]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/aacraid/aachba.c
Pull battery into release branch
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / aacraid / aachba.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/completion.h>
33 #include <linux/blkdev.h>
34 #include <linux/dma-mapping.h>
35 #include <asm/semaphore.h>
36 #include <asm/uaccess.h>
37
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42
43 #include "aacraid.h"
44
45 /* values for inqd_pdt: Peripheral device type in plain English */
46 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
47 #define INQD_PDT_PROC 0x03 /* Processor device */
48 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
49 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
50 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
51 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
52
53 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
54 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
55
56 /*
57 * Sense codes
58 */
59
60 #define SENCODE_NO_SENSE 0x00
61 #define SENCODE_END_OF_DATA 0x00
62 #define SENCODE_BECOMING_READY 0x04
63 #define SENCODE_INIT_CMD_REQUIRED 0x04
64 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
65 #define SENCODE_INVALID_COMMAND 0x20
66 #define SENCODE_LBA_OUT_OF_RANGE 0x21
67 #define SENCODE_INVALID_CDB_FIELD 0x24
68 #define SENCODE_LUN_NOT_SUPPORTED 0x25
69 #define SENCODE_INVALID_PARAM_FIELD 0x26
70 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
71 #define SENCODE_PARAM_VALUE_INVALID 0x26
72 #define SENCODE_RESET_OCCURRED 0x29
73 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
74 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
75 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
76 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
77 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
78 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
79 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
80 #define SENCODE_OVERLAPPED_COMMAND 0x4E
81
82 /*
83 * Additional sense codes
84 */
85
86 #define ASENCODE_NO_SENSE 0x00
87 #define ASENCODE_END_OF_DATA 0x05
88 #define ASENCODE_BECOMING_READY 0x01
89 #define ASENCODE_INIT_CMD_REQUIRED 0x02
90 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
91 #define ASENCODE_INVALID_COMMAND 0x00
92 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
93 #define ASENCODE_INVALID_CDB_FIELD 0x00
94 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
95 #define ASENCODE_INVALID_PARAM_FIELD 0x00
96 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
97 #define ASENCODE_PARAM_VALUE_INVALID 0x02
98 #define ASENCODE_RESET_OCCURRED 0x00
99 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
100 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
101 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
102 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
103 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
104 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
105 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
106 #define ASENCODE_OVERLAPPED_COMMAND 0x00
107
108 #define BYTE0(x) (unsigned char)(x)
109 #define BYTE1(x) (unsigned char)((x) >> 8)
110 #define BYTE2(x) (unsigned char)((x) >> 16)
111 #define BYTE3(x) (unsigned char)((x) >> 24)
112
113 /*------------------------------------------------------------------------------
114 * S T R U C T S / T Y P E D E F S
115 *----------------------------------------------------------------------------*/
116 /* SCSI inquiry data */
117 struct inquiry_data {
118 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
119 u8 inqd_dtq; /* RMB | Device Type Qualifier */
120 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
121 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
122 u8 inqd_len; /* Additional length (n-4) */
123 u8 inqd_pad1[2];/* Reserved - must be zero */
124 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
125 u8 inqd_vid[8]; /* Vendor ID */
126 u8 inqd_pid[16];/* Product ID */
127 u8 inqd_prl[4]; /* Product Revision Level */
128 };
129
130 /*
131 * M O D U L E G L O B A L S
132 */
133
134 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
135 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
136 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
137 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
138 #ifdef AAC_DETAILED_STATUS_INFO
139 static char *aac_get_status_string(u32 status);
140 #endif
141
142 /*
143 * Non dasd selection is handled entirely in aachba now
144 */
145
146 static int nondasd = -1;
147 static int dacmode = -1;
148
149 int aac_commit = -1;
150 int startup_timeout = 180;
151 int aif_timeout = 120;
152
153 module_param(nondasd, int, S_IRUGO|S_IWUSR);
154 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
155 module_param(dacmode, int, S_IRUGO|S_IWUSR);
156 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
157 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
158 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
159 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
160 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for adapter to have it's kernel up and\nrunning. This is typically adjusted for large systems that do not have a BIOS.");
161 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
162 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for applications to pick up AIFs before\nderegistering them. This is typically adjusted for heavily burdened systems.");
163
164 int numacb = -1;
165 module_param(numacb, int, S_IRUGO|S_IWUSR);
166 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid values are 512 and down. Default is to use suggestion from Firmware.");
167
168 int acbsize = -1;
169 module_param(acbsize, int, S_IRUGO|S_IWUSR);
170 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512, 2048, 4096 and 8192. Default is to use suggestion from Firmware.");
171
172 int update_interval = 30 * 60;
173 module_param(update_interval, int, S_IRUGO|S_IWUSR);
174 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync updates issued to adapter.");
175
176 int check_interval = 24 * 60 * 60;
177 module_param(check_interval, int, S_IRUGO|S_IWUSR);
178 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health checks.");
179
180 int check_reset = 1;
181 module_param(check_reset, int, S_IRUGO|S_IWUSR);
182 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the adapter.");
183
184 int expose_physicals = -1;
185 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
186 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays. -1=protect 0=off, 1=on");
187
188 int aac_reset_devices = 0;
189 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
190 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
191
192 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
193 struct fib *fibptr) {
194 struct scsi_device *device;
195
196 if (unlikely(!scsicmd || !scsicmd->scsi_done )) {
197 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"))
198 ;
199 aac_fib_complete(fibptr);
200 aac_fib_free(fibptr);
201 return 0;
202 }
203 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
204 device = scsicmd->device;
205 if (unlikely(!device || !scsi_device_online(device))) {
206 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
207 aac_fib_complete(fibptr);
208 aac_fib_free(fibptr);
209 return 0;
210 }
211 return 1;
212 }
213
214 /**
215 * aac_get_config_status - check the adapter configuration
216 * @common: adapter to query
217 *
218 * Query config status, and commit the configuration if needed.
219 */
220 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
221 {
222 int status = 0;
223 struct fib * fibptr;
224
225 if (!(fibptr = aac_fib_alloc(dev)))
226 return -ENOMEM;
227
228 aac_fib_init(fibptr);
229 {
230 struct aac_get_config_status *dinfo;
231 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
232
233 dinfo->command = cpu_to_le32(VM_ContainerConfig);
234 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
235 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
236 }
237
238 status = aac_fib_send(ContainerCommand,
239 fibptr,
240 sizeof (struct aac_get_config_status),
241 FsaNormal,
242 1, 1,
243 NULL, NULL);
244 if (status < 0 ) {
245 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
246 } else {
247 struct aac_get_config_status_resp *reply
248 = (struct aac_get_config_status_resp *) fib_data(fibptr);
249 dprintk((KERN_WARNING
250 "aac_get_config_status: response=%d status=%d action=%d\n",
251 le32_to_cpu(reply->response),
252 le32_to_cpu(reply->status),
253 le32_to_cpu(reply->data.action)));
254 if ((le32_to_cpu(reply->response) != ST_OK) ||
255 (le32_to_cpu(reply->status) != CT_OK) ||
256 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
257 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
258 status = -EINVAL;
259 }
260 }
261 aac_fib_complete(fibptr);
262 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
263 if (status >= 0) {
264 if ((aac_commit == 1) || commit_flag) {
265 struct aac_commit_config * dinfo;
266 aac_fib_init(fibptr);
267 dinfo = (struct aac_commit_config *) fib_data(fibptr);
268
269 dinfo->command = cpu_to_le32(VM_ContainerConfig);
270 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
271
272 status = aac_fib_send(ContainerCommand,
273 fibptr,
274 sizeof (struct aac_commit_config),
275 FsaNormal,
276 1, 1,
277 NULL, NULL);
278 aac_fib_complete(fibptr);
279 } else if (aac_commit == 0) {
280 printk(KERN_WARNING
281 "aac_get_config_status: Foreign device configurations are being ignored\n");
282 }
283 }
284 aac_fib_free(fibptr);
285 return status;
286 }
287
288 /**
289 * aac_get_containers - list containers
290 * @common: adapter to probe
291 *
292 * Make a list of all containers on this controller
293 */
294 int aac_get_containers(struct aac_dev *dev)
295 {
296 struct fsa_dev_info *fsa_dev_ptr;
297 u32 index;
298 int status = 0;
299 struct fib * fibptr;
300 struct aac_get_container_count *dinfo;
301 struct aac_get_container_count_resp *dresp;
302 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
303
304 if (!(fibptr = aac_fib_alloc(dev)))
305 return -ENOMEM;
306
307 aac_fib_init(fibptr);
308 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
309 dinfo->command = cpu_to_le32(VM_ContainerConfig);
310 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
311
312 status = aac_fib_send(ContainerCommand,
313 fibptr,
314 sizeof (struct aac_get_container_count),
315 FsaNormal,
316 1, 1,
317 NULL, NULL);
318 if (status >= 0) {
319 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
320 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
321 aac_fib_complete(fibptr);
322 }
323 aac_fib_free(fibptr);
324
325 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
326 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
327 fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
328 GFP_KERNEL);
329 if (!fsa_dev_ptr)
330 return -ENOMEM;
331
332 dev->fsa_dev = fsa_dev_ptr;
333 dev->maximum_num_containers = maximum_num_containers;
334
335 for (index = 0; index < dev->maximum_num_containers; ) {
336 fsa_dev_ptr[index].devname[0] = '\0';
337
338 status = aac_probe_container(dev, index);
339
340 if (status < 0) {
341 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
342 break;
343 }
344
345 /*
346 * If there are no more containers, then stop asking.
347 */
348 if (++index >= status)
349 break;
350 }
351 return status;
352 }
353
354 static void aac_internal_transfer(struct scsi_cmnd *scsicmd, void *data, unsigned int offset, unsigned int len)
355 {
356 void *buf;
357 int transfer_len;
358 struct scatterlist *sg = scsi_sglist(scsicmd);
359
360 buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset;
361 transfer_len = min(sg->length, len + offset);
362
363 transfer_len -= offset;
364 if (buf && transfer_len > 0)
365 memcpy(buf + offset, data, transfer_len);
366
367 kunmap_atomic(buf - sg->offset, KM_IRQ0);
368
369 }
370
371 static void get_container_name_callback(void *context, struct fib * fibptr)
372 {
373 struct aac_get_name_resp * get_name_reply;
374 struct scsi_cmnd * scsicmd;
375
376 scsicmd = (struct scsi_cmnd *) context;
377
378 if (!aac_valid_context(scsicmd, fibptr))
379 return;
380
381 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
382 BUG_ON(fibptr == NULL);
383
384 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
385 /* Failure is irrelevant, using default value instead */
386 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
387 && (get_name_reply->data[0] != '\0')) {
388 char *sp = get_name_reply->data;
389 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
390 while (*sp == ' ')
391 ++sp;
392 if (*sp) {
393 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
394 int count = sizeof(d);
395 char *dp = d;
396 do {
397 *dp++ = (*sp) ? *sp++ : ' ';
398 } while (--count > 0);
399 aac_internal_transfer(scsicmd, d,
400 offsetof(struct inquiry_data, inqd_pid), sizeof(d));
401 }
402 }
403
404 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
405
406 aac_fib_complete(fibptr);
407 aac_fib_free(fibptr);
408 scsicmd->scsi_done(scsicmd);
409 }
410
411 /**
412 * aac_get_container_name - get container name, none blocking.
413 */
414 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
415 {
416 int status;
417 struct aac_get_name *dinfo;
418 struct fib * cmd_fibcontext;
419 struct aac_dev * dev;
420
421 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
422
423 if (!(cmd_fibcontext = aac_fib_alloc(dev)))
424 return -ENOMEM;
425
426 aac_fib_init(cmd_fibcontext);
427 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
428
429 dinfo->command = cpu_to_le32(VM_ContainerConfig);
430 dinfo->type = cpu_to_le32(CT_READ_NAME);
431 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
432 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
433
434 status = aac_fib_send(ContainerCommand,
435 cmd_fibcontext,
436 sizeof (struct aac_get_name),
437 FsaNormal,
438 0, 1,
439 (fib_callback) get_container_name_callback,
440 (void *) scsicmd);
441
442 /*
443 * Check that the command queued to the controller
444 */
445 if (status == -EINPROGRESS) {
446 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
447 return 0;
448 }
449
450 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
451 aac_fib_complete(cmd_fibcontext);
452 aac_fib_free(cmd_fibcontext);
453 return -1;
454 }
455
456 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
457 {
458 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
459
460 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
461 return aac_scsi_cmd(scsicmd);
462
463 scsicmd->result = DID_NO_CONNECT << 16;
464 scsicmd->scsi_done(scsicmd);
465 return 0;
466 }
467
468 static void _aac_probe_container2(void * context, struct fib * fibptr)
469 {
470 struct fsa_dev_info *fsa_dev_ptr;
471 int (*callback)(struct scsi_cmnd *);
472 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
473
474
475 if (!aac_valid_context(scsicmd, fibptr))
476 return;
477
478 scsicmd->SCp.Status = 0;
479 fsa_dev_ptr = fibptr->dev->fsa_dev;
480 if (fsa_dev_ptr) {
481 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
482 fsa_dev_ptr += scmd_id(scsicmd);
483
484 if ((le32_to_cpu(dresp->status) == ST_OK) &&
485 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
486 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
487 fsa_dev_ptr->valid = 1;
488 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
489 fsa_dev_ptr->size
490 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
491 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
492 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
493 }
494 if ((fsa_dev_ptr->valid & 1) == 0)
495 fsa_dev_ptr->valid = 0;
496 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
497 }
498 aac_fib_complete(fibptr);
499 aac_fib_free(fibptr);
500 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
501 scsicmd->SCp.ptr = NULL;
502 (*callback)(scsicmd);
503 return;
504 }
505
506 static void _aac_probe_container1(void * context, struct fib * fibptr)
507 {
508 struct scsi_cmnd * scsicmd;
509 struct aac_mount * dresp;
510 struct aac_query_mount *dinfo;
511 int status;
512
513 dresp = (struct aac_mount *) fib_data(fibptr);
514 dresp->mnt[0].capacityhigh = 0;
515 if ((le32_to_cpu(dresp->status) != ST_OK) ||
516 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
517 _aac_probe_container2(context, fibptr);
518 return;
519 }
520 scsicmd = (struct scsi_cmnd *) context;
521
522 if (!aac_valid_context(scsicmd, fibptr))
523 return;
524
525 aac_fib_init(fibptr);
526
527 dinfo = (struct aac_query_mount *)fib_data(fibptr);
528
529 dinfo->command = cpu_to_le32(VM_NameServe64);
530 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
531 dinfo->type = cpu_to_le32(FT_FILESYS);
532
533 status = aac_fib_send(ContainerCommand,
534 fibptr,
535 sizeof(struct aac_query_mount),
536 FsaNormal,
537 0, 1,
538 _aac_probe_container2,
539 (void *) scsicmd);
540 /*
541 * Check that the command queued to the controller
542 */
543 if (status == -EINPROGRESS)
544 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
545 else if (status < 0) {
546 /* Inherit results from VM_NameServe, if any */
547 dresp->status = cpu_to_le32(ST_OK);
548 _aac_probe_container2(context, fibptr);
549 }
550 }
551
552 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
553 {
554 struct fib * fibptr;
555 int status = -ENOMEM;
556
557 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
558 struct aac_query_mount *dinfo;
559
560 aac_fib_init(fibptr);
561
562 dinfo = (struct aac_query_mount *)fib_data(fibptr);
563
564 dinfo->command = cpu_to_le32(VM_NameServe);
565 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
566 dinfo->type = cpu_to_le32(FT_FILESYS);
567 scsicmd->SCp.ptr = (char *)callback;
568
569 status = aac_fib_send(ContainerCommand,
570 fibptr,
571 sizeof(struct aac_query_mount),
572 FsaNormal,
573 0, 1,
574 _aac_probe_container1,
575 (void *) scsicmd);
576 /*
577 * Check that the command queued to the controller
578 */
579 if (status == -EINPROGRESS) {
580 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
581 return 0;
582 }
583 if (status < 0) {
584 scsicmd->SCp.ptr = NULL;
585 aac_fib_complete(fibptr);
586 aac_fib_free(fibptr);
587 }
588 }
589 if (status < 0) {
590 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
591 if (fsa_dev_ptr) {
592 fsa_dev_ptr += scmd_id(scsicmd);
593 if ((fsa_dev_ptr->valid & 1) == 0) {
594 fsa_dev_ptr->valid = 0;
595 return (*callback)(scsicmd);
596 }
597 }
598 }
599 return status;
600 }
601
602 /**
603 * aac_probe_container - query a logical volume
604 * @dev: device to query
605 * @cid: container identifier
606 *
607 * Queries the controller about the given volume. The volume information
608 * is updated in the struct fsa_dev_info structure rather than returned.
609 */
610 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
611 {
612 scsicmd->device = NULL;
613 return 0;
614 }
615
616 int aac_probe_container(struct aac_dev *dev, int cid)
617 {
618 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
619 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
620 int status;
621
622 if (!scsicmd || !scsidev) {
623 kfree(scsicmd);
624 kfree(scsidev);
625 return -ENOMEM;
626 }
627 scsicmd->list.next = NULL;
628 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
629
630 scsicmd->device = scsidev;
631 scsidev->sdev_state = 0;
632 scsidev->id = cid;
633 scsidev->host = dev->scsi_host_ptr;
634
635 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
636 while (scsicmd->device == scsidev)
637 schedule();
638 kfree(scsidev);
639 status = scsicmd->SCp.Status;
640 kfree(scsicmd);
641 return status;
642 }
643
644 /* Local Structure to set SCSI inquiry data strings */
645 struct scsi_inq {
646 char vid[8]; /* Vendor ID */
647 char pid[16]; /* Product ID */
648 char prl[4]; /* Product Revision Level */
649 };
650
651 /**
652 * InqStrCopy - string merge
653 * @a: string to copy from
654 * @b: string to copy to
655 *
656 * Copy a String from one location to another
657 * without copying \0
658 */
659
660 static void inqstrcpy(char *a, char *b)
661 {
662
663 while(*a != (char)0)
664 *b++ = *a++;
665 }
666
667 static char *container_types[] = {
668 "None",
669 "Volume",
670 "Mirror",
671 "Stripe",
672 "RAID5",
673 "SSRW",
674 "SSRO",
675 "Morph",
676 "Legacy",
677 "RAID4",
678 "RAID10",
679 "RAID00",
680 "V-MIRRORS",
681 "PSEUDO R4",
682 "RAID50",
683 "RAID5D",
684 "RAID5D0",
685 "RAID1E",
686 "RAID6",
687 "RAID60",
688 "Unknown"
689 };
690
691
692
693 /* Function: setinqstr
694 *
695 * Arguments: [1] pointer to void [1] int
696 *
697 * Purpose: Sets SCSI inquiry data strings for vendor, product
698 * and revision level. Allows strings to be set in platform dependant
699 * files instead of in OS dependant driver source.
700 */
701
702 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
703 {
704 struct scsi_inq *str;
705
706 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
707 memset(str, ' ', sizeof(*str));
708
709 if (dev->supplement_adapter_info.AdapterTypeText[0]) {
710 char * cp = dev->supplement_adapter_info.AdapterTypeText;
711 int c = sizeof(str->vid);
712 while (*cp && *cp != ' ' && --c)
713 ++cp;
714 c = *cp;
715 *cp = '\0';
716 inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
717 str->vid);
718 *cp = c;
719 while (*cp && *cp != ' ')
720 ++cp;
721 while (*cp == ' ')
722 ++cp;
723 /* last six chars reserved for vol type */
724 c = 0;
725 if (strlen(cp) > sizeof(str->pid)) {
726 c = cp[sizeof(str->pid)];
727 cp[sizeof(str->pid)] = '\0';
728 }
729 inqstrcpy (cp, str->pid);
730 if (c)
731 cp[sizeof(str->pid)] = c;
732 } else {
733 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
734
735 inqstrcpy (mp->vname, str->vid);
736 /* last six chars reserved for vol type */
737 inqstrcpy (mp->model, str->pid);
738 }
739
740 if (tindex < ARRAY_SIZE(container_types)){
741 char *findit = str->pid;
742
743 for ( ; *findit != ' '; findit++); /* walk till we find a space */
744 /* RAID is superfluous in the context of a RAID device */
745 if (memcmp(findit-4, "RAID", 4) == 0)
746 *(findit -= 4) = ' ';
747 if (((findit - str->pid) + strlen(container_types[tindex]))
748 < (sizeof(str->pid) + sizeof(str->prl)))
749 inqstrcpy (container_types[tindex], findit + 1);
750 }
751 inqstrcpy ("V1.0", str->prl);
752 }
753
754 static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
755 u8 a_sense_code, u8 incorrect_length,
756 u8 bit_pointer, u16 field_pointer,
757 u32 residue)
758 {
759 sense_buf[0] = 0xF0; /* Sense data valid, err code 70h (current error) */
760 sense_buf[1] = 0; /* Segment number, always zero */
761
762 if (incorrect_length) {
763 sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
764 sense_buf[3] = BYTE3(residue);
765 sense_buf[4] = BYTE2(residue);
766 sense_buf[5] = BYTE1(residue);
767 sense_buf[6] = BYTE0(residue);
768 } else
769 sense_buf[2] = sense_key; /* Sense key */
770
771 if (sense_key == ILLEGAL_REQUEST)
772 sense_buf[7] = 10; /* Additional sense length */
773 else
774 sense_buf[7] = 6; /* Additional sense length */
775
776 sense_buf[12] = sense_code; /* Additional sense code */
777 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
778 if (sense_key == ILLEGAL_REQUEST) {
779 sense_buf[15] = 0;
780
781 if (sense_code == SENCODE_INVALID_PARAM_FIELD)
782 sense_buf[15] = 0x80;/* Std sense key specific field */
783 /* Illegal parameter is in the parameter block */
784
785 if (sense_code == SENCODE_INVALID_CDB_FIELD)
786 sense_buf[15] = 0xc0;/* Std sense key specific field */
787 /* Illegal parameter is in the CDB block */
788 sense_buf[15] |= bit_pointer;
789 sense_buf[16] = field_pointer >> 8; /* MSB */
790 sense_buf[17] = field_pointer; /* LSB */
791 }
792 }
793
794 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
795 {
796 if (lba & 0xffffffff00000000LL) {
797 int cid = scmd_id(cmd);
798 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
799 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
800 SAM_STAT_CHECK_CONDITION;
801 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
802 HARDWARE_ERROR,
803 SENCODE_INTERNAL_TARGET_FAILURE,
804 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
805 0, 0);
806 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
807 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(cmd->sense_buffer))
808 ? sizeof(cmd->sense_buffer)
809 : sizeof(dev->fsa_dev[cid].sense_data));
810 cmd->scsi_done(cmd);
811 return 1;
812 }
813 return 0;
814 }
815
816 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
817 {
818 return 0;
819 }
820
821 static void io_callback(void *context, struct fib * fibptr);
822
823 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
824 {
825 u16 fibsize;
826 struct aac_raw_io *readcmd;
827 aac_fib_init(fib);
828 readcmd = (struct aac_raw_io *) fib_data(fib);
829 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
830 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
831 readcmd->count = cpu_to_le32(count<<9);
832 readcmd->cid = cpu_to_le16(scmd_id(cmd));
833 readcmd->flags = cpu_to_le16(IO_TYPE_READ);
834 readcmd->bpTotal = 0;
835 readcmd->bpComplete = 0;
836
837 aac_build_sgraw(cmd, &readcmd->sg);
838 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
839 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
840 /*
841 * Now send the Fib to the adapter
842 */
843 return aac_fib_send(ContainerRawIo,
844 fib,
845 fibsize,
846 FsaNormal,
847 0, 1,
848 (fib_callback) io_callback,
849 (void *) cmd);
850 }
851
852 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
853 {
854 u16 fibsize;
855 struct aac_read64 *readcmd;
856 aac_fib_init(fib);
857 readcmd = (struct aac_read64 *) fib_data(fib);
858 readcmd->command = cpu_to_le32(VM_CtHostRead64);
859 readcmd->cid = cpu_to_le16(scmd_id(cmd));
860 readcmd->sector_count = cpu_to_le16(count);
861 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
862 readcmd->pad = 0;
863 readcmd->flags = 0;
864
865 aac_build_sg64(cmd, &readcmd->sg);
866 fibsize = sizeof(struct aac_read64) +
867 ((le32_to_cpu(readcmd->sg.count) - 1) *
868 sizeof (struct sgentry64));
869 BUG_ON (fibsize > (fib->dev->max_fib_size -
870 sizeof(struct aac_fibhdr)));
871 /*
872 * Now send the Fib to the adapter
873 */
874 return aac_fib_send(ContainerCommand64,
875 fib,
876 fibsize,
877 FsaNormal,
878 0, 1,
879 (fib_callback) io_callback,
880 (void *) cmd);
881 }
882
883 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
884 {
885 u16 fibsize;
886 struct aac_read *readcmd;
887 aac_fib_init(fib);
888 readcmd = (struct aac_read *) fib_data(fib);
889 readcmd->command = cpu_to_le32(VM_CtBlockRead);
890 readcmd->cid = cpu_to_le16(scmd_id(cmd));
891 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
892 readcmd->count = cpu_to_le32(count * 512);
893
894 aac_build_sg(cmd, &readcmd->sg);
895 fibsize = sizeof(struct aac_read) +
896 ((le32_to_cpu(readcmd->sg.count) - 1) *
897 sizeof (struct sgentry));
898 BUG_ON (fibsize > (fib->dev->max_fib_size -
899 sizeof(struct aac_fibhdr)));
900 /*
901 * Now send the Fib to the adapter
902 */
903 return aac_fib_send(ContainerCommand,
904 fib,
905 fibsize,
906 FsaNormal,
907 0, 1,
908 (fib_callback) io_callback,
909 (void *) cmd);
910 }
911
912 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
913 {
914 u16 fibsize;
915 struct aac_raw_io *writecmd;
916 aac_fib_init(fib);
917 writecmd = (struct aac_raw_io *) fib_data(fib);
918 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
919 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
920 writecmd->count = cpu_to_le32(count<<9);
921 writecmd->cid = cpu_to_le16(scmd_id(cmd));
922 writecmd->flags = fua ?
923 cpu_to_le16(IO_TYPE_WRITE|IO_SUREWRITE) :
924 cpu_to_le16(IO_TYPE_WRITE);
925 writecmd->bpTotal = 0;
926 writecmd->bpComplete = 0;
927
928 aac_build_sgraw(cmd, &writecmd->sg);
929 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
930 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
931 /*
932 * Now send the Fib to the adapter
933 */
934 return aac_fib_send(ContainerRawIo,
935 fib,
936 fibsize,
937 FsaNormal,
938 0, 1,
939 (fib_callback) io_callback,
940 (void *) cmd);
941 }
942
943 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
944 {
945 u16 fibsize;
946 struct aac_write64 *writecmd;
947 aac_fib_init(fib);
948 writecmd = (struct aac_write64 *) fib_data(fib);
949 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
950 writecmd->cid = cpu_to_le16(scmd_id(cmd));
951 writecmd->sector_count = cpu_to_le16(count);
952 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
953 writecmd->pad = 0;
954 writecmd->flags = 0;
955
956 aac_build_sg64(cmd, &writecmd->sg);
957 fibsize = sizeof(struct aac_write64) +
958 ((le32_to_cpu(writecmd->sg.count) - 1) *
959 sizeof (struct sgentry64));
960 BUG_ON (fibsize > (fib->dev->max_fib_size -
961 sizeof(struct aac_fibhdr)));
962 /*
963 * Now send the Fib to the adapter
964 */
965 return aac_fib_send(ContainerCommand64,
966 fib,
967 fibsize,
968 FsaNormal,
969 0, 1,
970 (fib_callback) io_callback,
971 (void *) cmd);
972 }
973
974 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
975 {
976 u16 fibsize;
977 struct aac_write *writecmd;
978 aac_fib_init(fib);
979 writecmd = (struct aac_write *) fib_data(fib);
980 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
981 writecmd->cid = cpu_to_le16(scmd_id(cmd));
982 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
983 writecmd->count = cpu_to_le32(count * 512);
984 writecmd->sg.count = cpu_to_le32(1);
985 /* ->stable is not used - it did mean which type of write */
986
987 aac_build_sg(cmd, &writecmd->sg);
988 fibsize = sizeof(struct aac_write) +
989 ((le32_to_cpu(writecmd->sg.count) - 1) *
990 sizeof (struct sgentry));
991 BUG_ON (fibsize > (fib->dev->max_fib_size -
992 sizeof(struct aac_fibhdr)));
993 /*
994 * Now send the Fib to the adapter
995 */
996 return aac_fib_send(ContainerCommand,
997 fib,
998 fibsize,
999 FsaNormal,
1000 0, 1,
1001 (fib_callback) io_callback,
1002 (void *) cmd);
1003 }
1004
1005 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1006 {
1007 struct aac_srb * srbcmd;
1008 u32 flag;
1009 u32 timeout;
1010
1011 aac_fib_init(fib);
1012 switch(cmd->sc_data_direction){
1013 case DMA_TO_DEVICE:
1014 flag = SRB_DataOut;
1015 break;
1016 case DMA_BIDIRECTIONAL:
1017 flag = SRB_DataIn | SRB_DataOut;
1018 break;
1019 case DMA_FROM_DEVICE:
1020 flag = SRB_DataIn;
1021 break;
1022 case DMA_NONE:
1023 default: /* shuts up some versions of gcc */
1024 flag = SRB_NoDataXfer;
1025 break;
1026 }
1027
1028 srbcmd = (struct aac_srb*) fib_data(fib);
1029 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1030 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1031 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1032 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1033 srbcmd->flags = cpu_to_le32(flag);
1034 timeout = cmd->timeout_per_command/HZ;
1035 if (timeout == 0)
1036 timeout = 1;
1037 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1038 srbcmd->retry_limit = 0; /* Obsolete parameter */
1039 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1040 return srbcmd;
1041 }
1042
1043 static void aac_srb_callback(void *context, struct fib * fibptr);
1044
1045 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1046 {
1047 u16 fibsize;
1048 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1049
1050 aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
1051 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1052
1053 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1054 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1055 /*
1056 * Build Scatter/Gather list
1057 */
1058 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1059 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1060 sizeof (struct sgentry64));
1061 BUG_ON (fibsize > (fib->dev->max_fib_size -
1062 sizeof(struct aac_fibhdr)));
1063
1064 /*
1065 * Now send the Fib to the adapter
1066 */
1067 return aac_fib_send(ScsiPortCommand64, fib,
1068 fibsize, FsaNormal, 0, 1,
1069 (fib_callback) aac_srb_callback,
1070 (void *) cmd);
1071 }
1072
1073 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1074 {
1075 u16 fibsize;
1076 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1077
1078 aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
1079 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1080
1081 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1082 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1083 /*
1084 * Build Scatter/Gather list
1085 */
1086 fibsize = sizeof (struct aac_srb) +
1087 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1088 sizeof (struct sgentry));
1089 BUG_ON (fibsize > (fib->dev->max_fib_size -
1090 sizeof(struct aac_fibhdr)));
1091
1092 /*
1093 * Now send the Fib to the adapter
1094 */
1095 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1096 (fib_callback) aac_srb_callback, (void *) cmd);
1097 }
1098
1099 int aac_get_adapter_info(struct aac_dev* dev)
1100 {
1101 struct fib* fibptr;
1102 int rcode;
1103 u32 tmp;
1104 struct aac_adapter_info *info;
1105 struct aac_bus_info *command;
1106 struct aac_bus_info_response *bus_info;
1107
1108 if (!(fibptr = aac_fib_alloc(dev)))
1109 return -ENOMEM;
1110
1111 aac_fib_init(fibptr);
1112 info = (struct aac_adapter_info *) fib_data(fibptr);
1113 memset(info,0,sizeof(*info));
1114
1115 rcode = aac_fib_send(RequestAdapterInfo,
1116 fibptr,
1117 sizeof(*info),
1118 FsaNormal,
1119 -1, 1, /* First `interrupt' command uses special wait */
1120 NULL,
1121 NULL);
1122
1123 if (rcode < 0) {
1124 aac_fib_complete(fibptr);
1125 aac_fib_free(fibptr);
1126 return rcode;
1127 }
1128 memcpy(&dev->adapter_info, info, sizeof(*info));
1129
1130 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1131 struct aac_supplement_adapter_info * info;
1132
1133 aac_fib_init(fibptr);
1134
1135 info = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1136
1137 memset(info,0,sizeof(*info));
1138
1139 rcode = aac_fib_send(RequestSupplementAdapterInfo,
1140 fibptr,
1141 sizeof(*info),
1142 FsaNormal,
1143 1, 1,
1144 NULL,
1145 NULL);
1146
1147 if (rcode >= 0)
1148 memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
1149 }
1150
1151
1152 /*
1153 * GetBusInfo
1154 */
1155
1156 aac_fib_init(fibptr);
1157
1158 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1159
1160 memset(bus_info, 0, sizeof(*bus_info));
1161
1162 command = (struct aac_bus_info *)bus_info;
1163
1164 command->Command = cpu_to_le32(VM_Ioctl);
1165 command->ObjType = cpu_to_le32(FT_DRIVE);
1166 command->MethodId = cpu_to_le32(1);
1167 command->CtlCmd = cpu_to_le32(GetBusInfo);
1168
1169 rcode = aac_fib_send(ContainerCommand,
1170 fibptr,
1171 sizeof (*bus_info),
1172 FsaNormal,
1173 1, 1,
1174 NULL, NULL);
1175
1176 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1177 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1178 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1179 }
1180
1181 if (!dev->in_reset) {
1182 char buffer[16];
1183 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1184 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1185 dev->name,
1186 dev->id,
1187 tmp>>24,
1188 (tmp>>16)&0xff,
1189 tmp&0xff,
1190 le32_to_cpu(dev->adapter_info.kernelbuild),
1191 (int)sizeof(dev->supplement_adapter_info.BuildDate),
1192 dev->supplement_adapter_info.BuildDate);
1193 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1194 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1195 dev->name, dev->id,
1196 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1197 le32_to_cpu(dev->adapter_info.monitorbuild));
1198 tmp = le32_to_cpu(dev->adapter_info.biosrev);
1199 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1200 dev->name, dev->id,
1201 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1202 le32_to_cpu(dev->adapter_info.biosbuild));
1203 buffer[0] = '\0';
1204 if (aac_show_serial_number(
1205 shost_to_class(dev->scsi_host_ptr), buffer))
1206 printk(KERN_INFO "%s%d: serial %s",
1207 dev->name, dev->id, buffer);
1208 if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1209 printk(KERN_INFO "%s%d: TSID %.*s\n",
1210 dev->name, dev->id,
1211 (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1212 dev->supplement_adapter_info.VpdInfo.Tsid);
1213 }
1214 if (!check_reset ||
1215 (dev->supplement_adapter_info.SupportedOptions2 &
1216 le32_to_cpu(AAC_OPTION_IGNORE_RESET))) {
1217 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1218 dev->name, dev->id);
1219 }
1220 }
1221
1222 dev->nondasd_support = 0;
1223 dev->raid_scsi_mode = 0;
1224 if(dev->adapter_info.options & AAC_OPT_NONDASD){
1225 dev->nondasd_support = 1;
1226 }
1227
1228 /*
1229 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1230 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1231 * force nondasd support on. If we decide to allow the non-dasd flag
1232 * additional changes changes will have to be made to support
1233 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
1234 * changed to support the new dev->raid_scsi_mode flag instead of
1235 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1236 * function aac_detect will have to be modified where it sets up the
1237 * max number of channels based on the aac->nondasd_support flag only.
1238 */
1239 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1240 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1241 dev->nondasd_support = 1;
1242 dev->raid_scsi_mode = 1;
1243 }
1244 if (dev->raid_scsi_mode != 0)
1245 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1246 dev->name, dev->id);
1247
1248 if(nondasd != -1) {
1249 dev->nondasd_support = (nondasd!=0);
1250 }
1251 if(dev->nondasd_support != 0){
1252 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1253 }
1254
1255 dev->dac_support = 0;
1256 if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
1257 printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
1258 dev->dac_support = 1;
1259 }
1260
1261 if(dacmode != -1) {
1262 dev->dac_support = (dacmode!=0);
1263 }
1264 if(dev->dac_support != 0) {
1265 if (!pci_set_dma_mask(dev->pdev, DMA_64BIT_MASK) &&
1266 !pci_set_consistent_dma_mask(dev->pdev, DMA_64BIT_MASK)) {
1267 printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1268 dev->name, dev->id);
1269 } else if (!pci_set_dma_mask(dev->pdev, DMA_32BIT_MASK) &&
1270 !pci_set_consistent_dma_mask(dev->pdev, DMA_32BIT_MASK)) {
1271 printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1272 dev->name, dev->id);
1273 dev->dac_support = 0;
1274 } else {
1275 printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1276 dev->name, dev->id);
1277 rcode = -ENOMEM;
1278 }
1279 }
1280 /*
1281 * Deal with configuring for the individualized limits of each packet
1282 * interface.
1283 */
1284 dev->a_ops.adapter_scsi = (dev->dac_support)
1285 ? aac_scsi_64
1286 : aac_scsi_32;
1287 if (dev->raw_io_interface) {
1288 dev->a_ops.adapter_bounds = (dev->raw_io_64)
1289 ? aac_bounds_64
1290 : aac_bounds_32;
1291 dev->a_ops.adapter_read = aac_read_raw_io;
1292 dev->a_ops.adapter_write = aac_write_raw_io;
1293 } else {
1294 dev->a_ops.adapter_bounds = aac_bounds_32;
1295 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1296 sizeof(struct aac_fibhdr) -
1297 sizeof(struct aac_write) + sizeof(struct sgentry)) /
1298 sizeof(struct sgentry);
1299 if (dev->dac_support) {
1300 dev->a_ops.adapter_read = aac_read_block64;
1301 dev->a_ops.adapter_write = aac_write_block64;
1302 /*
1303 * 38 scatter gather elements
1304 */
1305 dev->scsi_host_ptr->sg_tablesize =
1306 (dev->max_fib_size -
1307 sizeof(struct aac_fibhdr) -
1308 sizeof(struct aac_write64) +
1309 sizeof(struct sgentry64)) /
1310 sizeof(struct sgentry64);
1311 } else {
1312 dev->a_ops.adapter_read = aac_read_block;
1313 dev->a_ops.adapter_write = aac_write_block;
1314 }
1315 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1316 if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1317 /*
1318 * Worst case size that could cause sg overflow when
1319 * we break up SG elements that are larger than 64KB.
1320 * Would be nice if we could tell the SCSI layer what
1321 * the maximum SG element size can be. Worst case is
1322 * (sg_tablesize-1) 4KB elements with one 64KB
1323 * element.
1324 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
1325 */
1326 dev->scsi_host_ptr->max_sectors =
1327 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1328 }
1329 }
1330
1331 aac_fib_complete(fibptr);
1332 aac_fib_free(fibptr);
1333
1334 return rcode;
1335 }
1336
1337
1338 static void io_callback(void *context, struct fib * fibptr)
1339 {
1340 struct aac_dev *dev;
1341 struct aac_read_reply *readreply;
1342 struct scsi_cmnd *scsicmd;
1343 u32 cid;
1344
1345 scsicmd = (struct scsi_cmnd *) context;
1346
1347 if (!aac_valid_context(scsicmd, fibptr))
1348 return;
1349
1350 dev = fibptr->dev;
1351 cid = scmd_id(scsicmd);
1352
1353 if (nblank(dprintk(x))) {
1354 u64 lba;
1355 switch (scsicmd->cmnd[0]) {
1356 case WRITE_6:
1357 case READ_6:
1358 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1359 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1360 break;
1361 case WRITE_16:
1362 case READ_16:
1363 lba = ((u64)scsicmd->cmnd[2] << 56) |
1364 ((u64)scsicmd->cmnd[3] << 48) |
1365 ((u64)scsicmd->cmnd[4] << 40) |
1366 ((u64)scsicmd->cmnd[5] << 32) |
1367 ((u64)scsicmd->cmnd[6] << 24) |
1368 (scsicmd->cmnd[7] << 16) |
1369 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1370 break;
1371 case WRITE_12:
1372 case READ_12:
1373 lba = ((u64)scsicmd->cmnd[2] << 24) |
1374 (scsicmd->cmnd[3] << 16) |
1375 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1376 break;
1377 default:
1378 lba = ((u64)scsicmd->cmnd[2] << 24) |
1379 (scsicmd->cmnd[3] << 16) |
1380 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1381 break;
1382 }
1383 printk(KERN_DEBUG
1384 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1385 smp_processor_id(), (unsigned long long)lba, jiffies);
1386 }
1387
1388 BUG_ON(fibptr == NULL);
1389
1390 scsi_dma_unmap(scsicmd);
1391
1392 readreply = (struct aac_read_reply *)fib_data(fibptr);
1393 if (le32_to_cpu(readreply->status) == ST_OK)
1394 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1395 else {
1396 #ifdef AAC_DETAILED_STATUS_INFO
1397 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1398 le32_to_cpu(readreply->status));
1399 #endif
1400 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1401 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1402 HARDWARE_ERROR,
1403 SENCODE_INTERNAL_TARGET_FAILURE,
1404 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1405 0, 0);
1406 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1407 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1408 ? sizeof(scsicmd->sense_buffer)
1409 : sizeof(dev->fsa_dev[cid].sense_data));
1410 }
1411 aac_fib_complete(fibptr);
1412 aac_fib_free(fibptr);
1413
1414 scsicmd->scsi_done(scsicmd);
1415 }
1416
1417 static int aac_read(struct scsi_cmnd * scsicmd)
1418 {
1419 u64 lba;
1420 u32 count;
1421 int status;
1422 struct aac_dev *dev;
1423 struct fib * cmd_fibcontext;
1424
1425 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1426 /*
1427 * Get block address and transfer length
1428 */
1429 switch (scsicmd->cmnd[0]) {
1430 case READ_6:
1431 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1432
1433 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1434 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1435 count = scsicmd->cmnd[4];
1436
1437 if (count == 0)
1438 count = 256;
1439 break;
1440 case READ_16:
1441 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1442
1443 lba = ((u64)scsicmd->cmnd[2] << 56) |
1444 ((u64)scsicmd->cmnd[3] << 48) |
1445 ((u64)scsicmd->cmnd[4] << 40) |
1446 ((u64)scsicmd->cmnd[5] << 32) |
1447 ((u64)scsicmd->cmnd[6] << 24) |
1448 (scsicmd->cmnd[7] << 16) |
1449 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1450 count = (scsicmd->cmnd[10] << 24) |
1451 (scsicmd->cmnd[11] << 16) |
1452 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1453 break;
1454 case READ_12:
1455 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1456
1457 lba = ((u64)scsicmd->cmnd[2] << 24) |
1458 (scsicmd->cmnd[3] << 16) |
1459 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1460 count = (scsicmd->cmnd[6] << 24) |
1461 (scsicmd->cmnd[7] << 16) |
1462 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1463 break;
1464 default:
1465 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1466
1467 lba = ((u64)scsicmd->cmnd[2] << 24) |
1468 (scsicmd->cmnd[3] << 16) |
1469 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1470 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1471 break;
1472 }
1473 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1474 smp_processor_id(), (unsigned long long)lba, jiffies));
1475 if (aac_adapter_bounds(dev,scsicmd,lba))
1476 return 0;
1477 /*
1478 * Alocate and initialize a Fib
1479 */
1480 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1481 return -1;
1482 }
1483
1484 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1485
1486 /*
1487 * Check that the command queued to the controller
1488 */
1489 if (status == -EINPROGRESS) {
1490 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1491 return 0;
1492 }
1493
1494 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1495 /*
1496 * For some reason, the Fib didn't queue, return QUEUE_FULL
1497 */
1498 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1499 scsicmd->scsi_done(scsicmd);
1500 aac_fib_complete(cmd_fibcontext);
1501 aac_fib_free(cmd_fibcontext);
1502 return 0;
1503 }
1504
1505 static int aac_write(struct scsi_cmnd * scsicmd)
1506 {
1507 u64 lba;
1508 u32 count;
1509 int fua;
1510 int status;
1511 struct aac_dev *dev;
1512 struct fib * cmd_fibcontext;
1513
1514 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1515 /*
1516 * Get block address and transfer length
1517 */
1518 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
1519 {
1520 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1521 count = scsicmd->cmnd[4];
1522 if (count == 0)
1523 count = 256;
1524 fua = 0;
1525 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1526 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1527
1528 lba = ((u64)scsicmd->cmnd[2] << 56) |
1529 ((u64)scsicmd->cmnd[3] << 48) |
1530 ((u64)scsicmd->cmnd[4] << 40) |
1531 ((u64)scsicmd->cmnd[5] << 32) |
1532 ((u64)scsicmd->cmnd[6] << 24) |
1533 (scsicmd->cmnd[7] << 16) |
1534 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1535 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1536 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1537 fua = scsicmd->cmnd[1] & 0x8;
1538 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1539 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1540
1541 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1542 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1543 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1544 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1545 fua = scsicmd->cmnd[1] & 0x8;
1546 } else {
1547 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1548 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1549 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1550 fua = scsicmd->cmnd[1] & 0x8;
1551 }
1552 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1553 smp_processor_id(), (unsigned long long)lba, jiffies));
1554 if (aac_adapter_bounds(dev,scsicmd,lba))
1555 return 0;
1556 /*
1557 * Allocate and initialize a Fib then setup a BlockWrite command
1558 */
1559 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1560 scsicmd->result = DID_ERROR << 16;
1561 scsicmd->scsi_done(scsicmd);
1562 return 0;
1563 }
1564
1565 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
1566
1567 /*
1568 * Check that the command queued to the controller
1569 */
1570 if (status == -EINPROGRESS) {
1571 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1572 return 0;
1573 }
1574
1575 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1576 /*
1577 * For some reason, the Fib didn't queue, return QUEUE_FULL
1578 */
1579 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1580 scsicmd->scsi_done(scsicmd);
1581
1582 aac_fib_complete(cmd_fibcontext);
1583 aac_fib_free(cmd_fibcontext);
1584 return 0;
1585 }
1586
1587 static void synchronize_callback(void *context, struct fib *fibptr)
1588 {
1589 struct aac_synchronize_reply *synchronizereply;
1590 struct scsi_cmnd *cmd;
1591
1592 cmd = context;
1593
1594 if (!aac_valid_context(cmd, fibptr))
1595 return;
1596
1597 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1598 smp_processor_id(), jiffies));
1599 BUG_ON(fibptr == NULL);
1600
1601
1602 synchronizereply = fib_data(fibptr);
1603 if (le32_to_cpu(synchronizereply->status) == CT_OK)
1604 cmd->result = DID_OK << 16 |
1605 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1606 else {
1607 struct scsi_device *sdev = cmd->device;
1608 struct aac_dev *dev = fibptr->dev;
1609 u32 cid = sdev_id(sdev);
1610 printk(KERN_WARNING
1611 "synchronize_callback: synchronize failed, status = %d\n",
1612 le32_to_cpu(synchronizereply->status));
1613 cmd->result = DID_OK << 16 |
1614 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1615 set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
1616 HARDWARE_ERROR,
1617 SENCODE_INTERNAL_TARGET_FAILURE,
1618 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1619 0, 0);
1620 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1621 min(sizeof(dev->fsa_dev[cid].sense_data),
1622 sizeof(cmd->sense_buffer)));
1623 }
1624
1625 aac_fib_complete(fibptr);
1626 aac_fib_free(fibptr);
1627 cmd->scsi_done(cmd);
1628 }
1629
1630 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1631 {
1632 int status;
1633 struct fib *cmd_fibcontext;
1634 struct aac_synchronize *synchronizecmd;
1635 struct scsi_cmnd *cmd;
1636 struct scsi_device *sdev = scsicmd->device;
1637 int active = 0;
1638 struct aac_dev *aac;
1639 unsigned long flags;
1640
1641 /*
1642 * Wait for all outstanding queued commands to complete to this
1643 * specific target (block).
1644 */
1645 spin_lock_irqsave(&sdev->list_lock, flags);
1646 list_for_each_entry(cmd, &sdev->cmd_list, list)
1647 if (cmd != scsicmd && cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1648 ++active;
1649 break;
1650 }
1651
1652 spin_unlock_irqrestore(&sdev->list_lock, flags);
1653
1654 /*
1655 * Yield the processor (requeue for later)
1656 */
1657 if (active)
1658 return SCSI_MLQUEUE_DEVICE_BUSY;
1659
1660 aac = (struct aac_dev *)scsicmd->device->host->hostdata;
1661 if (aac->in_reset)
1662 return SCSI_MLQUEUE_HOST_BUSY;
1663
1664 /*
1665 * Allocate and initialize a Fib
1666 */
1667 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1668 return SCSI_MLQUEUE_HOST_BUSY;
1669
1670 aac_fib_init(cmd_fibcontext);
1671
1672 synchronizecmd = fib_data(cmd_fibcontext);
1673 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1674 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1675 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
1676 synchronizecmd->count =
1677 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1678
1679 /*
1680 * Now send the Fib to the adapter
1681 */
1682 status = aac_fib_send(ContainerCommand,
1683 cmd_fibcontext,
1684 sizeof(struct aac_synchronize),
1685 FsaNormal,
1686 0, 1,
1687 (fib_callback)synchronize_callback,
1688 (void *)scsicmd);
1689
1690 /*
1691 * Check that the command queued to the controller
1692 */
1693 if (status == -EINPROGRESS) {
1694 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1695 return 0;
1696 }
1697
1698 printk(KERN_WARNING
1699 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1700 aac_fib_complete(cmd_fibcontext);
1701 aac_fib_free(cmd_fibcontext);
1702 return SCSI_MLQUEUE_HOST_BUSY;
1703 }
1704
1705 /**
1706 * aac_scsi_cmd() - Process SCSI command
1707 * @scsicmd: SCSI command block
1708 *
1709 * Emulate a SCSI command and queue the required request for the
1710 * aacraid firmware.
1711 */
1712
1713 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1714 {
1715 u32 cid;
1716 struct Scsi_Host *host = scsicmd->device->host;
1717 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1718 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1719
1720 if (fsa_dev_ptr == NULL)
1721 return -1;
1722 /*
1723 * If the bus, id or lun is out of range, return fail
1724 * Test does not apply to ID 16, the pseudo id for the controller
1725 * itself.
1726 */
1727 cid = scmd_id(scsicmd);
1728 if (cid != host->this_id) {
1729 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
1730 if((cid >= dev->maximum_num_containers) ||
1731 (scsicmd->device->lun != 0)) {
1732 scsicmd->result = DID_NO_CONNECT << 16;
1733 scsicmd->scsi_done(scsicmd);
1734 return 0;
1735 }
1736
1737 /*
1738 * If the target container doesn't exist, it may have
1739 * been newly created
1740 */
1741 if ((fsa_dev_ptr[cid].valid & 1) == 0) {
1742 switch (scsicmd->cmnd[0]) {
1743 case SERVICE_ACTION_IN:
1744 if (!(dev->raw_io_interface) ||
1745 !(dev->raw_io_64) ||
1746 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1747 break;
1748 case INQUIRY:
1749 case READ_CAPACITY:
1750 case TEST_UNIT_READY:
1751 if (dev->in_reset)
1752 return -1;
1753 return _aac_probe_container(scsicmd,
1754 aac_probe_container_callback2);
1755 default:
1756 break;
1757 }
1758 }
1759 } else { /* check for physical non-dasd devices */
1760 if ((dev->nondasd_support == 1) || expose_physicals) {
1761 if (dev->in_reset)
1762 return -1;
1763 return aac_send_srb_fib(scsicmd);
1764 } else {
1765 scsicmd->result = DID_NO_CONNECT << 16;
1766 scsicmd->scsi_done(scsicmd);
1767 return 0;
1768 }
1769 }
1770 }
1771 /*
1772 * else Command for the controller itself
1773 */
1774 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
1775 (scsicmd->cmnd[0] != TEST_UNIT_READY))
1776 {
1777 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
1778 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1779 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1780 ILLEGAL_REQUEST,
1781 SENCODE_INVALID_COMMAND,
1782 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1783 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1784 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1785 ? sizeof(scsicmd->sense_buffer)
1786 : sizeof(dev->fsa_dev[cid].sense_data));
1787 scsicmd->scsi_done(scsicmd);
1788 return 0;
1789 }
1790
1791
1792 /* Handle commands here that don't really require going out to the adapter */
1793 switch (scsicmd->cmnd[0]) {
1794 case INQUIRY:
1795 {
1796 struct inquiry_data inq_data;
1797
1798 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
1799 memset(&inq_data, 0, sizeof (struct inquiry_data));
1800
1801 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
1802 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
1803 inq_data.inqd_len = 31;
1804 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
1805 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
1806 /*
1807 * Set the Vendor, Product, and Revision Level
1808 * see: <vendor>.c i.e. aac.c
1809 */
1810 if (cid == host->this_id) {
1811 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
1812 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
1813 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1814 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1815 scsicmd->scsi_done(scsicmd);
1816 return 0;
1817 }
1818 if (dev->in_reset)
1819 return -1;
1820 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
1821 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
1822 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1823 return aac_get_container_name(scsicmd);
1824 }
1825 case SERVICE_ACTION_IN:
1826 if (!(dev->raw_io_interface) ||
1827 !(dev->raw_io_64) ||
1828 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1829 break;
1830 {
1831 u64 capacity;
1832 char cp[13];
1833
1834 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
1835 capacity = fsa_dev_ptr[cid].size - 1;
1836 cp[0] = (capacity >> 56) & 0xff;
1837 cp[1] = (capacity >> 48) & 0xff;
1838 cp[2] = (capacity >> 40) & 0xff;
1839 cp[3] = (capacity >> 32) & 0xff;
1840 cp[4] = (capacity >> 24) & 0xff;
1841 cp[5] = (capacity >> 16) & 0xff;
1842 cp[6] = (capacity >> 8) & 0xff;
1843 cp[7] = (capacity >> 0) & 0xff;
1844 cp[8] = 0;
1845 cp[9] = 0;
1846 cp[10] = 2;
1847 cp[11] = 0;
1848 cp[12] = 0;
1849 aac_internal_transfer(scsicmd, cp, 0,
1850 min_t(size_t, scsicmd->cmnd[13], sizeof(cp)));
1851 if (sizeof(cp) < scsicmd->cmnd[13]) {
1852 unsigned int len, offset = sizeof(cp);
1853
1854 memset(cp, 0, offset);
1855 do {
1856 len = min_t(size_t, scsicmd->cmnd[13] - offset,
1857 sizeof(cp));
1858 aac_internal_transfer(scsicmd, cp, offset, len);
1859 } while ((offset += len) < scsicmd->cmnd[13]);
1860 }
1861
1862 /* Do not cache partition table for arrays */
1863 scsicmd->device->removable = 1;
1864
1865 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1866 scsicmd->scsi_done(scsicmd);
1867
1868 return 0;
1869 }
1870
1871 case READ_CAPACITY:
1872 {
1873 u32 capacity;
1874 char cp[8];
1875
1876 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
1877 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
1878 capacity = fsa_dev_ptr[cid].size - 1;
1879 else
1880 capacity = (u32)-1;
1881
1882 cp[0] = (capacity >> 24) & 0xff;
1883 cp[1] = (capacity >> 16) & 0xff;
1884 cp[2] = (capacity >> 8) & 0xff;
1885 cp[3] = (capacity >> 0) & 0xff;
1886 cp[4] = 0;
1887 cp[5] = 0;
1888 cp[6] = 2;
1889 cp[7] = 0;
1890 aac_internal_transfer(scsicmd, cp, 0, sizeof(cp));
1891 /* Do not cache partition table for arrays */
1892 scsicmd->device->removable = 1;
1893
1894 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1895 scsicmd->scsi_done(scsicmd);
1896
1897 return 0;
1898 }
1899
1900 case MODE_SENSE:
1901 {
1902 char mode_buf[7];
1903 int mode_buf_length = 4;
1904
1905 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
1906 mode_buf[0] = 3; /* Mode data length */
1907 mode_buf[1] = 0; /* Medium type - default */
1908 mode_buf[2] = 0; /* Device-specific param,
1909 bit 8: 0/1 = write enabled/protected
1910 bit 4: 0/1 = FUA enabled */
1911 if (dev->raw_io_interface)
1912 mode_buf[2] = 0x10;
1913 mode_buf[3] = 0; /* Block descriptor length */
1914 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
1915 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
1916 mode_buf[0] = 6;
1917 mode_buf[4] = 8;
1918 mode_buf[5] = 1;
1919 mode_buf[6] = 0x04; /* WCE */
1920 mode_buf_length = 7;
1921 if (mode_buf_length > scsicmd->cmnd[4])
1922 mode_buf_length = scsicmd->cmnd[4];
1923 }
1924 aac_internal_transfer(scsicmd, mode_buf, 0, mode_buf_length);
1925 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1926 scsicmd->scsi_done(scsicmd);
1927
1928 return 0;
1929 }
1930 case MODE_SENSE_10:
1931 {
1932 char mode_buf[11];
1933 int mode_buf_length = 8;
1934
1935 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
1936 mode_buf[0] = 0; /* Mode data length (MSB) */
1937 mode_buf[1] = 6; /* Mode data length (LSB) */
1938 mode_buf[2] = 0; /* Medium type - default */
1939 mode_buf[3] = 0; /* Device-specific param,
1940 bit 8: 0/1 = write enabled/protected
1941 bit 4: 0/1 = FUA enabled */
1942 if (dev->raw_io_interface)
1943 mode_buf[3] = 0x10;
1944 mode_buf[4] = 0; /* reserved */
1945 mode_buf[5] = 0; /* reserved */
1946 mode_buf[6] = 0; /* Block descriptor length (MSB) */
1947 mode_buf[7] = 0; /* Block descriptor length (LSB) */
1948 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
1949 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
1950 mode_buf[1] = 9;
1951 mode_buf[8] = 8;
1952 mode_buf[9] = 1;
1953 mode_buf[10] = 0x04; /* WCE */
1954 mode_buf_length = 11;
1955 if (mode_buf_length > scsicmd->cmnd[8])
1956 mode_buf_length = scsicmd->cmnd[8];
1957 }
1958 aac_internal_transfer(scsicmd, mode_buf, 0, mode_buf_length);
1959
1960 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1961 scsicmd->scsi_done(scsicmd);
1962
1963 return 0;
1964 }
1965 case REQUEST_SENSE:
1966 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
1967 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
1968 memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
1969 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1970 scsicmd->scsi_done(scsicmd);
1971 return 0;
1972
1973 case ALLOW_MEDIUM_REMOVAL:
1974 dprintk((KERN_DEBUG "LOCK command.\n"));
1975 if (scsicmd->cmnd[4])
1976 fsa_dev_ptr[cid].locked = 1;
1977 else
1978 fsa_dev_ptr[cid].locked = 0;
1979
1980 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1981 scsicmd->scsi_done(scsicmd);
1982 return 0;
1983 /*
1984 * These commands are all No-Ops
1985 */
1986 case TEST_UNIT_READY:
1987 case RESERVE:
1988 case RELEASE:
1989 case REZERO_UNIT:
1990 case REASSIGN_BLOCKS:
1991 case SEEK_10:
1992 case START_STOP:
1993 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1994 scsicmd->scsi_done(scsicmd);
1995 return 0;
1996 }
1997
1998 switch (scsicmd->cmnd[0])
1999 {
2000 case READ_6:
2001 case READ_10:
2002 case READ_12:
2003 case READ_16:
2004 if (dev->in_reset)
2005 return -1;
2006 /*
2007 * Hack to keep track of ordinal number of the device that
2008 * corresponds to a container. Needed to convert
2009 * containers to /dev/sd device names
2010 */
2011
2012 if (scsicmd->request->rq_disk)
2013 strlcpy(fsa_dev_ptr[cid].devname,
2014 scsicmd->request->rq_disk->disk_name,
2015 min(sizeof(fsa_dev_ptr[cid].devname),
2016 sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2017
2018 return aac_read(scsicmd);
2019
2020 case WRITE_6:
2021 case WRITE_10:
2022 case WRITE_12:
2023 case WRITE_16:
2024 if (dev->in_reset)
2025 return -1;
2026 return aac_write(scsicmd);
2027
2028 case SYNCHRONIZE_CACHE:
2029 /* Issue FIB to tell Firmware to flush it's cache */
2030 return aac_synchronize(scsicmd);
2031
2032 default:
2033 /*
2034 * Unhandled commands
2035 */
2036 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2037 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2038 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
2039 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2040 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
2041 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2042 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
2043 ? sizeof(scsicmd->sense_buffer)
2044 : sizeof(dev->fsa_dev[cid].sense_data));
2045 scsicmd->scsi_done(scsicmd);
2046 return 0;
2047 }
2048 }
2049
2050 static int query_disk(struct aac_dev *dev, void __user *arg)
2051 {
2052 struct aac_query_disk qd;
2053 struct fsa_dev_info *fsa_dev_ptr;
2054
2055 fsa_dev_ptr = dev->fsa_dev;
2056 if (!fsa_dev_ptr)
2057 return -EBUSY;
2058 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2059 return -EFAULT;
2060 if (qd.cnum == -1)
2061 qd.cnum = qd.id;
2062 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2063 {
2064 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2065 return -EINVAL;
2066 qd.instance = dev->scsi_host_ptr->host_no;
2067 qd.bus = 0;
2068 qd.id = CONTAINER_TO_ID(qd.cnum);
2069 qd.lun = CONTAINER_TO_LUN(qd.cnum);
2070 }
2071 else return -EINVAL;
2072
2073 qd.valid = fsa_dev_ptr[qd.cnum].valid;
2074 qd.locked = fsa_dev_ptr[qd.cnum].locked;
2075 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2076
2077 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2078 qd.unmapped = 1;
2079 else
2080 qd.unmapped = 0;
2081
2082 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2083 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2084
2085 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2086 return -EFAULT;
2087 return 0;
2088 }
2089
2090 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2091 {
2092 struct aac_delete_disk dd;
2093 struct fsa_dev_info *fsa_dev_ptr;
2094
2095 fsa_dev_ptr = dev->fsa_dev;
2096 if (!fsa_dev_ptr)
2097 return -EBUSY;
2098
2099 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2100 return -EFAULT;
2101
2102 if (dd.cnum >= dev->maximum_num_containers)
2103 return -EINVAL;
2104 /*
2105 * Mark this container as being deleted.
2106 */
2107 fsa_dev_ptr[dd.cnum].deleted = 1;
2108 /*
2109 * Mark the container as no longer valid
2110 */
2111 fsa_dev_ptr[dd.cnum].valid = 0;
2112 return 0;
2113 }
2114
2115 static int delete_disk(struct aac_dev *dev, void __user *arg)
2116 {
2117 struct aac_delete_disk dd;
2118 struct fsa_dev_info *fsa_dev_ptr;
2119
2120 fsa_dev_ptr = dev->fsa_dev;
2121 if (!fsa_dev_ptr)
2122 return -EBUSY;
2123
2124 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2125 return -EFAULT;
2126
2127 if (dd.cnum >= dev->maximum_num_containers)
2128 return -EINVAL;
2129 /*
2130 * If the container is locked, it can not be deleted by the API.
2131 */
2132 if (fsa_dev_ptr[dd.cnum].locked)
2133 return -EBUSY;
2134 else {
2135 /*
2136 * Mark the container as no longer being valid.
2137 */
2138 fsa_dev_ptr[dd.cnum].valid = 0;
2139 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2140 return 0;
2141 }
2142 }
2143
2144 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2145 {
2146 switch (cmd) {
2147 case FSACTL_QUERY_DISK:
2148 return query_disk(dev, arg);
2149 case FSACTL_DELETE_DISK:
2150 return delete_disk(dev, arg);
2151 case FSACTL_FORCE_DELETE_DISK:
2152 return force_delete_disk(dev, arg);
2153 case FSACTL_GET_CONTAINERS:
2154 return aac_get_containers(dev);
2155 default:
2156 return -ENOTTY;
2157 }
2158 }
2159
2160 /**
2161 *
2162 * aac_srb_callback
2163 * @context: the context set in the fib - here it is scsi cmd
2164 * @fibptr: pointer to the fib
2165 *
2166 * Handles the completion of a scsi command to a non dasd device
2167 *
2168 */
2169
2170 static void aac_srb_callback(void *context, struct fib * fibptr)
2171 {
2172 struct aac_dev *dev;
2173 struct aac_srb_reply *srbreply;
2174 struct scsi_cmnd *scsicmd;
2175
2176 scsicmd = (struct scsi_cmnd *) context;
2177
2178 if (!aac_valid_context(scsicmd, fibptr))
2179 return;
2180
2181 BUG_ON(fibptr == NULL);
2182
2183 dev = fibptr->dev;
2184
2185 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2186
2187 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
2188 /*
2189 * Calculate resid for sg
2190 */
2191
2192 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2193 - le32_to_cpu(srbreply->data_xfer_length));
2194
2195 scsi_dma_unmap(scsicmd);
2196
2197 /*
2198 * First check the fib status
2199 */
2200
2201 if (le32_to_cpu(srbreply->status) != ST_OK){
2202 int len;
2203 printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2204 len = (le32_to_cpu(srbreply->sense_data_size) >
2205 sizeof(scsicmd->sense_buffer)) ?
2206 sizeof(scsicmd->sense_buffer) :
2207 le32_to_cpu(srbreply->sense_data_size);
2208 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2209 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2210 }
2211
2212 /*
2213 * Next check the srb status
2214 */
2215 switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2216 case SRB_STATUS_ERROR_RECOVERY:
2217 case SRB_STATUS_PENDING:
2218 case SRB_STATUS_SUCCESS:
2219 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2220 break;
2221 case SRB_STATUS_DATA_OVERRUN:
2222 switch(scsicmd->cmnd[0]){
2223 case READ_6:
2224 case WRITE_6:
2225 case READ_10:
2226 case WRITE_10:
2227 case READ_12:
2228 case WRITE_12:
2229 case READ_16:
2230 case WRITE_16:
2231 if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
2232 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2233 } else {
2234 printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2235 }
2236 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2237 break;
2238 case INQUIRY: {
2239 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2240 break;
2241 }
2242 default:
2243 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2244 break;
2245 }
2246 break;
2247 case SRB_STATUS_ABORTED:
2248 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2249 break;
2250 case SRB_STATUS_ABORT_FAILED:
2251 // Not sure about this one - but assuming the hba was trying to abort for some reason
2252 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2253 break;
2254 case SRB_STATUS_PARITY_ERROR:
2255 scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2256 break;
2257 case SRB_STATUS_NO_DEVICE:
2258 case SRB_STATUS_INVALID_PATH_ID:
2259 case SRB_STATUS_INVALID_TARGET_ID:
2260 case SRB_STATUS_INVALID_LUN:
2261 case SRB_STATUS_SELECTION_TIMEOUT:
2262 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2263 break;
2264
2265 case SRB_STATUS_COMMAND_TIMEOUT:
2266 case SRB_STATUS_TIMEOUT:
2267 scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2268 break;
2269
2270 case SRB_STATUS_BUSY:
2271 scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
2272 break;
2273
2274 case SRB_STATUS_BUS_RESET:
2275 scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2276 break;
2277
2278 case SRB_STATUS_MESSAGE_REJECTED:
2279 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2280 break;
2281 case SRB_STATUS_REQUEST_FLUSHED:
2282 case SRB_STATUS_ERROR:
2283 case SRB_STATUS_INVALID_REQUEST:
2284 case SRB_STATUS_REQUEST_SENSE_FAILED:
2285 case SRB_STATUS_NO_HBA:
2286 case SRB_STATUS_UNEXPECTED_BUS_FREE:
2287 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2288 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2289 case SRB_STATUS_DELAYED_RETRY:
2290 case SRB_STATUS_BAD_FUNCTION:
2291 case SRB_STATUS_NOT_STARTED:
2292 case SRB_STATUS_NOT_IN_USE:
2293 case SRB_STATUS_FORCE_ABORT:
2294 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2295 default:
2296 #ifdef AAC_DETAILED_STATUS_INFO
2297 printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2298 le32_to_cpu(srbreply->srb_status) & 0x3F,
2299 aac_get_status_string(
2300 le32_to_cpu(srbreply->srb_status) & 0x3F),
2301 scsicmd->cmnd[0],
2302 le32_to_cpu(srbreply->scsi_status));
2303 #endif
2304 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2305 break;
2306 }
2307 if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){ // Check Condition
2308 int len;
2309 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2310 len = (le32_to_cpu(srbreply->sense_data_size) >
2311 sizeof(scsicmd->sense_buffer)) ?
2312 sizeof(scsicmd->sense_buffer) :
2313 le32_to_cpu(srbreply->sense_data_size);
2314 #ifdef AAC_DETAILED_STATUS_INFO
2315 printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2316 le32_to_cpu(srbreply->status), len);
2317 #endif
2318 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2319
2320 }
2321 /*
2322 * OR in the scsi status (already shifted up a bit)
2323 */
2324 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2325
2326 aac_fib_complete(fibptr);
2327 aac_fib_free(fibptr);
2328 scsicmd->scsi_done(scsicmd);
2329 }
2330
2331 /**
2332 *
2333 * aac_send_scb_fib
2334 * @scsicmd: the scsi command block
2335 *
2336 * This routine will form a FIB and fill in the aac_srb from the
2337 * scsicmd passed in.
2338 */
2339
2340 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2341 {
2342 struct fib* cmd_fibcontext;
2343 struct aac_dev* dev;
2344 int status;
2345
2346 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2347 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2348 scsicmd->device->lun > 7) {
2349 scsicmd->result = DID_NO_CONNECT << 16;
2350 scsicmd->scsi_done(scsicmd);
2351 return 0;
2352 }
2353
2354 /*
2355 * Allocate and initialize a Fib then setup a BlockWrite command
2356 */
2357 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2358 return -1;
2359 }
2360 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2361
2362 /*
2363 * Check that the command queued to the controller
2364 */
2365 if (status == -EINPROGRESS) {
2366 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2367 return 0;
2368 }
2369
2370 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2371 aac_fib_complete(cmd_fibcontext);
2372 aac_fib_free(cmd_fibcontext);
2373
2374 return -1;
2375 }
2376
2377 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2378 {
2379 struct aac_dev *dev;
2380 unsigned long byte_count = 0;
2381 int nseg;
2382
2383 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2384 // Get rid of old data
2385 psg->count = 0;
2386 psg->sg[0].addr = 0;
2387 psg->sg[0].count = 0;
2388
2389 nseg = scsi_dma_map(scsicmd);
2390 BUG_ON(nseg < 0);
2391 if (nseg) {
2392 struct scatterlist *sg;
2393 int i;
2394
2395 psg->count = cpu_to_le32(nseg);
2396
2397 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2398 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2399 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2400 byte_count += sg_dma_len(sg);
2401 }
2402 /* hba wants the size to be exact */
2403 if (byte_count > scsi_bufflen(scsicmd)) {
2404 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2405 (byte_count - scsi_bufflen(scsicmd));
2406 psg->sg[i-1].count = cpu_to_le32(temp);
2407 byte_count = scsi_bufflen(scsicmd);
2408 }
2409 /* Check for command underflow */
2410 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2411 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2412 byte_count, scsicmd->underflow);
2413 }
2414 }
2415 return byte_count;
2416 }
2417
2418
2419 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2420 {
2421 struct aac_dev *dev;
2422 unsigned long byte_count = 0;
2423 u64 addr;
2424 int nseg;
2425
2426 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2427 // Get rid of old data
2428 psg->count = 0;
2429 psg->sg[0].addr[0] = 0;
2430 psg->sg[0].addr[1] = 0;
2431 psg->sg[0].count = 0;
2432
2433 nseg = scsi_dma_map(scsicmd);
2434 BUG_ON(nseg < 0);
2435 if (nseg) {
2436 struct scatterlist *sg;
2437 int i;
2438
2439 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2440 int count = sg_dma_len(sg);
2441 addr = sg_dma_address(sg);
2442 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2443 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2444 psg->sg[i].count = cpu_to_le32(count);
2445 byte_count += count;
2446 }
2447 psg->count = cpu_to_le32(nseg);
2448 /* hba wants the size to be exact */
2449 if (byte_count > scsi_bufflen(scsicmd)) {
2450 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2451 (byte_count - scsi_bufflen(scsicmd));
2452 psg->sg[i-1].count = cpu_to_le32(temp);
2453 byte_count = scsi_bufflen(scsicmd);
2454 }
2455 /* Check for command underflow */
2456 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2457 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2458 byte_count, scsicmd->underflow);
2459 }
2460 }
2461 return byte_count;
2462 }
2463
2464 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2465 {
2466 unsigned long byte_count = 0;
2467 int nseg;
2468
2469 // Get rid of old data
2470 psg->count = 0;
2471 psg->sg[0].next = 0;
2472 psg->sg[0].prev = 0;
2473 psg->sg[0].addr[0] = 0;
2474 psg->sg[0].addr[1] = 0;
2475 psg->sg[0].count = 0;
2476 psg->sg[0].flags = 0;
2477
2478 nseg = scsi_dma_map(scsicmd);
2479 BUG_ON(nseg < 0);
2480 if (nseg) {
2481 struct scatterlist *sg;
2482 int i;
2483
2484 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2485 int count = sg_dma_len(sg);
2486 u64 addr = sg_dma_address(sg);
2487 psg->sg[i].next = 0;
2488 psg->sg[i].prev = 0;
2489 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2490 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2491 psg->sg[i].count = cpu_to_le32(count);
2492 psg->sg[i].flags = 0;
2493 byte_count += count;
2494 }
2495 psg->count = cpu_to_le32(nseg);
2496 /* hba wants the size to be exact */
2497 if (byte_count > scsi_bufflen(scsicmd)) {
2498 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2499 (byte_count - scsi_bufflen(scsicmd));
2500 psg->sg[i-1].count = cpu_to_le32(temp);
2501 byte_count = scsi_bufflen(scsicmd);
2502 }
2503 /* Check for command underflow */
2504 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2505 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2506 byte_count, scsicmd->underflow);
2507 }
2508 }
2509 return byte_count;
2510 }
2511
2512 #ifdef AAC_DETAILED_STATUS_INFO
2513
2514 struct aac_srb_status_info {
2515 u32 status;
2516 char *str;
2517 };
2518
2519
2520 static struct aac_srb_status_info srb_status_info[] = {
2521 { SRB_STATUS_PENDING, "Pending Status"},
2522 { SRB_STATUS_SUCCESS, "Success"},
2523 { SRB_STATUS_ABORTED, "Aborted Command"},
2524 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
2525 { SRB_STATUS_ERROR, "Error Event"},
2526 { SRB_STATUS_BUSY, "Device Busy"},
2527 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
2528 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
2529 { SRB_STATUS_NO_DEVICE, "No Device"},
2530 { SRB_STATUS_TIMEOUT, "Timeout"},
2531 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
2532 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
2533 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
2534 { SRB_STATUS_BUS_RESET, "Bus Reset"},
2535 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
2536 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2537 { SRB_STATUS_NO_HBA, "No HBA"},
2538 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
2539 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2540 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2541 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2542 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
2543 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
2544 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
2545 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
2546 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
2547 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
2548 { SRB_STATUS_NOT_STARTED, "Not Started"},
2549 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
2550 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
2551 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2552 { 0xff, "Unknown Error"}
2553 };
2554
2555 char *aac_get_status_string(u32 status)
2556 {
2557 int i;
2558
2559 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
2560 if (srb_status_info[i].status == status)
2561 return srb_status_info[i].str;
2562
2563 return "Bad Status Code";
2564 }
2565
2566 #endif