]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/aacraid/aachba.c
[SCSI] aacraid: add sysfs report of RAID level
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / aacraid / aachba.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/completion.h>
33 #include <linux/blkdev.h>
34 #include <linux/dma-mapping.h>
35 #include <asm/semaphore.h>
36 #include <asm/uaccess.h>
37
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42
43 #include "aacraid.h"
44
45 /* values for inqd_pdt: Peripheral device type in plain English */
46 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
47 #define INQD_PDT_PROC 0x03 /* Processor device */
48 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
49 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
50 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
51 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
52
53 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
54 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
55
56 /*
57 * Sense codes
58 */
59
60 #define SENCODE_NO_SENSE 0x00
61 #define SENCODE_END_OF_DATA 0x00
62 #define SENCODE_BECOMING_READY 0x04
63 #define SENCODE_INIT_CMD_REQUIRED 0x04
64 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
65 #define SENCODE_INVALID_COMMAND 0x20
66 #define SENCODE_LBA_OUT_OF_RANGE 0x21
67 #define SENCODE_INVALID_CDB_FIELD 0x24
68 #define SENCODE_LUN_NOT_SUPPORTED 0x25
69 #define SENCODE_INVALID_PARAM_FIELD 0x26
70 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
71 #define SENCODE_PARAM_VALUE_INVALID 0x26
72 #define SENCODE_RESET_OCCURRED 0x29
73 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
74 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
75 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
76 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
77 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
78 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
79 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
80 #define SENCODE_OVERLAPPED_COMMAND 0x4E
81
82 /*
83 * Additional sense codes
84 */
85
86 #define ASENCODE_NO_SENSE 0x00
87 #define ASENCODE_END_OF_DATA 0x05
88 #define ASENCODE_BECOMING_READY 0x01
89 #define ASENCODE_INIT_CMD_REQUIRED 0x02
90 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
91 #define ASENCODE_INVALID_COMMAND 0x00
92 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
93 #define ASENCODE_INVALID_CDB_FIELD 0x00
94 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
95 #define ASENCODE_INVALID_PARAM_FIELD 0x00
96 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
97 #define ASENCODE_PARAM_VALUE_INVALID 0x02
98 #define ASENCODE_RESET_OCCURRED 0x00
99 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
100 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
101 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
102 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
103 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
104 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
105 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
106 #define ASENCODE_OVERLAPPED_COMMAND 0x00
107
108 #define BYTE0(x) (unsigned char)(x)
109 #define BYTE1(x) (unsigned char)((x) >> 8)
110 #define BYTE2(x) (unsigned char)((x) >> 16)
111 #define BYTE3(x) (unsigned char)((x) >> 24)
112
113 /*------------------------------------------------------------------------------
114 * S T R U C T S / T Y P E D E F S
115 *----------------------------------------------------------------------------*/
116 /* SCSI inquiry data */
117 struct inquiry_data {
118 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
119 u8 inqd_dtq; /* RMB | Device Type Qualifier */
120 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
121 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
122 u8 inqd_len; /* Additional length (n-4) */
123 u8 inqd_pad1[2];/* Reserved - must be zero */
124 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
125 u8 inqd_vid[8]; /* Vendor ID */
126 u8 inqd_pid[16];/* Product ID */
127 u8 inqd_prl[4]; /* Product Revision Level */
128 };
129
130 /*
131 * M O D U L E G L O B A L S
132 */
133
134 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
135 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
136 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
137 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
138 #ifdef AAC_DETAILED_STATUS_INFO
139 static char *aac_get_status_string(u32 status);
140 #endif
141
142 /*
143 * Non dasd selection is handled entirely in aachba now
144 */
145
146 static int nondasd = -1;
147 static int aac_cache = 0;
148 static int dacmode = -1;
149
150 int aac_commit = -1;
151 int startup_timeout = 180;
152 int aif_timeout = 120;
153
154 module_param(nondasd, int, S_IRUGO|S_IWUSR);
155 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
156 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
157 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n\tbit 0 - Disable FUA in WRITE SCSI commands\n\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n\tbit 2 - Disable only if Battery not protecting Cache");
158 module_param(dacmode, int, S_IRUGO|S_IWUSR);
159 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
160 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
161 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
162 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
163 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for adapter to have it's kernel up and\nrunning. This is typically adjusted for large systems that do not have a BIOS.");
164 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
165 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for applications to pick up AIFs before\nderegistering them. This is typically adjusted for heavily burdened systems.");
166
167 int numacb = -1;
168 module_param(numacb, int, S_IRUGO|S_IWUSR);
169 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid values are 512 and down. Default is to use suggestion from Firmware.");
170
171 int acbsize = -1;
172 module_param(acbsize, int, S_IRUGO|S_IWUSR);
173 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512, 2048, 4096 and 8192. Default is to use suggestion from Firmware.");
174
175 int update_interval = 30 * 60;
176 module_param(update_interval, int, S_IRUGO|S_IWUSR);
177 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync updates issued to adapter.");
178
179 int check_interval = 24 * 60 * 60;
180 module_param(check_interval, int, S_IRUGO|S_IWUSR);
181 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health checks.");
182
183 int aac_check_reset = 1;
184 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
185 MODULE_PARM_DESC(aac_check_reset, "If adapter fails health check, reset the adapter. a value of -1 forces the reset to adapters programmed to ignore it.");
186
187 int expose_physicals = -1;
188 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
189 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays. -1=protect 0=off, 1=on");
190
191 int aac_reset_devices = 0;
192 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
193 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
194
195 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
196 struct fib *fibptr) {
197 struct scsi_device *device;
198
199 if (unlikely(!scsicmd || !scsicmd->scsi_done )) {
200 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
201 aac_fib_complete(fibptr);
202 aac_fib_free(fibptr);
203 return 0;
204 }
205 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
206 device = scsicmd->device;
207 if (unlikely(!device || !scsi_device_online(device))) {
208 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
209 aac_fib_complete(fibptr);
210 aac_fib_free(fibptr);
211 return 0;
212 }
213 return 1;
214 }
215
216 /**
217 * aac_get_config_status - check the adapter configuration
218 * @common: adapter to query
219 *
220 * Query config status, and commit the configuration if needed.
221 */
222 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
223 {
224 int status = 0;
225 struct fib * fibptr;
226
227 if (!(fibptr = aac_fib_alloc(dev)))
228 return -ENOMEM;
229
230 aac_fib_init(fibptr);
231 {
232 struct aac_get_config_status *dinfo;
233 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
234
235 dinfo->command = cpu_to_le32(VM_ContainerConfig);
236 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
237 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
238 }
239
240 status = aac_fib_send(ContainerCommand,
241 fibptr,
242 sizeof (struct aac_get_config_status),
243 FsaNormal,
244 1, 1,
245 NULL, NULL);
246 if (status < 0 ) {
247 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
248 } else {
249 struct aac_get_config_status_resp *reply
250 = (struct aac_get_config_status_resp *) fib_data(fibptr);
251 dprintk((KERN_WARNING
252 "aac_get_config_status: response=%d status=%d action=%d\n",
253 le32_to_cpu(reply->response),
254 le32_to_cpu(reply->status),
255 le32_to_cpu(reply->data.action)));
256 if ((le32_to_cpu(reply->response) != ST_OK) ||
257 (le32_to_cpu(reply->status) != CT_OK) ||
258 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
259 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
260 status = -EINVAL;
261 }
262 }
263 aac_fib_complete(fibptr);
264 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
265 if (status >= 0) {
266 if ((aac_commit == 1) || commit_flag) {
267 struct aac_commit_config * dinfo;
268 aac_fib_init(fibptr);
269 dinfo = (struct aac_commit_config *) fib_data(fibptr);
270
271 dinfo->command = cpu_to_le32(VM_ContainerConfig);
272 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
273
274 status = aac_fib_send(ContainerCommand,
275 fibptr,
276 sizeof (struct aac_commit_config),
277 FsaNormal,
278 1, 1,
279 NULL, NULL);
280 aac_fib_complete(fibptr);
281 } else if (aac_commit == 0) {
282 printk(KERN_WARNING
283 "aac_get_config_status: Foreign device configurations are being ignored\n");
284 }
285 }
286 aac_fib_free(fibptr);
287 return status;
288 }
289
290 /**
291 * aac_get_containers - list containers
292 * @common: adapter to probe
293 *
294 * Make a list of all containers on this controller
295 */
296 int aac_get_containers(struct aac_dev *dev)
297 {
298 struct fsa_dev_info *fsa_dev_ptr;
299 u32 index;
300 int status = 0;
301 struct fib * fibptr;
302 struct aac_get_container_count *dinfo;
303 struct aac_get_container_count_resp *dresp;
304 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
305
306 if (!(fibptr = aac_fib_alloc(dev)))
307 return -ENOMEM;
308
309 aac_fib_init(fibptr);
310 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
311 dinfo->command = cpu_to_le32(VM_ContainerConfig);
312 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
313
314 status = aac_fib_send(ContainerCommand,
315 fibptr,
316 sizeof (struct aac_get_container_count),
317 FsaNormal,
318 1, 1,
319 NULL, NULL);
320 if (status >= 0) {
321 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
322 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
323 aac_fib_complete(fibptr);
324 }
325 aac_fib_free(fibptr);
326
327 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
328 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
329 fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
330 GFP_KERNEL);
331 if (!fsa_dev_ptr)
332 return -ENOMEM;
333
334 dev->fsa_dev = fsa_dev_ptr;
335 dev->maximum_num_containers = maximum_num_containers;
336
337 for (index = 0; index < dev->maximum_num_containers; ) {
338 fsa_dev_ptr[index].devname[0] = '\0';
339
340 status = aac_probe_container(dev, index);
341
342 if (status < 0) {
343 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
344 break;
345 }
346
347 /*
348 * If there are no more containers, then stop asking.
349 */
350 if (++index >= status)
351 break;
352 }
353 return status;
354 }
355
356 static void aac_internal_transfer(struct scsi_cmnd *scsicmd, void *data, unsigned int offset, unsigned int len)
357 {
358 void *buf;
359 int transfer_len;
360 struct scatterlist *sg = scsi_sglist(scsicmd);
361
362 buf = kmap_atomic(sg_page(sg), KM_IRQ0) + sg->offset;
363 transfer_len = min(sg->length, len + offset);
364
365 transfer_len -= offset;
366 if (buf && transfer_len > 0)
367 memcpy(buf + offset, data, transfer_len);
368
369 kunmap_atomic(buf - sg->offset, KM_IRQ0);
370
371 }
372
373 static void get_container_name_callback(void *context, struct fib * fibptr)
374 {
375 struct aac_get_name_resp * get_name_reply;
376 struct scsi_cmnd * scsicmd;
377
378 scsicmd = (struct scsi_cmnd *) context;
379
380 if (!aac_valid_context(scsicmd, fibptr))
381 return;
382
383 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
384 BUG_ON(fibptr == NULL);
385
386 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
387 /* Failure is irrelevant, using default value instead */
388 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
389 && (get_name_reply->data[0] != '\0')) {
390 char *sp = get_name_reply->data;
391 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
392 while (*sp == ' ')
393 ++sp;
394 if (*sp) {
395 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
396 int count = sizeof(d);
397 char *dp = d;
398 do {
399 *dp++ = (*sp) ? *sp++ : ' ';
400 } while (--count > 0);
401 aac_internal_transfer(scsicmd, d,
402 offsetof(struct inquiry_data, inqd_pid), sizeof(d));
403 }
404 }
405
406 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
407
408 aac_fib_complete(fibptr);
409 aac_fib_free(fibptr);
410 scsicmd->scsi_done(scsicmd);
411 }
412
413 /**
414 * aac_get_container_name - get container name, none blocking.
415 */
416 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
417 {
418 int status;
419 struct aac_get_name *dinfo;
420 struct fib * cmd_fibcontext;
421 struct aac_dev * dev;
422
423 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
424
425 if (!(cmd_fibcontext = aac_fib_alloc(dev)))
426 return -ENOMEM;
427
428 aac_fib_init(cmd_fibcontext);
429 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
430
431 dinfo->command = cpu_to_le32(VM_ContainerConfig);
432 dinfo->type = cpu_to_le32(CT_READ_NAME);
433 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
434 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
435
436 status = aac_fib_send(ContainerCommand,
437 cmd_fibcontext,
438 sizeof (struct aac_get_name),
439 FsaNormal,
440 0, 1,
441 (fib_callback) get_container_name_callback,
442 (void *) scsicmd);
443
444 /*
445 * Check that the command queued to the controller
446 */
447 if (status == -EINPROGRESS) {
448 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
449 return 0;
450 }
451
452 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
453 aac_fib_complete(cmd_fibcontext);
454 aac_fib_free(cmd_fibcontext);
455 return -1;
456 }
457
458 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
459 {
460 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
461
462 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
463 return aac_scsi_cmd(scsicmd);
464
465 scsicmd->result = DID_NO_CONNECT << 16;
466 scsicmd->scsi_done(scsicmd);
467 return 0;
468 }
469
470 static void _aac_probe_container2(void * context, struct fib * fibptr)
471 {
472 struct fsa_dev_info *fsa_dev_ptr;
473 int (*callback)(struct scsi_cmnd *);
474 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
475
476
477 if (!aac_valid_context(scsicmd, fibptr))
478 return;
479
480 scsicmd->SCp.Status = 0;
481 fsa_dev_ptr = fibptr->dev->fsa_dev;
482 if (fsa_dev_ptr) {
483 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
484 fsa_dev_ptr += scmd_id(scsicmd);
485
486 if ((le32_to_cpu(dresp->status) == ST_OK) &&
487 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
488 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
489 fsa_dev_ptr->valid = 1;
490 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
491 fsa_dev_ptr->size
492 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
493 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
494 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
495 }
496 if ((fsa_dev_ptr->valid & 1) == 0)
497 fsa_dev_ptr->valid = 0;
498 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
499 }
500 aac_fib_complete(fibptr);
501 aac_fib_free(fibptr);
502 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
503 scsicmd->SCp.ptr = NULL;
504 (*callback)(scsicmd);
505 return;
506 }
507
508 static void _aac_probe_container1(void * context, struct fib * fibptr)
509 {
510 struct scsi_cmnd * scsicmd;
511 struct aac_mount * dresp;
512 struct aac_query_mount *dinfo;
513 int status;
514
515 dresp = (struct aac_mount *) fib_data(fibptr);
516 dresp->mnt[0].capacityhigh = 0;
517 if ((le32_to_cpu(dresp->status) != ST_OK) ||
518 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
519 _aac_probe_container2(context, fibptr);
520 return;
521 }
522 scsicmd = (struct scsi_cmnd *) context;
523
524 if (!aac_valid_context(scsicmd, fibptr))
525 return;
526
527 aac_fib_init(fibptr);
528
529 dinfo = (struct aac_query_mount *)fib_data(fibptr);
530
531 dinfo->command = cpu_to_le32(VM_NameServe64);
532 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
533 dinfo->type = cpu_to_le32(FT_FILESYS);
534
535 status = aac_fib_send(ContainerCommand,
536 fibptr,
537 sizeof(struct aac_query_mount),
538 FsaNormal,
539 0, 1,
540 _aac_probe_container2,
541 (void *) scsicmd);
542 /*
543 * Check that the command queued to the controller
544 */
545 if (status == -EINPROGRESS)
546 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
547 else if (status < 0) {
548 /* Inherit results from VM_NameServe, if any */
549 dresp->status = cpu_to_le32(ST_OK);
550 _aac_probe_container2(context, fibptr);
551 }
552 }
553
554 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
555 {
556 struct fib * fibptr;
557 int status = -ENOMEM;
558
559 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
560 struct aac_query_mount *dinfo;
561
562 aac_fib_init(fibptr);
563
564 dinfo = (struct aac_query_mount *)fib_data(fibptr);
565
566 dinfo->command = cpu_to_le32(VM_NameServe);
567 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
568 dinfo->type = cpu_to_le32(FT_FILESYS);
569 scsicmd->SCp.ptr = (char *)callback;
570
571 status = aac_fib_send(ContainerCommand,
572 fibptr,
573 sizeof(struct aac_query_mount),
574 FsaNormal,
575 0, 1,
576 _aac_probe_container1,
577 (void *) scsicmd);
578 /*
579 * Check that the command queued to the controller
580 */
581 if (status == -EINPROGRESS) {
582 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
583 return 0;
584 }
585 if (status < 0) {
586 scsicmd->SCp.ptr = NULL;
587 aac_fib_complete(fibptr);
588 aac_fib_free(fibptr);
589 }
590 }
591 if (status < 0) {
592 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
593 if (fsa_dev_ptr) {
594 fsa_dev_ptr += scmd_id(scsicmd);
595 if ((fsa_dev_ptr->valid & 1) == 0) {
596 fsa_dev_ptr->valid = 0;
597 return (*callback)(scsicmd);
598 }
599 }
600 }
601 return status;
602 }
603
604 /**
605 * aac_probe_container - query a logical volume
606 * @dev: device to query
607 * @cid: container identifier
608 *
609 * Queries the controller about the given volume. The volume information
610 * is updated in the struct fsa_dev_info structure rather than returned.
611 */
612 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
613 {
614 scsicmd->device = NULL;
615 return 0;
616 }
617
618 int aac_probe_container(struct aac_dev *dev, int cid)
619 {
620 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
621 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
622 int status;
623
624 if (!scsicmd || !scsidev) {
625 kfree(scsicmd);
626 kfree(scsidev);
627 return -ENOMEM;
628 }
629 scsicmd->list.next = NULL;
630 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
631
632 scsicmd->device = scsidev;
633 scsidev->sdev_state = 0;
634 scsidev->id = cid;
635 scsidev->host = dev->scsi_host_ptr;
636
637 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
638 while (scsicmd->device == scsidev)
639 schedule();
640 kfree(scsidev);
641 status = scsicmd->SCp.Status;
642 kfree(scsicmd);
643 return status;
644 }
645
646 /* Local Structure to set SCSI inquiry data strings */
647 struct scsi_inq {
648 char vid[8]; /* Vendor ID */
649 char pid[16]; /* Product ID */
650 char prl[4]; /* Product Revision Level */
651 };
652
653 /**
654 * InqStrCopy - string merge
655 * @a: string to copy from
656 * @b: string to copy to
657 *
658 * Copy a String from one location to another
659 * without copying \0
660 */
661
662 static void inqstrcpy(char *a, char *b)
663 {
664
665 while(*a != (char)0)
666 *b++ = *a++;
667 }
668
669 static char *container_types[] = {
670 "None",
671 "Volume",
672 "Mirror",
673 "Stripe",
674 "RAID5",
675 "SSRW",
676 "SSRO",
677 "Morph",
678 "Legacy",
679 "RAID4",
680 "RAID10",
681 "RAID00",
682 "V-MIRRORS",
683 "PSEUDO R4",
684 "RAID50",
685 "RAID5D",
686 "RAID5D0",
687 "RAID1E",
688 "RAID6",
689 "RAID60",
690 "Unknown"
691 };
692
693 char * get_container_type(unsigned tindex)
694 {
695 if (tindex >= ARRAY_SIZE(container_types))
696 tindex = ARRAY_SIZE(container_types) - 1;
697 return container_types[tindex];
698 }
699
700 /* Function: setinqstr
701 *
702 * Arguments: [1] pointer to void [1] int
703 *
704 * Purpose: Sets SCSI inquiry data strings for vendor, product
705 * and revision level. Allows strings to be set in platform dependant
706 * files instead of in OS dependant driver source.
707 */
708
709 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
710 {
711 struct scsi_inq *str;
712
713 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
714 memset(str, ' ', sizeof(*str));
715
716 if (dev->supplement_adapter_info.AdapterTypeText[0]) {
717 char * cp = dev->supplement_adapter_info.AdapterTypeText;
718 int c = sizeof(str->vid);
719 while (*cp && *cp != ' ' && --c)
720 ++cp;
721 c = *cp;
722 *cp = '\0';
723 inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
724 str->vid);
725 *cp = c;
726 while (*cp && *cp != ' ')
727 ++cp;
728 while (*cp == ' ')
729 ++cp;
730 /* last six chars reserved for vol type */
731 c = 0;
732 if (strlen(cp) > sizeof(str->pid)) {
733 c = cp[sizeof(str->pid)];
734 cp[sizeof(str->pid)] = '\0';
735 }
736 inqstrcpy (cp, str->pid);
737 if (c)
738 cp[sizeof(str->pid)] = c;
739 } else {
740 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
741
742 inqstrcpy (mp->vname, str->vid);
743 /* last six chars reserved for vol type */
744 inqstrcpy (mp->model, str->pid);
745 }
746
747 if (tindex < ARRAY_SIZE(container_types)){
748 char *findit = str->pid;
749
750 for ( ; *findit != ' '; findit++); /* walk till we find a space */
751 /* RAID is superfluous in the context of a RAID device */
752 if (memcmp(findit-4, "RAID", 4) == 0)
753 *(findit -= 4) = ' ';
754 if (((findit - str->pid) + strlen(container_types[tindex]))
755 < (sizeof(str->pid) + sizeof(str->prl)))
756 inqstrcpy (container_types[tindex], findit + 1);
757 }
758 inqstrcpy ("V1.0", str->prl);
759 }
760
761 static void get_container_serial_callback(void *context, struct fib * fibptr)
762 {
763 struct aac_get_serial_resp * get_serial_reply;
764 struct scsi_cmnd * scsicmd;
765
766 BUG_ON(fibptr == NULL);
767
768 scsicmd = (struct scsi_cmnd *) context;
769 if (!aac_valid_context(scsicmd, fibptr))
770 return;
771
772 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
773 /* Failure is irrelevant, using default value instead */
774 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
775 char sp[13];
776 /* EVPD bit set */
777 sp[0] = INQD_PDT_DA;
778 sp[1] = scsicmd->cmnd[2];
779 sp[2] = 0;
780 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
781 le32_to_cpu(get_serial_reply->uid));
782 aac_internal_transfer(scsicmd, sp, 0, sizeof(sp));
783 }
784
785 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
786
787 aac_fib_complete(fibptr);
788 aac_fib_free(fibptr);
789 scsicmd->scsi_done(scsicmd);
790 }
791
792 /**
793 * aac_get_container_serial - get container serial, none blocking.
794 */
795 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
796 {
797 int status;
798 struct aac_get_serial *dinfo;
799 struct fib * cmd_fibcontext;
800 struct aac_dev * dev;
801
802 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
803
804 if (!(cmd_fibcontext = aac_fib_alloc(dev)))
805 return -ENOMEM;
806
807 aac_fib_init(cmd_fibcontext);
808 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
809
810 dinfo->command = cpu_to_le32(VM_ContainerConfig);
811 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
812 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
813
814 status = aac_fib_send(ContainerCommand,
815 cmd_fibcontext,
816 sizeof (struct aac_get_serial),
817 FsaNormal,
818 0, 1,
819 (fib_callback) get_container_serial_callback,
820 (void *) scsicmd);
821
822 /*
823 * Check that the command queued to the controller
824 */
825 if (status == -EINPROGRESS) {
826 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
827 return 0;
828 }
829
830 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
831 aac_fib_complete(cmd_fibcontext);
832 aac_fib_free(cmd_fibcontext);
833 return -1;
834 }
835
836 /* Function: setinqserial
837 *
838 * Arguments: [1] pointer to void [1] int
839 *
840 * Purpose: Sets SCSI Unit Serial number.
841 * This is a fake. We should read a proper
842 * serial number from the container. <SuSE>But
843 * without docs it's quite hard to do it :-)
844 * So this will have to do in the meantime.</SuSE>
845 */
846
847 static int setinqserial(struct aac_dev *dev, void *data, int cid)
848 {
849 /*
850 * This breaks array migration.
851 */
852 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
853 le32_to_cpu(dev->adapter_info.serial[0]), cid);
854 }
855
856 static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
857 u8 a_sense_code, u8 incorrect_length,
858 u8 bit_pointer, u16 field_pointer,
859 u32 residue)
860 {
861 sense_buf[0] = 0xF0; /* Sense data valid, err code 70h (current error) */
862 sense_buf[1] = 0; /* Segment number, always zero */
863
864 if (incorrect_length) {
865 sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
866 sense_buf[3] = BYTE3(residue);
867 sense_buf[4] = BYTE2(residue);
868 sense_buf[5] = BYTE1(residue);
869 sense_buf[6] = BYTE0(residue);
870 } else
871 sense_buf[2] = sense_key; /* Sense key */
872
873 if (sense_key == ILLEGAL_REQUEST)
874 sense_buf[7] = 10; /* Additional sense length */
875 else
876 sense_buf[7] = 6; /* Additional sense length */
877
878 sense_buf[12] = sense_code; /* Additional sense code */
879 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
880 if (sense_key == ILLEGAL_REQUEST) {
881 sense_buf[15] = 0;
882
883 if (sense_code == SENCODE_INVALID_PARAM_FIELD)
884 sense_buf[15] = 0x80;/* Std sense key specific field */
885 /* Illegal parameter is in the parameter block */
886
887 if (sense_code == SENCODE_INVALID_CDB_FIELD)
888 sense_buf[15] = 0xc0;/* Std sense key specific field */
889 /* Illegal parameter is in the CDB block */
890 sense_buf[15] |= bit_pointer;
891 sense_buf[16] = field_pointer >> 8; /* MSB */
892 sense_buf[17] = field_pointer; /* LSB */
893 }
894 }
895
896 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
897 {
898 if (lba & 0xffffffff00000000LL) {
899 int cid = scmd_id(cmd);
900 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
901 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
902 SAM_STAT_CHECK_CONDITION;
903 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
904 HARDWARE_ERROR,
905 SENCODE_INTERNAL_TARGET_FAILURE,
906 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
907 0, 0);
908 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
909 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(cmd->sense_buffer))
910 ? sizeof(cmd->sense_buffer)
911 : sizeof(dev->fsa_dev[cid].sense_data));
912 cmd->scsi_done(cmd);
913 return 1;
914 }
915 return 0;
916 }
917
918 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
919 {
920 return 0;
921 }
922
923 static void io_callback(void *context, struct fib * fibptr);
924
925 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
926 {
927 u16 fibsize;
928 struct aac_raw_io *readcmd;
929 aac_fib_init(fib);
930 readcmd = (struct aac_raw_io *) fib_data(fib);
931 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
932 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
933 readcmd->count = cpu_to_le32(count<<9);
934 readcmd->cid = cpu_to_le16(scmd_id(cmd));
935 readcmd->flags = cpu_to_le16(IO_TYPE_READ);
936 readcmd->bpTotal = 0;
937 readcmd->bpComplete = 0;
938
939 aac_build_sgraw(cmd, &readcmd->sg);
940 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
941 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
942 /*
943 * Now send the Fib to the adapter
944 */
945 return aac_fib_send(ContainerRawIo,
946 fib,
947 fibsize,
948 FsaNormal,
949 0, 1,
950 (fib_callback) io_callback,
951 (void *) cmd);
952 }
953
954 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
955 {
956 u16 fibsize;
957 struct aac_read64 *readcmd;
958 aac_fib_init(fib);
959 readcmd = (struct aac_read64 *) fib_data(fib);
960 readcmd->command = cpu_to_le32(VM_CtHostRead64);
961 readcmd->cid = cpu_to_le16(scmd_id(cmd));
962 readcmd->sector_count = cpu_to_le16(count);
963 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
964 readcmd->pad = 0;
965 readcmd->flags = 0;
966
967 aac_build_sg64(cmd, &readcmd->sg);
968 fibsize = sizeof(struct aac_read64) +
969 ((le32_to_cpu(readcmd->sg.count) - 1) *
970 sizeof (struct sgentry64));
971 BUG_ON (fibsize > (fib->dev->max_fib_size -
972 sizeof(struct aac_fibhdr)));
973 /*
974 * Now send the Fib to the adapter
975 */
976 return aac_fib_send(ContainerCommand64,
977 fib,
978 fibsize,
979 FsaNormal,
980 0, 1,
981 (fib_callback) io_callback,
982 (void *) cmd);
983 }
984
985 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
986 {
987 u16 fibsize;
988 struct aac_read *readcmd;
989 aac_fib_init(fib);
990 readcmd = (struct aac_read *) fib_data(fib);
991 readcmd->command = cpu_to_le32(VM_CtBlockRead);
992 readcmd->cid = cpu_to_le32(scmd_id(cmd));
993 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
994 readcmd->count = cpu_to_le32(count * 512);
995
996 aac_build_sg(cmd, &readcmd->sg);
997 fibsize = sizeof(struct aac_read) +
998 ((le32_to_cpu(readcmd->sg.count) - 1) *
999 sizeof (struct sgentry));
1000 BUG_ON (fibsize > (fib->dev->max_fib_size -
1001 sizeof(struct aac_fibhdr)));
1002 /*
1003 * Now send the Fib to the adapter
1004 */
1005 return aac_fib_send(ContainerCommand,
1006 fib,
1007 fibsize,
1008 FsaNormal,
1009 0, 1,
1010 (fib_callback) io_callback,
1011 (void *) cmd);
1012 }
1013
1014 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1015 {
1016 u16 fibsize;
1017 struct aac_raw_io *writecmd;
1018 aac_fib_init(fib);
1019 writecmd = (struct aac_raw_io *) fib_data(fib);
1020 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1021 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1022 writecmd->count = cpu_to_le32(count<<9);
1023 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1024 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1025 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1026 cpu_to_le16(IO_TYPE_WRITE|IO_SUREWRITE) :
1027 cpu_to_le16(IO_TYPE_WRITE);
1028 writecmd->bpTotal = 0;
1029 writecmd->bpComplete = 0;
1030
1031 aac_build_sgraw(cmd, &writecmd->sg);
1032 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
1033 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1034 /*
1035 * Now send the Fib to the adapter
1036 */
1037 return aac_fib_send(ContainerRawIo,
1038 fib,
1039 fibsize,
1040 FsaNormal,
1041 0, 1,
1042 (fib_callback) io_callback,
1043 (void *) cmd);
1044 }
1045
1046 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1047 {
1048 u16 fibsize;
1049 struct aac_write64 *writecmd;
1050 aac_fib_init(fib);
1051 writecmd = (struct aac_write64 *) fib_data(fib);
1052 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1053 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1054 writecmd->sector_count = cpu_to_le16(count);
1055 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1056 writecmd->pad = 0;
1057 writecmd->flags = 0;
1058
1059 aac_build_sg64(cmd, &writecmd->sg);
1060 fibsize = sizeof(struct aac_write64) +
1061 ((le32_to_cpu(writecmd->sg.count) - 1) *
1062 sizeof (struct sgentry64));
1063 BUG_ON (fibsize > (fib->dev->max_fib_size -
1064 sizeof(struct aac_fibhdr)));
1065 /*
1066 * Now send the Fib to the adapter
1067 */
1068 return aac_fib_send(ContainerCommand64,
1069 fib,
1070 fibsize,
1071 FsaNormal,
1072 0, 1,
1073 (fib_callback) io_callback,
1074 (void *) cmd);
1075 }
1076
1077 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1078 {
1079 u16 fibsize;
1080 struct aac_write *writecmd;
1081 aac_fib_init(fib);
1082 writecmd = (struct aac_write *) fib_data(fib);
1083 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1084 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1085 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1086 writecmd->count = cpu_to_le32(count * 512);
1087 writecmd->sg.count = cpu_to_le32(1);
1088 /* ->stable is not used - it did mean which type of write */
1089
1090 aac_build_sg(cmd, &writecmd->sg);
1091 fibsize = sizeof(struct aac_write) +
1092 ((le32_to_cpu(writecmd->sg.count) - 1) *
1093 sizeof (struct sgentry));
1094 BUG_ON (fibsize > (fib->dev->max_fib_size -
1095 sizeof(struct aac_fibhdr)));
1096 /*
1097 * Now send the Fib to the adapter
1098 */
1099 return aac_fib_send(ContainerCommand,
1100 fib,
1101 fibsize,
1102 FsaNormal,
1103 0, 1,
1104 (fib_callback) io_callback,
1105 (void *) cmd);
1106 }
1107
1108 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1109 {
1110 struct aac_srb * srbcmd;
1111 u32 flag;
1112 u32 timeout;
1113
1114 aac_fib_init(fib);
1115 switch(cmd->sc_data_direction){
1116 case DMA_TO_DEVICE:
1117 flag = SRB_DataOut;
1118 break;
1119 case DMA_BIDIRECTIONAL:
1120 flag = SRB_DataIn | SRB_DataOut;
1121 break;
1122 case DMA_FROM_DEVICE:
1123 flag = SRB_DataIn;
1124 break;
1125 case DMA_NONE:
1126 default: /* shuts up some versions of gcc */
1127 flag = SRB_NoDataXfer;
1128 break;
1129 }
1130
1131 srbcmd = (struct aac_srb*) fib_data(fib);
1132 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1133 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1134 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1135 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1136 srbcmd->flags = cpu_to_le32(flag);
1137 timeout = cmd->timeout_per_command/HZ;
1138 if (timeout == 0)
1139 timeout = 1;
1140 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1141 srbcmd->retry_limit = 0; /* Obsolete parameter */
1142 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1143 return srbcmd;
1144 }
1145
1146 static void aac_srb_callback(void *context, struct fib * fibptr);
1147
1148 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1149 {
1150 u16 fibsize;
1151 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1152
1153 aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
1154 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1155
1156 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1157 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1158 /*
1159 * Build Scatter/Gather list
1160 */
1161 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1162 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1163 sizeof (struct sgentry64));
1164 BUG_ON (fibsize > (fib->dev->max_fib_size -
1165 sizeof(struct aac_fibhdr)));
1166
1167 /*
1168 * Now send the Fib to the adapter
1169 */
1170 return aac_fib_send(ScsiPortCommand64, fib,
1171 fibsize, FsaNormal, 0, 1,
1172 (fib_callback) aac_srb_callback,
1173 (void *) cmd);
1174 }
1175
1176 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1177 {
1178 u16 fibsize;
1179 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1180
1181 aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
1182 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1183
1184 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1185 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1186 /*
1187 * Build Scatter/Gather list
1188 */
1189 fibsize = sizeof (struct aac_srb) +
1190 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1191 sizeof (struct sgentry));
1192 BUG_ON (fibsize > (fib->dev->max_fib_size -
1193 sizeof(struct aac_fibhdr)));
1194
1195 /*
1196 * Now send the Fib to the adapter
1197 */
1198 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1199 (fib_callback) aac_srb_callback, (void *) cmd);
1200 }
1201
1202 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1203 {
1204 if ((sizeof(dma_addr_t) > 4) &&
1205 (num_physpages > (0xFFFFFFFFULL >> PAGE_SHIFT)) &&
1206 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1207 return FAILED;
1208 return aac_scsi_32(fib, cmd);
1209 }
1210
1211 int aac_get_adapter_info(struct aac_dev* dev)
1212 {
1213 struct fib* fibptr;
1214 int rcode;
1215 u32 tmp;
1216 struct aac_adapter_info *info;
1217 struct aac_bus_info *command;
1218 struct aac_bus_info_response *bus_info;
1219
1220 if (!(fibptr = aac_fib_alloc(dev)))
1221 return -ENOMEM;
1222
1223 aac_fib_init(fibptr);
1224 info = (struct aac_adapter_info *) fib_data(fibptr);
1225 memset(info,0,sizeof(*info));
1226
1227 rcode = aac_fib_send(RequestAdapterInfo,
1228 fibptr,
1229 sizeof(*info),
1230 FsaNormal,
1231 -1, 1, /* First `interrupt' command uses special wait */
1232 NULL,
1233 NULL);
1234
1235 if (rcode < 0) {
1236 aac_fib_complete(fibptr);
1237 aac_fib_free(fibptr);
1238 return rcode;
1239 }
1240 memcpy(&dev->adapter_info, info, sizeof(*info));
1241
1242 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1243 struct aac_supplement_adapter_info * info;
1244
1245 aac_fib_init(fibptr);
1246
1247 info = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1248
1249 memset(info,0,sizeof(*info));
1250
1251 rcode = aac_fib_send(RequestSupplementAdapterInfo,
1252 fibptr,
1253 sizeof(*info),
1254 FsaNormal,
1255 1, 1,
1256 NULL,
1257 NULL);
1258
1259 if (rcode >= 0)
1260 memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
1261 }
1262
1263
1264 /*
1265 * GetBusInfo
1266 */
1267
1268 aac_fib_init(fibptr);
1269
1270 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1271
1272 memset(bus_info, 0, sizeof(*bus_info));
1273
1274 command = (struct aac_bus_info *)bus_info;
1275
1276 command->Command = cpu_to_le32(VM_Ioctl);
1277 command->ObjType = cpu_to_le32(FT_DRIVE);
1278 command->MethodId = cpu_to_le32(1);
1279 command->CtlCmd = cpu_to_le32(GetBusInfo);
1280
1281 rcode = aac_fib_send(ContainerCommand,
1282 fibptr,
1283 sizeof (*bus_info),
1284 FsaNormal,
1285 1, 1,
1286 NULL, NULL);
1287
1288 /* reasoned default */
1289 dev->maximum_num_physicals = 16;
1290 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1291 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1292 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1293 }
1294
1295 if (!dev->in_reset) {
1296 char buffer[16];
1297 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1298 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1299 dev->name,
1300 dev->id,
1301 tmp>>24,
1302 (tmp>>16)&0xff,
1303 tmp&0xff,
1304 le32_to_cpu(dev->adapter_info.kernelbuild),
1305 (int)sizeof(dev->supplement_adapter_info.BuildDate),
1306 dev->supplement_adapter_info.BuildDate);
1307 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1308 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1309 dev->name, dev->id,
1310 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1311 le32_to_cpu(dev->adapter_info.monitorbuild));
1312 tmp = le32_to_cpu(dev->adapter_info.biosrev);
1313 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1314 dev->name, dev->id,
1315 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1316 le32_to_cpu(dev->adapter_info.biosbuild));
1317 buffer[0] = '\0';
1318 if (aac_show_serial_number(
1319 shost_to_class(dev->scsi_host_ptr), buffer))
1320 printk(KERN_INFO "%s%d: serial %s",
1321 dev->name, dev->id, buffer);
1322 if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1323 printk(KERN_INFO "%s%d: TSID %.*s\n",
1324 dev->name, dev->id,
1325 (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1326 dev->supplement_adapter_info.VpdInfo.Tsid);
1327 }
1328 if (!aac_check_reset ||
1329 ((aac_check_reset != 1) &&
1330 (dev->supplement_adapter_info.SupportedOptions2 &
1331 cpu_to_le32(AAC_OPTION_IGNORE_RESET)))) {
1332 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1333 dev->name, dev->id);
1334 }
1335 }
1336
1337 dev->cache_protected = 0;
1338 dev->nondasd_support = 0;
1339 dev->raid_scsi_mode = 0;
1340 if(dev->adapter_info.options & AAC_OPT_NONDASD)
1341 dev->nondasd_support = 1;
1342
1343 /*
1344 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1345 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1346 * force nondasd support on. If we decide to allow the non-dasd flag
1347 * additional changes changes will have to be made to support
1348 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
1349 * changed to support the new dev->raid_scsi_mode flag instead of
1350 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1351 * function aac_detect will have to be modified where it sets up the
1352 * max number of channels based on the aac->nondasd_support flag only.
1353 */
1354 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1355 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1356 dev->nondasd_support = 1;
1357 dev->raid_scsi_mode = 1;
1358 }
1359 if (dev->raid_scsi_mode != 0)
1360 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1361 dev->name, dev->id);
1362
1363 if (nondasd != -1)
1364 dev->nondasd_support = (nondasd!=0);
1365 if(dev->nondasd_support != 0) {
1366 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1367 }
1368
1369 dev->dac_support = 0;
1370 if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
1371 printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
1372 dev->dac_support = 1;
1373 }
1374
1375 if(dacmode != -1) {
1376 dev->dac_support = (dacmode!=0);
1377 }
1378 if(dev->dac_support != 0) {
1379 if (!pci_set_dma_mask(dev->pdev, DMA_64BIT_MASK) &&
1380 !pci_set_consistent_dma_mask(dev->pdev, DMA_64BIT_MASK)) {
1381 printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1382 dev->name, dev->id);
1383 } else if (!pci_set_dma_mask(dev->pdev, DMA_32BIT_MASK) &&
1384 !pci_set_consistent_dma_mask(dev->pdev, DMA_32BIT_MASK)) {
1385 printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1386 dev->name, dev->id);
1387 dev->dac_support = 0;
1388 } else {
1389 printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1390 dev->name, dev->id);
1391 rcode = -ENOMEM;
1392 }
1393 }
1394 /*
1395 * Deal with configuring for the individualized limits of each packet
1396 * interface.
1397 */
1398 dev->a_ops.adapter_scsi = (dev->dac_support)
1399 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
1400 ? aac_scsi_32_64
1401 : aac_scsi_64)
1402 : aac_scsi_32;
1403 if (dev->raw_io_interface) {
1404 dev->a_ops.adapter_bounds = (dev->raw_io_64)
1405 ? aac_bounds_64
1406 : aac_bounds_32;
1407 dev->a_ops.adapter_read = aac_read_raw_io;
1408 dev->a_ops.adapter_write = aac_write_raw_io;
1409 } else {
1410 dev->a_ops.adapter_bounds = aac_bounds_32;
1411 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1412 sizeof(struct aac_fibhdr) -
1413 sizeof(struct aac_write) + sizeof(struct sgentry)) /
1414 sizeof(struct sgentry);
1415 if (dev->dac_support) {
1416 dev->a_ops.adapter_read = aac_read_block64;
1417 dev->a_ops.adapter_write = aac_write_block64;
1418 /*
1419 * 38 scatter gather elements
1420 */
1421 dev->scsi_host_ptr->sg_tablesize =
1422 (dev->max_fib_size -
1423 sizeof(struct aac_fibhdr) -
1424 sizeof(struct aac_write64) +
1425 sizeof(struct sgentry64)) /
1426 sizeof(struct sgentry64);
1427 } else {
1428 dev->a_ops.adapter_read = aac_read_block;
1429 dev->a_ops.adapter_write = aac_write_block;
1430 }
1431 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1432 if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1433 /*
1434 * Worst case size that could cause sg overflow when
1435 * we break up SG elements that are larger than 64KB.
1436 * Would be nice if we could tell the SCSI layer what
1437 * the maximum SG element size can be. Worst case is
1438 * (sg_tablesize-1) 4KB elements with one 64KB
1439 * element.
1440 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
1441 */
1442 dev->scsi_host_ptr->max_sectors =
1443 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1444 }
1445 }
1446
1447 aac_fib_complete(fibptr);
1448 aac_fib_free(fibptr);
1449
1450 return rcode;
1451 }
1452
1453
1454 static void io_callback(void *context, struct fib * fibptr)
1455 {
1456 struct aac_dev *dev;
1457 struct aac_read_reply *readreply;
1458 struct scsi_cmnd *scsicmd;
1459 u32 cid;
1460
1461 scsicmd = (struct scsi_cmnd *) context;
1462
1463 if (!aac_valid_context(scsicmd, fibptr))
1464 return;
1465
1466 dev = fibptr->dev;
1467 cid = scmd_id(scsicmd);
1468
1469 if (nblank(dprintk(x))) {
1470 u64 lba;
1471 switch (scsicmd->cmnd[0]) {
1472 case WRITE_6:
1473 case READ_6:
1474 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1475 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1476 break;
1477 case WRITE_16:
1478 case READ_16:
1479 lba = ((u64)scsicmd->cmnd[2] << 56) |
1480 ((u64)scsicmd->cmnd[3] << 48) |
1481 ((u64)scsicmd->cmnd[4] << 40) |
1482 ((u64)scsicmd->cmnd[5] << 32) |
1483 ((u64)scsicmd->cmnd[6] << 24) |
1484 (scsicmd->cmnd[7] << 16) |
1485 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1486 break;
1487 case WRITE_12:
1488 case READ_12:
1489 lba = ((u64)scsicmd->cmnd[2] << 24) |
1490 (scsicmd->cmnd[3] << 16) |
1491 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1492 break;
1493 default:
1494 lba = ((u64)scsicmd->cmnd[2] << 24) |
1495 (scsicmd->cmnd[3] << 16) |
1496 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1497 break;
1498 }
1499 printk(KERN_DEBUG
1500 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1501 smp_processor_id(), (unsigned long long)lba, jiffies);
1502 }
1503
1504 BUG_ON(fibptr == NULL);
1505
1506 scsi_dma_unmap(scsicmd);
1507
1508 readreply = (struct aac_read_reply *)fib_data(fibptr);
1509 if (le32_to_cpu(readreply->status) == ST_OK)
1510 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1511 else {
1512 #ifdef AAC_DETAILED_STATUS_INFO
1513 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1514 le32_to_cpu(readreply->status));
1515 #endif
1516 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1517 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1518 HARDWARE_ERROR,
1519 SENCODE_INTERNAL_TARGET_FAILURE,
1520 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1521 0, 0);
1522 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1523 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1524 ? sizeof(scsicmd->sense_buffer)
1525 : sizeof(dev->fsa_dev[cid].sense_data));
1526 }
1527 aac_fib_complete(fibptr);
1528 aac_fib_free(fibptr);
1529
1530 scsicmd->scsi_done(scsicmd);
1531 }
1532
1533 static int aac_read(struct scsi_cmnd * scsicmd)
1534 {
1535 u64 lba;
1536 u32 count;
1537 int status;
1538 struct aac_dev *dev;
1539 struct fib * cmd_fibcontext;
1540
1541 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1542 /*
1543 * Get block address and transfer length
1544 */
1545 switch (scsicmd->cmnd[0]) {
1546 case READ_6:
1547 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1548
1549 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1550 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1551 count = scsicmd->cmnd[4];
1552
1553 if (count == 0)
1554 count = 256;
1555 break;
1556 case READ_16:
1557 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1558
1559 lba = ((u64)scsicmd->cmnd[2] << 56) |
1560 ((u64)scsicmd->cmnd[3] << 48) |
1561 ((u64)scsicmd->cmnd[4] << 40) |
1562 ((u64)scsicmd->cmnd[5] << 32) |
1563 ((u64)scsicmd->cmnd[6] << 24) |
1564 (scsicmd->cmnd[7] << 16) |
1565 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1566 count = (scsicmd->cmnd[10] << 24) |
1567 (scsicmd->cmnd[11] << 16) |
1568 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1569 break;
1570 case READ_12:
1571 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1572
1573 lba = ((u64)scsicmd->cmnd[2] << 24) |
1574 (scsicmd->cmnd[3] << 16) |
1575 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1576 count = (scsicmd->cmnd[6] << 24) |
1577 (scsicmd->cmnd[7] << 16) |
1578 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1579 break;
1580 default:
1581 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1582
1583 lba = ((u64)scsicmd->cmnd[2] << 24) |
1584 (scsicmd->cmnd[3] << 16) |
1585 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1586 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1587 break;
1588 }
1589 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1590 smp_processor_id(), (unsigned long long)lba, jiffies));
1591 if (aac_adapter_bounds(dev,scsicmd,lba))
1592 return 0;
1593 /*
1594 * Alocate and initialize a Fib
1595 */
1596 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1597 return -1;
1598 }
1599
1600 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1601
1602 /*
1603 * Check that the command queued to the controller
1604 */
1605 if (status == -EINPROGRESS) {
1606 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1607 return 0;
1608 }
1609
1610 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1611 /*
1612 * For some reason, the Fib didn't queue, return QUEUE_FULL
1613 */
1614 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1615 scsicmd->scsi_done(scsicmd);
1616 aac_fib_complete(cmd_fibcontext);
1617 aac_fib_free(cmd_fibcontext);
1618 return 0;
1619 }
1620
1621 static int aac_write(struct scsi_cmnd * scsicmd)
1622 {
1623 u64 lba;
1624 u32 count;
1625 int fua;
1626 int status;
1627 struct aac_dev *dev;
1628 struct fib * cmd_fibcontext;
1629
1630 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1631 /*
1632 * Get block address and transfer length
1633 */
1634 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
1635 {
1636 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1637 count = scsicmd->cmnd[4];
1638 if (count == 0)
1639 count = 256;
1640 fua = 0;
1641 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1642 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1643
1644 lba = ((u64)scsicmd->cmnd[2] << 56) |
1645 ((u64)scsicmd->cmnd[3] << 48) |
1646 ((u64)scsicmd->cmnd[4] << 40) |
1647 ((u64)scsicmd->cmnd[5] << 32) |
1648 ((u64)scsicmd->cmnd[6] << 24) |
1649 (scsicmd->cmnd[7] << 16) |
1650 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1651 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1652 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1653 fua = scsicmd->cmnd[1] & 0x8;
1654 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1655 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1656
1657 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1658 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1659 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1660 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1661 fua = scsicmd->cmnd[1] & 0x8;
1662 } else {
1663 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1664 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1665 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1666 fua = scsicmd->cmnd[1] & 0x8;
1667 }
1668 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1669 smp_processor_id(), (unsigned long long)lba, jiffies));
1670 if (aac_adapter_bounds(dev,scsicmd,lba))
1671 return 0;
1672 /*
1673 * Allocate and initialize a Fib then setup a BlockWrite command
1674 */
1675 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1676 scsicmd->result = DID_ERROR << 16;
1677 scsicmd->scsi_done(scsicmd);
1678 return 0;
1679 }
1680
1681 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
1682
1683 /*
1684 * Check that the command queued to the controller
1685 */
1686 if (status == -EINPROGRESS) {
1687 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1688 return 0;
1689 }
1690
1691 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1692 /*
1693 * For some reason, the Fib didn't queue, return QUEUE_FULL
1694 */
1695 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1696 scsicmd->scsi_done(scsicmd);
1697
1698 aac_fib_complete(cmd_fibcontext);
1699 aac_fib_free(cmd_fibcontext);
1700 return 0;
1701 }
1702
1703 static void synchronize_callback(void *context, struct fib *fibptr)
1704 {
1705 struct aac_synchronize_reply *synchronizereply;
1706 struct scsi_cmnd *cmd;
1707
1708 cmd = context;
1709
1710 if (!aac_valid_context(cmd, fibptr))
1711 return;
1712
1713 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1714 smp_processor_id(), jiffies));
1715 BUG_ON(fibptr == NULL);
1716
1717
1718 synchronizereply = fib_data(fibptr);
1719 if (le32_to_cpu(synchronizereply->status) == CT_OK)
1720 cmd->result = DID_OK << 16 |
1721 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1722 else {
1723 struct scsi_device *sdev = cmd->device;
1724 struct aac_dev *dev = fibptr->dev;
1725 u32 cid = sdev_id(sdev);
1726 printk(KERN_WARNING
1727 "synchronize_callback: synchronize failed, status = %d\n",
1728 le32_to_cpu(synchronizereply->status));
1729 cmd->result = DID_OK << 16 |
1730 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1731 set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
1732 HARDWARE_ERROR,
1733 SENCODE_INTERNAL_TARGET_FAILURE,
1734 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1735 0, 0);
1736 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1737 min(sizeof(dev->fsa_dev[cid].sense_data),
1738 sizeof(cmd->sense_buffer)));
1739 }
1740
1741 aac_fib_complete(fibptr);
1742 aac_fib_free(fibptr);
1743 cmd->scsi_done(cmd);
1744 }
1745
1746 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1747 {
1748 int status;
1749 struct fib *cmd_fibcontext;
1750 struct aac_synchronize *synchronizecmd;
1751 struct scsi_cmnd *cmd;
1752 struct scsi_device *sdev = scsicmd->device;
1753 int active = 0;
1754 struct aac_dev *aac;
1755 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
1756 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1757 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1758 unsigned long flags;
1759
1760 /*
1761 * Wait for all outstanding queued commands to complete to this
1762 * specific target (block).
1763 */
1764 spin_lock_irqsave(&sdev->list_lock, flags);
1765 list_for_each_entry(cmd, &sdev->cmd_list, list)
1766 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1767 u64 cmnd_lba;
1768 u32 cmnd_count;
1769
1770 if (cmd->cmnd[0] == WRITE_6) {
1771 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
1772 (cmd->cmnd[2] << 8) |
1773 cmd->cmnd[3];
1774 cmnd_count = cmd->cmnd[4];
1775 if (cmnd_count == 0)
1776 cmnd_count = 256;
1777 } else if (cmd->cmnd[0] == WRITE_16) {
1778 cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
1779 ((u64)cmd->cmnd[3] << 48) |
1780 ((u64)cmd->cmnd[4] << 40) |
1781 ((u64)cmd->cmnd[5] << 32) |
1782 ((u64)cmd->cmnd[6] << 24) |
1783 (cmd->cmnd[7] << 16) |
1784 (cmd->cmnd[8] << 8) |
1785 cmd->cmnd[9];
1786 cmnd_count = (cmd->cmnd[10] << 24) |
1787 (cmd->cmnd[11] << 16) |
1788 (cmd->cmnd[12] << 8) |
1789 cmd->cmnd[13];
1790 } else if (cmd->cmnd[0] == WRITE_12) {
1791 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1792 (cmd->cmnd[3] << 16) |
1793 (cmd->cmnd[4] << 8) |
1794 cmd->cmnd[5];
1795 cmnd_count = (cmd->cmnd[6] << 24) |
1796 (cmd->cmnd[7] << 16) |
1797 (cmd->cmnd[8] << 8) |
1798 cmd->cmnd[9];
1799 } else if (cmd->cmnd[0] == WRITE_10) {
1800 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1801 (cmd->cmnd[3] << 16) |
1802 (cmd->cmnd[4] << 8) |
1803 cmd->cmnd[5];
1804 cmnd_count = (cmd->cmnd[7] << 8) |
1805 cmd->cmnd[8];
1806 } else
1807 continue;
1808 if (((cmnd_lba + cmnd_count) < lba) ||
1809 (count && ((lba + count) < cmnd_lba)))
1810 continue;
1811 ++active;
1812 break;
1813 }
1814
1815 spin_unlock_irqrestore(&sdev->list_lock, flags);
1816
1817 /*
1818 * Yield the processor (requeue for later)
1819 */
1820 if (active)
1821 return SCSI_MLQUEUE_DEVICE_BUSY;
1822
1823 aac = (struct aac_dev *)sdev->host->hostdata;
1824 if (aac->in_reset)
1825 return SCSI_MLQUEUE_HOST_BUSY;
1826
1827 /*
1828 * Allocate and initialize a Fib
1829 */
1830 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1831 return SCSI_MLQUEUE_HOST_BUSY;
1832
1833 aac_fib_init(cmd_fibcontext);
1834
1835 synchronizecmd = fib_data(cmd_fibcontext);
1836 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1837 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1838 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
1839 synchronizecmd->count =
1840 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1841
1842 /*
1843 * Now send the Fib to the adapter
1844 */
1845 status = aac_fib_send(ContainerCommand,
1846 cmd_fibcontext,
1847 sizeof(struct aac_synchronize),
1848 FsaNormal,
1849 0, 1,
1850 (fib_callback)synchronize_callback,
1851 (void *)scsicmd);
1852
1853 /*
1854 * Check that the command queued to the controller
1855 */
1856 if (status == -EINPROGRESS) {
1857 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1858 return 0;
1859 }
1860
1861 printk(KERN_WARNING
1862 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1863 aac_fib_complete(cmd_fibcontext);
1864 aac_fib_free(cmd_fibcontext);
1865 return SCSI_MLQUEUE_HOST_BUSY;
1866 }
1867
1868 /**
1869 * aac_scsi_cmd() - Process SCSI command
1870 * @scsicmd: SCSI command block
1871 *
1872 * Emulate a SCSI command and queue the required request for the
1873 * aacraid firmware.
1874 */
1875
1876 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1877 {
1878 u32 cid;
1879 struct Scsi_Host *host = scsicmd->device->host;
1880 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1881 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1882
1883 if (fsa_dev_ptr == NULL)
1884 return -1;
1885 /*
1886 * If the bus, id or lun is out of range, return fail
1887 * Test does not apply to ID 16, the pseudo id for the controller
1888 * itself.
1889 */
1890 cid = scmd_id(scsicmd);
1891 if (cid != host->this_id) {
1892 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
1893 if((cid >= dev->maximum_num_containers) ||
1894 (scsicmd->device->lun != 0)) {
1895 scsicmd->result = DID_NO_CONNECT << 16;
1896 scsicmd->scsi_done(scsicmd);
1897 return 0;
1898 }
1899
1900 /*
1901 * If the target container doesn't exist, it may have
1902 * been newly created
1903 */
1904 if ((fsa_dev_ptr[cid].valid & 1) == 0) {
1905 switch (scsicmd->cmnd[0]) {
1906 case SERVICE_ACTION_IN:
1907 if (!(dev->raw_io_interface) ||
1908 !(dev->raw_io_64) ||
1909 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1910 break;
1911 case INQUIRY:
1912 case READ_CAPACITY:
1913 case TEST_UNIT_READY:
1914 if (dev->in_reset)
1915 return -1;
1916 return _aac_probe_container(scsicmd,
1917 aac_probe_container_callback2);
1918 default:
1919 break;
1920 }
1921 }
1922 } else { /* check for physical non-dasd devices */
1923 if ((dev->nondasd_support == 1) || expose_physicals) {
1924 if (dev->in_reset)
1925 return -1;
1926 return aac_send_srb_fib(scsicmd);
1927 } else {
1928 scsicmd->result = DID_NO_CONNECT << 16;
1929 scsicmd->scsi_done(scsicmd);
1930 return 0;
1931 }
1932 }
1933 }
1934 /*
1935 * else Command for the controller itself
1936 */
1937 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
1938 (scsicmd->cmnd[0] != TEST_UNIT_READY))
1939 {
1940 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
1941 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1942 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1943 ILLEGAL_REQUEST,
1944 SENCODE_INVALID_COMMAND,
1945 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1946 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1947 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1948 ? sizeof(scsicmd->sense_buffer)
1949 : sizeof(dev->fsa_dev[cid].sense_data));
1950 scsicmd->scsi_done(scsicmd);
1951 return 0;
1952 }
1953
1954
1955 /* Handle commands here that don't really require going out to the adapter */
1956 switch (scsicmd->cmnd[0]) {
1957 case INQUIRY:
1958 {
1959 struct inquiry_data inq_data;
1960
1961 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
1962 memset(&inq_data, 0, sizeof (struct inquiry_data));
1963
1964 if (scsicmd->cmnd[1] & 0x1 ) {
1965 char *arr = (char *)&inq_data;
1966
1967 /* EVPD bit set */
1968 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
1969 INQD_PDT_PROC : INQD_PDT_DA;
1970 if (scsicmd->cmnd[2] == 0) {
1971 /* supported vital product data pages */
1972 arr[3] = 2;
1973 arr[4] = 0x0;
1974 arr[5] = 0x80;
1975 arr[1] = scsicmd->cmnd[2];
1976 aac_internal_transfer(scsicmd, &inq_data, 0,
1977 sizeof(inq_data));
1978 scsicmd->result = DID_OK << 16 |
1979 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1980 } else if (scsicmd->cmnd[2] == 0x80) {
1981 /* unit serial number page */
1982 arr[3] = setinqserial(dev, &arr[4],
1983 scmd_id(scsicmd));
1984 arr[1] = scsicmd->cmnd[2];
1985 aac_internal_transfer(scsicmd, &inq_data, 0,
1986 sizeof(inq_data));
1987 return aac_get_container_serial(scsicmd);
1988 } else {
1989 /* vpd page not implemented */
1990 scsicmd->result = DID_OK << 16 |
1991 COMMAND_COMPLETE << 8 |
1992 SAM_STAT_CHECK_CONDITION;
1993 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1994 ILLEGAL_REQUEST,
1995 SENCODE_INVALID_CDB_FIELD,
1996 ASENCODE_NO_SENSE, 0, 7, 2, 0);
1997 memcpy(scsicmd->sense_buffer,
1998 &dev->fsa_dev[cid].sense_data,
1999 (sizeof(dev->fsa_dev[cid].sense_data) >
2000 sizeof(scsicmd->sense_buffer))
2001 ? sizeof(scsicmd->sense_buffer)
2002 : sizeof(dev->fsa_dev[cid].sense_data));
2003 }
2004 scsicmd->scsi_done(scsicmd);
2005 return 0;
2006 }
2007 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
2008 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2009 inq_data.inqd_len = 31;
2010 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
2011 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
2012 /*
2013 * Set the Vendor, Product, and Revision Level
2014 * see: <vendor>.c i.e. aac.c
2015 */
2016 if (cid == host->this_id) {
2017 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2018 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
2019 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
2020 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2021 scsicmd->scsi_done(scsicmd);
2022 return 0;
2023 }
2024 if (dev->in_reset)
2025 return -1;
2026 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2027 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
2028 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
2029 return aac_get_container_name(scsicmd);
2030 }
2031 case SERVICE_ACTION_IN:
2032 if (!(dev->raw_io_interface) ||
2033 !(dev->raw_io_64) ||
2034 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2035 break;
2036 {
2037 u64 capacity;
2038 char cp[13];
2039
2040 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2041 capacity = fsa_dev_ptr[cid].size - 1;
2042 cp[0] = (capacity >> 56) & 0xff;
2043 cp[1] = (capacity >> 48) & 0xff;
2044 cp[2] = (capacity >> 40) & 0xff;
2045 cp[3] = (capacity >> 32) & 0xff;
2046 cp[4] = (capacity >> 24) & 0xff;
2047 cp[5] = (capacity >> 16) & 0xff;
2048 cp[6] = (capacity >> 8) & 0xff;
2049 cp[7] = (capacity >> 0) & 0xff;
2050 cp[8] = 0;
2051 cp[9] = 0;
2052 cp[10] = 2;
2053 cp[11] = 0;
2054 cp[12] = 0;
2055 aac_internal_transfer(scsicmd, cp, 0,
2056 min_t(size_t, scsicmd->cmnd[13], sizeof(cp)));
2057 if (sizeof(cp) < scsicmd->cmnd[13]) {
2058 unsigned int len, offset = sizeof(cp);
2059
2060 memset(cp, 0, offset);
2061 do {
2062 len = min_t(size_t, scsicmd->cmnd[13] - offset,
2063 sizeof(cp));
2064 aac_internal_transfer(scsicmd, cp, offset, len);
2065 } while ((offset += len) < scsicmd->cmnd[13]);
2066 }
2067
2068 /* Do not cache partition table for arrays */
2069 scsicmd->device->removable = 1;
2070
2071 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2072 scsicmd->scsi_done(scsicmd);
2073
2074 return 0;
2075 }
2076
2077 case READ_CAPACITY:
2078 {
2079 u32 capacity;
2080 char cp[8];
2081
2082 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2083 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2084 capacity = fsa_dev_ptr[cid].size - 1;
2085 else
2086 capacity = (u32)-1;
2087
2088 cp[0] = (capacity >> 24) & 0xff;
2089 cp[1] = (capacity >> 16) & 0xff;
2090 cp[2] = (capacity >> 8) & 0xff;
2091 cp[3] = (capacity >> 0) & 0xff;
2092 cp[4] = 0;
2093 cp[5] = 0;
2094 cp[6] = 2;
2095 cp[7] = 0;
2096 aac_internal_transfer(scsicmd, cp, 0, sizeof(cp));
2097 /* Do not cache partition table for arrays */
2098 scsicmd->device->removable = 1;
2099
2100 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2101 scsicmd->scsi_done(scsicmd);
2102
2103 return 0;
2104 }
2105
2106 case MODE_SENSE:
2107 {
2108 char mode_buf[7];
2109 int mode_buf_length = 4;
2110
2111 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2112 mode_buf[0] = 3; /* Mode data length */
2113 mode_buf[1] = 0; /* Medium type - default */
2114 mode_buf[2] = 0; /* Device-specific param,
2115 bit 8: 0/1 = write enabled/protected
2116 bit 4: 0/1 = FUA enabled */
2117 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2118 mode_buf[2] = 0x10;
2119 mode_buf[3] = 0; /* Block descriptor length */
2120 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2121 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2122 mode_buf[0] = 6;
2123 mode_buf[4] = 8;
2124 mode_buf[5] = 1;
2125 mode_buf[6] = ((aac_cache & 6) == 2)
2126 ? 0 : 0x04; /* WCE */
2127 mode_buf_length = 7;
2128 if (mode_buf_length > scsicmd->cmnd[4])
2129 mode_buf_length = scsicmd->cmnd[4];
2130 }
2131 aac_internal_transfer(scsicmd, mode_buf, 0, mode_buf_length);
2132 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2133 scsicmd->scsi_done(scsicmd);
2134
2135 return 0;
2136 }
2137 case MODE_SENSE_10:
2138 {
2139 char mode_buf[11];
2140 int mode_buf_length = 8;
2141
2142 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2143 mode_buf[0] = 0; /* Mode data length (MSB) */
2144 mode_buf[1] = 6; /* Mode data length (LSB) */
2145 mode_buf[2] = 0; /* Medium type - default */
2146 mode_buf[3] = 0; /* Device-specific param,
2147 bit 8: 0/1 = write enabled/protected
2148 bit 4: 0/1 = FUA enabled */
2149 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2150 mode_buf[3] = 0x10;
2151 mode_buf[4] = 0; /* reserved */
2152 mode_buf[5] = 0; /* reserved */
2153 mode_buf[6] = 0; /* Block descriptor length (MSB) */
2154 mode_buf[7] = 0; /* Block descriptor length (LSB) */
2155 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2156 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2157 mode_buf[1] = 9;
2158 mode_buf[8] = 8;
2159 mode_buf[9] = 1;
2160 mode_buf[10] = ((aac_cache & 6) == 2)
2161 ? 0 : 0x04; /* WCE */
2162 mode_buf_length = 11;
2163 if (mode_buf_length > scsicmd->cmnd[8])
2164 mode_buf_length = scsicmd->cmnd[8];
2165 }
2166 aac_internal_transfer(scsicmd, mode_buf, 0, mode_buf_length);
2167
2168 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2169 scsicmd->scsi_done(scsicmd);
2170
2171 return 0;
2172 }
2173 case REQUEST_SENSE:
2174 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2175 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2176 memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2177 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2178 scsicmd->scsi_done(scsicmd);
2179 return 0;
2180
2181 case ALLOW_MEDIUM_REMOVAL:
2182 dprintk((KERN_DEBUG "LOCK command.\n"));
2183 if (scsicmd->cmnd[4])
2184 fsa_dev_ptr[cid].locked = 1;
2185 else
2186 fsa_dev_ptr[cid].locked = 0;
2187
2188 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2189 scsicmd->scsi_done(scsicmd);
2190 return 0;
2191 /*
2192 * These commands are all No-Ops
2193 */
2194 case TEST_UNIT_READY:
2195 case RESERVE:
2196 case RELEASE:
2197 case REZERO_UNIT:
2198 case REASSIGN_BLOCKS:
2199 case SEEK_10:
2200 case START_STOP:
2201 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2202 scsicmd->scsi_done(scsicmd);
2203 return 0;
2204 }
2205
2206 switch (scsicmd->cmnd[0])
2207 {
2208 case READ_6:
2209 case READ_10:
2210 case READ_12:
2211 case READ_16:
2212 if (dev->in_reset)
2213 return -1;
2214 /*
2215 * Hack to keep track of ordinal number of the device that
2216 * corresponds to a container. Needed to convert
2217 * containers to /dev/sd device names
2218 */
2219
2220 if (scsicmd->request->rq_disk)
2221 strlcpy(fsa_dev_ptr[cid].devname,
2222 scsicmd->request->rq_disk->disk_name,
2223 min(sizeof(fsa_dev_ptr[cid].devname),
2224 sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2225
2226 return aac_read(scsicmd);
2227
2228 case WRITE_6:
2229 case WRITE_10:
2230 case WRITE_12:
2231 case WRITE_16:
2232 if (dev->in_reset)
2233 return -1;
2234 return aac_write(scsicmd);
2235
2236 case SYNCHRONIZE_CACHE:
2237 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2238 scsicmd->result = DID_OK << 16 |
2239 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2240 scsicmd->scsi_done(scsicmd);
2241 return 0;
2242 }
2243 /* Issue FIB to tell Firmware to flush it's cache */
2244 if ((aac_cache & 6) != 2)
2245 return aac_synchronize(scsicmd);
2246 /* FALLTHRU */
2247 default:
2248 /*
2249 * Unhandled commands
2250 */
2251 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2252 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2253 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
2254 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2255 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
2256 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2257 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
2258 ? sizeof(scsicmd->sense_buffer)
2259 : sizeof(dev->fsa_dev[cid].sense_data));
2260 scsicmd->scsi_done(scsicmd);
2261 return 0;
2262 }
2263 }
2264
2265 static int query_disk(struct aac_dev *dev, void __user *arg)
2266 {
2267 struct aac_query_disk qd;
2268 struct fsa_dev_info *fsa_dev_ptr;
2269
2270 fsa_dev_ptr = dev->fsa_dev;
2271 if (!fsa_dev_ptr)
2272 return -EBUSY;
2273 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2274 return -EFAULT;
2275 if (qd.cnum == -1)
2276 qd.cnum = qd.id;
2277 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2278 {
2279 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2280 return -EINVAL;
2281 qd.instance = dev->scsi_host_ptr->host_no;
2282 qd.bus = 0;
2283 qd.id = CONTAINER_TO_ID(qd.cnum);
2284 qd.lun = CONTAINER_TO_LUN(qd.cnum);
2285 }
2286 else return -EINVAL;
2287
2288 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2289 qd.locked = fsa_dev_ptr[qd.cnum].locked;
2290 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2291
2292 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2293 qd.unmapped = 1;
2294 else
2295 qd.unmapped = 0;
2296
2297 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2298 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2299
2300 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2301 return -EFAULT;
2302 return 0;
2303 }
2304
2305 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2306 {
2307 struct aac_delete_disk dd;
2308 struct fsa_dev_info *fsa_dev_ptr;
2309
2310 fsa_dev_ptr = dev->fsa_dev;
2311 if (!fsa_dev_ptr)
2312 return -EBUSY;
2313
2314 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2315 return -EFAULT;
2316
2317 if (dd.cnum >= dev->maximum_num_containers)
2318 return -EINVAL;
2319 /*
2320 * Mark this container as being deleted.
2321 */
2322 fsa_dev_ptr[dd.cnum].deleted = 1;
2323 /*
2324 * Mark the container as no longer valid
2325 */
2326 fsa_dev_ptr[dd.cnum].valid = 0;
2327 return 0;
2328 }
2329
2330 static int delete_disk(struct aac_dev *dev, void __user *arg)
2331 {
2332 struct aac_delete_disk dd;
2333 struct fsa_dev_info *fsa_dev_ptr;
2334
2335 fsa_dev_ptr = dev->fsa_dev;
2336 if (!fsa_dev_ptr)
2337 return -EBUSY;
2338
2339 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2340 return -EFAULT;
2341
2342 if (dd.cnum >= dev->maximum_num_containers)
2343 return -EINVAL;
2344 /*
2345 * If the container is locked, it can not be deleted by the API.
2346 */
2347 if (fsa_dev_ptr[dd.cnum].locked)
2348 return -EBUSY;
2349 else {
2350 /*
2351 * Mark the container as no longer being valid.
2352 */
2353 fsa_dev_ptr[dd.cnum].valid = 0;
2354 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2355 return 0;
2356 }
2357 }
2358
2359 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2360 {
2361 switch (cmd) {
2362 case FSACTL_QUERY_DISK:
2363 return query_disk(dev, arg);
2364 case FSACTL_DELETE_DISK:
2365 return delete_disk(dev, arg);
2366 case FSACTL_FORCE_DELETE_DISK:
2367 return force_delete_disk(dev, arg);
2368 case FSACTL_GET_CONTAINERS:
2369 return aac_get_containers(dev);
2370 default:
2371 return -ENOTTY;
2372 }
2373 }
2374
2375 /**
2376 *
2377 * aac_srb_callback
2378 * @context: the context set in the fib - here it is scsi cmd
2379 * @fibptr: pointer to the fib
2380 *
2381 * Handles the completion of a scsi command to a non dasd device
2382 *
2383 */
2384
2385 static void aac_srb_callback(void *context, struct fib * fibptr)
2386 {
2387 struct aac_dev *dev;
2388 struct aac_srb_reply *srbreply;
2389 struct scsi_cmnd *scsicmd;
2390
2391 scsicmd = (struct scsi_cmnd *) context;
2392
2393 if (!aac_valid_context(scsicmd, fibptr))
2394 return;
2395
2396 BUG_ON(fibptr == NULL);
2397
2398 dev = fibptr->dev;
2399
2400 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2401
2402 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
2403 /*
2404 * Calculate resid for sg
2405 */
2406
2407 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2408 - le32_to_cpu(srbreply->data_xfer_length));
2409
2410 scsi_dma_unmap(scsicmd);
2411
2412 /*
2413 * First check the fib status
2414 */
2415
2416 if (le32_to_cpu(srbreply->status) != ST_OK){
2417 int len;
2418 printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2419 len = (le32_to_cpu(srbreply->sense_data_size) >
2420 sizeof(scsicmd->sense_buffer)) ?
2421 sizeof(scsicmd->sense_buffer) :
2422 le32_to_cpu(srbreply->sense_data_size);
2423 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2424 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2425 }
2426
2427 /*
2428 * Next check the srb status
2429 */
2430 switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2431 case SRB_STATUS_ERROR_RECOVERY:
2432 case SRB_STATUS_PENDING:
2433 case SRB_STATUS_SUCCESS:
2434 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2435 break;
2436 case SRB_STATUS_DATA_OVERRUN:
2437 switch(scsicmd->cmnd[0]){
2438 case READ_6:
2439 case WRITE_6:
2440 case READ_10:
2441 case WRITE_10:
2442 case READ_12:
2443 case WRITE_12:
2444 case READ_16:
2445 case WRITE_16:
2446 if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
2447 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2448 } else {
2449 printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2450 }
2451 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2452 break;
2453 case INQUIRY: {
2454 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2455 break;
2456 }
2457 default:
2458 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2459 break;
2460 }
2461 break;
2462 case SRB_STATUS_ABORTED:
2463 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2464 break;
2465 case SRB_STATUS_ABORT_FAILED:
2466 // Not sure about this one - but assuming the hba was trying to abort for some reason
2467 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2468 break;
2469 case SRB_STATUS_PARITY_ERROR:
2470 scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2471 break;
2472 case SRB_STATUS_NO_DEVICE:
2473 case SRB_STATUS_INVALID_PATH_ID:
2474 case SRB_STATUS_INVALID_TARGET_ID:
2475 case SRB_STATUS_INVALID_LUN:
2476 case SRB_STATUS_SELECTION_TIMEOUT:
2477 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2478 break;
2479
2480 case SRB_STATUS_COMMAND_TIMEOUT:
2481 case SRB_STATUS_TIMEOUT:
2482 scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2483 break;
2484
2485 case SRB_STATUS_BUSY:
2486 scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
2487 break;
2488
2489 case SRB_STATUS_BUS_RESET:
2490 scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2491 break;
2492
2493 case SRB_STATUS_MESSAGE_REJECTED:
2494 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2495 break;
2496 case SRB_STATUS_REQUEST_FLUSHED:
2497 case SRB_STATUS_ERROR:
2498 case SRB_STATUS_INVALID_REQUEST:
2499 case SRB_STATUS_REQUEST_SENSE_FAILED:
2500 case SRB_STATUS_NO_HBA:
2501 case SRB_STATUS_UNEXPECTED_BUS_FREE:
2502 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2503 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2504 case SRB_STATUS_DELAYED_RETRY:
2505 case SRB_STATUS_BAD_FUNCTION:
2506 case SRB_STATUS_NOT_STARTED:
2507 case SRB_STATUS_NOT_IN_USE:
2508 case SRB_STATUS_FORCE_ABORT:
2509 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2510 default:
2511 #ifdef AAC_DETAILED_STATUS_INFO
2512 printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2513 le32_to_cpu(srbreply->srb_status) & 0x3F,
2514 aac_get_status_string(
2515 le32_to_cpu(srbreply->srb_status) & 0x3F),
2516 scsicmd->cmnd[0],
2517 le32_to_cpu(srbreply->scsi_status));
2518 #endif
2519 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2520 break;
2521 }
2522 if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){ // Check Condition
2523 int len;
2524 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2525 len = (le32_to_cpu(srbreply->sense_data_size) >
2526 sizeof(scsicmd->sense_buffer)) ?
2527 sizeof(scsicmd->sense_buffer) :
2528 le32_to_cpu(srbreply->sense_data_size);
2529 #ifdef AAC_DETAILED_STATUS_INFO
2530 printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2531 le32_to_cpu(srbreply->status), len);
2532 #endif
2533 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2534
2535 }
2536 /*
2537 * OR in the scsi status (already shifted up a bit)
2538 */
2539 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2540
2541 aac_fib_complete(fibptr);
2542 aac_fib_free(fibptr);
2543 scsicmd->scsi_done(scsicmd);
2544 }
2545
2546 /**
2547 *
2548 * aac_send_scb_fib
2549 * @scsicmd: the scsi command block
2550 *
2551 * This routine will form a FIB and fill in the aac_srb from the
2552 * scsicmd passed in.
2553 */
2554
2555 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2556 {
2557 struct fib* cmd_fibcontext;
2558 struct aac_dev* dev;
2559 int status;
2560
2561 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2562 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2563 scsicmd->device->lun > 7) {
2564 scsicmd->result = DID_NO_CONNECT << 16;
2565 scsicmd->scsi_done(scsicmd);
2566 return 0;
2567 }
2568
2569 /*
2570 * Allocate and initialize a Fib then setup a BlockWrite command
2571 */
2572 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2573 return -1;
2574 }
2575 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2576
2577 /*
2578 * Check that the command queued to the controller
2579 */
2580 if (status == -EINPROGRESS) {
2581 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2582 return 0;
2583 }
2584
2585 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2586 aac_fib_complete(cmd_fibcontext);
2587 aac_fib_free(cmd_fibcontext);
2588
2589 return -1;
2590 }
2591
2592 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2593 {
2594 struct aac_dev *dev;
2595 unsigned long byte_count = 0;
2596 int nseg;
2597
2598 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2599 // Get rid of old data
2600 psg->count = 0;
2601 psg->sg[0].addr = 0;
2602 psg->sg[0].count = 0;
2603
2604 nseg = scsi_dma_map(scsicmd);
2605 BUG_ON(nseg < 0);
2606 if (nseg) {
2607 struct scatterlist *sg;
2608 int i;
2609
2610 psg->count = cpu_to_le32(nseg);
2611
2612 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2613 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2614 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2615 byte_count += sg_dma_len(sg);
2616 }
2617 /* hba wants the size to be exact */
2618 if (byte_count > scsi_bufflen(scsicmd)) {
2619 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2620 (byte_count - scsi_bufflen(scsicmd));
2621 psg->sg[i-1].count = cpu_to_le32(temp);
2622 byte_count = scsi_bufflen(scsicmd);
2623 }
2624 /* Check for command underflow */
2625 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2626 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2627 byte_count, scsicmd->underflow);
2628 }
2629 }
2630 return byte_count;
2631 }
2632
2633
2634 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2635 {
2636 struct aac_dev *dev;
2637 unsigned long byte_count = 0;
2638 u64 addr;
2639 int nseg;
2640
2641 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2642 // Get rid of old data
2643 psg->count = 0;
2644 psg->sg[0].addr[0] = 0;
2645 psg->sg[0].addr[1] = 0;
2646 psg->sg[0].count = 0;
2647
2648 nseg = scsi_dma_map(scsicmd);
2649 BUG_ON(nseg < 0);
2650 if (nseg) {
2651 struct scatterlist *sg;
2652 int i;
2653
2654 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2655 int count = sg_dma_len(sg);
2656 addr = sg_dma_address(sg);
2657 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2658 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2659 psg->sg[i].count = cpu_to_le32(count);
2660 byte_count += count;
2661 }
2662 psg->count = cpu_to_le32(nseg);
2663 /* hba wants the size to be exact */
2664 if (byte_count > scsi_bufflen(scsicmd)) {
2665 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2666 (byte_count - scsi_bufflen(scsicmd));
2667 psg->sg[i-1].count = cpu_to_le32(temp);
2668 byte_count = scsi_bufflen(scsicmd);
2669 }
2670 /* Check for command underflow */
2671 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2672 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2673 byte_count, scsicmd->underflow);
2674 }
2675 }
2676 return byte_count;
2677 }
2678
2679 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2680 {
2681 unsigned long byte_count = 0;
2682 int nseg;
2683
2684 // Get rid of old data
2685 psg->count = 0;
2686 psg->sg[0].next = 0;
2687 psg->sg[0].prev = 0;
2688 psg->sg[0].addr[0] = 0;
2689 psg->sg[0].addr[1] = 0;
2690 psg->sg[0].count = 0;
2691 psg->sg[0].flags = 0;
2692
2693 nseg = scsi_dma_map(scsicmd);
2694 BUG_ON(nseg < 0);
2695 if (nseg) {
2696 struct scatterlist *sg;
2697 int i;
2698
2699 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2700 int count = sg_dma_len(sg);
2701 u64 addr = sg_dma_address(sg);
2702 psg->sg[i].next = 0;
2703 psg->sg[i].prev = 0;
2704 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2705 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2706 psg->sg[i].count = cpu_to_le32(count);
2707 psg->sg[i].flags = 0;
2708 byte_count += count;
2709 }
2710 psg->count = cpu_to_le32(nseg);
2711 /* hba wants the size to be exact */
2712 if (byte_count > scsi_bufflen(scsicmd)) {
2713 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2714 (byte_count - scsi_bufflen(scsicmd));
2715 psg->sg[i-1].count = cpu_to_le32(temp);
2716 byte_count = scsi_bufflen(scsicmd);
2717 }
2718 /* Check for command underflow */
2719 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2720 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2721 byte_count, scsicmd->underflow);
2722 }
2723 }
2724 return byte_count;
2725 }
2726
2727 #ifdef AAC_DETAILED_STATUS_INFO
2728
2729 struct aac_srb_status_info {
2730 u32 status;
2731 char *str;
2732 };
2733
2734
2735 static struct aac_srb_status_info srb_status_info[] = {
2736 { SRB_STATUS_PENDING, "Pending Status"},
2737 { SRB_STATUS_SUCCESS, "Success"},
2738 { SRB_STATUS_ABORTED, "Aborted Command"},
2739 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
2740 { SRB_STATUS_ERROR, "Error Event"},
2741 { SRB_STATUS_BUSY, "Device Busy"},
2742 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
2743 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
2744 { SRB_STATUS_NO_DEVICE, "No Device"},
2745 { SRB_STATUS_TIMEOUT, "Timeout"},
2746 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
2747 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
2748 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
2749 { SRB_STATUS_BUS_RESET, "Bus Reset"},
2750 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
2751 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2752 { SRB_STATUS_NO_HBA, "No HBA"},
2753 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
2754 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2755 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2756 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2757 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
2758 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
2759 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
2760 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
2761 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
2762 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
2763 { SRB_STATUS_NOT_STARTED, "Not Started"},
2764 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
2765 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
2766 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2767 { 0xff, "Unknown Error"}
2768 };
2769
2770 char *aac_get_status_string(u32 status)
2771 {
2772 int i;
2773
2774 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
2775 if (srb_status_info[i].status == status)
2776 return srb_status_info[i].str;
2777
2778 return "Bad Status Code";
2779 }
2780
2781 #endif