
1208 sizeof(struct sgentry64)) /
1209 sizeof(struct sgentry64);
1210 } else {
1211 dev->a_ops.adapter_read = aac_read_block;
1212 dev->a_ops.adapter_write = aac_write_block;
1213 }
1214 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1215 if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1216 /*
1217 * Worst case size that could cause sg overflow when
1218 * we break up SG elements that are larger than 64KB.
1219 * Would be nice if we could tell the SCSI layer what
1220 * the maximum SG element size can be. Worst case is
1221 * (sg_tablesize-1) 4KB elements with one 64KB
1222 * element.
1223 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
1224 */
1225 dev->scsi_host_ptr->max_sectors =
1226 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1227 }
1228 }
1229
1230 aac_fib_complete(fibptr);
1231 aac_fib_free(fibptr);
1232
1233 return rcode;
1234 }
1235
1236
1237 static void io_callback(void *context, struct fib * fibptr)
1238 {
1239 struct aac_dev *dev;
1240 struct aac_read_reply *readreply;
1241 struct scsi_cmnd *scsicmd;
1242 u32 cid;
1243
1244 scsicmd = (struct scsi_cmnd *) context;
1245 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
1246
1247 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1248 cid = scmd_id(scsicmd);
1249
1250 if (nblank(dprintk(x))) {
1251 u64 lba;
1252 switch (scsicmd->cmnd[0]) {
1253 case WRITE_6:
1254 case READ_6:
1255 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1256 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1257 break;
1258 case WRITE_16:
1259 case READ_16:
1260 lba = ((u64)scsicmd->cmnd[2] << 56) |
1261 ((u64)scsicmd->cmnd[3] << 48) |
1262 ((u64)scsicmd->cmnd[4] << 40) |
1263 ((u64)scsicmd->cmnd[5] << 32) |
1264 ((u64)scsicmd->cmnd[6] << 24) |
1265 (scsicmd->cmnd[7] << 16) |
1266 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1267 break;
1268 case WRITE_12:
1269 case READ_12:
1270 lba = ((u64)scsicmd->cmnd[2] << 24) |
1271 (scsicmd->cmnd[3] << 16) |
1272 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1273 break;
1274 default:
1275 lba = ((u64)scsicmd->cmnd[2] << 24) |
1276 (scsicmd->cmnd[3] << 16) |
1277 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1278 break;
1279 }
1280 printk(KERN_DEBUG
1281 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1282 smp_processor_id(), (unsigned long long)lba, jiffies);
1283 }
1284
1285 BUG_ON(fibptr == NULL);
1286
1287 if(scsicmd->use_sg)
1288 pci_unmap_sg(dev->pdev,
1289 (struct scatterlist *)scsicmd->request_buffer,
1290 scsicmd->use_sg,
1291 scsicmd->sc_data_direction);
1292 else if(scsicmd->request_bufflen)
1293 pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle,
1294 scsicmd->request_bufflen,
1295 scsicmd->sc_data_direction);
1296 readreply = (struct aac_read_reply *)fib_data(fibptr);
1297 if (le32_to_cpu(readreply->status) == ST_OK)
1298 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1299 else {
1300 #ifdef AAC_DETAILED_STATUS_INFO
1301 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1302 le32_to_cpu(readreply->status));
1303 #endif
1304 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1305 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1306 HARDWARE_ERROR,
1307 SENCODE_INTERNAL_TARGET_FAILURE,
1308 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1309 0, 0);
1310 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1311 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1312 ? sizeof(scsicmd->sense_buffer)
1313 : sizeof(dev->fsa_dev[cid].sense_data));
1314 }
1315 aac_fib_complete(fibptr);
1316 aac_fib_free(fibptr);
1317
1318 scsicmd->scsi_done(scsicmd);
1319 }
1320
1321 static int aac_read(struct scsi_cmnd * scsicmd, int cid)
1322 {
1323 u64 lba;
1324 u32 count;
1325 int status;
1326 struct aac_dev *dev;
1327 struct fib * cmd_fibcontext;
1328
1329 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1330 /*
1331 * Get block address and transfer length
1332 */
1333 switch (scsicmd->cmnd[0]) {
1334 case READ_6:
1335 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid));
1336
1337 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1338 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1339 count = scsicmd->cmnd[4];
1340
1341 if (count == 0)
1342 count = 256;
1343 break;
1344 case READ_16:
1345 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", cid));
1346
1347 lba = ((u64)scsicmd->cmnd[2] << 56) |
1348 ((u64)scsicmd->cmnd[3] << 48) |
1349 ((u64)scsicmd->cmnd[4] << 40) |
1350 ((u64)scsicmd->cmnd[5] << 32) |
1351 ((u64)scsicmd->cmnd[6] << 24) |
1352 (scsicmd->cmnd[7] << 16) |
1353 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1354 count = (scsicmd->cmnd[10] << 24) |
1355 (scsicmd->cmnd[11] << 16) |
1356 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1357 break;
1358 case READ_12:
1359 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", cid));
1360
1361 lba = ((u64)scsicmd->cmnd[2] << 24) |
1362 (scsicmd->cmnd[3] << 16) |
1363 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1364 count = (scsicmd->cmnd[6] << 24) |
1365 (scsicmd->cmnd[7] << 16) |
1366 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1367 break;
1368 default:
1369 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid));
1370
1371 lba = ((u64)scsicmd->cmnd[2] << 24) |
1372 (scsicmd->cmnd[3] << 16) |
1373 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1374 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1375 break;
1376 }
1377 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1378 smp_processor_id(), (unsigned long long)lba, jiffies));
1379 if (aac_adapter_bounds(dev,scsicmd,lba))
1380 return 0;
1381 /*
1382 * Alocate and initialize a Fib
1383 */
1384 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1385 return -1;
1386 }
1387
1388 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1389
1390 /*
1391 * Check that the command queued to the controller
1392 */
1393 if (status == -EINPROGRESS) {
1394 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1395 return 0;
1396 }
1397
1398 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1399 /*
1400 * For some reason, the Fib didn't queue, return QUEUE_FULL
1401 */
1402 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1403 scsicmd->scsi_done(scsicmd);
1404 aac_fib_complete(cmd_fibcontext);
1405 aac_fib_free(cmd_fibcontext);
1406 return 0;
1407 }
1408
1409 static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1410 {
1411 u64 lba;
1412 u32 count;
1413 int status;
1414 struct aac_dev *dev;
1415 struct fib * cmd_fibcontext;
1416
1417 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1418 /*
1419 * Get block address and transfer length
1420 */
1421 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
1422 {
1423 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1424 count = scsicmd->cmnd[4];
1425 if (count == 0)
1426 count = 256;
1427 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1428 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", cid));
1429
1430 lba = ((u64)scsicmd->cmnd[2] << 56) |
1431 ((u64)scsicmd->cmnd[3] << 48) |
1432 ((u64)scsicmd->cmnd[4] << 40) |
1433 ((u64)scsicmd->cmnd[5] << 32) |
1434 ((u64)scsicmd->cmnd[6] << 24) |
1435 (scsicmd->cmnd[7] << 16) |
1436 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1437 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1438 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1439 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1440 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", cid));
1441
1442 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1443 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1444 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1445 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1446 } else {
1447 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid));
1448 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1449 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1450 }
1451 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1452 smp_processor_id(), (unsigned long long)lba, jiffies));
1453 if (aac_adapter_bounds(dev,scsicmd,lba))
1454 return 0;
1455 /*
1456 * Allocate and initialize a Fib then setup a BlockWrite command
1457 */
1458 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1459 scsicmd->result = DID_ERROR << 16;
1460 scsicmd->scsi_done(scsicmd);
1461 return 0;
1462 }
1463
1464 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count);
1465
1466 /*
1467 * Check that the command queued to the controller
1468 */
1469 if (status == -EINPROGRESS) {
1470 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1471 return 0;
1472 }
1473
1474 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1475 /*
1476 * For some reason, the Fib didn't queue, return QUEUE_FULL
1477 */
1478 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1479 scsicmd->scsi_done(scsicmd);
1480
1481 aac_fib_complete(cmd_fibcontext);
1482 aac_fib_free(cmd_fibcontext);
1483 return 0;
1484 }
1485
1486 static void synchronize_callback(void *context, struct fib *fibptr)
1487 {
1488 struct aac_synchronize_reply *synchronizereply;
1489 struct scsi_cmnd *cmd;
1490
1491 cmd = context;
1492 cmd->SCp.phase = AAC_OWNER_MIDLEVEL;
1493
1494 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1495 smp_processor_id(), jiffies));
1496 BUG_ON(fibptr == NULL);
1497
1498
1499 synchronizereply = fib_data(fibptr);
1500 if (le32_to_cpu(synchronizereply->status) == CT_OK)
1501 cmd->result = DID_OK << 16 |
1502 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1503 else {
1504 struct scsi_device *sdev = cmd->device;
1505 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
1506 u32 cid = sdev_id(sdev);
1507 printk(KERN_WARNING
1508 "synchronize_callback: synchronize failed, status = %d\n",
1509 le32_to_cpu(synchronizereply->status));
1510 cmd->result = DID_OK << 16 |
1511 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1512 set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
1513 HARDWARE_ERROR,
1514 SENCODE_INTERNAL_TARGET_FAILURE,
1515 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1516 0, 0);
1517 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1518 min(sizeof(dev->fsa_dev[cid].sense_data),
1519 sizeof(cmd->sense_buffer)));
1520 }
1521
1522 aac_fib_complete(fibptr);
1523 aac_fib_free(fibptr);
1524 cmd->scsi_done(cmd);
1525 }
1526
1527 static int aac_synchronize(struct scsi_cmnd *scsicmd, int cid)
1528 {
1529 int status;
1530 struct fib *cmd_fibcontext;
1531 struct aac_synchronize *synchronizecmd;
1532 struct scsi_cmnd *cmd;
1533 struct scsi_device *sdev = scsicmd->device;
1534 int active = 0;
1535 struct aac_dev *aac;
1536 unsigned long flags;
1537
1538 /*
1539 * Wait for all outstanding queued commands to complete to this
1540 * specific target (block).
1541 */
1542 spin_lock_irqsave(&sdev->list_lock, flags);
1543 list_for_each_entry(cmd, &sdev->cmd_list, list)
1544 if (cmd != scsicmd && cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1545 ++active;
1546 break;
1547 }
1548
1549 spin_unlock_irqrestore(&sdev->list_lock, flags);
1550
1551 /*
1552 * Yield the processor (requeue for later)
1553 */
1554 if (active)
1555 return SCSI_MLQUEUE_DEVICE_BUSY;
1556
1557 aac = (struct aac_dev *)scsicmd->device->host->hostdata;
1558 if (aac->in_reset)
1559 return SCSI_MLQUEUE_HOST_BUSY;
1560
1561 /*
1562 * Allocate and initialize a Fib
1563 */
1564 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1565 return SCSI_MLQUEUE_HOST_BUSY;
1566
1567 aac_fib_init(cmd_fibcontext);
1568
1569 synchronizecmd = fib_data(cmd_fibcontext);
1570 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1571 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1572 synchronizecmd->cid = cpu_to_le32(cid);
1573 synchronizecmd->count =
1574 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1575
1576 /*
1577 * Now send the Fib to the adapter
1578 */
1579 status = aac_fib_send(ContainerCommand,
1580 cmd_fibcontext,
1581 sizeof(struct aac_synchronize),
1582 FsaNormal,
1583 0, 1,
1584 (fib_callback)synchronize_callback,
1585 (void *)scsicmd);
1586
1587 /*
1588 * Check that the command queued to the controller
1589 */
1590 if (status == -EINPROGRESS) {
1591 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1592 return 0;
1593 }
1594
1595 printk(KERN_WARNING
1596 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1597 aac_fib_complete(cmd_fibcontext);
1598 aac_fib_free(cmd_fibcontext);
1599 return SCSI_MLQUEUE_HOST_BUSY;
1600 }
1601
1602 /**
1603 * aac_scsi_cmd() - Process SCSI command
1604 * @scsicmd: SCSI command block
1605 *
1606 * Emulate a SCSI command and queue the required request for the
1607 * aacraid firmware.
1608 */
1609
1610 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1611 {
1612 u32 cid = 0;
1613 struct Scsi_Host *host = scsicmd->device->host;
1614 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1615 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1616
1617 if (fsa_dev_ptr == NULL)
1618 return -1;
1619 /*
1620 * If the bus, id or lun is out of range, return fail
1621 * Test does not apply to ID 16, the pseudo id for the controller
1622 * itself.
1623 */
1624 if (scmd_id(scsicmd) != host->this_id) {
1625 if ((scmd_channel(scsicmd) == CONTAINER_CHANNEL)) {
1626 if((scmd_id(scsicmd) >= dev->maximum_num_containers) ||
1627 (scsicmd->device->lun != 0)) {
1628 scsicmd->result = DID_NO_CONNECT << 16;
1629 scsicmd->scsi_done(scsicmd);
1630 return 0;
1631 }
1632 cid = scmd_id(scsicmd);
1633
1634 /*
1635 * If the target container doesn't exist, it may have
1636 * been newly created
1637 */
1638 if ((fsa_dev_ptr[cid].valid & 1) == 0) {
1639 switch (scsicmd->cmnd[0]) {
1640 case SERVICE_ACTION_IN:
1641 if (!(dev->raw_io_interface) ||
1642 !(dev->raw_io_64) ||
1643 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1644 break;
1645 case INQUIRY:
1646 case READ_CAPACITY:
1647 case TEST_UNIT_READY:
1648 if (dev->in_reset)
1649 return -1;
1650 spin_unlock_irq(host->host_lock);
1651 aac_probe_container(dev, cid);
1652 if ((fsa_dev_ptr[cid].valid & 1) == 0)
1653 fsa_dev_ptr[cid].valid = 0;
1654 spin_lock_irq(host->host_lock);
1655 if (fsa_dev_ptr[cid].valid == 0) {
1656 scsicmd->result = DID_NO_CONNECT << 16;
1657 scsicmd->scsi_done(scsicmd);
1658 return 0;
1659 }
1660 default:
1661 break;
1662 }
1663 }
1664 /*
1665 * If the target container still doesn't exist,
1666 * return failure
1667 */
1668 if (fsa_dev_ptr[cid].valid == 0) {
1669 scsicmd->result = DID_BAD_TARGET << 16;
1670 scsicmd->scsi_done(scsicmd);
1671 return 0;
1672 }
1673 } else { /* check for physical non-dasd devices */
1674 if ((dev->nondasd_support == 1) || expose_physicals) {
1675 if (dev->in_reset)
1676 return -1;
1677 return aac_send_srb_fib(scsicmd);
1678 } else {
1679 scsicmd->result = DID_NO_CONNECT << 16;
1680 scsicmd->scsi_done(scsicmd);
1681 return 0;
1682 }
1683 }
1684 }
1685 /*
1686 * else Command for the controller itself
1687 */
1688 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
1689 (scsicmd->cmnd[0] != TEST_UNIT_READY))
1690 {
1691 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
1692 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1693 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1694 ILLEGAL_REQUEST,
1695 SENCODE_INVALID_COMMAND,
1696 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1697 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1698 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1699 ? sizeof(scsicmd->sense_buffer)
1700 : sizeof(dev->fsa_dev[cid].sense_data));
1701 scsicmd->scsi_done(scsicmd);
1702 return 0;
1703 }
1704
1705
1706 /* Handle commands here that don't really require going out to the adapter */
1707 switch (scsicmd->cmnd[0]) {
1708 case INQUIRY:
1709 {
1710 struct inquiry_data inq_data;
1711
1712 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", scmd_id(scsicmd)));
1713 memset(&inq_data, 0, sizeof (struct inquiry_data));
1714
1715 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
1716 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
1717 inq_data.inqd_len = 31;
1718 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
1719 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
1720 /*
1721 * Set the Vendor, Product, and Revision Level
1722 * see: <vendor>.c i.e. aac.c
1723 */
1724 if (scmd_id(scsicmd) == host->this_id) {
1725 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
1726 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
1727 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1728 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1729 scsicmd->scsi_done(scsicmd);
1730 return 0;
1731 }
1732 if (dev->in_reset)
1733 return -1;
1734 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
1735 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
1736 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1737 return aac_get_container_name(scsicmd, cid);
1738 }
1739 case SERVICE_ACTION_IN:
1740 if (!(dev->raw_io_interface) ||
1741 !(dev->raw_io_64) ||
1742 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1743 break;
1744 {
1745 u64 capacity;
1746 char cp[13];
1747
1748 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
1749 capacity = fsa_dev_ptr[cid].size - 1;
1750 cp[0] = (capacity >> 56) & 0xff;
1751 cp[1] = (capacity >> 48) & 0xff;
1752 cp[2] = (capacity >> 40) & 0xff;
1753 cp[3] = (capacity >> 32) & 0xff;
1754 cp[4] = (capacity >> 24) & 0xff;
1755 cp[5] = (capacity >> 16) & 0xff;
1756 cp[6] = (capacity >> 8) & 0xff;
1757 cp[7] = (capacity >> 0) & 0xff;
1758 cp[8] = 0;
1759 cp[9] = 0;
1760 cp[10] = 2;
1761 cp[11] = 0;
1762 cp[12] = 0;
1763 aac_internal_transfer(scsicmd, cp, 0,
1764 min_t(size_t, scsicmd->cmnd[13], sizeof(cp)));
1765 if (sizeof(cp) < scsicmd->cmnd[13]) {
1766 unsigned int len, offset = sizeof(cp);
1767
1768 memset(cp, 0, offset);
1769 do {
1770 len = min_t(size_t, scsicmd->cmnd[13] - offset,
1771 sizeof(cp));
1772 aac_internal_transfer(scsicmd, cp, offset, len);
1773 } while ((offset += len) < scsicmd->cmnd[13]);
1774 }
1775
1776 /* Do not cache partition table for arrays */
1777 scsicmd->device->removable = 1;
1778
1779 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1780 scsicmd->scsi_done(scsicmd);
1781
1782 return 0;
1783 }
1784
1785 case READ_CAPACITY:
1786 {
1787 u32 capacity;
1788 char cp[8];
1789
1790 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
1791 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
1792 capacity = fsa_dev_ptr[cid].size - 1;
1793 else
1794 capacity = (u32)-1;
1795
1796 cp[0] = (capacity >> 24) & 0xff;
1797 cp[1] = (capacity >> 16) & 0xff;
1798 cp[2] = (capacity >> 8) & 0xff;
1799 cp[3] = (capacity >> 0) & 0xff;
1800 cp[4] = 0;
1801 cp[5] = 0;
1802 cp[6] = 2;
1803 cp[7] = 0;
1804 aac_internal_transfer(scsicmd, cp, 0, sizeof(cp));
1805 /* Do not cache partition table for arrays */
1806 scsicmd->device->removable = 1;
1807
1808 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1809 scsicmd->scsi_done(scsicmd);
1810
1811 return 0;
1812 }
1813
1814 case MODE_SENSE:
1815 {
1816 char mode_buf[4];
1817
1818 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
1819 mode_buf[0] = 3; /* Mode data length */
1820 mode_buf[1] = 0; /* Medium type - default */
1821 mode_buf[2] = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected */
1822 mode_buf[3] = 0; /* Block descriptor length */
1823
1824 aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));
1825 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1826 scsicmd->scsi_done(scsicmd);
1827
1828 return 0;
1829 }
1830 case MODE_SENSE_10:
1831 {
1832 char mode_buf[8];
1833
1834 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
1835 mode_buf[0] = 0; /* Mode data length (MSB) */
1836 mode_buf[1] = 6; /* Mode data length (LSB) */
1837 mode_buf[2] = 0; /* Medium type - default */
1838 mode_buf[3] = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected */
1839 mode_buf[4] = 0; /* reserved */
1840 mode_buf[5] = 0; /* reserved */
1841 mode_buf[6] = 0; /* Block descriptor length (MSB) */
1842 mode_buf[7] = 0; /* Block descriptor length (LSB) */
1843 aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));
1844
1845 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1846 scsicmd->scsi_done(scsicmd);
1847
1848 return 0;
1849 }
1850 case REQUEST_SENSE:
1851 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
1852 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
1853 memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
1854 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1855 scsicmd->scsi_done(scsicmd);
1856 return 0;
1857
1858 case ALLOW_MEDIUM_REMOVAL:
1859 dprintk((KERN_DEBUG "LOCK command.\n"));
1860 if (scsicmd->cmnd[4])
1861 fsa_dev_ptr[cid].locked = 1;
1862 else
1863 fsa_dev_ptr[cid].locked = 0;
1864
1865 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1866 scsicmd->scsi_done(scsicmd);
1867 return 0;
1868 /*
1869 * These commands are all No-Ops
1870 */
1871 case TEST_UNIT_READY:
1872 case RESERVE:
1873 case RELEASE:
1874 case REZERO_UNIT:
1875 case REASSIGN_BLOCKS:
1876 case SEEK_10:
1877 case START_STOP:
1878 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1879 scsicmd->scsi_done(scsicmd);
1880 return 0;
1881 }
1882
1883 switch (scsicmd->cmnd[0])
1884 {
1885 case READ_6:
1886 case READ_10:
1887 case READ_12:
1888 case READ_16:
1889 if (dev->in_reset)
1890 return -1;
1891 /*
1892 * Hack to keep track of ordinal number of the device that
1893 * corresponds to a container. Needed to convert
1894 * containers to /dev/sd device names
1895 */
1896
1897 if (scsicmd->request->rq_disk)
1898 strlcpy(fsa_dev_ptr[cid].devname,
1899 scsicmd->request->rq_disk->disk_name,
1900 min(sizeof(fsa_dev_ptr[cid].devname),
1901 sizeof(scsicmd->request->rq_disk->disk_name) + 1));
1902
1903 return aac_read(scsicmd, cid);
1904
1905 case WRITE_6:
1906 case WRITE_10:
1907 case WRITE_12:
1908 case WRITE_16:
1909 if (dev->in_reset)
1910 return -1;
1911 return aac_write(scsicmd, cid);
1912
1913 case SYNCHRONIZE_CACHE:
1914 /* Issue FIB to tell Firmware to flush it's cache */
1915 return aac_synchronize(scsicmd, cid);
1916
1917 default:
1918 /*
1919 * Unhandled commands
1920 */
1921 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
1922 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1923 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1924 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
1925 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1926 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1927 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1928 ? sizeof(scsicmd->sense_buffer)
1929 : sizeof(dev->fsa_dev[cid].sense_data));
1930 scsicmd->scsi_done(scsicmd);
1931 return 0;
1932 }
1933 }
1934
1935 static int query_disk(struct aac_dev *dev, void __user *arg)
1936 {
1937 struct aac_query_disk qd;
1938 struct fsa_dev_info *fsa_dev_ptr;
1939
1940 fsa_dev_ptr = dev->fsa_dev;
1941 if (!fsa_dev_ptr)
1942 return -EBUSY;
1943 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
1944 return -EFAULT;
1945 if (qd.cnum == -1)
1946 qd.cnum = qd.id;
1947 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
1948 {
1949 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
1950 return -EINVAL;
1951 qd.instance = dev->scsi_host_ptr->host_no;
1952 qd.bus = 0;
1953 qd.id = CONTAINER_TO_ID(qd.cnum);
1954 qd.lun = CONTAINER_TO_LUN(qd.cnum);
1955 }
1956 else return -EINVAL;
1957
1958 qd.valid = fsa_dev_ptr[qd.cnum].valid;
1959 qd.locked = fsa_dev_ptr[qd.cnum].locked;
1960 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
1961
1962 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
1963 qd.unmapped = 1;
1964 else
1965 qd.unmapped = 0;
1966
1967 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
1968 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
1969
1970 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
1971 return -EFAULT;
1972 return 0;
1973 }
1974
1975 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
1976 {
1977 struct aac_delete_disk dd;
1978 struct fsa_dev_info *fsa_dev_ptr;
1979
1980 fsa_dev_ptr = dev->fsa_dev;
1981 if (!fsa_dev_ptr)
1982 return -EBUSY;
1983
1984 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
1985 return -EFAULT;
1986
1987 if (dd.cnum >= dev->maximum_num_containers)
1988 return -EINVAL;
1989 /*
1990 * Mark this container as being deleted.
1991 */
1992 fsa_dev_ptr[dd.cnum].deleted = 1;
1993 /*
1994 * Mark the container as no longer valid
1995 */
1996 fsa_dev_ptr[dd.cnum].valid = 0;
1997 return 0;
1998 }
1999
2000 static int delete_disk(struct aac_dev *dev, void __user *arg)
2001 {
2002 struct aac_delete_disk dd;
2003 struct fsa_dev_info *fsa_dev_ptr;
2004
2005 fsa_dev_ptr = dev->fsa_dev;
2006 if (!fsa_dev_ptr)
2007 return -EBUSY;
2008
2009 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2010 return -EFAULT;
2011
2012 if (dd.cnum >= dev->maximum_num_containers)
2013 return -EINVAL;
2014 /*
2015 * If the container is locked, it can not be deleted by the API.
2016 */
2017 if (fsa_dev_ptr[dd.cnum].locked)
2018 return -EBUSY;
2019 else {
2020 /*
2021 * Mark the container as no longer being valid.
2022 */
2023 fsa_dev_ptr[dd.cnum].valid = 0;
2024 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2025 return 0;
2026 }
2027 }
2028
2029 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2030 {
2031 switch (cmd) {
2032 case FSACTL_QUERY_DISK:
2033 return query_disk(dev, arg);
2034 case FSACTL_DELETE_DISK:
2035 return delete_disk(dev, arg);
2036 case FSACTL_FORCE_DELETE_DISK:
2037 return force_delete_disk(dev, arg);
2038 case FSACTL_GET_CONTAINERS:
2039 return aac_get_containers(dev);
2040 default:
2041 return -ENOTTY;
2042 }
2043 }
2044
2045 /**
2046 *
2047 * aac_srb_callback
2048 * @context: the context set in the fib - here it is scsi cmd
2049 * @fibptr: pointer to the fib
2050 *
2051 * Handles the completion of a scsi command to a non dasd device
2052 *
2053 */
2054
2055 static void aac_srb_callback(void *context, struct fib * fibptr)
2056 {
2057 struct aac_dev *dev;
2058 struct aac_srb_reply *srbreply;
2059 struct scsi_cmnd *scsicmd;
2060
2061 scsicmd = (struct scsi_cmnd *) context;
2062 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
2063 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2064
2065 BUG_ON(fibptr == NULL);
2066
2067 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2068
2069 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
2070 /*
2071 * Calculate resid for sg
2072 */
2073
2074 scsicmd->resid = scsicmd->request_bufflen -
2075 le32_to_cpu(srbreply->data_xfer_length);
2076
2077 if(scsicmd->use_sg)
2078 pci_unmap_sg(dev->pdev,
2079 (struct scatterlist *)scsicmd->request_buffer,
2080 scsicmd->use_sg,
2081 scsicmd->sc_data_direction);
2082 else if(scsicmd->request_bufflen)
2083 pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, scsicmd->request_bufflen,
2084 scsicmd->sc_data_direction);
2085
2086 /*
2087 * First check the fib status
2088 */
2089
2090 if (le32_to_cpu(srbreply->status) != ST_OK){
2091 int len;
2092 printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2093 len = (le32_to_cpu(srbreply->sense_data_size) >
2094 sizeof(scsicmd->sense_buffer)) ?
2095 sizeof(scsicmd->sense_buffer) :
2096 le32_to_cpu(srbreply->sense_data_size);
2097 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2098 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2099 }
2100
2101 /*
2102 * Next check the srb status
2103 */
2104 switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2105 case SRB_STATUS_ERROR_RECOVERY:
2106 case SRB_STATUS_PENDING:
2107 case SRB_STATUS_SUCCESS:
2108 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2109 break;
2110 case SRB_STATUS_DATA_OVERRUN:
2111 switch(scsicmd->cmnd[0]){
2112 case READ_6:
2113 case WRITE_6:
2114 case READ_10:
2115 case WRITE_10:
2116 case READ_12:
2117 case WRITE_12:
2118 case READ_16:
2119 case WRITE_16:
2120 if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
2121 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2122 } else {
2123 printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2124 }
2125 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2126 break;
2127 case INQUIRY: {
2128 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2129 break;
2130 }
2131 default:
2132 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2133 break;
2134 }
2135 break;
2136 case SRB_STATUS_ABORTED:
2137 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2138 break;
2139 case SRB_STATUS_ABORT_FAILED:
2140 // Not sure about this one - but assuming the hba was trying to abort for some reason
2141 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2142 break;
2143 case SRB_STATUS_PARITY_ERROR:
2144 scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2145 break;
2146 case SRB_STATUS_NO_DEVICE:
2147 case SRB_STATUS_INVALID_PATH_ID:
2148 case SRB_STATUS_INVALID_TARGET_ID:
2149 case SRB_STATUS_INVALID_LUN:
2150 case SRB_STATUS_SELECTION_TIMEOUT:
2151 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2152 break;
2153
2154 case SRB_STATUS_COMMAND_TIMEOUT:
2155 case SRB_STATUS_TIMEOUT:
2156 scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2157 break;
2158
2159 case SRB_STATUS_BUSY:
2160 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2161 break;
2162
2163 case SRB_STATUS_BUS_RESET:
2164 scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2165 break;
2166
2167 case SRB_STATUS_MESSAGE_REJECTED:
2168 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2169 break;
2170 case SRB_STATUS_REQUEST_FLUSHED:
2171 case SRB_STATUS_ERROR:
2172 case SRB_STATUS_INVALID_REQUEST:
2173 case SRB_STATUS_REQUEST_SENSE_FAILED:
2174 case SRB_STATUS_NO_HBA:
2175 case SRB_STATUS_UNEXPECTED_BUS_FREE:
2176 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2177 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2178 case SRB_STATUS_DELAYED_RETRY:
2179 case SRB_STATUS_BAD_FUNCTION:
2180 case SRB_STATUS_NOT_STARTED:
2181 case SRB_STATUS_NOT_IN_USE:
2182 case SRB_STATUS_FORCE_ABORT:
2183 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2184 default:
2185 #ifdef AAC_DETAILED_STATUS_INFO
2186 printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2187 le32_to_cpu(srbreply->srb_status) & 0x3F,
2188 aac_get_status_string(
2189 le32_to_cpu(srbreply->srb_status) & 0x3F),
2190 scsicmd->cmnd[0],
2191 le32_to_cpu(srbreply->scsi_status));
2192 #endif
2193 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2194 break;
2195 }
2196 if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){ // Check Condition
2197 int len;
2198 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2199 len = (le32_to_cpu(srbreply->sense_data_size) >
2200 sizeof(scsicmd->sense_buffer)) ?
2201 sizeof(scsicmd->sense_buffer) :
2202 le32_to_cpu(srbreply->sense_data_size);
2203 #ifdef AAC_DETAILED_STATUS_INFO
2204 printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2205 le32_to_cpu(srbreply->status), len);
2206 #endif
2207 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2208
2209 }
2210 /*
2211 * OR in the scsi status (already shifted up a bit)
2212 */
2213 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2214
2215 aac_fib_complete(fibptr);
2216 aac_fib_free(fibptr);
2217 scsicmd->scsi_done(scsicmd);
2218 }
2219
2220 /**
2221 *
2222 * aac_send_scb_fib
2223 * @scsicmd: the scsi command block
2224 *
2225 * This routine will form a FIB and fill in the aac_srb from the
2226 * scsicmd passed in.
2227 */
2228
2229 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2230 {
2231 struct fib* cmd_fibcontext;
2232 struct aac_dev* dev;
2233 int status;
2234
2235 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2236 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2237 scsicmd->device->lun > 7) {
2238 scsicmd->result = DID_NO_CONNECT << 16;
2239 scsicmd->scsi_done(scsicmd);
2240 return 0;
2241 }
2242
2243 /*
2244 * Allocate and initialize a Fib then setup a BlockWrite command
2245 */
2246 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2247 return -1;
2248 }
2249 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2250
2251 /*
2252 * Check that the command queued to the controller
2253 */
2254 if (status == -EINPROGRESS) {
2255 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2256 return 0;
2257 }
2258
2259 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2260 aac_fib_complete(cmd_fibcontext);
2261 aac_fib_free(cmd_fibcontext);
2262
2263 return -1;
2264 }
2265
2266 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2267 {
2268 struct aac_dev *dev;
2269 unsigned long byte_count = 0;
2270
2271 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2272 // Get rid of old data
2273 psg->count = 0;
2274 psg->sg[0].addr = 0;
2275 psg->sg[0].count = 0;
2276 if (scsicmd->use_sg) {
2277 struct scatterlist *sg;
2278 int i;
2279 int sg_count;
2280 sg = (struct scatterlist *) scsicmd->request_buffer;
2281
2282 sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2283 scsicmd->sc_data_direction);
2284 psg->count = cpu_to_le32(sg_count);
2285
2286 for (i = 0; i < sg_count; i++) {
2287 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2288 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2289 byte_count += sg_dma_len(sg);
2290 sg++;
2291 }
2292 /* hba wants the size to be exact */
2293 if(byte_count > scsicmd->request_bufflen){
2294 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2295 (byte_count - scsicmd->request_bufflen);
2296 psg->sg[i-1].count = cpu_to_le32(temp);
2297 byte_count = scsicmd->request_bufflen;
2298 }
2299 /* Check for command underflow */
2300 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2301 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2302 byte_count, scsicmd->underflow);
2303 }
2304 }
2305 else if(scsicmd->request_bufflen) {
2306 u32 addr;
2307 scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
2308 scsicmd->request_buffer,
2309 scsicmd->request_bufflen,
2310 scsicmd->sc_data_direction);
2311 addr = scsicmd->SCp.dma_handle;
2312 psg->count = cpu_to_le32(1);
2313 psg->sg[0].addr = cpu_to_le32(addr);
2314 psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2315 byte_count = scsicmd->request_bufflen;
2316 }
2317 return byte_count;
2318 }
2319
2320
2321 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2322 {
2323 struct aac_dev *dev;
2324 unsigned long byte_count = 0;
2325 u64 addr;
2326
2327 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2328 // Get rid of old data
2329 psg->count = 0;
2330 psg->sg[0].addr[0] = 0;
2331 psg->sg[0].addr[1] = 0;
2332 psg->sg[0].count = 0;
2333 if (scsicmd->use_sg) {
2334 struct scatterlist *sg;
2335 int i;
2336 int sg_count;
2337 sg = (struct scatterlist *) scsicmd->request_buffer;
2338
2339 sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2340 scsicmd->sc_data_direction);
2341
2342 for (i = 0; i < sg_count; i++) {
2343 int count = sg_dma_len(sg);
2344 addr = sg_dma_address(sg);
2345 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2346 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2347 psg->sg[i].count = cpu_to_le32(count);
2348 byte_count += count;
2349 sg++;
2350 }
2351 psg->count = cpu_to_le32(sg_count);
2352 /* hba wants the size to be exact */
2353 if(byte_count > scsicmd->request_bufflen){
2354 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2355 (byte_count - scsicmd->request_bufflen);
2356 psg->sg[i-1].count = cpu_to_le32(temp);
2357 byte_count = scsicmd->request_bufflen;
2358 }
2359 /* Check for command underflow */
2360 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2361 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2362 byte_count, scsicmd->underflow);
2363 }
2364 }
2365 else if(scsicmd->request_bufflen) {
2366 scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
2367 scsicmd->request_buffer,
2368 scsicmd->request_bufflen,
2369 scsicmd->sc_data_direction);
2370 addr = scsicmd->SCp.dma_handle;
2371 psg->count = cpu_to_le32(1);
2372 psg->sg[0].addr[0] = cpu_to_le32(addr & 0xffffffff);
2373 psg->sg[0].addr[1] = cpu_to_le32(addr >> 32);
2374 psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2375 byte_count = scsicmd->request_bufflen;
2376 }
2377 return byte_count;
2378 }
2379
2380 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2381 {
2382 struct Scsi_Host *host = scsicmd->device->host;
2383 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2384 unsigned long byte_count = 0;
2385
2386 // Get rid of old data
2387 psg->count = 0;
2388 psg->sg[0].next = 0;
2389 psg->sg[0].prev = 0;
2390 psg->sg[0].addr[0] = 0;
2391 psg->sg[0].addr[1] = 0;
2392 psg->sg[0].count = 0;
2393 psg->sg[0].flags = 0;
2394 if (scsicmd->use_sg) {
2395 struct scatterlist *sg;
2396 int i;
2397 int sg_count;
2398 sg = (struct scatterlist *) scsicmd->request_buffer;
2399
2400 sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2401 scsicmd->sc_data_direction);
2402
2403 for (i = 0; i < sg_count; i++) {
2404 int count = sg_dma_len(sg);
2405 u64 addr = sg_dma_address(sg);
2406 psg->sg[i].next = 0;
2407 psg->sg[i].prev = 0;
2408 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2409 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2410 psg->sg[i].count = cpu_to_le32(count);
2411 psg->sg[i].flags = 0;
2412 byte_count += count;
2413 sg++;
2414 }
2415 psg->count = cpu_to_le32(sg_count);
2416 /* hba wants the size to be exact */
2417 if(byte_count > scsicmd->request_bufflen){
2418 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2419 (byte_count - scsicmd->request_bufflen);
2420 psg->sg[i-1].count = cpu_to_le32(temp);
2421 byte_count = scsicmd->request_bufflen;
2422 }
2423 /* Check for command underflow */
2424 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2425 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2426 byte_count, scsicmd->underflow);
2427 }
2428 }
2429 else if(scsicmd->request_bufflen) {
2430 int count;
2431 u64 addr;
2432 scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
2433 scsicmd->request_buffer,
2434 scsicmd->request_bufflen,
2435 scsicmd->sc_data_direction);
2436 addr = scsicmd->SCp.dma_handle;
2437 count = scsicmd->request_bufflen;
2438 psg->count = cpu_to_le32(1);
2439 psg->sg[0].next = 0;
2440 psg->sg[0].prev = 0;
2441 psg->sg[0].addr[1] = cpu_to_le32((u32)(addr>>32));
2442 psg->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2443 psg->sg[0].count = cpu_to_le32(count);
2444 psg->sg[0].flags = 0;
2445 byte_count = scsicmd->request_bufflen;
2446 }
2447 return byte_count;
2448 }
2449
2450 #ifdef AAC_DETAILED_STATUS_INFO
2451
2452 struct aac_srb_status_info {
2453 u32 status;
2454 char *str;
2455 };
2456
2457
2458 static struct aac_srb_status_info srb_status_info[] = {
2459 { SRB_STATUS_PENDING, "Pending Status"},
2460 { SRB_STATUS_SUCCESS, "Success"},
2461 { SRB_STATUS_ABORTED, "Aborted Command"},
2462 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
2463 { SRB_STATUS_ERROR, "Error Event"},
2464 { SRB_STATUS_BUSY, "Device Busy"},
2465 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
2466 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
2467 { SRB_STATUS_NO_DEVICE, "No Device"},
2468 { SRB_STATUS_TIMEOUT, "Timeout"},
2469 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
2470 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
2471 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
2472 { SRB_STATUS_BUS_RESET, "Bus Reset"},
2473 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
2474 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2475 { SRB_STATUS_NO_HBA, "No HBA"},
2476 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
2477 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2478 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2479 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2480 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
2481 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
2482 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
2483 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
2484 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
2485 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
2486 { SRB_STATUS_NOT_STARTED, "Not Started"},
2487 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
2488 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
2489 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2490 { 0xff, "Unknown Error"}
2491 };
2492
2493 char *aac_get_status_string(u32 status)
2494 {
2495 int i;
2496
2497 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
2498 if (srb_status_info[i].status == status)
2499 return srb_status_info[i].str;
2500
2501 return "Bad Status Code";
2502 }
2503
2504 #endif