]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/aacraid/aachba.c
Merge tag 'reset-fixes-for-4.14' of git://git.pengutronix.de/git/pza/linux into fixes
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / aacraid / aachba.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 * Module Name:
27 * aachba.c
28 *
29 * Abstract: Contains Interfaces to manage IOs.
30 *
31 */
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/uaccess.h>
42 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
43 #include <linux/module.h>
44
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49
50 #include "aacraid.h"
51
52 /* values for inqd_pdt: Peripheral device type in plain English */
53 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
54 #define INQD_PDT_PROC 0x03 /* Processor device */
55 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
56 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
57 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
58 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
59
60 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
61 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
62
63 /*
64 * Sense codes
65 */
66
67 #define SENCODE_NO_SENSE 0x00
68 #define SENCODE_END_OF_DATA 0x00
69 #define SENCODE_BECOMING_READY 0x04
70 #define SENCODE_INIT_CMD_REQUIRED 0x04
71 #define SENCODE_UNRECOVERED_READ_ERROR 0x11
72 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
73 #define SENCODE_INVALID_COMMAND 0x20
74 #define SENCODE_LBA_OUT_OF_RANGE 0x21
75 #define SENCODE_INVALID_CDB_FIELD 0x24
76 #define SENCODE_LUN_NOT_SUPPORTED 0x25
77 #define SENCODE_INVALID_PARAM_FIELD 0x26
78 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
79 #define SENCODE_PARAM_VALUE_INVALID 0x26
80 #define SENCODE_RESET_OCCURRED 0x29
81 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
82 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
83 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
84 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
85 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
86 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
87 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
88 #define SENCODE_OVERLAPPED_COMMAND 0x4E
89
90 /*
91 * Additional sense codes
92 */
93
94 #define ASENCODE_NO_SENSE 0x00
95 #define ASENCODE_END_OF_DATA 0x05
96 #define ASENCODE_BECOMING_READY 0x01
97 #define ASENCODE_INIT_CMD_REQUIRED 0x02
98 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
99 #define ASENCODE_INVALID_COMMAND 0x00
100 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
101 #define ASENCODE_INVALID_CDB_FIELD 0x00
102 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
103 #define ASENCODE_INVALID_PARAM_FIELD 0x00
104 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
105 #define ASENCODE_PARAM_VALUE_INVALID 0x02
106 #define ASENCODE_RESET_OCCURRED 0x00
107 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
108 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
109 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
110 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
111 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
112 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
113 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
114 #define ASENCODE_OVERLAPPED_COMMAND 0x00
115
116 #define AAC_STAT_GOOD (DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD)
117
118 #define BYTE0(x) (unsigned char)(x)
119 #define BYTE1(x) (unsigned char)((x) >> 8)
120 #define BYTE2(x) (unsigned char)((x) >> 16)
121 #define BYTE3(x) (unsigned char)((x) >> 24)
122
123 /* MODE_SENSE data format */
124 typedef struct {
125 struct {
126 u8 data_length;
127 u8 med_type;
128 u8 dev_par;
129 u8 bd_length;
130 } __attribute__((packed)) hd;
131 struct {
132 u8 dens_code;
133 u8 block_count[3];
134 u8 reserved;
135 u8 block_length[3];
136 } __attribute__((packed)) bd;
137 u8 mpc_buf[3];
138 } __attribute__((packed)) aac_modep_data;
139
140 /* MODE_SENSE_10 data format */
141 typedef struct {
142 struct {
143 u8 data_length[2];
144 u8 med_type;
145 u8 dev_par;
146 u8 rsrvd[2];
147 u8 bd_length[2];
148 } __attribute__((packed)) hd;
149 struct {
150 u8 dens_code;
151 u8 block_count[3];
152 u8 reserved;
153 u8 block_length[3];
154 } __attribute__((packed)) bd;
155 u8 mpc_buf[3];
156 } __attribute__((packed)) aac_modep10_data;
157
158 /*------------------------------------------------------------------------------
159 * S T R U C T S / T Y P E D E F S
160 *----------------------------------------------------------------------------*/
161 /* SCSI inquiry data */
162 struct inquiry_data {
163 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
164 u8 inqd_dtq; /* RMB | Device Type Qualifier */
165 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
166 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
167 u8 inqd_len; /* Additional length (n-4) */
168 u8 inqd_pad1[2];/* Reserved - must be zero */
169 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
170 u8 inqd_vid[8]; /* Vendor ID */
171 u8 inqd_pid[16];/* Product ID */
172 u8 inqd_prl[4]; /* Product Revision Level */
173 };
174
175 /* Added for VPD 0x83 */
176 struct tvpd_id_descriptor_type_1 {
177 u8 codeset:4; /* VPD_CODE_SET */
178 u8 reserved:4;
179 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
180 u8 reserved2:4;
181 u8 reserved3;
182 u8 identifierlength;
183 u8 venid[8];
184 u8 productid[16];
185 u8 serialnumber[8]; /* SN in ASCII */
186
187 };
188
189 struct tvpd_id_descriptor_type_2 {
190 u8 codeset:4; /* VPD_CODE_SET */
191 u8 reserved:4;
192 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
193 u8 reserved2:4;
194 u8 reserved3;
195 u8 identifierlength;
196 struct teu64id {
197 u32 Serial;
198 /* The serial number supposed to be 40 bits,
199 * bit we only support 32, so make the last byte zero. */
200 u8 reserved;
201 u8 venid[3];
202 } eu64id;
203
204 };
205
206 struct tvpd_id_descriptor_type_3 {
207 u8 codeset : 4; /* VPD_CODE_SET */
208 u8 reserved : 4;
209 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */
210 u8 reserved2 : 4;
211 u8 reserved3;
212 u8 identifierlength;
213 u8 Identifier[16];
214 };
215
216 struct tvpd_page83 {
217 u8 DeviceType:5;
218 u8 DeviceTypeQualifier:3;
219 u8 PageCode;
220 u8 reserved;
221 u8 PageLength;
222 struct tvpd_id_descriptor_type_1 type1;
223 struct tvpd_id_descriptor_type_2 type2;
224 struct tvpd_id_descriptor_type_3 type3;
225 };
226
227 /*
228 * M O D U L E G L O B A L S
229 */
230
231 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
232 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
233 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
234 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
235 struct aac_raw_io2 *rio2, int sg_max);
236 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
237 struct aac_hba_cmd_req *hbacmd,
238 int sg_max, u64 sg_address);
239 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
240 int pages, int nseg, int nseg_new);
241 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
242 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd);
243 #ifdef AAC_DETAILED_STATUS_INFO
244 static char *aac_get_status_string(u32 status);
245 #endif
246
247 /*
248 * Non dasd selection is handled entirely in aachba now
249 */
250
251 static int nondasd = -1;
252 static int aac_cache = 2; /* WCE=0 to avoid performance problems */
253 static int dacmode = -1;
254 int aac_msi;
255 int aac_commit = -1;
256 int startup_timeout = 180;
257 int aif_timeout = 120;
258 int aac_sync_mode; /* Only Sync. transfer - disabled */
259 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */
260
261 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
262 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
263 " 0=off, 1=on");
264 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
265 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
266 " 0=off, 1=on");
267 module_param(nondasd, int, S_IRUGO|S_IWUSR);
268 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
269 " 0=off, 1=on");
270 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
271 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
272 "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
273 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
274 "\tbit 2 - Disable only if Battery is protecting Cache");
275 module_param(dacmode, int, S_IRUGO|S_IWUSR);
276 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
277 " 0=off, 1=on");
278 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
279 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
280 " adapter for foreign arrays.\n"
281 "This is typically needed in systems that do not have a BIOS."
282 " 0=off, 1=on");
283 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
284 MODULE_PARM_DESC(msi, "IRQ handling."
285 " 0=PIC(default), 1=MSI, 2=MSI-X)");
286 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
287 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
288 " adapter to have it's kernel up and\n"
289 "running. This is typically adjusted for large systems that do not"
290 " have a BIOS.");
291 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
292 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
293 " applications to pick up AIFs before\n"
294 "deregistering them. This is typically adjusted for heavily burdened"
295 " systems.");
296
297 int aac_fib_dump;
298 module_param(aac_fib_dump, int, 0644);
299 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on");
300
301 int numacb = -1;
302 module_param(numacb, int, S_IRUGO|S_IWUSR);
303 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
304 " blocks (FIB) allocated. Valid values are 512 and down. Default is"
305 " to use suggestion from Firmware.");
306
307 int acbsize = -1;
308 module_param(acbsize, int, S_IRUGO|S_IWUSR);
309 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
310 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
311 " suggestion from Firmware.");
312
313 int update_interval = 30 * 60;
314 module_param(update_interval, int, S_IRUGO|S_IWUSR);
315 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
316 " updates issued to adapter.");
317
318 int check_interval = 60;
319 module_param(check_interval, int, S_IRUGO|S_IWUSR);
320 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
321 " checks.");
322
323 int aac_check_reset = 1;
324 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
325 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
326 " adapter. a value of -1 forces the reset to adapters programmed to"
327 " ignore it.");
328
329 int expose_physicals = -1;
330 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
331 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
332 " -1=protect 0=off, 1=on");
333
334 int aac_reset_devices;
335 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
336 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
337
338 int aac_wwn = 1;
339 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
340 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
341 "\t0 - Disable\n"
342 "\t1 - Array Meta Data Signature (default)\n"
343 "\t2 - Adapter Serial Number");
344
345
346 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
347 struct fib *fibptr) {
348 struct scsi_device *device;
349
350 if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
351 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
352 aac_fib_complete(fibptr);
353 return 0;
354 }
355 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
356 device = scsicmd->device;
357 if (unlikely(!device)) {
358 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
359 aac_fib_complete(fibptr);
360 return 0;
361 }
362 return 1;
363 }
364
365 /**
366 * aac_get_config_status - check the adapter configuration
367 * @common: adapter to query
368 *
369 * Query config status, and commit the configuration if needed.
370 */
371 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
372 {
373 int status = 0;
374 struct fib * fibptr;
375
376 if (!(fibptr = aac_fib_alloc(dev)))
377 return -ENOMEM;
378
379 aac_fib_init(fibptr);
380 {
381 struct aac_get_config_status *dinfo;
382 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
383
384 dinfo->command = cpu_to_le32(VM_ContainerConfig);
385 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
386 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
387 }
388
389 status = aac_fib_send(ContainerCommand,
390 fibptr,
391 sizeof (struct aac_get_config_status),
392 FsaNormal,
393 1, 1,
394 NULL, NULL);
395 if (status < 0) {
396 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
397 } else {
398 struct aac_get_config_status_resp *reply
399 = (struct aac_get_config_status_resp *) fib_data(fibptr);
400 dprintk((KERN_WARNING
401 "aac_get_config_status: response=%d status=%d action=%d\n",
402 le32_to_cpu(reply->response),
403 le32_to_cpu(reply->status),
404 le32_to_cpu(reply->data.action)));
405 if ((le32_to_cpu(reply->response) != ST_OK) ||
406 (le32_to_cpu(reply->status) != CT_OK) ||
407 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
408 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
409 status = -EINVAL;
410 }
411 }
412 /* Do not set XferState to zero unless receives a response from F/W */
413 if (status >= 0)
414 aac_fib_complete(fibptr);
415
416 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
417 if (status >= 0) {
418 if ((aac_commit == 1) || commit_flag) {
419 struct aac_commit_config * dinfo;
420 aac_fib_init(fibptr);
421 dinfo = (struct aac_commit_config *) fib_data(fibptr);
422
423 dinfo->command = cpu_to_le32(VM_ContainerConfig);
424 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
425
426 status = aac_fib_send(ContainerCommand,
427 fibptr,
428 sizeof (struct aac_commit_config),
429 FsaNormal,
430 1, 1,
431 NULL, NULL);
432 /* Do not set XferState to zero unless
433 * receives a response from F/W */
434 if (status >= 0)
435 aac_fib_complete(fibptr);
436 } else if (aac_commit == 0) {
437 printk(KERN_WARNING
438 "aac_get_config_status: Foreign device configurations are being ignored\n");
439 }
440 }
441 /* FIB should be freed only after getting the response from the F/W */
442 if (status != -ERESTARTSYS)
443 aac_fib_free(fibptr);
444 return status;
445 }
446
447 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
448 {
449 char inq_data;
450 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data));
451 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
452 inq_data &= 0xdf;
453 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
454 }
455 }
456
457 /**
458 * aac_get_containers - list containers
459 * @common: adapter to probe
460 *
461 * Make a list of all containers on this controller
462 */
463 int aac_get_containers(struct aac_dev *dev)
464 {
465 struct fsa_dev_info *fsa_dev_ptr;
466 u32 index;
467 int status = 0;
468 struct fib * fibptr;
469 struct aac_get_container_count *dinfo;
470 struct aac_get_container_count_resp *dresp;
471 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
472
473 if (!(fibptr = aac_fib_alloc(dev)))
474 return -ENOMEM;
475
476 aac_fib_init(fibptr);
477 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
478 dinfo->command = cpu_to_le32(VM_ContainerConfig);
479 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
480
481 status = aac_fib_send(ContainerCommand,
482 fibptr,
483 sizeof (struct aac_get_container_count),
484 FsaNormal,
485 1, 1,
486 NULL, NULL);
487 if (status >= 0) {
488 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
489 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
490 if (fibptr->dev->supplement_adapter_info.supported_options2 &
491 AAC_OPTION_SUPPORTED_240_VOLUMES) {
492 maximum_num_containers =
493 le32_to_cpu(dresp->MaxSimpleVolumes);
494 }
495 aac_fib_complete(fibptr);
496 }
497 /* FIB should be freed only after getting the response from the F/W */
498 if (status != -ERESTARTSYS)
499 aac_fib_free(fibptr);
500
501 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
502 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
503 if (dev->fsa_dev == NULL ||
504 dev->maximum_num_containers != maximum_num_containers) {
505
506 fsa_dev_ptr = dev->fsa_dev;
507
508 dev->fsa_dev = kcalloc(maximum_num_containers,
509 sizeof(*fsa_dev_ptr), GFP_KERNEL);
510
511 kfree(fsa_dev_ptr);
512 fsa_dev_ptr = NULL;
513
514
515 if (!dev->fsa_dev)
516 return -ENOMEM;
517
518 dev->maximum_num_containers = maximum_num_containers;
519 }
520 for (index = 0; index < dev->maximum_num_containers; index++) {
521 dev->fsa_dev[index].devname[0] = '\0';
522 dev->fsa_dev[index].valid = 0;
523
524 status = aac_probe_container(dev, index);
525
526 if (status < 0) {
527 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
528 break;
529 }
530 }
531 return status;
532 }
533
534 static void get_container_name_callback(void *context, struct fib * fibptr)
535 {
536 struct aac_get_name_resp * get_name_reply;
537 struct scsi_cmnd * scsicmd;
538
539 scsicmd = (struct scsi_cmnd *) context;
540
541 if (!aac_valid_context(scsicmd, fibptr))
542 return;
543
544 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
545 BUG_ON(fibptr == NULL);
546
547 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
548 /* Failure is irrelevant, using default value instead */
549 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
550 && (get_name_reply->data[0] != '\0')) {
551 char *sp = get_name_reply->data;
552 int data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
553
554 sp[data_size - 1] = '\0';
555 while (*sp == ' ')
556 ++sp;
557 if (*sp) {
558 struct inquiry_data inq;
559 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
560 int count = sizeof(d);
561 char *dp = d;
562 do {
563 *dp++ = (*sp) ? *sp++ : ' ';
564 } while (--count > 0);
565
566 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
567 memcpy(inq.inqd_pid, d, sizeof(d));
568 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
569 }
570 }
571
572 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
573
574 aac_fib_complete(fibptr);
575 scsicmd->scsi_done(scsicmd);
576 }
577
578 /**
579 * aac_get_container_name - get container name, none blocking.
580 */
581 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
582 {
583 int status;
584 int data_size;
585 struct aac_get_name *dinfo;
586 struct fib * cmd_fibcontext;
587 struct aac_dev * dev;
588
589 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
590
591 data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
592
593 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
594
595 aac_fib_init(cmd_fibcontext);
596 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
597 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
598
599 dinfo->command = cpu_to_le32(VM_ContainerConfig);
600 dinfo->type = cpu_to_le32(CT_READ_NAME);
601 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
602 dinfo->count = cpu_to_le32(data_size - 1);
603
604 status = aac_fib_send(ContainerCommand,
605 cmd_fibcontext,
606 sizeof(struct aac_get_name_resp),
607 FsaNormal,
608 0, 1,
609 (fib_callback)get_container_name_callback,
610 (void *) scsicmd);
611
612 /*
613 * Check that the command queued to the controller
614 */
615 if (status == -EINPROGRESS)
616 return 0;
617
618 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
619 aac_fib_complete(cmd_fibcontext);
620 return -1;
621 }
622
623 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
624 {
625 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
626
627 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
628 return aac_scsi_cmd(scsicmd);
629
630 scsicmd->result = DID_NO_CONNECT << 16;
631 scsicmd->scsi_done(scsicmd);
632 return 0;
633 }
634
635 static void _aac_probe_container2(void * context, struct fib * fibptr)
636 {
637 struct fsa_dev_info *fsa_dev_ptr;
638 int (*callback)(struct scsi_cmnd *);
639 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
640 int i;
641
642
643 if (!aac_valid_context(scsicmd, fibptr))
644 return;
645
646 scsicmd->SCp.Status = 0;
647 fsa_dev_ptr = fibptr->dev->fsa_dev;
648 if (fsa_dev_ptr) {
649 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
650 __le32 sup_options2;
651
652 fsa_dev_ptr += scmd_id(scsicmd);
653 sup_options2 =
654 fibptr->dev->supplement_adapter_info.supported_options2;
655
656 if ((le32_to_cpu(dresp->status) == ST_OK) &&
657 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
658 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
659 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
660 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
661 fsa_dev_ptr->block_size = 0x200;
662 } else {
663 fsa_dev_ptr->block_size =
664 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
665 }
666 for (i = 0; i < 16; i++)
667 fsa_dev_ptr->identifier[i] =
668 dresp->mnt[0].fileinfo.bdevinfo
669 .identifier[i];
670 fsa_dev_ptr->valid = 1;
671 /* sense_key holds the current state of the spin-up */
672 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
673 fsa_dev_ptr->sense_data.sense_key = NOT_READY;
674 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
675 fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
676 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
677 fsa_dev_ptr->size
678 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
679 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
680 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
681 }
682 if ((fsa_dev_ptr->valid & 1) == 0)
683 fsa_dev_ptr->valid = 0;
684 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
685 }
686 aac_fib_complete(fibptr);
687 aac_fib_free(fibptr);
688 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
689 scsicmd->SCp.ptr = NULL;
690 (*callback)(scsicmd);
691 return;
692 }
693
694 static void _aac_probe_container1(void * context, struct fib * fibptr)
695 {
696 struct scsi_cmnd * scsicmd;
697 struct aac_mount * dresp;
698 struct aac_query_mount *dinfo;
699 int status;
700
701 dresp = (struct aac_mount *) fib_data(fibptr);
702 if (!aac_supports_2T(fibptr->dev)) {
703 dresp->mnt[0].capacityhigh = 0;
704 if ((le32_to_cpu(dresp->status) == ST_OK) &&
705 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
706 _aac_probe_container2(context, fibptr);
707 return;
708 }
709 }
710 scsicmd = (struct scsi_cmnd *) context;
711
712 if (!aac_valid_context(scsicmd, fibptr))
713 return;
714
715 aac_fib_init(fibptr);
716
717 dinfo = (struct aac_query_mount *)fib_data(fibptr);
718
719 if (fibptr->dev->supplement_adapter_info.supported_options2 &
720 AAC_OPTION_VARIABLE_BLOCK_SIZE)
721 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
722 else
723 dinfo->command = cpu_to_le32(VM_NameServe64);
724
725 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
726 dinfo->type = cpu_to_le32(FT_FILESYS);
727 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
728
729 status = aac_fib_send(ContainerCommand,
730 fibptr,
731 sizeof(struct aac_query_mount),
732 FsaNormal,
733 0, 1,
734 _aac_probe_container2,
735 (void *) scsicmd);
736 /*
737 * Check that the command queued to the controller
738 */
739 if (status < 0 && status != -EINPROGRESS) {
740 /* Inherit results from VM_NameServe, if any */
741 dresp->status = cpu_to_le32(ST_OK);
742 _aac_probe_container2(context, fibptr);
743 }
744 }
745
746 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
747 {
748 struct fib * fibptr;
749 int status = -ENOMEM;
750
751 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
752 struct aac_query_mount *dinfo;
753
754 aac_fib_init(fibptr);
755
756 dinfo = (struct aac_query_mount *)fib_data(fibptr);
757
758 if (fibptr->dev->supplement_adapter_info.supported_options2 &
759 AAC_OPTION_VARIABLE_BLOCK_SIZE)
760 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
761 else
762 dinfo->command = cpu_to_le32(VM_NameServe);
763
764 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
765 dinfo->type = cpu_to_le32(FT_FILESYS);
766 scsicmd->SCp.ptr = (char *)callback;
767 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
768
769 status = aac_fib_send(ContainerCommand,
770 fibptr,
771 sizeof(struct aac_query_mount),
772 FsaNormal,
773 0, 1,
774 _aac_probe_container1,
775 (void *) scsicmd);
776 /*
777 * Check that the command queued to the controller
778 */
779 if (status == -EINPROGRESS)
780 return 0;
781
782 if (status < 0) {
783 scsicmd->SCp.ptr = NULL;
784 aac_fib_complete(fibptr);
785 aac_fib_free(fibptr);
786 }
787 }
788 if (status < 0) {
789 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
790 if (fsa_dev_ptr) {
791 fsa_dev_ptr += scmd_id(scsicmd);
792 if ((fsa_dev_ptr->valid & 1) == 0) {
793 fsa_dev_ptr->valid = 0;
794 return (*callback)(scsicmd);
795 }
796 }
797 }
798 return status;
799 }
800
801 /**
802 * aac_probe_container - query a logical volume
803 * @dev: device to query
804 * @cid: container identifier
805 *
806 * Queries the controller about the given volume. The volume information
807 * is updated in the struct fsa_dev_info structure rather than returned.
808 */
809 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
810 {
811 scsicmd->device = NULL;
812 return 0;
813 }
814
815 int aac_probe_container(struct aac_dev *dev, int cid)
816 {
817 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
818 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
819 int status;
820
821 if (!scsicmd || !scsidev) {
822 kfree(scsicmd);
823 kfree(scsidev);
824 return -ENOMEM;
825 }
826 scsicmd->list.next = NULL;
827 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
828
829 scsicmd->device = scsidev;
830 scsidev->sdev_state = 0;
831 scsidev->id = cid;
832 scsidev->host = dev->scsi_host_ptr;
833
834 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
835 while (scsicmd->device == scsidev)
836 schedule();
837 kfree(scsidev);
838 status = scsicmd->SCp.Status;
839 kfree(scsicmd);
840 return status;
841 }
842
843 /* Local Structure to set SCSI inquiry data strings */
844 struct scsi_inq {
845 char vid[8]; /* Vendor ID */
846 char pid[16]; /* Product ID */
847 char prl[4]; /* Product Revision Level */
848 };
849
850 /**
851 * InqStrCopy - string merge
852 * @a: string to copy from
853 * @b: string to copy to
854 *
855 * Copy a String from one location to another
856 * without copying \0
857 */
858
859 static void inqstrcpy(char *a, char *b)
860 {
861
862 while (*a != (char)0)
863 *b++ = *a++;
864 }
865
866 static char *container_types[] = {
867 "None",
868 "Volume",
869 "Mirror",
870 "Stripe",
871 "RAID5",
872 "SSRW",
873 "SSRO",
874 "Morph",
875 "Legacy",
876 "RAID4",
877 "RAID10",
878 "RAID00",
879 "V-MIRRORS",
880 "PSEUDO R4",
881 "RAID50",
882 "RAID5D",
883 "RAID5D0",
884 "RAID1E",
885 "RAID6",
886 "RAID60",
887 "Unknown"
888 };
889
890 char * get_container_type(unsigned tindex)
891 {
892 if (tindex >= ARRAY_SIZE(container_types))
893 tindex = ARRAY_SIZE(container_types) - 1;
894 return container_types[tindex];
895 }
896
897 /* Function: setinqstr
898 *
899 * Arguments: [1] pointer to void [1] int
900 *
901 * Purpose: Sets SCSI inquiry data strings for vendor, product
902 * and revision level. Allows strings to be set in platform dependent
903 * files instead of in OS dependent driver source.
904 */
905
906 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
907 {
908 struct scsi_inq *str;
909 struct aac_supplement_adapter_info *sup_adap_info;
910
911 sup_adap_info = &dev->supplement_adapter_info;
912 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
913 memset(str, ' ', sizeof(*str));
914
915 if (sup_adap_info->adapter_type_text[0]) {
916 char *cp = sup_adap_info->adapter_type_text;
917 int c;
918 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
919 inqstrcpy("SMC", str->vid);
920 else {
921 c = sizeof(str->vid);
922 while (*cp && *cp != ' ' && --c)
923 ++cp;
924 c = *cp;
925 *cp = '\0';
926 inqstrcpy(sup_adap_info->adapter_type_text, str->vid);
927 *cp = c;
928 while (*cp && *cp != ' ')
929 ++cp;
930 }
931 while (*cp == ' ')
932 ++cp;
933 /* last six chars reserved for vol type */
934 c = 0;
935 if (strlen(cp) > sizeof(str->pid)) {
936 c = cp[sizeof(str->pid)];
937 cp[sizeof(str->pid)] = '\0';
938 }
939 inqstrcpy (cp, str->pid);
940 if (c)
941 cp[sizeof(str->pid)] = c;
942 } else {
943 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
944
945 inqstrcpy (mp->vname, str->vid);
946 /* last six chars reserved for vol type */
947 inqstrcpy (mp->model, str->pid);
948 }
949
950 if (tindex < ARRAY_SIZE(container_types)){
951 char *findit = str->pid;
952
953 for ( ; *findit != ' '; findit++); /* walk till we find a space */
954 /* RAID is superfluous in the context of a RAID device */
955 if (memcmp(findit-4, "RAID", 4) == 0)
956 *(findit -= 4) = ' ';
957 if (((findit - str->pid) + strlen(container_types[tindex]))
958 < (sizeof(str->pid) + sizeof(str->prl)))
959 inqstrcpy (container_types[tindex], findit + 1);
960 }
961 inqstrcpy ("V1.0", str->prl);
962 }
963
964 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data,
965 struct aac_dev *dev, struct scsi_cmnd *scsicmd)
966 {
967 int container;
968
969 vpdpage83data->type3.codeset = 1;
970 vpdpage83data->type3.identifiertype = 3;
971 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3)
972 - 4;
973
974 for (container = 0; container < dev->maximum_num_containers;
975 container++) {
976
977 if (scmd_id(scsicmd) == container) {
978 memcpy(vpdpage83data->type3.Identifier,
979 dev->fsa_dev[container].identifier,
980 16);
981 break;
982 }
983 }
984 }
985
986 static void get_container_serial_callback(void *context, struct fib * fibptr)
987 {
988 struct aac_get_serial_resp * get_serial_reply;
989 struct scsi_cmnd * scsicmd;
990
991 BUG_ON(fibptr == NULL);
992
993 scsicmd = (struct scsi_cmnd *) context;
994 if (!aac_valid_context(scsicmd, fibptr))
995 return;
996
997 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
998 /* Failure is irrelevant, using default value instead */
999 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
1000 /*Check to see if it's for VPD 0x83 or 0x80 */
1001 if (scsicmd->cmnd[2] == 0x83) {
1002 /* vpd page 0x83 - Device Identification Page */
1003 struct aac_dev *dev;
1004 int i;
1005 struct tvpd_page83 vpdpage83data;
1006
1007 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1008
1009 memset(((u8 *)&vpdpage83data), 0,
1010 sizeof(vpdpage83data));
1011
1012 /* DIRECT_ACCESS_DEVIC */
1013 vpdpage83data.DeviceType = 0;
1014 /* DEVICE_CONNECTED */
1015 vpdpage83data.DeviceTypeQualifier = 0;
1016 /* VPD_DEVICE_IDENTIFIERS */
1017 vpdpage83data.PageCode = 0x83;
1018 vpdpage83data.reserved = 0;
1019 vpdpage83data.PageLength =
1020 sizeof(vpdpage83data.type1) +
1021 sizeof(vpdpage83data.type2);
1022
1023 /* VPD 83 Type 3 is not supported for ARC */
1024 if (dev->sa_firmware)
1025 vpdpage83data.PageLength +=
1026 sizeof(vpdpage83data.type3);
1027
1028 /* T10 Vendor Identifier Field Format */
1029 /* VpdcodesetAscii */
1030 vpdpage83data.type1.codeset = 2;
1031 /* VpdIdentifierTypeVendorId */
1032 vpdpage83data.type1.identifiertype = 1;
1033 vpdpage83data.type1.identifierlength =
1034 sizeof(vpdpage83data.type1) - 4;
1035
1036 /* "ADAPTEC " for adaptec */
1037 memcpy(vpdpage83data.type1.venid,
1038 "ADAPTEC ",
1039 sizeof(vpdpage83data.type1.venid));
1040 memcpy(vpdpage83data.type1.productid,
1041 "ARRAY ",
1042 sizeof(
1043 vpdpage83data.type1.productid));
1044
1045 /* Convert to ascii based serial number.
1046 * The LSB is the the end.
1047 */
1048 for (i = 0; i < 8; i++) {
1049 u8 temp =
1050 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
1051 if (temp > 0x9) {
1052 vpdpage83data.type1.serialnumber[i] =
1053 'A' + (temp - 0xA);
1054 } else {
1055 vpdpage83data.type1.serialnumber[i] =
1056 '0' + temp;
1057 }
1058 }
1059
1060 /* VpdCodeSetBinary */
1061 vpdpage83data.type2.codeset = 1;
1062 /* VpdidentifiertypeEUI64 */
1063 vpdpage83data.type2.identifiertype = 2;
1064 vpdpage83data.type2.identifierlength =
1065 sizeof(vpdpage83data.type2) - 4;
1066
1067 vpdpage83data.type2.eu64id.venid[0] = 0xD0;
1068 vpdpage83data.type2.eu64id.venid[1] = 0;
1069 vpdpage83data.type2.eu64id.venid[2] = 0;
1070
1071 vpdpage83data.type2.eu64id.Serial =
1072 get_serial_reply->uid;
1073 vpdpage83data.type2.eu64id.reserved = 0;
1074
1075 /*
1076 * VpdIdentifierTypeFCPHName
1077 * VPD 0x83 Type 3 not supported for ARC
1078 */
1079 if (dev->sa_firmware) {
1080 build_vpd83_type3(&vpdpage83data,
1081 dev, scsicmd);
1082 }
1083
1084 /* Move the inquiry data to the response buffer. */
1085 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data,
1086 sizeof(vpdpage83data));
1087 } else {
1088 /* It must be for VPD 0x80 */
1089 char sp[13];
1090 /* EVPD bit set */
1091 sp[0] = INQD_PDT_DA;
1092 sp[1] = scsicmd->cmnd[2];
1093 sp[2] = 0;
1094 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
1095 le32_to_cpu(get_serial_reply->uid));
1096 scsi_sg_copy_from_buffer(scsicmd, sp,
1097 sizeof(sp));
1098 }
1099 }
1100
1101 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1102
1103 aac_fib_complete(fibptr);
1104 scsicmd->scsi_done(scsicmd);
1105 }
1106
1107 /**
1108 * aac_get_container_serial - get container serial, none blocking.
1109 */
1110 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1111 {
1112 int status;
1113 struct aac_get_serial *dinfo;
1114 struct fib * cmd_fibcontext;
1115 struct aac_dev * dev;
1116
1117 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1118
1119 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1120
1121 aac_fib_init(cmd_fibcontext);
1122 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1123
1124 dinfo->command = cpu_to_le32(VM_ContainerConfig);
1125 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1126 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1127 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1128
1129 status = aac_fib_send(ContainerCommand,
1130 cmd_fibcontext,
1131 sizeof(struct aac_get_serial_resp),
1132 FsaNormal,
1133 0, 1,
1134 (fib_callback) get_container_serial_callback,
1135 (void *) scsicmd);
1136
1137 /*
1138 * Check that the command queued to the controller
1139 */
1140 if (status == -EINPROGRESS)
1141 return 0;
1142
1143 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1144 aac_fib_complete(cmd_fibcontext);
1145 return -1;
1146 }
1147
1148 /* Function: setinqserial
1149 *
1150 * Arguments: [1] pointer to void [1] int
1151 *
1152 * Purpose: Sets SCSI Unit Serial number.
1153 * This is a fake. We should read a proper
1154 * serial number from the container. <SuSE>But
1155 * without docs it's quite hard to do it :-)
1156 * So this will have to do in the meantime.</SuSE>
1157 */
1158
1159 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1160 {
1161 /*
1162 * This breaks array migration.
1163 */
1164 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1165 le32_to_cpu(dev->adapter_info.serial[0]), cid);
1166 }
1167
1168 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1169 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1170 {
1171 u8 *sense_buf = (u8 *)sense_data;
1172 /* Sense data valid, err code 70h */
1173 sense_buf[0] = 0x70; /* No info field */
1174 sense_buf[1] = 0; /* Segment number, always zero */
1175
1176 sense_buf[2] = sense_key; /* Sense key */
1177
1178 sense_buf[12] = sense_code; /* Additional sense code */
1179 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
1180
1181 if (sense_key == ILLEGAL_REQUEST) {
1182 sense_buf[7] = 10; /* Additional sense length */
1183
1184 sense_buf[15] = bit_pointer;
1185 /* Illegal parameter is in the parameter block */
1186 if (sense_code == SENCODE_INVALID_CDB_FIELD)
1187 sense_buf[15] |= 0xc0;/* Std sense key specific field */
1188 /* Illegal parameter is in the CDB block */
1189 sense_buf[16] = field_pointer >> 8; /* MSB */
1190 sense_buf[17] = field_pointer; /* LSB */
1191 } else
1192 sense_buf[7] = 6; /* Additional sense length */
1193 }
1194
1195 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1196 {
1197 if (lba & 0xffffffff00000000LL) {
1198 int cid = scmd_id(cmd);
1199 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1200 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1201 SAM_STAT_CHECK_CONDITION;
1202 set_sense(&dev->fsa_dev[cid].sense_data,
1203 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1204 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1205 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1206 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1207 SCSI_SENSE_BUFFERSIZE));
1208 cmd->scsi_done(cmd);
1209 return 1;
1210 }
1211 return 0;
1212 }
1213
1214 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1215 {
1216 return 0;
1217 }
1218
1219 static void io_callback(void *context, struct fib * fibptr);
1220
1221 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1222 {
1223 struct aac_dev *dev = fib->dev;
1224 u16 fibsize, command;
1225 long ret;
1226
1227 aac_fib_init(fib);
1228 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1229 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1230 !dev->sync_mode) {
1231 struct aac_raw_io2 *readcmd2;
1232 readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1233 memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1234 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1235 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1236 readcmd2->byteCount = cpu_to_le32(count *
1237 dev->fsa_dev[scmd_id(cmd)].block_size);
1238 readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1239 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1240 ret = aac_build_sgraw2(cmd, readcmd2,
1241 dev->scsi_host_ptr->sg_tablesize);
1242 if (ret < 0)
1243 return ret;
1244 command = ContainerRawIo2;
1245 fibsize = sizeof(struct aac_raw_io2) +
1246 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1247 } else {
1248 struct aac_raw_io *readcmd;
1249 readcmd = (struct aac_raw_io *) fib_data(fib);
1250 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1251 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1252 readcmd->count = cpu_to_le32(count *
1253 dev->fsa_dev[scmd_id(cmd)].block_size);
1254 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1255 readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1256 readcmd->bpTotal = 0;
1257 readcmd->bpComplete = 0;
1258 ret = aac_build_sgraw(cmd, &readcmd->sg);
1259 if (ret < 0)
1260 return ret;
1261 command = ContainerRawIo;
1262 fibsize = sizeof(struct aac_raw_io) +
1263 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1264 }
1265
1266 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1267 /*
1268 * Now send the Fib to the adapter
1269 */
1270 return aac_fib_send(command,
1271 fib,
1272 fibsize,
1273 FsaNormal,
1274 0, 1,
1275 (fib_callback) io_callback,
1276 (void *) cmd);
1277 }
1278
1279 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1280 {
1281 u16 fibsize;
1282 struct aac_read64 *readcmd;
1283 long ret;
1284
1285 aac_fib_init(fib);
1286 readcmd = (struct aac_read64 *) fib_data(fib);
1287 readcmd->command = cpu_to_le32(VM_CtHostRead64);
1288 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1289 readcmd->sector_count = cpu_to_le16(count);
1290 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1291 readcmd->pad = 0;
1292 readcmd->flags = 0;
1293
1294 ret = aac_build_sg64(cmd, &readcmd->sg);
1295 if (ret < 0)
1296 return ret;
1297 fibsize = sizeof(struct aac_read64) +
1298 ((le32_to_cpu(readcmd->sg.count) - 1) *
1299 sizeof (struct sgentry64));
1300 BUG_ON (fibsize > (fib->dev->max_fib_size -
1301 sizeof(struct aac_fibhdr)));
1302 /*
1303 * Now send the Fib to the adapter
1304 */
1305 return aac_fib_send(ContainerCommand64,
1306 fib,
1307 fibsize,
1308 FsaNormal,
1309 0, 1,
1310 (fib_callback) io_callback,
1311 (void *) cmd);
1312 }
1313
1314 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1315 {
1316 u16 fibsize;
1317 struct aac_read *readcmd;
1318 struct aac_dev *dev = fib->dev;
1319 long ret;
1320
1321 aac_fib_init(fib);
1322 readcmd = (struct aac_read *) fib_data(fib);
1323 readcmd->command = cpu_to_le32(VM_CtBlockRead);
1324 readcmd->cid = cpu_to_le32(scmd_id(cmd));
1325 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1326 readcmd->count = cpu_to_le32(count *
1327 dev->fsa_dev[scmd_id(cmd)].block_size);
1328
1329 ret = aac_build_sg(cmd, &readcmd->sg);
1330 if (ret < 0)
1331 return ret;
1332 fibsize = sizeof(struct aac_read) +
1333 ((le32_to_cpu(readcmd->sg.count) - 1) *
1334 sizeof (struct sgentry));
1335 BUG_ON (fibsize > (fib->dev->max_fib_size -
1336 sizeof(struct aac_fibhdr)));
1337 /*
1338 * Now send the Fib to the adapter
1339 */
1340 return aac_fib_send(ContainerCommand,
1341 fib,
1342 fibsize,
1343 FsaNormal,
1344 0, 1,
1345 (fib_callback) io_callback,
1346 (void *) cmd);
1347 }
1348
1349 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1350 {
1351 struct aac_dev *dev = fib->dev;
1352 u16 fibsize, command;
1353 long ret;
1354
1355 aac_fib_init(fib);
1356 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1357 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1358 !dev->sync_mode) {
1359 struct aac_raw_io2 *writecmd2;
1360 writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1361 memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1362 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1363 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1364 writecmd2->byteCount = cpu_to_le32(count *
1365 dev->fsa_dev[scmd_id(cmd)].block_size);
1366 writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1367 writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1368 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1369 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1370 cpu_to_le16(RIO2_IO_TYPE_WRITE);
1371 ret = aac_build_sgraw2(cmd, writecmd2,
1372 dev->scsi_host_ptr->sg_tablesize);
1373 if (ret < 0)
1374 return ret;
1375 command = ContainerRawIo2;
1376 fibsize = sizeof(struct aac_raw_io2) +
1377 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1378 } else {
1379 struct aac_raw_io *writecmd;
1380 writecmd = (struct aac_raw_io *) fib_data(fib);
1381 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1382 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1383 writecmd->count = cpu_to_le32(count *
1384 dev->fsa_dev[scmd_id(cmd)].block_size);
1385 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1386 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1387 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1388 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1389 cpu_to_le16(RIO_TYPE_WRITE);
1390 writecmd->bpTotal = 0;
1391 writecmd->bpComplete = 0;
1392 ret = aac_build_sgraw(cmd, &writecmd->sg);
1393 if (ret < 0)
1394 return ret;
1395 command = ContainerRawIo;
1396 fibsize = sizeof(struct aac_raw_io) +
1397 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1398 }
1399
1400 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1401 /*
1402 * Now send the Fib to the adapter
1403 */
1404 return aac_fib_send(command,
1405 fib,
1406 fibsize,
1407 FsaNormal,
1408 0, 1,
1409 (fib_callback) io_callback,
1410 (void *) cmd);
1411 }
1412
1413 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1414 {
1415 u16 fibsize;
1416 struct aac_write64 *writecmd;
1417 long ret;
1418
1419 aac_fib_init(fib);
1420 writecmd = (struct aac_write64 *) fib_data(fib);
1421 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1422 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1423 writecmd->sector_count = cpu_to_le16(count);
1424 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1425 writecmd->pad = 0;
1426 writecmd->flags = 0;
1427
1428 ret = aac_build_sg64(cmd, &writecmd->sg);
1429 if (ret < 0)
1430 return ret;
1431 fibsize = sizeof(struct aac_write64) +
1432 ((le32_to_cpu(writecmd->sg.count) - 1) *
1433 sizeof (struct sgentry64));
1434 BUG_ON (fibsize > (fib->dev->max_fib_size -
1435 sizeof(struct aac_fibhdr)));
1436 /*
1437 * Now send the Fib to the adapter
1438 */
1439 return aac_fib_send(ContainerCommand64,
1440 fib,
1441 fibsize,
1442 FsaNormal,
1443 0, 1,
1444 (fib_callback) io_callback,
1445 (void *) cmd);
1446 }
1447
1448 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1449 {
1450 u16 fibsize;
1451 struct aac_write *writecmd;
1452 struct aac_dev *dev = fib->dev;
1453 long ret;
1454
1455 aac_fib_init(fib);
1456 writecmd = (struct aac_write *) fib_data(fib);
1457 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1458 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1459 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1460 writecmd->count = cpu_to_le32(count *
1461 dev->fsa_dev[scmd_id(cmd)].block_size);
1462 writecmd->sg.count = cpu_to_le32(1);
1463 /* ->stable is not used - it did mean which type of write */
1464
1465 ret = aac_build_sg(cmd, &writecmd->sg);
1466 if (ret < 0)
1467 return ret;
1468 fibsize = sizeof(struct aac_write) +
1469 ((le32_to_cpu(writecmd->sg.count) - 1) *
1470 sizeof (struct sgentry));
1471 BUG_ON (fibsize > (fib->dev->max_fib_size -
1472 sizeof(struct aac_fibhdr)));
1473 /*
1474 * Now send the Fib to the adapter
1475 */
1476 return aac_fib_send(ContainerCommand,
1477 fib,
1478 fibsize,
1479 FsaNormal,
1480 0, 1,
1481 (fib_callback) io_callback,
1482 (void *) cmd);
1483 }
1484
1485 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1486 {
1487 struct aac_srb * srbcmd;
1488 u32 flag;
1489 u32 timeout;
1490
1491 aac_fib_init(fib);
1492 switch(cmd->sc_data_direction){
1493 case DMA_TO_DEVICE:
1494 flag = SRB_DataOut;
1495 break;
1496 case DMA_BIDIRECTIONAL:
1497 flag = SRB_DataIn | SRB_DataOut;
1498 break;
1499 case DMA_FROM_DEVICE:
1500 flag = SRB_DataIn;
1501 break;
1502 case DMA_NONE:
1503 default: /* shuts up some versions of gcc */
1504 flag = SRB_NoDataXfer;
1505 break;
1506 }
1507
1508 srbcmd = (struct aac_srb*) fib_data(fib);
1509 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1510 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1511 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1512 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1513 srbcmd->flags = cpu_to_le32(flag);
1514 timeout = cmd->request->timeout/HZ;
1515 if (timeout == 0)
1516 timeout = 1;
1517 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1518 srbcmd->retry_limit = 0; /* Obsolete parameter */
1519 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1520 return srbcmd;
1521 }
1522
1523 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib,
1524 struct scsi_cmnd *cmd)
1525 {
1526 struct aac_hba_cmd_req *hbacmd;
1527 struct aac_dev *dev;
1528 int bus, target;
1529 u64 address;
1530
1531 dev = (struct aac_dev *)cmd->device->host->hostdata;
1532
1533 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va;
1534 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */
1535 /* iu_type is a parameter of aac_hba_send */
1536 switch (cmd->sc_data_direction) {
1537 case DMA_TO_DEVICE:
1538 hbacmd->byte1 = 2;
1539 break;
1540 case DMA_FROM_DEVICE:
1541 case DMA_BIDIRECTIONAL:
1542 hbacmd->byte1 = 1;
1543 break;
1544 case DMA_NONE:
1545 default:
1546 break;
1547 }
1548 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun);
1549
1550 bus = aac_logical_to_phys(scmd_channel(cmd));
1551 target = scmd_id(cmd);
1552 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus;
1553
1554 /* we fill in reply_qid later in aac_src_deliver_message */
1555 /* we fill in iu_type, request_id later in aac_hba_send */
1556 /* we fill in emb_data_desc_count later in aac_build_sghba */
1557
1558 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len);
1559 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd));
1560
1561 address = (u64)fib->hw_error_pa;
1562 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
1563 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
1564 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
1565
1566 return hbacmd;
1567 }
1568
1569 static void aac_srb_callback(void *context, struct fib * fibptr);
1570
1571 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1572 {
1573 u16 fibsize;
1574 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1575 long ret;
1576
1577 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1578 if (ret < 0)
1579 return ret;
1580 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1581
1582 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1583 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1584 /*
1585 * Build Scatter/Gather list
1586 */
1587 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1588 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1589 sizeof (struct sgentry64));
1590 BUG_ON (fibsize > (fib->dev->max_fib_size -
1591 sizeof(struct aac_fibhdr)));
1592
1593 /*
1594 * Now send the Fib to the adapter
1595 */
1596 return aac_fib_send(ScsiPortCommand64, fib,
1597 fibsize, FsaNormal, 0, 1,
1598 (fib_callback) aac_srb_callback,
1599 (void *) cmd);
1600 }
1601
1602 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1603 {
1604 u16 fibsize;
1605 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1606 long ret;
1607
1608 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1609 if (ret < 0)
1610 return ret;
1611 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1612
1613 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1614 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1615 /*
1616 * Build Scatter/Gather list
1617 */
1618 fibsize = sizeof (struct aac_srb) +
1619 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1620 sizeof (struct sgentry));
1621 BUG_ON (fibsize > (fib->dev->max_fib_size -
1622 sizeof(struct aac_fibhdr)));
1623
1624 /*
1625 * Now send the Fib to the adapter
1626 */
1627 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1628 (fib_callback) aac_srb_callback, (void *) cmd);
1629 }
1630
1631 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1632 {
1633 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1634 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1635 return FAILED;
1636 return aac_scsi_32(fib, cmd);
1637 }
1638
1639 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd)
1640 {
1641 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd);
1642 struct aac_dev *dev;
1643 long ret;
1644
1645 dev = (struct aac_dev *)cmd->device->host->hostdata;
1646
1647 ret = aac_build_sghba(cmd, hbacmd,
1648 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa);
1649 if (ret < 0)
1650 return ret;
1651
1652 /*
1653 * Now send the HBA command to the adapter
1654 */
1655 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) *
1656 sizeof(struct aac_hba_sgl);
1657
1658 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib,
1659 (fib_callback) aac_hba_callback,
1660 (void *) cmd);
1661 }
1662
1663 int aac_issue_bmic_identify(struct aac_dev *dev, u32 bus, u32 target)
1664 {
1665 struct fib *fibptr;
1666 struct aac_srb *srbcmd;
1667 struct sgmap64 *sg64;
1668 struct aac_ciss_identify_pd *identify_resp;
1669 dma_addr_t addr;
1670 u32 vbus, vid;
1671 u16 fibsize, datasize;
1672 int rcode = -ENOMEM;
1673
1674
1675 fibptr = aac_fib_alloc(dev);
1676 if (!fibptr)
1677 goto out;
1678
1679 fibsize = sizeof(struct aac_srb) -
1680 sizeof(struct sgentry) + sizeof(struct sgentry64);
1681 datasize = sizeof(struct aac_ciss_identify_pd);
1682
1683 identify_resp = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
1684 GFP_KERNEL);
1685 if (!identify_resp)
1686 goto fib_free_ptr;
1687
1688 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
1689 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
1690
1691 aac_fib_init(fibptr);
1692
1693 srbcmd = (struct aac_srb *) fib_data(fibptr);
1694 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1695 srbcmd->channel = cpu_to_le32(vbus);
1696 srbcmd->id = cpu_to_le32(vid);
1697 srbcmd->lun = 0;
1698 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1699 srbcmd->timeout = cpu_to_le32(10);
1700 srbcmd->retry_limit = 0;
1701 srbcmd->cdb_size = cpu_to_le32(12);
1702 srbcmd->count = cpu_to_le32(datasize);
1703
1704 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1705 srbcmd->cdb[0] = 0x26;
1706 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF);
1707 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE;
1708
1709 sg64 = (struct sgmap64 *)&srbcmd->sg;
1710 sg64->count = cpu_to_le32(1);
1711 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
1712 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
1713 sg64->sg[0].count = cpu_to_le32(datasize);
1714
1715 rcode = aac_fib_send(ScsiPortCommand64,
1716 fibptr, fibsize, FsaNormal, 1, 1, NULL, NULL);
1717
1718 if (identify_resp->current_queue_depth_limit <= 0 ||
1719 identify_resp->current_queue_depth_limit > 32)
1720 dev->hba_map[bus][target].qd_limit = 32;
1721 else
1722 dev->hba_map[bus][target].qd_limit =
1723 identify_resp->current_queue_depth_limit;
1724
1725 dma_free_coherent(&dev->pdev->dev, datasize, identify_resp, addr);
1726
1727 aac_fib_complete(fibptr);
1728
1729 fib_free_ptr:
1730 aac_fib_free(fibptr);
1731 out:
1732 return rcode;
1733 }
1734
1735 /**
1736 * aac_update hba_map()- update current hba map with data from FW
1737 * @dev: aac_dev structure
1738 * @phys_luns: FW information from report phys luns
1739 *
1740 * Update our hba map with the information gathered from the FW
1741 */
1742 void aac_update_hba_map(struct aac_dev *dev,
1743 struct aac_ciss_phys_luns_resp *phys_luns, int rescan)
1744 {
1745 /* ok and extended reporting */
1746 u32 lun_count, nexus;
1747 u32 i, bus, target;
1748 u8 expose_flag, attribs;
1749 u8 devtype;
1750
1751 lun_count = ((phys_luns->list_length[0] << 24)
1752 + (phys_luns->list_length[1] << 16)
1753 + (phys_luns->list_length[2] << 8)
1754 + (phys_luns->list_length[3])) / 24;
1755
1756 for (i = 0; i < lun_count; ++i) {
1757
1758 bus = phys_luns->lun[i].level2[1] & 0x3f;
1759 target = phys_luns->lun[i].level2[0];
1760 expose_flag = phys_luns->lun[i].bus >> 6;
1761 attribs = phys_luns->lun[i].node_ident[9];
1762 nexus = *((u32 *) &phys_luns->lun[i].node_ident[12]);
1763
1764 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS)
1765 continue;
1766
1767 dev->hba_map[bus][target].expose = expose_flag;
1768
1769 if (expose_flag != 0) {
1770 devtype = AAC_DEVTYPE_RAID_MEMBER;
1771 goto update_devtype;
1772 }
1773
1774 if (nexus != 0 && (attribs & 8)) {
1775 devtype = AAC_DEVTYPE_NATIVE_RAW;
1776 dev->hba_map[bus][target].rmw_nexus =
1777 nexus;
1778 } else
1779 devtype = AAC_DEVTYPE_ARC_RAW;
1780
1781 if (devtype != AAC_DEVTYPE_NATIVE_RAW)
1782 goto update_devtype;
1783
1784 if (aac_issue_bmic_identify(dev, bus, target) < 0)
1785 dev->hba_map[bus][target].qd_limit = 32;
1786
1787 update_devtype:
1788 if (rescan == AAC_INIT)
1789 dev->hba_map[bus][target].devtype = devtype;
1790 else
1791 dev->hba_map[bus][target].new_devtype = devtype;
1792 }
1793 }
1794
1795 /**
1796 * aac_report_phys_luns() Process topology change
1797 * @dev: aac_dev structure
1798 * @fibptr: fib pointer
1799 *
1800 * Execute a CISS REPORT PHYS LUNS and process the results into
1801 * the current hba_map.
1802 */
1803 int aac_report_phys_luns(struct aac_dev *dev, struct fib *fibptr, int rescan)
1804 {
1805 int fibsize, datasize;
1806 struct aac_ciss_phys_luns_resp *phys_luns;
1807 struct aac_srb *srbcmd;
1808 struct sgmap64 *sg64;
1809 dma_addr_t addr;
1810 u32 vbus, vid;
1811 int rcode = 0;
1812
1813 /* Thor SA Firmware -> CISS_REPORT_PHYSICAL_LUNS */
1814 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry)
1815 + sizeof(struct sgentry64);
1816 datasize = sizeof(struct aac_ciss_phys_luns_resp)
1817 + (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun);
1818
1819 phys_luns = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
1820 GFP_KERNEL);
1821 if (phys_luns == NULL) {
1822 rcode = -ENOMEM;
1823 goto err_out;
1824 }
1825
1826 vbus = (u32) le16_to_cpu(
1827 dev->supplement_adapter_info.virt_device_bus);
1828 vid = (u32) le16_to_cpu(
1829 dev->supplement_adapter_info.virt_device_target);
1830
1831 aac_fib_init(fibptr);
1832
1833 srbcmd = (struct aac_srb *) fib_data(fibptr);
1834 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1835 srbcmd->channel = cpu_to_le32(vbus);
1836 srbcmd->id = cpu_to_le32(vid);
1837 srbcmd->lun = 0;
1838 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1839 srbcmd->timeout = cpu_to_le32(10);
1840 srbcmd->retry_limit = 0;
1841 srbcmd->cdb_size = cpu_to_le32(12);
1842 srbcmd->count = cpu_to_le32(datasize);
1843
1844 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1845 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS;
1846 srbcmd->cdb[1] = 2; /* extended reporting */
1847 srbcmd->cdb[8] = (u8)(datasize >> 8);
1848 srbcmd->cdb[9] = (u8)(datasize);
1849
1850 sg64 = (struct sgmap64 *) &srbcmd->sg;
1851 sg64->count = cpu_to_le32(1);
1852 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr));
1853 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr));
1854 sg64->sg[0].count = cpu_to_le32(datasize);
1855
1856 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize,
1857 FsaNormal, 1, 1, NULL, NULL);
1858
1859 /* analyse data */
1860 if (rcode >= 0 && phys_luns->resp_flag == 2) {
1861 /* ok and extended reporting */
1862 aac_update_hba_map(dev, phys_luns, rescan);
1863 }
1864
1865 dma_free_coherent(&dev->pdev->dev, datasize, phys_luns, addr);
1866 err_out:
1867 return rcode;
1868 }
1869
1870 int aac_get_adapter_info(struct aac_dev* dev)
1871 {
1872 struct fib* fibptr;
1873 int rcode;
1874 u32 tmp, bus, target;
1875 struct aac_adapter_info *info;
1876 struct aac_bus_info *command;
1877 struct aac_bus_info_response *bus_info;
1878
1879 if (!(fibptr = aac_fib_alloc(dev)))
1880 return -ENOMEM;
1881
1882 aac_fib_init(fibptr);
1883 info = (struct aac_adapter_info *) fib_data(fibptr);
1884 memset(info,0,sizeof(*info));
1885
1886 rcode = aac_fib_send(RequestAdapterInfo,
1887 fibptr,
1888 sizeof(*info),
1889 FsaNormal,
1890 -1, 1, /* First `interrupt' command uses special wait */
1891 NULL,
1892 NULL);
1893
1894 if (rcode < 0) {
1895 /* FIB should be freed only after
1896 * getting the response from the F/W */
1897 if (rcode != -ERESTARTSYS) {
1898 aac_fib_complete(fibptr);
1899 aac_fib_free(fibptr);
1900 }
1901 return rcode;
1902 }
1903 memcpy(&dev->adapter_info, info, sizeof(*info));
1904
1905 dev->supplement_adapter_info.virt_device_bus = 0xffff;
1906 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1907 struct aac_supplement_adapter_info * sinfo;
1908
1909 aac_fib_init(fibptr);
1910
1911 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1912
1913 memset(sinfo,0,sizeof(*sinfo));
1914
1915 rcode = aac_fib_send(RequestSupplementAdapterInfo,
1916 fibptr,
1917 sizeof(*sinfo),
1918 FsaNormal,
1919 1, 1,
1920 NULL,
1921 NULL);
1922
1923 if (rcode >= 0)
1924 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1925 if (rcode == -ERESTARTSYS) {
1926 fibptr = aac_fib_alloc(dev);
1927 if (!fibptr)
1928 return -ENOMEM;
1929 }
1930
1931 }
1932
1933 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */
1934 for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
1935 for (target = 0; target < AAC_MAX_TARGETS; target++) {
1936 dev->hba_map[bus][target].devtype = 0;
1937 dev->hba_map[bus][target].qd_limit = 0;
1938 }
1939 }
1940
1941 /*
1942 * GetBusInfo
1943 */
1944
1945 aac_fib_init(fibptr);
1946
1947 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1948
1949 memset(bus_info, 0, sizeof(*bus_info));
1950
1951 command = (struct aac_bus_info *)bus_info;
1952
1953 command->Command = cpu_to_le32(VM_Ioctl);
1954 command->ObjType = cpu_to_le32(FT_DRIVE);
1955 command->MethodId = cpu_to_le32(1);
1956 command->CtlCmd = cpu_to_le32(GetBusInfo);
1957
1958 rcode = aac_fib_send(ContainerCommand,
1959 fibptr,
1960 sizeof (*bus_info),
1961 FsaNormal,
1962 1, 1,
1963 NULL, NULL);
1964
1965 /* reasoned default */
1966 dev->maximum_num_physicals = 16;
1967 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1968 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1969 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1970 }
1971
1972 if (!dev->sync_mode && dev->sa_firmware &&
1973 dev->supplement_adapter_info.virt_device_bus != 0xffff) {
1974 /* Thor SA Firmware -> CISS_REPORT_PHYSICAL_LUNS */
1975 rcode = aac_report_phys_luns(dev, fibptr, AAC_INIT);
1976 }
1977
1978 if (!dev->in_reset) {
1979 char buffer[16];
1980 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1981 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1982 dev->name,
1983 dev->id,
1984 tmp>>24,
1985 (tmp>>16)&0xff,
1986 tmp&0xff,
1987 le32_to_cpu(dev->adapter_info.kernelbuild),
1988 (int)sizeof(dev->supplement_adapter_info.build_date),
1989 dev->supplement_adapter_info.build_date);
1990 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1991 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1992 dev->name, dev->id,
1993 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1994 le32_to_cpu(dev->adapter_info.monitorbuild));
1995 tmp = le32_to_cpu(dev->adapter_info.biosrev);
1996 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1997 dev->name, dev->id,
1998 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1999 le32_to_cpu(dev->adapter_info.biosbuild));
2000 buffer[0] = '\0';
2001 if (aac_get_serial_number(
2002 shost_to_class(dev->scsi_host_ptr), buffer))
2003 printk(KERN_INFO "%s%d: serial %s",
2004 dev->name, dev->id, buffer);
2005 if (dev->supplement_adapter_info.vpd_info.tsid[0]) {
2006 printk(KERN_INFO "%s%d: TSID %.*s\n",
2007 dev->name, dev->id,
2008 (int)sizeof(dev->supplement_adapter_info
2009 .vpd_info.tsid),
2010 dev->supplement_adapter_info.vpd_info.tsid);
2011 }
2012 if (!aac_check_reset || ((aac_check_reset == 1) &&
2013 (dev->supplement_adapter_info.supported_options2 &
2014 AAC_OPTION_IGNORE_RESET))) {
2015 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
2016 dev->name, dev->id);
2017 }
2018 }
2019
2020 dev->cache_protected = 0;
2021 dev->jbod = ((dev->supplement_adapter_info.feature_bits &
2022 AAC_FEATURE_JBOD) != 0);
2023 dev->nondasd_support = 0;
2024 dev->raid_scsi_mode = 0;
2025 if(dev->adapter_info.options & AAC_OPT_NONDASD)
2026 dev->nondasd_support = 1;
2027
2028 /*
2029 * If the firmware supports ROMB RAID/SCSI mode and we are currently
2030 * in RAID/SCSI mode, set the flag. For now if in this mode we will
2031 * force nondasd support on. If we decide to allow the non-dasd flag
2032 * additional changes changes will have to be made to support
2033 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
2034 * changed to support the new dev->raid_scsi_mode flag instead of
2035 * leaching off of the dev->nondasd_support flag. Also in linit.c the
2036 * function aac_detect will have to be modified where it sets up the
2037 * max number of channels based on the aac->nondasd_support flag only.
2038 */
2039 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
2040 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
2041 dev->nondasd_support = 1;
2042 dev->raid_scsi_mode = 1;
2043 }
2044 if (dev->raid_scsi_mode != 0)
2045 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
2046 dev->name, dev->id);
2047
2048 if (nondasd != -1)
2049 dev->nondasd_support = (nondasd!=0);
2050 if (dev->nondasd_support && !dev->in_reset)
2051 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
2052
2053 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
2054 dev->needs_dac = 1;
2055 dev->dac_support = 0;
2056 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
2057 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
2058 if (!dev->in_reset)
2059 printk(KERN_INFO "%s%d: 64bit support enabled.\n",
2060 dev->name, dev->id);
2061 dev->dac_support = 1;
2062 }
2063
2064 if(dacmode != -1) {
2065 dev->dac_support = (dacmode!=0);
2066 }
2067
2068 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */
2069 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
2070 & AAC_QUIRK_SCSI_32)) {
2071 dev->nondasd_support = 0;
2072 dev->jbod = 0;
2073 expose_physicals = 0;
2074 }
2075
2076 if (dev->dac_support) {
2077 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
2078 if (!dev->in_reset)
2079 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n");
2080 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
2081 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n");
2082 dev->dac_support = 0;
2083 } else {
2084 dev_info(&dev->pdev->dev, "No suitable DMA available\n");
2085 rcode = -ENOMEM;
2086 }
2087 }
2088 /*
2089 * Deal with configuring for the individualized limits of each packet
2090 * interface.
2091 */
2092 dev->a_ops.adapter_scsi = (dev->dac_support)
2093 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
2094 ? aac_scsi_32_64
2095 : aac_scsi_64)
2096 : aac_scsi_32;
2097 if (dev->raw_io_interface) {
2098 dev->a_ops.adapter_bounds = (dev->raw_io_64)
2099 ? aac_bounds_64
2100 : aac_bounds_32;
2101 dev->a_ops.adapter_read = aac_read_raw_io;
2102 dev->a_ops.adapter_write = aac_write_raw_io;
2103 } else {
2104 dev->a_ops.adapter_bounds = aac_bounds_32;
2105 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
2106 sizeof(struct aac_fibhdr) -
2107 sizeof(struct aac_write) + sizeof(struct sgentry)) /
2108 sizeof(struct sgentry);
2109 if (dev->dac_support) {
2110 dev->a_ops.adapter_read = aac_read_block64;
2111 dev->a_ops.adapter_write = aac_write_block64;
2112 /*
2113 * 38 scatter gather elements
2114 */
2115 dev->scsi_host_ptr->sg_tablesize =
2116 (dev->max_fib_size -
2117 sizeof(struct aac_fibhdr) -
2118 sizeof(struct aac_write64) +
2119 sizeof(struct sgentry64)) /
2120 sizeof(struct sgentry64);
2121 } else {
2122 dev->a_ops.adapter_read = aac_read_block;
2123 dev->a_ops.adapter_write = aac_write_block;
2124 }
2125 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
2126 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
2127 /*
2128 * Worst case size that could cause sg overflow when
2129 * we break up SG elements that are larger than 64KB.
2130 * Would be nice if we could tell the SCSI layer what
2131 * the maximum SG element size can be. Worst case is
2132 * (sg_tablesize-1) 4KB elements with one 64KB
2133 * element.
2134 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
2135 */
2136 dev->scsi_host_ptr->max_sectors =
2137 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
2138 }
2139 }
2140 if (!dev->sync_mode && dev->sa_firmware &&
2141 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE)
2142 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize =
2143 HBA_MAX_SG_SEPARATE;
2144
2145 /* FIB should be freed only after getting the response from the F/W */
2146 if (rcode != -ERESTARTSYS) {
2147 aac_fib_complete(fibptr);
2148 aac_fib_free(fibptr);
2149 }
2150
2151 return rcode;
2152 }
2153
2154
2155 static void io_callback(void *context, struct fib * fibptr)
2156 {
2157 struct aac_dev *dev;
2158 struct aac_read_reply *readreply;
2159 struct scsi_cmnd *scsicmd;
2160 u32 cid;
2161
2162 scsicmd = (struct scsi_cmnd *) context;
2163
2164 if (!aac_valid_context(scsicmd, fibptr))
2165 return;
2166
2167 dev = fibptr->dev;
2168 cid = scmd_id(scsicmd);
2169
2170 if (nblank(dprintk(x))) {
2171 u64 lba;
2172 switch (scsicmd->cmnd[0]) {
2173 case WRITE_6:
2174 case READ_6:
2175 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2176 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2177 break;
2178 case WRITE_16:
2179 case READ_16:
2180 lba = ((u64)scsicmd->cmnd[2] << 56) |
2181 ((u64)scsicmd->cmnd[3] << 48) |
2182 ((u64)scsicmd->cmnd[4] << 40) |
2183 ((u64)scsicmd->cmnd[5] << 32) |
2184 ((u64)scsicmd->cmnd[6] << 24) |
2185 (scsicmd->cmnd[7] << 16) |
2186 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2187 break;
2188 case WRITE_12:
2189 case READ_12:
2190 lba = ((u64)scsicmd->cmnd[2] << 24) |
2191 (scsicmd->cmnd[3] << 16) |
2192 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2193 break;
2194 default:
2195 lba = ((u64)scsicmd->cmnd[2] << 24) |
2196 (scsicmd->cmnd[3] << 16) |
2197 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2198 break;
2199 }
2200 printk(KERN_DEBUG
2201 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
2202 smp_processor_id(), (unsigned long long)lba, jiffies);
2203 }
2204
2205 BUG_ON(fibptr == NULL);
2206
2207 scsi_dma_unmap(scsicmd);
2208
2209 readreply = (struct aac_read_reply *)fib_data(fibptr);
2210 switch (le32_to_cpu(readreply->status)) {
2211 case ST_OK:
2212 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2213 SAM_STAT_GOOD;
2214 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
2215 break;
2216 case ST_NOT_READY:
2217 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2218 SAM_STAT_CHECK_CONDITION;
2219 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
2220 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
2221 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2222 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2223 SCSI_SENSE_BUFFERSIZE));
2224 break;
2225 case ST_MEDERR:
2226 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2227 SAM_STAT_CHECK_CONDITION;
2228 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR,
2229 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0);
2230 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2231 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2232 SCSI_SENSE_BUFFERSIZE));
2233 break;
2234 default:
2235 #ifdef AAC_DETAILED_STATUS_INFO
2236 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
2237 le32_to_cpu(readreply->status));
2238 #endif
2239 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2240 SAM_STAT_CHECK_CONDITION;
2241 set_sense(&dev->fsa_dev[cid].sense_data,
2242 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2243 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2244 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2245 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2246 SCSI_SENSE_BUFFERSIZE));
2247 break;
2248 }
2249 aac_fib_complete(fibptr);
2250
2251 scsicmd->scsi_done(scsicmd);
2252 }
2253
2254 static int aac_read(struct scsi_cmnd * scsicmd)
2255 {
2256 u64 lba;
2257 u32 count;
2258 int status;
2259 struct aac_dev *dev;
2260 struct fib * cmd_fibcontext;
2261 int cid;
2262
2263 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2264 /*
2265 * Get block address and transfer length
2266 */
2267 switch (scsicmd->cmnd[0]) {
2268 case READ_6:
2269 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
2270
2271 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2272 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2273 count = scsicmd->cmnd[4];
2274
2275 if (count == 0)
2276 count = 256;
2277 break;
2278 case READ_16:
2279 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
2280
2281 lba = ((u64)scsicmd->cmnd[2] << 56) |
2282 ((u64)scsicmd->cmnd[3] << 48) |
2283 ((u64)scsicmd->cmnd[4] << 40) |
2284 ((u64)scsicmd->cmnd[5] << 32) |
2285 ((u64)scsicmd->cmnd[6] << 24) |
2286 (scsicmd->cmnd[7] << 16) |
2287 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2288 count = (scsicmd->cmnd[10] << 24) |
2289 (scsicmd->cmnd[11] << 16) |
2290 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2291 break;
2292 case READ_12:
2293 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
2294
2295 lba = ((u64)scsicmd->cmnd[2] << 24) |
2296 (scsicmd->cmnd[3] << 16) |
2297 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2298 count = (scsicmd->cmnd[6] << 24) |
2299 (scsicmd->cmnd[7] << 16) |
2300 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2301 break;
2302 default:
2303 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
2304
2305 lba = ((u64)scsicmd->cmnd[2] << 24) |
2306 (scsicmd->cmnd[3] << 16) |
2307 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2308 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2309 break;
2310 }
2311
2312 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2313 cid = scmd_id(scsicmd);
2314 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2315 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2316 SAM_STAT_CHECK_CONDITION;
2317 set_sense(&dev->fsa_dev[cid].sense_data,
2318 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2319 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2320 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2321 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2322 SCSI_SENSE_BUFFERSIZE));
2323 scsicmd->scsi_done(scsicmd);
2324 return 1;
2325 }
2326
2327 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
2328 smp_processor_id(), (unsigned long long)lba, jiffies));
2329 if (aac_adapter_bounds(dev,scsicmd,lba))
2330 return 0;
2331 /*
2332 * Alocate and initialize a Fib
2333 */
2334 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2335 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2336 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
2337
2338 /*
2339 * Check that the command queued to the controller
2340 */
2341 if (status == -EINPROGRESS)
2342 return 0;
2343
2344 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
2345 /*
2346 * For some reason, the Fib didn't queue, return QUEUE_FULL
2347 */
2348 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2349 scsicmd->scsi_done(scsicmd);
2350 aac_fib_complete(cmd_fibcontext);
2351 aac_fib_free(cmd_fibcontext);
2352 return 0;
2353 }
2354
2355 static int aac_write(struct scsi_cmnd * scsicmd)
2356 {
2357 u64 lba;
2358 u32 count;
2359 int fua;
2360 int status;
2361 struct aac_dev *dev;
2362 struct fib * cmd_fibcontext;
2363 int cid;
2364
2365 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2366 /*
2367 * Get block address and transfer length
2368 */
2369 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
2370 {
2371 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2372 count = scsicmd->cmnd[4];
2373 if (count == 0)
2374 count = 256;
2375 fua = 0;
2376 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
2377 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
2378
2379 lba = ((u64)scsicmd->cmnd[2] << 56) |
2380 ((u64)scsicmd->cmnd[3] << 48) |
2381 ((u64)scsicmd->cmnd[4] << 40) |
2382 ((u64)scsicmd->cmnd[5] << 32) |
2383 ((u64)scsicmd->cmnd[6] << 24) |
2384 (scsicmd->cmnd[7] << 16) |
2385 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2386 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2387 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2388 fua = scsicmd->cmnd[1] & 0x8;
2389 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2390 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2391
2392 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2393 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2394 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2395 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2396 fua = scsicmd->cmnd[1] & 0x8;
2397 } else {
2398 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2399 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2400 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2401 fua = scsicmd->cmnd[1] & 0x8;
2402 }
2403
2404 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2405 cid = scmd_id(scsicmd);
2406 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2407 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2408 SAM_STAT_CHECK_CONDITION;
2409 set_sense(&dev->fsa_dev[cid].sense_data,
2410 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2411 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2412 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2413 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2414 SCSI_SENSE_BUFFERSIZE));
2415 scsicmd->scsi_done(scsicmd);
2416 return 1;
2417 }
2418
2419 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2420 smp_processor_id(), (unsigned long long)lba, jiffies));
2421 if (aac_adapter_bounds(dev,scsicmd,lba))
2422 return 0;
2423 /*
2424 * Allocate and initialize a Fib then setup a BlockWrite command
2425 */
2426 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2427 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2428 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2429
2430 /*
2431 * Check that the command queued to the controller
2432 */
2433 if (status == -EINPROGRESS)
2434 return 0;
2435
2436 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2437 /*
2438 * For some reason, the Fib didn't queue, return QUEUE_FULL
2439 */
2440 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2441 scsicmd->scsi_done(scsicmd);
2442
2443 aac_fib_complete(cmd_fibcontext);
2444 aac_fib_free(cmd_fibcontext);
2445 return 0;
2446 }
2447
2448 static void synchronize_callback(void *context, struct fib *fibptr)
2449 {
2450 struct aac_synchronize_reply *synchronizereply;
2451 struct scsi_cmnd *cmd;
2452
2453 cmd = context;
2454
2455 if (!aac_valid_context(cmd, fibptr))
2456 return;
2457
2458 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2459 smp_processor_id(), jiffies));
2460 BUG_ON(fibptr == NULL);
2461
2462
2463 synchronizereply = fib_data(fibptr);
2464 if (le32_to_cpu(synchronizereply->status) == CT_OK)
2465 cmd->result = DID_OK << 16 |
2466 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2467 else {
2468 struct scsi_device *sdev = cmd->device;
2469 struct aac_dev *dev = fibptr->dev;
2470 u32 cid = sdev_id(sdev);
2471 printk(KERN_WARNING
2472 "synchronize_callback: synchronize failed, status = %d\n",
2473 le32_to_cpu(synchronizereply->status));
2474 cmd->result = DID_OK << 16 |
2475 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2476 set_sense(&dev->fsa_dev[cid].sense_data,
2477 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2478 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2479 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2480 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2481 SCSI_SENSE_BUFFERSIZE));
2482 }
2483
2484 aac_fib_complete(fibptr);
2485 aac_fib_free(fibptr);
2486 cmd->scsi_done(cmd);
2487 }
2488
2489 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2490 {
2491 int status;
2492 struct fib *cmd_fibcontext;
2493 struct aac_synchronize *synchronizecmd;
2494 struct scsi_cmnd *cmd;
2495 struct scsi_device *sdev = scsicmd->device;
2496 int active = 0;
2497 struct aac_dev *aac;
2498 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
2499 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2500 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2501 unsigned long flags;
2502
2503 /*
2504 * Wait for all outstanding queued commands to complete to this
2505 * specific target (block).
2506 */
2507 spin_lock_irqsave(&sdev->list_lock, flags);
2508 list_for_each_entry(cmd, &sdev->cmd_list, list)
2509 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
2510 u64 cmnd_lba;
2511 u32 cmnd_count;
2512
2513 if (cmd->cmnd[0] == WRITE_6) {
2514 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
2515 (cmd->cmnd[2] << 8) |
2516 cmd->cmnd[3];
2517 cmnd_count = cmd->cmnd[4];
2518 if (cmnd_count == 0)
2519 cmnd_count = 256;
2520 } else if (cmd->cmnd[0] == WRITE_16) {
2521 cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
2522 ((u64)cmd->cmnd[3] << 48) |
2523 ((u64)cmd->cmnd[4] << 40) |
2524 ((u64)cmd->cmnd[5] << 32) |
2525 ((u64)cmd->cmnd[6] << 24) |
2526 (cmd->cmnd[7] << 16) |
2527 (cmd->cmnd[8] << 8) |
2528 cmd->cmnd[9];
2529 cmnd_count = (cmd->cmnd[10] << 24) |
2530 (cmd->cmnd[11] << 16) |
2531 (cmd->cmnd[12] << 8) |
2532 cmd->cmnd[13];
2533 } else if (cmd->cmnd[0] == WRITE_12) {
2534 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2535 (cmd->cmnd[3] << 16) |
2536 (cmd->cmnd[4] << 8) |
2537 cmd->cmnd[5];
2538 cmnd_count = (cmd->cmnd[6] << 24) |
2539 (cmd->cmnd[7] << 16) |
2540 (cmd->cmnd[8] << 8) |
2541 cmd->cmnd[9];
2542 } else if (cmd->cmnd[0] == WRITE_10) {
2543 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2544 (cmd->cmnd[3] << 16) |
2545 (cmd->cmnd[4] << 8) |
2546 cmd->cmnd[5];
2547 cmnd_count = (cmd->cmnd[7] << 8) |
2548 cmd->cmnd[8];
2549 } else
2550 continue;
2551 if (((cmnd_lba + cmnd_count) < lba) ||
2552 (count && ((lba + count) < cmnd_lba)))
2553 continue;
2554 ++active;
2555 break;
2556 }
2557
2558 spin_unlock_irqrestore(&sdev->list_lock, flags);
2559
2560 /*
2561 * Yield the processor (requeue for later)
2562 */
2563 if (active)
2564 return SCSI_MLQUEUE_DEVICE_BUSY;
2565
2566 aac = (struct aac_dev *)sdev->host->hostdata;
2567 if (aac->in_reset)
2568 return SCSI_MLQUEUE_HOST_BUSY;
2569
2570 /*
2571 * Allocate and initialize a Fib
2572 */
2573 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
2574 return SCSI_MLQUEUE_HOST_BUSY;
2575
2576 aac_fib_init(cmd_fibcontext);
2577
2578 synchronizecmd = fib_data(cmd_fibcontext);
2579 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2580 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2581 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2582 synchronizecmd->count =
2583 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2584 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2585
2586 /*
2587 * Now send the Fib to the adapter
2588 */
2589 status = aac_fib_send(ContainerCommand,
2590 cmd_fibcontext,
2591 sizeof(struct aac_synchronize),
2592 FsaNormal,
2593 0, 1,
2594 (fib_callback)synchronize_callback,
2595 (void *)scsicmd);
2596
2597 /*
2598 * Check that the command queued to the controller
2599 */
2600 if (status == -EINPROGRESS)
2601 return 0;
2602
2603 printk(KERN_WARNING
2604 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2605 aac_fib_complete(cmd_fibcontext);
2606 aac_fib_free(cmd_fibcontext);
2607 return SCSI_MLQUEUE_HOST_BUSY;
2608 }
2609
2610 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2611 {
2612 struct scsi_cmnd *scsicmd = context;
2613
2614 if (!aac_valid_context(scsicmd, fibptr))
2615 return;
2616
2617 BUG_ON(fibptr == NULL);
2618
2619 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2620
2621 aac_fib_complete(fibptr);
2622 aac_fib_free(fibptr);
2623 scsicmd->scsi_done(scsicmd);
2624 }
2625
2626 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2627 {
2628 int status;
2629 struct fib *cmd_fibcontext;
2630 struct aac_power_management *pmcmd;
2631 struct scsi_device *sdev = scsicmd->device;
2632 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2633
2634 if (!(aac->supplement_adapter_info.supported_options2 &
2635 AAC_OPTION_POWER_MANAGEMENT)) {
2636 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2637 SAM_STAT_GOOD;
2638 scsicmd->scsi_done(scsicmd);
2639 return 0;
2640 }
2641
2642 if (aac->in_reset)
2643 return SCSI_MLQUEUE_HOST_BUSY;
2644
2645 /*
2646 * Allocate and initialize a Fib
2647 */
2648 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2649
2650 aac_fib_init(cmd_fibcontext);
2651
2652 pmcmd = fib_data(cmd_fibcontext);
2653 pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2654 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2655 /* Eject bit ignored, not relevant */
2656 pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2657 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2658 pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2659 pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2660 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2661 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2662
2663 /*
2664 * Now send the Fib to the adapter
2665 */
2666 status = aac_fib_send(ContainerCommand,
2667 cmd_fibcontext,
2668 sizeof(struct aac_power_management),
2669 FsaNormal,
2670 0, 1,
2671 (fib_callback)aac_start_stop_callback,
2672 (void *)scsicmd);
2673
2674 /*
2675 * Check that the command queued to the controller
2676 */
2677 if (status == -EINPROGRESS)
2678 return 0;
2679
2680 aac_fib_complete(cmd_fibcontext);
2681 aac_fib_free(cmd_fibcontext);
2682 return SCSI_MLQUEUE_HOST_BUSY;
2683 }
2684
2685 /**
2686 * aac_scsi_cmd() - Process SCSI command
2687 * @scsicmd: SCSI command block
2688 *
2689 * Emulate a SCSI command and queue the required request for the
2690 * aacraid firmware.
2691 */
2692
2693 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2694 {
2695 u32 cid, bus;
2696 struct Scsi_Host *host = scsicmd->device->host;
2697 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2698 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2699
2700 if (fsa_dev_ptr == NULL)
2701 return -1;
2702 /*
2703 * If the bus, id or lun is out of range, return fail
2704 * Test does not apply to ID 16, the pseudo id for the controller
2705 * itself.
2706 */
2707 cid = scmd_id(scsicmd);
2708 if (cid != host->this_id) {
2709 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2710 if((cid >= dev->maximum_num_containers) ||
2711 (scsicmd->device->lun != 0)) {
2712 scsicmd->result = DID_NO_CONNECT << 16;
2713 goto scsi_done_ret;
2714 }
2715
2716 /*
2717 * If the target container doesn't exist, it may have
2718 * been newly created
2719 */
2720 if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2721 (fsa_dev_ptr[cid].sense_data.sense_key ==
2722 NOT_READY)) {
2723 switch (scsicmd->cmnd[0]) {
2724 case SERVICE_ACTION_IN_16:
2725 if (!(dev->raw_io_interface) ||
2726 !(dev->raw_io_64) ||
2727 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2728 break;
2729 case INQUIRY:
2730 case READ_CAPACITY:
2731 case TEST_UNIT_READY:
2732 if (dev->in_reset)
2733 return -1;
2734 return _aac_probe_container(scsicmd,
2735 aac_probe_container_callback2);
2736 default:
2737 break;
2738 }
2739 }
2740 } else { /* check for physical non-dasd devices */
2741 bus = aac_logical_to_phys(scmd_channel(scsicmd));
2742 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2743 (dev->hba_map[bus][cid].expose
2744 == AAC_HIDE_DISK)){
2745 if (scsicmd->cmnd[0] == INQUIRY) {
2746 scsicmd->result = DID_NO_CONNECT << 16;
2747 goto scsi_done_ret;
2748 }
2749 }
2750
2751 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2752 dev->hba_map[bus][cid].devtype
2753 == AAC_DEVTYPE_NATIVE_RAW) {
2754 if (dev->in_reset)
2755 return -1;
2756 return aac_send_hba_fib(scsicmd);
2757 } else if (dev->nondasd_support || expose_physicals ||
2758 dev->jbod) {
2759 if (dev->in_reset)
2760 return -1;
2761 return aac_send_srb_fib(scsicmd);
2762 } else {
2763 scsicmd->result = DID_NO_CONNECT << 16;
2764 goto scsi_done_ret;
2765 }
2766 }
2767 }
2768 /*
2769 * else Command for the controller itself
2770 */
2771 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2772 (scsicmd->cmnd[0] != TEST_UNIT_READY))
2773 {
2774 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2775 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2776 set_sense(&dev->fsa_dev[cid].sense_data,
2777 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2778 ASENCODE_INVALID_COMMAND, 0, 0);
2779 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2780 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2781 SCSI_SENSE_BUFFERSIZE));
2782 goto scsi_done_ret;
2783 }
2784
2785 switch (scsicmd->cmnd[0]) {
2786 case READ_6:
2787 case READ_10:
2788 case READ_12:
2789 case READ_16:
2790 if (dev->in_reset)
2791 return -1;
2792 return aac_read(scsicmd);
2793
2794 case WRITE_6:
2795 case WRITE_10:
2796 case WRITE_12:
2797 case WRITE_16:
2798 if (dev->in_reset)
2799 return -1;
2800 return aac_write(scsicmd);
2801
2802 case SYNCHRONIZE_CACHE:
2803 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2804 scsicmd->result = AAC_STAT_GOOD;
2805 break;
2806 }
2807 /* Issue FIB to tell Firmware to flush it's cache */
2808 if ((aac_cache & 6) != 2)
2809 return aac_synchronize(scsicmd);
2810 case INQUIRY:
2811 {
2812 struct inquiry_data inq_data;
2813
2814 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2815 memset(&inq_data, 0, sizeof (struct inquiry_data));
2816
2817 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2818 char *arr = (char *)&inq_data;
2819
2820 /* EVPD bit set */
2821 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2822 INQD_PDT_PROC : INQD_PDT_DA;
2823 if (scsicmd->cmnd[2] == 0) {
2824 /* supported vital product data pages */
2825 arr[3] = 3;
2826 arr[4] = 0x0;
2827 arr[5] = 0x80;
2828 arr[6] = 0x83;
2829 arr[1] = scsicmd->cmnd[2];
2830 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2831 sizeof(inq_data));
2832 scsicmd->result = AAC_STAT_GOOD;
2833 } else if (scsicmd->cmnd[2] == 0x80) {
2834 /* unit serial number page */
2835 arr[3] = setinqserial(dev, &arr[4],
2836 scmd_id(scsicmd));
2837 arr[1] = scsicmd->cmnd[2];
2838 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2839 sizeof(inq_data));
2840 if (aac_wwn != 2)
2841 return aac_get_container_serial(
2842 scsicmd);
2843 scsicmd->result = AAC_STAT_GOOD;
2844 } else if (scsicmd->cmnd[2] == 0x83) {
2845 /* vpd page 0x83 - Device Identification Page */
2846 char *sno = (char *)&inq_data;
2847 sno[3] = setinqserial(dev, &sno[4],
2848 scmd_id(scsicmd));
2849 if (aac_wwn != 2)
2850 return aac_get_container_serial(
2851 scsicmd);
2852 scsicmd->result = AAC_STAT_GOOD;
2853 } else {
2854 /* vpd page not implemented */
2855 scsicmd->result = DID_OK << 16 |
2856 COMMAND_COMPLETE << 8 |
2857 SAM_STAT_CHECK_CONDITION;
2858 set_sense(&dev->fsa_dev[cid].sense_data,
2859 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2860 ASENCODE_NO_SENSE, 7, 2);
2861 memcpy(scsicmd->sense_buffer,
2862 &dev->fsa_dev[cid].sense_data,
2863 min_t(size_t,
2864 sizeof(dev->fsa_dev[cid].sense_data),
2865 SCSI_SENSE_BUFFERSIZE));
2866 }
2867 break;
2868 }
2869 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
2870 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2871 inq_data.inqd_len = 31;
2872 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
2873 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
2874 /*
2875 * Set the Vendor, Product, and Revision Level
2876 * see: <vendor>.c i.e. aac.c
2877 */
2878 if (cid == host->this_id) {
2879 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2880 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
2881 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2882 sizeof(inq_data));
2883 scsicmd->result = AAC_STAT_GOOD;
2884 break;
2885 }
2886 if (dev->in_reset)
2887 return -1;
2888 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2889 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
2890 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2891 return aac_get_container_name(scsicmd);
2892 }
2893 case SERVICE_ACTION_IN_16:
2894 if (!(dev->raw_io_interface) ||
2895 !(dev->raw_io_64) ||
2896 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2897 break;
2898 {
2899 u64 capacity;
2900 char cp[13];
2901 unsigned int alloc_len;
2902
2903 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2904 capacity = fsa_dev_ptr[cid].size - 1;
2905 cp[0] = (capacity >> 56) & 0xff;
2906 cp[1] = (capacity >> 48) & 0xff;
2907 cp[2] = (capacity >> 40) & 0xff;
2908 cp[3] = (capacity >> 32) & 0xff;
2909 cp[4] = (capacity >> 24) & 0xff;
2910 cp[5] = (capacity >> 16) & 0xff;
2911 cp[6] = (capacity >> 8) & 0xff;
2912 cp[7] = (capacity >> 0) & 0xff;
2913 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
2914 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2915 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2916 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
2917 cp[12] = 0;
2918
2919 alloc_len = ((scsicmd->cmnd[10] << 24)
2920 + (scsicmd->cmnd[11] << 16)
2921 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2922
2923 alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2924 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2925 if (alloc_len < scsi_bufflen(scsicmd))
2926 scsi_set_resid(scsicmd,
2927 scsi_bufflen(scsicmd) - alloc_len);
2928
2929 /* Do not cache partition table for arrays */
2930 scsicmd->device->removable = 1;
2931
2932 scsicmd->result = AAC_STAT_GOOD;
2933 break;
2934 }
2935
2936 case READ_CAPACITY:
2937 {
2938 u32 capacity;
2939 char cp[8];
2940
2941 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2942 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2943 capacity = fsa_dev_ptr[cid].size - 1;
2944 else
2945 capacity = (u32)-1;
2946
2947 cp[0] = (capacity >> 24) & 0xff;
2948 cp[1] = (capacity >> 16) & 0xff;
2949 cp[2] = (capacity >> 8) & 0xff;
2950 cp[3] = (capacity >> 0) & 0xff;
2951 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
2952 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2953 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2954 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
2955 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2956 /* Do not cache partition table for arrays */
2957 scsicmd->device->removable = 1;
2958 scsicmd->result = AAC_STAT_GOOD;
2959 break;
2960 }
2961
2962 case MODE_SENSE:
2963 {
2964 int mode_buf_length = 4;
2965 u32 capacity;
2966 aac_modep_data mpd;
2967
2968 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2969 capacity = fsa_dev_ptr[cid].size - 1;
2970 else
2971 capacity = (u32)-1;
2972
2973 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2974 memset((char *)&mpd, 0, sizeof(aac_modep_data));
2975
2976 /* Mode data length */
2977 mpd.hd.data_length = sizeof(mpd.hd) - 1;
2978 /* Medium type - default */
2979 mpd.hd.med_type = 0;
2980 /* Device-specific param,
2981 bit 8: 0/1 = write enabled/protected
2982 bit 4: 0/1 = FUA enabled */
2983 mpd.hd.dev_par = 0;
2984
2985 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2986 mpd.hd.dev_par = 0x10;
2987 if (scsicmd->cmnd[1] & 0x8)
2988 mpd.hd.bd_length = 0; /* Block descriptor length */
2989 else {
2990 mpd.hd.bd_length = sizeof(mpd.bd);
2991 mpd.hd.data_length += mpd.hd.bd_length;
2992 mpd.bd.block_length[0] =
2993 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2994 mpd.bd.block_length[1] =
2995 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2996 mpd.bd.block_length[2] =
2997 fsa_dev_ptr[cid].block_size & 0xff;
2998
2999 mpd.mpc_buf[0] = scsicmd->cmnd[2];
3000 if (scsicmd->cmnd[2] == 0x1C) {
3001 /* page length */
3002 mpd.mpc_buf[1] = 0xa;
3003 /* Mode data length */
3004 mpd.hd.data_length = 23;
3005 } else {
3006 /* Mode data length */
3007 mpd.hd.data_length = 15;
3008 }
3009
3010 if (capacity > 0xffffff) {
3011 mpd.bd.block_count[0] = 0xff;
3012 mpd.bd.block_count[1] = 0xff;
3013 mpd.bd.block_count[2] = 0xff;
3014 } else {
3015 mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
3016 mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
3017 mpd.bd.block_count[2] = capacity & 0xff;
3018 }
3019 }
3020 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3021 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3022 mpd.hd.data_length += 3;
3023 mpd.mpc_buf[0] = 8;
3024 mpd.mpc_buf[1] = 1;
3025 mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
3026 ? 0 : 0x04; /* WCE */
3027 mode_buf_length = sizeof(mpd);
3028 }
3029
3030 if (mode_buf_length > scsicmd->cmnd[4])
3031 mode_buf_length = scsicmd->cmnd[4];
3032 else
3033 mode_buf_length = sizeof(mpd);
3034 scsi_sg_copy_from_buffer(scsicmd,
3035 (char *)&mpd,
3036 mode_buf_length);
3037 scsicmd->result = AAC_STAT_GOOD;
3038 break;
3039 }
3040 case MODE_SENSE_10:
3041 {
3042 u32 capacity;
3043 int mode_buf_length = 8;
3044 aac_modep10_data mpd10;
3045
3046 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3047 capacity = fsa_dev_ptr[cid].size - 1;
3048 else
3049 capacity = (u32)-1;
3050
3051 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
3052 memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
3053 /* Mode data length (MSB) */
3054 mpd10.hd.data_length[0] = 0;
3055 /* Mode data length (LSB) */
3056 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
3057 /* Medium type - default */
3058 mpd10.hd.med_type = 0;
3059 /* Device-specific param,
3060 bit 8: 0/1 = write enabled/protected
3061 bit 4: 0/1 = FUA enabled */
3062 mpd10.hd.dev_par = 0;
3063
3064 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3065 mpd10.hd.dev_par = 0x10;
3066 mpd10.hd.rsrvd[0] = 0; /* reserved */
3067 mpd10.hd.rsrvd[1] = 0; /* reserved */
3068 if (scsicmd->cmnd[1] & 0x8) {
3069 /* Block descriptor length (MSB) */
3070 mpd10.hd.bd_length[0] = 0;
3071 /* Block descriptor length (LSB) */
3072 mpd10.hd.bd_length[1] = 0;
3073 } else {
3074 mpd10.hd.bd_length[0] = 0;
3075 mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
3076
3077 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
3078
3079 mpd10.bd.block_length[0] =
3080 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3081 mpd10.bd.block_length[1] =
3082 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3083 mpd10.bd.block_length[2] =
3084 fsa_dev_ptr[cid].block_size & 0xff;
3085
3086 if (capacity > 0xffffff) {
3087 mpd10.bd.block_count[0] = 0xff;
3088 mpd10.bd.block_count[1] = 0xff;
3089 mpd10.bd.block_count[2] = 0xff;
3090 } else {
3091 mpd10.bd.block_count[0] =
3092 (capacity >> 16) & 0xff;
3093 mpd10.bd.block_count[1] =
3094 (capacity >> 8) & 0xff;
3095 mpd10.bd.block_count[2] =
3096 capacity & 0xff;
3097 }
3098 }
3099 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3100 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3101 mpd10.hd.data_length[1] += 3;
3102 mpd10.mpc_buf[0] = 8;
3103 mpd10.mpc_buf[1] = 1;
3104 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
3105 ? 0 : 0x04; /* WCE */
3106 mode_buf_length = sizeof(mpd10);
3107 if (mode_buf_length > scsicmd->cmnd[8])
3108 mode_buf_length = scsicmd->cmnd[8];
3109 }
3110 scsi_sg_copy_from_buffer(scsicmd,
3111 (char *)&mpd10,
3112 mode_buf_length);
3113
3114 scsicmd->result = AAC_STAT_GOOD;
3115 break;
3116 }
3117 case REQUEST_SENSE:
3118 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
3119 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3120 sizeof(struct sense_data));
3121 memset(&dev->fsa_dev[cid].sense_data, 0,
3122 sizeof(struct sense_data));
3123 scsicmd->result = AAC_STAT_GOOD;
3124 break;
3125
3126 case ALLOW_MEDIUM_REMOVAL:
3127 dprintk((KERN_DEBUG "LOCK command.\n"));
3128 if (scsicmd->cmnd[4])
3129 fsa_dev_ptr[cid].locked = 1;
3130 else
3131 fsa_dev_ptr[cid].locked = 0;
3132
3133 scsicmd->result = AAC_STAT_GOOD;
3134 break;
3135 /*
3136 * These commands are all No-Ops
3137 */
3138 case TEST_UNIT_READY:
3139 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
3140 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3141 SAM_STAT_CHECK_CONDITION;
3142 set_sense(&dev->fsa_dev[cid].sense_data,
3143 NOT_READY, SENCODE_BECOMING_READY,
3144 ASENCODE_BECOMING_READY, 0, 0);
3145 memcpy(scsicmd->sense_buffer,
3146 &dev->fsa_dev[cid].sense_data,
3147 min_t(size_t,
3148 sizeof(dev->fsa_dev[cid].sense_data),
3149 SCSI_SENSE_BUFFERSIZE));
3150 break;
3151 }
3152 case RESERVE:
3153 case RELEASE:
3154 case REZERO_UNIT:
3155 case REASSIGN_BLOCKS:
3156 case SEEK_10:
3157 scsicmd->result = AAC_STAT_GOOD;
3158 break;
3159
3160 case START_STOP:
3161 return aac_start_stop(scsicmd);
3162
3163 /* FALLTHRU */
3164 default:
3165 /*
3166 * Unhandled commands
3167 */
3168 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n",
3169 scsicmd->cmnd[0]));
3170 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3171 SAM_STAT_CHECK_CONDITION;
3172 set_sense(&dev->fsa_dev[cid].sense_data,
3173 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
3174 ASENCODE_INVALID_COMMAND, 0, 0);
3175 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3176 min_t(size_t,
3177 sizeof(dev->fsa_dev[cid].sense_data),
3178 SCSI_SENSE_BUFFERSIZE));
3179 }
3180
3181 scsi_done_ret:
3182
3183 scsicmd->scsi_done(scsicmd);
3184 return 0;
3185 }
3186
3187 static int query_disk(struct aac_dev *dev, void __user *arg)
3188 {
3189 struct aac_query_disk qd;
3190 struct fsa_dev_info *fsa_dev_ptr;
3191
3192 fsa_dev_ptr = dev->fsa_dev;
3193 if (!fsa_dev_ptr)
3194 return -EBUSY;
3195 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
3196 return -EFAULT;
3197 if (qd.cnum == -1) {
3198 if (qd.id < 0 || qd.id >= dev->maximum_num_containers)
3199 return -EINVAL;
3200 qd.cnum = qd.id;
3201 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) {
3202 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
3203 return -EINVAL;
3204 qd.instance = dev->scsi_host_ptr->host_no;
3205 qd.bus = 0;
3206 qd.id = CONTAINER_TO_ID(qd.cnum);
3207 qd.lun = CONTAINER_TO_LUN(qd.cnum);
3208 }
3209 else return -EINVAL;
3210
3211 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
3212 qd.locked = fsa_dev_ptr[qd.cnum].locked;
3213 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
3214
3215 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
3216 qd.unmapped = 1;
3217 else
3218 qd.unmapped = 0;
3219
3220 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
3221 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
3222
3223 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
3224 return -EFAULT;
3225 return 0;
3226 }
3227
3228 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
3229 {
3230 struct aac_delete_disk dd;
3231 struct fsa_dev_info *fsa_dev_ptr;
3232
3233 fsa_dev_ptr = dev->fsa_dev;
3234 if (!fsa_dev_ptr)
3235 return -EBUSY;
3236
3237 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3238 return -EFAULT;
3239
3240 if (dd.cnum >= dev->maximum_num_containers)
3241 return -EINVAL;
3242 /*
3243 * Mark this container as being deleted.
3244 */
3245 fsa_dev_ptr[dd.cnum].deleted = 1;
3246 /*
3247 * Mark the container as no longer valid
3248 */
3249 fsa_dev_ptr[dd.cnum].valid = 0;
3250 return 0;
3251 }
3252
3253 static int delete_disk(struct aac_dev *dev, void __user *arg)
3254 {
3255 struct aac_delete_disk dd;
3256 struct fsa_dev_info *fsa_dev_ptr;
3257
3258 fsa_dev_ptr = dev->fsa_dev;
3259 if (!fsa_dev_ptr)
3260 return -EBUSY;
3261
3262 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3263 return -EFAULT;
3264
3265 if (dd.cnum >= dev->maximum_num_containers)
3266 return -EINVAL;
3267 /*
3268 * If the container is locked, it can not be deleted by the API.
3269 */
3270 if (fsa_dev_ptr[dd.cnum].locked)
3271 return -EBUSY;
3272 else {
3273 /*
3274 * Mark the container as no longer being valid.
3275 */
3276 fsa_dev_ptr[dd.cnum].valid = 0;
3277 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
3278 return 0;
3279 }
3280 }
3281
3282 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
3283 {
3284 switch (cmd) {
3285 case FSACTL_QUERY_DISK:
3286 return query_disk(dev, arg);
3287 case FSACTL_DELETE_DISK:
3288 return delete_disk(dev, arg);
3289 case FSACTL_FORCE_DELETE_DISK:
3290 return force_delete_disk(dev, arg);
3291 case FSACTL_GET_CONTAINERS:
3292 return aac_get_containers(dev);
3293 default:
3294 return -ENOTTY;
3295 }
3296 }
3297
3298 /**
3299 *
3300 * aac_srb_callback
3301 * @context: the context set in the fib - here it is scsi cmd
3302 * @fibptr: pointer to the fib
3303 *
3304 * Handles the completion of a scsi command to a non dasd device
3305 *
3306 */
3307
3308 static void aac_srb_callback(void *context, struct fib * fibptr)
3309 {
3310 struct aac_dev *dev;
3311 struct aac_srb_reply *srbreply;
3312 struct scsi_cmnd *scsicmd;
3313
3314 scsicmd = (struct scsi_cmnd *) context;
3315
3316 if (!aac_valid_context(scsicmd, fibptr))
3317 return;
3318
3319 BUG_ON(fibptr == NULL);
3320
3321 dev = fibptr->dev;
3322
3323 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
3324
3325 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
3326
3327 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3328 /* fast response */
3329 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
3330 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
3331 } else {
3332 /*
3333 * Calculate resid for sg
3334 */
3335 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
3336 - le32_to_cpu(srbreply->data_xfer_length));
3337 }
3338
3339
3340 scsi_dma_unmap(scsicmd);
3341
3342 /* expose physical device if expose_physicald flag is on */
3343 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
3344 && expose_physicals > 0)
3345 aac_expose_phy_device(scsicmd);
3346
3347 /*
3348 * First check the fib status
3349 */
3350
3351 if (le32_to_cpu(srbreply->status) != ST_OK) {
3352 int len;
3353
3354 pr_warn("aac_srb_callback: srb failed, status = %d\n",
3355 le32_to_cpu(srbreply->status));
3356 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3357 SCSI_SENSE_BUFFERSIZE);
3358 scsicmd->result = DID_ERROR << 16
3359 | COMMAND_COMPLETE << 8
3360 | SAM_STAT_CHECK_CONDITION;
3361 memcpy(scsicmd->sense_buffer,
3362 srbreply->sense_data, len);
3363 }
3364
3365 /*
3366 * Next check the srb status
3367 */
3368 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3369 case SRB_STATUS_ERROR_RECOVERY:
3370 case SRB_STATUS_PENDING:
3371 case SRB_STATUS_SUCCESS:
3372 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3373 break;
3374 case SRB_STATUS_DATA_OVERRUN:
3375 switch (scsicmd->cmnd[0]) {
3376 case READ_6:
3377 case WRITE_6:
3378 case READ_10:
3379 case WRITE_10:
3380 case READ_12:
3381 case WRITE_12:
3382 case READ_16:
3383 case WRITE_16:
3384 if (le32_to_cpu(srbreply->data_xfer_length)
3385 < scsicmd->underflow)
3386 pr_warn("aacraid: SCSI CMD underflow\n");
3387 else
3388 pr_warn("aacraid: SCSI CMD Data Overrun\n");
3389 scsicmd->result = DID_ERROR << 16
3390 | COMMAND_COMPLETE << 8;
3391 break;
3392 case INQUIRY:
3393 scsicmd->result = DID_OK << 16
3394 | COMMAND_COMPLETE << 8;
3395 break;
3396 default:
3397 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3398 break;
3399 }
3400 break;
3401 case SRB_STATUS_ABORTED:
3402 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3403 break;
3404 case SRB_STATUS_ABORT_FAILED:
3405 /*
3406 * Not sure about this one - but assuming the
3407 * hba was trying to abort for some reason
3408 */
3409 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
3410 break;
3411 case SRB_STATUS_PARITY_ERROR:
3412 scsicmd->result = DID_PARITY << 16
3413 | MSG_PARITY_ERROR << 8;
3414 break;
3415 case SRB_STATUS_NO_DEVICE:
3416 case SRB_STATUS_INVALID_PATH_ID:
3417 case SRB_STATUS_INVALID_TARGET_ID:
3418 case SRB_STATUS_INVALID_LUN:
3419 case SRB_STATUS_SELECTION_TIMEOUT:
3420 scsicmd->result = DID_NO_CONNECT << 16
3421 | COMMAND_COMPLETE << 8;
3422 break;
3423
3424 case SRB_STATUS_COMMAND_TIMEOUT:
3425 case SRB_STATUS_TIMEOUT:
3426 scsicmd->result = DID_TIME_OUT << 16
3427 | COMMAND_COMPLETE << 8;
3428 break;
3429
3430 case SRB_STATUS_BUSY:
3431 scsicmd->result = DID_BUS_BUSY << 16
3432 | COMMAND_COMPLETE << 8;
3433 break;
3434
3435 case SRB_STATUS_BUS_RESET:
3436 scsicmd->result = DID_RESET << 16
3437 | COMMAND_COMPLETE << 8;
3438 break;
3439
3440 case SRB_STATUS_MESSAGE_REJECTED:
3441 scsicmd->result = DID_ERROR << 16
3442 | MESSAGE_REJECT << 8;
3443 break;
3444 case SRB_STATUS_REQUEST_FLUSHED:
3445 case SRB_STATUS_ERROR:
3446 case SRB_STATUS_INVALID_REQUEST:
3447 case SRB_STATUS_REQUEST_SENSE_FAILED:
3448 case SRB_STATUS_NO_HBA:
3449 case SRB_STATUS_UNEXPECTED_BUS_FREE:
3450 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3451 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3452 case SRB_STATUS_DELAYED_RETRY:
3453 case SRB_STATUS_BAD_FUNCTION:
3454 case SRB_STATUS_NOT_STARTED:
3455 case SRB_STATUS_NOT_IN_USE:
3456 case SRB_STATUS_FORCE_ABORT:
3457 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3458 default:
3459 #ifdef AAC_DETAILED_STATUS_INFO
3460 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
3461 le32_to_cpu(srbreply->srb_status) & 0x3F,
3462 aac_get_status_string(
3463 le32_to_cpu(srbreply->srb_status) & 0x3F),
3464 scsicmd->cmnd[0],
3465 le32_to_cpu(srbreply->scsi_status));
3466 #endif
3467 /*
3468 * When the CC bit is SET by the host in ATA pass thru CDB,
3469 * driver is supposed to return DID_OK
3470 *
3471 * When the CC bit is RESET by the host, driver should
3472 * return DID_ERROR
3473 */
3474 if ((scsicmd->cmnd[0] == ATA_12)
3475 || (scsicmd->cmnd[0] == ATA_16)) {
3476
3477 if (scsicmd->cmnd[2] & (0x01 << 5)) {
3478 scsicmd->result = DID_OK << 16
3479 | COMMAND_COMPLETE << 8;
3480 break;
3481 } else {
3482 scsicmd->result = DID_ERROR << 16
3483 | COMMAND_COMPLETE << 8;
3484 break;
3485 }
3486 } else {
3487 scsicmd->result = DID_ERROR << 16
3488 | COMMAND_COMPLETE << 8;
3489 break;
3490 }
3491 }
3492 if (le32_to_cpu(srbreply->scsi_status)
3493 == SAM_STAT_CHECK_CONDITION) {
3494 int len;
3495
3496 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3497 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3498 SCSI_SENSE_BUFFERSIZE);
3499 #ifdef AAC_DETAILED_STATUS_INFO
3500 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
3501 le32_to_cpu(srbreply->status), len);
3502 #endif
3503 memcpy(scsicmd->sense_buffer,
3504 srbreply->sense_data, len);
3505 }
3506
3507 /*
3508 * OR in the scsi status (already shifted up a bit)
3509 */
3510 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3511
3512 aac_fib_complete(fibptr);
3513 scsicmd->scsi_done(scsicmd);
3514 }
3515
3516 static void hba_resp_task_complete(struct aac_dev *dev,
3517 struct scsi_cmnd *scsicmd,
3518 struct aac_hba_resp *err) {
3519
3520 scsicmd->result = err->status;
3521 /* set residual count */
3522 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count));
3523
3524 switch (err->status) {
3525 case SAM_STAT_GOOD:
3526 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3527 break;
3528 case SAM_STAT_CHECK_CONDITION:
3529 {
3530 int len;
3531
3532 len = min_t(u8, err->sense_response_data_len,
3533 SCSI_SENSE_BUFFERSIZE);
3534 if (len)
3535 memcpy(scsicmd->sense_buffer,
3536 err->sense_response_buf, len);
3537 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3538 break;
3539 }
3540 case SAM_STAT_BUSY:
3541 scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
3542 break;
3543 case SAM_STAT_TASK_ABORTED:
3544 scsicmd->result |= DID_ABORT << 16 | ABORT << 8;
3545 break;
3546 case SAM_STAT_RESERVATION_CONFLICT:
3547 case SAM_STAT_TASK_SET_FULL:
3548 default:
3549 scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3550 break;
3551 }
3552 }
3553
3554 static void hba_resp_task_failure(struct aac_dev *dev,
3555 struct scsi_cmnd *scsicmd,
3556 struct aac_hba_resp *err)
3557 {
3558 switch (err->status) {
3559 case HBA_RESP_STAT_HBAMODE_DISABLED:
3560 {
3561 u32 bus, cid;
3562
3563 bus = aac_logical_to_phys(scmd_channel(scsicmd));
3564 cid = scmd_id(scsicmd);
3565 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
3566 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW;
3567 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff;
3568 }
3569 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3570 break;
3571 }
3572 case HBA_RESP_STAT_IO_ERROR:
3573 case HBA_RESP_STAT_NO_PATH_TO_DEVICE:
3574 scsicmd->result = DID_OK << 16 |
3575 COMMAND_COMPLETE << 8 | SAM_STAT_BUSY;
3576 break;
3577 case HBA_RESP_STAT_IO_ABORTED:
3578 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3579 break;
3580 case HBA_RESP_STAT_INVALID_DEVICE:
3581 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3582 break;
3583 case HBA_RESP_STAT_UNDERRUN:
3584 /* UNDERRUN is OK */
3585 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3586 break;
3587 case HBA_RESP_STAT_OVERRUN:
3588 default:
3589 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3590 break;
3591 }
3592 }
3593
3594 /**
3595 *
3596 * aac_hba_callback
3597 * @context: the context set in the fib - here it is scsi cmd
3598 * @fibptr: pointer to the fib
3599 *
3600 * Handles the completion of a native HBA scsi command
3601 *
3602 */
3603 void aac_hba_callback(void *context, struct fib *fibptr)
3604 {
3605 struct aac_dev *dev;
3606 struct scsi_cmnd *scsicmd;
3607
3608 struct aac_hba_resp *err =
3609 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
3610
3611 scsicmd = (struct scsi_cmnd *) context;
3612
3613 if (!aac_valid_context(scsicmd, fibptr))
3614 return;
3615
3616 WARN_ON(fibptr == NULL);
3617 dev = fibptr->dev;
3618
3619 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF))
3620 scsi_dma_unmap(scsicmd);
3621
3622 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3623 /* fast response */
3624 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3625 goto out;
3626 }
3627
3628 switch (err->service_response) {
3629 case HBA_RESP_SVCRES_TASK_COMPLETE:
3630 hba_resp_task_complete(dev, scsicmd, err);
3631 break;
3632 case HBA_RESP_SVCRES_FAILURE:
3633 hba_resp_task_failure(dev, scsicmd, err);
3634 break;
3635 case HBA_RESP_SVCRES_TMF_REJECTED:
3636 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
3637 break;
3638 case HBA_RESP_SVCRES_TMF_LUN_INVALID:
3639 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3640 break;
3641 case HBA_RESP_SVCRES_TMF_COMPLETE:
3642 case HBA_RESP_SVCRES_TMF_SUCCEEDED:
3643 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3644 break;
3645 default:
3646 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3647 break;
3648 }
3649
3650 out:
3651 aac_fib_complete(fibptr);
3652
3653 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)
3654 scsicmd->SCp.sent_command = 1;
3655 else
3656 scsicmd->scsi_done(scsicmd);
3657 }
3658
3659 /**
3660 *
3661 * aac_send_srb_fib
3662 * @scsicmd: the scsi command block
3663 *
3664 * This routine will form a FIB and fill in the aac_srb from the
3665 * scsicmd passed in.
3666 */
3667
3668 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3669 {
3670 struct fib* cmd_fibcontext;
3671 struct aac_dev* dev;
3672 int status;
3673
3674 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3675 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3676 scsicmd->device->lun > 7) {
3677 scsicmd->result = DID_NO_CONNECT << 16;
3678 scsicmd->scsi_done(scsicmd);
3679 return 0;
3680 }
3681
3682 /*
3683 * Allocate and initialize a Fib then setup a BlockWrite command
3684 */
3685 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3686 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3687 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3688
3689 /*
3690 * Check that the command queued to the controller
3691 */
3692 if (status == -EINPROGRESS)
3693 return 0;
3694
3695 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3696 aac_fib_complete(cmd_fibcontext);
3697 aac_fib_free(cmd_fibcontext);
3698
3699 return -1;
3700 }
3701
3702 /**
3703 *
3704 * aac_send_hba_fib
3705 * @scsicmd: the scsi command block
3706 *
3707 * This routine will form a FIB and fill in the aac_hba_cmd_req from the
3708 * scsicmd passed in.
3709 */
3710 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd)
3711 {
3712 struct fib *cmd_fibcontext;
3713 struct aac_dev *dev;
3714 int status;
3715
3716 dev = shost_priv(scsicmd->device->host);
3717 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3718 scsicmd->device->lun > AAC_MAX_LUN - 1) {
3719 scsicmd->result = DID_NO_CONNECT << 16;
3720 scsicmd->scsi_done(scsicmd);
3721 return 0;
3722 }
3723
3724 /*
3725 * Allocate and initialize a Fib then setup a BlockWrite command
3726 */
3727 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3728 if (!cmd_fibcontext)
3729 return -1;
3730
3731 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3732 status = aac_adapter_hba(cmd_fibcontext, scsicmd);
3733
3734 /*
3735 * Check that the command queued to the controller
3736 */
3737 if (status == -EINPROGRESS)
3738 return 0;
3739
3740 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n",
3741 status);
3742 aac_fib_complete(cmd_fibcontext);
3743 aac_fib_free(cmd_fibcontext);
3744
3745 return -1;
3746 }
3747
3748
3749 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3750 {
3751 struct aac_dev *dev;
3752 unsigned long byte_count = 0;
3753 int nseg;
3754 struct scatterlist *sg;
3755 int i;
3756
3757 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3758 // Get rid of old data
3759 psg->count = 0;
3760 psg->sg[0].addr = 0;
3761 psg->sg[0].count = 0;
3762
3763 nseg = scsi_dma_map(scsicmd);
3764 if (nseg <= 0)
3765 return nseg;
3766
3767 psg->count = cpu_to_le32(nseg);
3768
3769 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3770 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3771 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3772 byte_count += sg_dma_len(sg);
3773 }
3774 /* hba wants the size to be exact */
3775 if (byte_count > scsi_bufflen(scsicmd)) {
3776 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3777 (byte_count - scsi_bufflen(scsicmd));
3778 psg->sg[i-1].count = cpu_to_le32(temp);
3779 byte_count = scsi_bufflen(scsicmd);
3780 }
3781 /* Check for command underflow */
3782 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3783 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3784 byte_count, scsicmd->underflow);
3785 }
3786
3787 return byte_count;
3788 }
3789
3790
3791 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3792 {
3793 struct aac_dev *dev;
3794 unsigned long byte_count = 0;
3795 u64 addr;
3796 int nseg;
3797 struct scatterlist *sg;
3798 int i;
3799
3800 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3801 // Get rid of old data
3802 psg->count = 0;
3803 psg->sg[0].addr[0] = 0;
3804 psg->sg[0].addr[1] = 0;
3805 psg->sg[0].count = 0;
3806
3807 nseg = scsi_dma_map(scsicmd);
3808 if (nseg <= 0)
3809 return nseg;
3810
3811 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3812 int count = sg_dma_len(sg);
3813 addr = sg_dma_address(sg);
3814 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3815 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3816 psg->sg[i].count = cpu_to_le32(count);
3817 byte_count += count;
3818 }
3819 psg->count = cpu_to_le32(nseg);
3820 /* hba wants the size to be exact */
3821 if (byte_count > scsi_bufflen(scsicmd)) {
3822 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3823 (byte_count - scsi_bufflen(scsicmd));
3824 psg->sg[i-1].count = cpu_to_le32(temp);
3825 byte_count = scsi_bufflen(scsicmd);
3826 }
3827 /* Check for command underflow */
3828 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3829 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3830 byte_count, scsicmd->underflow);
3831 }
3832
3833 return byte_count;
3834 }
3835
3836 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
3837 {
3838 unsigned long byte_count = 0;
3839 int nseg;
3840 struct scatterlist *sg;
3841 int i;
3842
3843 // Get rid of old data
3844 psg->count = 0;
3845 psg->sg[0].next = 0;
3846 psg->sg[0].prev = 0;
3847 psg->sg[0].addr[0] = 0;
3848 psg->sg[0].addr[1] = 0;
3849 psg->sg[0].count = 0;
3850 psg->sg[0].flags = 0;
3851
3852 nseg = scsi_dma_map(scsicmd);
3853 if (nseg <= 0)
3854 return nseg;
3855
3856 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3857 int count = sg_dma_len(sg);
3858 u64 addr = sg_dma_address(sg);
3859 psg->sg[i].next = 0;
3860 psg->sg[i].prev = 0;
3861 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
3862 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
3863 psg->sg[i].count = cpu_to_le32(count);
3864 psg->sg[i].flags = 0;
3865 byte_count += count;
3866 }
3867 psg->count = cpu_to_le32(nseg);
3868 /* hba wants the size to be exact */
3869 if (byte_count > scsi_bufflen(scsicmd)) {
3870 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3871 (byte_count - scsi_bufflen(scsicmd));
3872 psg->sg[i-1].count = cpu_to_le32(temp);
3873 byte_count = scsi_bufflen(scsicmd);
3874 }
3875 /* Check for command underflow */
3876 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3877 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3878 byte_count, scsicmd->underflow);
3879 }
3880
3881 return byte_count;
3882 }
3883
3884 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
3885 struct aac_raw_io2 *rio2, int sg_max)
3886 {
3887 unsigned long byte_count = 0;
3888 int nseg;
3889 struct scatterlist *sg;
3890 int i, conformable = 0;
3891 u32 min_size = PAGE_SIZE, cur_size;
3892
3893 nseg = scsi_dma_map(scsicmd);
3894 if (nseg <= 0)
3895 return nseg;
3896
3897 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3898 int count = sg_dma_len(sg);
3899 u64 addr = sg_dma_address(sg);
3900
3901 BUG_ON(i >= sg_max);
3902 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
3903 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
3904 cur_size = cpu_to_le32(count);
3905 rio2->sge[i].length = cur_size;
3906 rio2->sge[i].flags = 0;
3907 if (i == 0) {
3908 conformable = 1;
3909 rio2->sgeFirstSize = cur_size;
3910 } else if (i == 1) {
3911 rio2->sgeNominalSize = cur_size;
3912 min_size = cur_size;
3913 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
3914 conformable = 0;
3915 if (cur_size < min_size)
3916 min_size = cur_size;
3917 }
3918 byte_count += count;
3919 }
3920
3921 /* hba wants the size to be exact */
3922 if (byte_count > scsi_bufflen(scsicmd)) {
3923 u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
3924 (byte_count - scsi_bufflen(scsicmd));
3925 rio2->sge[i-1].length = cpu_to_le32(temp);
3926 byte_count = scsi_bufflen(scsicmd);
3927 }
3928
3929 rio2->sgeCnt = cpu_to_le32(nseg);
3930 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
3931 /* not conformable: evaluate required sg elements */
3932 if (!conformable) {
3933 int j, nseg_new = nseg, err_found;
3934 for (i = min_size / PAGE_SIZE; i >= 1; --i) {
3935 err_found = 0;
3936 nseg_new = 2;
3937 for (j = 1; j < nseg - 1; ++j) {
3938 if (rio2->sge[j].length % (i*PAGE_SIZE)) {
3939 err_found = 1;
3940 break;
3941 }
3942 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
3943 }
3944 if (!err_found)
3945 break;
3946 }
3947 if (i > 0 && nseg_new <= sg_max) {
3948 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new);
3949
3950 if (ret < 0)
3951 return ret;
3952 }
3953 } else
3954 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3955
3956 /* Check for command underflow */
3957 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3958 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3959 byte_count, scsicmd->underflow);
3960 }
3961
3962 return byte_count;
3963 }
3964
3965 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
3966 {
3967 struct sge_ieee1212 *sge;
3968 int i, j, pos;
3969 u32 addr_low;
3970
3971 if (aac_convert_sgl == 0)
3972 return 0;
3973
3974 sge = kmalloc(nseg_new * sizeof(struct sge_ieee1212), GFP_ATOMIC);
3975 if (sge == NULL)
3976 return -ENOMEM;
3977
3978 for (i = 1, pos = 1; i < nseg-1; ++i) {
3979 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
3980 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
3981 sge[pos].addrLow = addr_low;
3982 sge[pos].addrHigh = rio2->sge[i].addrHigh;
3983 if (addr_low < rio2->sge[i].addrLow)
3984 sge[pos].addrHigh++;
3985 sge[pos].length = pages * PAGE_SIZE;
3986 sge[pos].flags = 0;
3987 pos++;
3988 }
3989 }
3990 sge[pos] = rio2->sge[nseg-1];
3991 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
3992
3993 kfree(sge);
3994 rio2->sgeCnt = cpu_to_le32(nseg_new);
3995 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3996 rio2->sgeNominalSize = pages * PAGE_SIZE;
3997 return 0;
3998 }
3999
4000 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
4001 struct aac_hba_cmd_req *hbacmd,
4002 int sg_max,
4003 u64 sg_address)
4004 {
4005 unsigned long byte_count = 0;
4006 int nseg;
4007 struct scatterlist *sg;
4008 int i;
4009 u32 cur_size;
4010 struct aac_hba_sgl *sge;
4011
4012 nseg = scsi_dma_map(scsicmd);
4013 if (nseg <= 0) {
4014 byte_count = nseg;
4015 goto out;
4016 }
4017
4018 if (nseg > HBA_MAX_SG_EMBEDDED)
4019 sge = &hbacmd->sge[2];
4020 else
4021 sge = &hbacmd->sge[0];
4022
4023 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4024 int count = sg_dma_len(sg);
4025 u64 addr = sg_dma_address(sg);
4026
4027 WARN_ON(i >= sg_max);
4028 sge->addr_hi = cpu_to_le32((u32)(addr>>32));
4029 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff));
4030 cur_size = cpu_to_le32(count);
4031 sge->len = cur_size;
4032 sge->flags = 0;
4033 byte_count += count;
4034 sge++;
4035 }
4036
4037 sge--;
4038 /* hba wants the size to be exact */
4039 if (byte_count > scsi_bufflen(scsicmd)) {
4040 u32 temp;
4041
4042 temp = le32_to_cpu(sge->len) - byte_count
4043 - scsi_bufflen(scsicmd);
4044 sge->len = cpu_to_le32(temp);
4045 byte_count = scsi_bufflen(scsicmd);
4046 }
4047
4048 if (nseg <= HBA_MAX_SG_EMBEDDED) {
4049 hbacmd->emb_data_desc_count = cpu_to_le32(nseg);
4050 sge->flags = cpu_to_le32(0x40000000);
4051 } else {
4052 /* not embedded */
4053 hbacmd->sge[0].flags = cpu_to_le32(0x80000000);
4054 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1);
4055 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32);
4056 hbacmd->sge[0].addr_lo =
4057 cpu_to_le32((u32)(sg_address & 0xffffffff));
4058 }
4059
4060 /* Check for command underflow */
4061 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4062 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n",
4063 byte_count, scsicmd->underflow);
4064 }
4065 out:
4066 return byte_count;
4067 }
4068
4069 #ifdef AAC_DETAILED_STATUS_INFO
4070
4071 struct aac_srb_status_info {
4072 u32 status;
4073 char *str;
4074 };
4075
4076
4077 static struct aac_srb_status_info srb_status_info[] = {
4078 { SRB_STATUS_PENDING, "Pending Status"},
4079 { SRB_STATUS_SUCCESS, "Success"},
4080 { SRB_STATUS_ABORTED, "Aborted Command"},
4081 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
4082 { SRB_STATUS_ERROR, "Error Event"},
4083 { SRB_STATUS_BUSY, "Device Busy"},
4084 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
4085 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
4086 { SRB_STATUS_NO_DEVICE, "No Device"},
4087 { SRB_STATUS_TIMEOUT, "Timeout"},
4088 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
4089 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
4090 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
4091 { SRB_STATUS_BUS_RESET, "Bus Reset"},
4092 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
4093 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
4094 { SRB_STATUS_NO_HBA, "No HBA"},
4095 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
4096 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
4097 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
4098 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
4099 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
4100 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
4101 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
4102 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
4103 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
4104 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
4105 { SRB_STATUS_NOT_STARTED, "Not Started"},
4106 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
4107 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
4108 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
4109 { 0xff, "Unknown Error"}
4110 };
4111
4112 char *aac_get_status_string(u32 status)
4113 {
4114 int i;
4115
4116 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
4117 if (srb_status_info[i].status == status)
4118 return srb_status_info[i].str;
4119
4120 return "Bad Status Code";
4121 }
4122
4123 #endif