]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/aacraid/aachba.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / aacraid / aachba.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/completion.h>
33 #include <linux/blkdev.h>
34 #include <linux/dma-mapping.h>
35 #include <asm/semaphore.h>
36 #include <asm/uaccess.h>
37
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42
43 #include "aacraid.h"
44
45 /* values for inqd_pdt: Peripheral device type in plain English */
46 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
47 #define INQD_PDT_PROC 0x03 /* Processor device */
48 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
49 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
50 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
51 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
52
53 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
54 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
55
56 /*
57 * Sense codes
58 */
59
60 #define SENCODE_NO_SENSE 0x00
61 #define SENCODE_END_OF_DATA 0x00
62 #define SENCODE_BECOMING_READY 0x04
63 #define SENCODE_INIT_CMD_REQUIRED 0x04
64 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
65 #define SENCODE_INVALID_COMMAND 0x20
66 #define SENCODE_LBA_OUT_OF_RANGE 0x21
67 #define SENCODE_INVALID_CDB_FIELD 0x24
68 #define SENCODE_LUN_NOT_SUPPORTED 0x25
69 #define SENCODE_INVALID_PARAM_FIELD 0x26
70 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
71 #define SENCODE_PARAM_VALUE_INVALID 0x26
72 #define SENCODE_RESET_OCCURRED 0x29
73 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
74 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
75 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
76 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
77 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
78 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
79 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
80 #define SENCODE_OVERLAPPED_COMMAND 0x4E
81
82 /*
83 * Additional sense codes
84 */
85
86 #define ASENCODE_NO_SENSE 0x00
87 #define ASENCODE_END_OF_DATA 0x05
88 #define ASENCODE_BECOMING_READY 0x01
89 #define ASENCODE_INIT_CMD_REQUIRED 0x02
90 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
91 #define ASENCODE_INVALID_COMMAND 0x00
92 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
93 #define ASENCODE_INVALID_CDB_FIELD 0x00
94 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
95 #define ASENCODE_INVALID_PARAM_FIELD 0x00
96 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
97 #define ASENCODE_PARAM_VALUE_INVALID 0x02
98 #define ASENCODE_RESET_OCCURRED 0x00
99 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
100 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
101 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
102 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
103 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
104 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
105 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
106 #define ASENCODE_OVERLAPPED_COMMAND 0x00
107
108 #define BYTE0(x) (unsigned char)(x)
109 #define BYTE1(x) (unsigned char)((x) >> 8)
110 #define BYTE2(x) (unsigned char)((x) >> 16)
111 #define BYTE3(x) (unsigned char)((x) >> 24)
112
113 /*------------------------------------------------------------------------------
114 * S T R U C T S / T Y P E D E F S
115 *----------------------------------------------------------------------------*/
116 /* SCSI inquiry data */
117 struct inquiry_data {
118 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
119 u8 inqd_dtq; /* RMB | Device Type Qualifier */
120 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
121 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
122 u8 inqd_len; /* Additional length (n-4) */
123 u8 inqd_pad1[2];/* Reserved - must be zero */
124 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
125 u8 inqd_vid[8]; /* Vendor ID */
126 u8 inqd_pid[16];/* Product ID */
127 u8 inqd_prl[4]; /* Product Revision Level */
128 };
129
130 /*
131 * M O D U L E G L O B A L S
132 */
133
134 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
135 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
136 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
137 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
138 #ifdef AAC_DETAILED_STATUS_INFO
139 static char *aac_get_status_string(u32 status);
140 #endif
141
142 /*
143 * Non dasd selection is handled entirely in aachba now
144 */
145
146 static int nondasd = -1;
147 static int dacmode = -1;
148
149 int aac_commit = -1;
150 int startup_timeout = 180;
151 int aif_timeout = 120;
152
153 module_param(nondasd, int, S_IRUGO|S_IWUSR);
154 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
155 module_param(dacmode, int, S_IRUGO|S_IWUSR);
156 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
157 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
158 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
159 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
160 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for adapter to have it's kernel up and\nrunning. This is typically adjusted for large systems that do not have a BIOS.");
161 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
162 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for applications to pick up AIFs before\nderegistering them. This is typically adjusted for heavily burdened systems.");
163
164 int numacb = -1;
165 module_param(numacb, int, S_IRUGO|S_IWUSR);
166 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid values are 512 and down. Default is to use suggestion from Firmware.");
167
168 int acbsize = -1;
169 module_param(acbsize, int, S_IRUGO|S_IWUSR);
170 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512, 2048, 4096 and 8192. Default is to use suggestion from Firmware.");
171
172 int update_interval = 30 * 60;
173 module_param(update_interval, int, S_IRUGO|S_IWUSR);
174 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync updates issued to adapter.");
175
176 int check_interval = 24 * 60 * 60;
177 module_param(check_interval, int, S_IRUGO|S_IWUSR);
178 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health checks.");
179
180 int check_reset = 1;
181 module_param(check_reset, int, S_IRUGO|S_IWUSR);
182 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the adapter.");
183
184 int expose_physicals = -1;
185 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
186 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays. -1=protect 0=off, 1=on");
187
188 int aac_reset_devices = 0;
189 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
190 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
191
192 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
193 struct fib *fibptr) {
194 struct scsi_device *device;
195
196 if (unlikely(!scsicmd || !scsicmd->scsi_done )) {
197 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"))
198 ;
199 aac_fib_complete(fibptr);
200 aac_fib_free(fibptr);
201 return 0;
202 }
203 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
204 device = scsicmd->device;
205 if (unlikely(!device || !scsi_device_online(device))) {
206 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
207 aac_fib_complete(fibptr);
208 aac_fib_free(fibptr);
209 return 0;
210 }
211 return 1;
212 }
213
214 /**
215 * aac_get_config_status - check the adapter configuration
216 * @common: adapter to query
217 *
218 * Query config status, and commit the configuration if needed.
219 */
220 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
221 {
222 int status = 0;
223 struct fib * fibptr;
224
225 if (!(fibptr = aac_fib_alloc(dev)))
226 return -ENOMEM;
227
228 aac_fib_init(fibptr);
229 {
230 struct aac_get_config_status *dinfo;
231 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
232
233 dinfo->command = cpu_to_le32(VM_ContainerConfig);
234 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
235 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
236 }
237
238 status = aac_fib_send(ContainerCommand,
239 fibptr,
240 sizeof (struct aac_get_config_status),
241 FsaNormal,
242 1, 1,
243 NULL, NULL);
244 if (status < 0 ) {
245 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
246 } else {
247 struct aac_get_config_status_resp *reply
248 = (struct aac_get_config_status_resp *) fib_data(fibptr);
249 dprintk((KERN_WARNING
250 "aac_get_config_status: response=%d status=%d action=%d\n",
251 le32_to_cpu(reply->response),
252 le32_to_cpu(reply->status),
253 le32_to_cpu(reply->data.action)));
254 if ((le32_to_cpu(reply->response) != ST_OK) ||
255 (le32_to_cpu(reply->status) != CT_OK) ||
256 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
257 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
258 status = -EINVAL;
259 }
260 }
261 aac_fib_complete(fibptr);
262 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
263 if (status >= 0) {
264 if ((aac_commit == 1) || commit_flag) {
265 struct aac_commit_config * dinfo;
266 aac_fib_init(fibptr);
267 dinfo = (struct aac_commit_config *) fib_data(fibptr);
268
269 dinfo->command = cpu_to_le32(VM_ContainerConfig);
270 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
271
272 status = aac_fib_send(ContainerCommand,
273 fibptr,
274 sizeof (struct aac_commit_config),
275 FsaNormal,
276 1, 1,
277 NULL, NULL);
278 aac_fib_complete(fibptr);
279 } else if (aac_commit == 0) {
280 printk(KERN_WARNING
281 "aac_get_config_status: Foreign device configurations are being ignored\n");
282 }
283 }
284 aac_fib_free(fibptr);
285 return status;
286 }
287
288 /**
289 * aac_get_containers - list containers
290 * @common: adapter to probe
291 *
292 * Make a list of all containers on this controller
293 */
294 int aac_get_containers(struct aac_dev *dev)
295 {
296 struct fsa_dev_info *fsa_dev_ptr;
297 u32 index;
298 int status = 0;
299 struct fib * fibptr;
300 struct aac_get_container_count *dinfo;
301 struct aac_get_container_count_resp *dresp;
302 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
303
304 if (!(fibptr = aac_fib_alloc(dev)))
305 return -ENOMEM;
306
307 aac_fib_init(fibptr);
308 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
309 dinfo->command = cpu_to_le32(VM_ContainerConfig);
310 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
311
312 status = aac_fib_send(ContainerCommand,
313 fibptr,
314 sizeof (struct aac_get_container_count),
315 FsaNormal,
316 1, 1,
317 NULL, NULL);
318 if (status >= 0) {
319 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
320 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
321 aac_fib_complete(fibptr);
322 }
323 aac_fib_free(fibptr);
324
325 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
326 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
327 fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
328 GFP_KERNEL);
329 if (!fsa_dev_ptr)
330 return -ENOMEM;
331
332 dev->fsa_dev = fsa_dev_ptr;
333 dev->maximum_num_containers = maximum_num_containers;
334
335 for (index = 0; index < dev->maximum_num_containers; ) {
336 fsa_dev_ptr[index].devname[0] = '\0';
337
338 status = aac_probe_container(dev, index);
339
340 if (status < 0) {
341 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
342 break;
343 }
344
345 /*
346 * If there are no more containers, then stop asking.
347 */
348 if (++index >= status)
349 break;
350 }
351 return status;
352 }
353
354 static void aac_internal_transfer(struct scsi_cmnd *scsicmd, void *data, unsigned int offset, unsigned int len)
355 {
356 void *buf;
357 int transfer_len;
358 struct scatterlist *sg = scsi_sglist(scsicmd);
359
360 buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset;
361 transfer_len = min(sg->length, len + offset);
362
363 transfer_len -= offset;
364 if (buf && transfer_len > 0)
365 memcpy(buf + offset, data, transfer_len);
366
367 kunmap_atomic(buf - sg->offset, KM_IRQ0);
368
369 }
370
371 static void get_container_name_callback(void *context, struct fib * fibptr)
372 {
373 struct aac_get_name_resp * get_name_reply;
374 struct scsi_cmnd * scsicmd;
375
376 scsicmd = (struct scsi_cmnd *) context;
377
378 if (!aac_valid_context(scsicmd, fibptr))
379 return;
380
381 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
382 BUG_ON(fibptr == NULL);
383
384 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
385 /* Failure is irrelevant, using default value instead */
386 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
387 && (get_name_reply->data[0] != '\0')) {
388 char *sp = get_name_reply->data;
389 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
390 while (*sp == ' ')
391 ++sp;
392 if (*sp) {
393 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
394 int count = sizeof(d);
395 char *dp = d;
396 do {
397 *dp++ = (*sp) ? *sp++ : ' ';
398 } while (--count > 0);
399 aac_internal_transfer(scsicmd, d,
400 offsetof(struct inquiry_data, inqd_pid), sizeof(d));
401 }
402 }
403
404 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
405
406 aac_fib_complete(fibptr);
407 aac_fib_free(fibptr);
408 scsicmd->scsi_done(scsicmd);
409 }
410
411 /**
412 * aac_get_container_name - get container name, none blocking.
413 */
414 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
415 {
416 int status;
417 struct aac_get_name *dinfo;
418 struct fib * cmd_fibcontext;
419 struct aac_dev * dev;
420
421 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
422
423 if (!(cmd_fibcontext = aac_fib_alloc(dev)))
424 return -ENOMEM;
425
426 aac_fib_init(cmd_fibcontext);
427 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
428
429 dinfo->command = cpu_to_le32(VM_ContainerConfig);
430 dinfo->type = cpu_to_le32(CT_READ_NAME);
431 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
432 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
433
434 status = aac_fib_send(ContainerCommand,
435 cmd_fibcontext,
436 sizeof (struct aac_get_name),
437 FsaNormal,
438 0, 1,
439 (fib_callback) get_container_name_callback,
440 (void *) scsicmd);
441
442 /*
443 * Check that the command queued to the controller
444 */
445 if (status == -EINPROGRESS) {
446 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
447 return 0;
448 }
449
450 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
451 aac_fib_complete(cmd_fibcontext);
452 aac_fib_free(cmd_fibcontext);
453 return -1;
454 }
455
456 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
457 {
458 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
459
460 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
461 return aac_scsi_cmd(scsicmd);
462
463 scsicmd->result = DID_NO_CONNECT << 16;
464 scsicmd->scsi_done(scsicmd);
465 return 0;
466 }
467
468 static void _aac_probe_container2(void * context, struct fib * fibptr)
469 {
470 struct fsa_dev_info *fsa_dev_ptr;
471 int (*callback)(struct scsi_cmnd *);
472 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
473
474
475 if (!aac_valid_context(scsicmd, fibptr))
476 return;
477
478 scsicmd->SCp.Status = 0;
479 fsa_dev_ptr = fibptr->dev->fsa_dev;
480 if (fsa_dev_ptr) {
481 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
482 fsa_dev_ptr += scmd_id(scsicmd);
483
484 if ((le32_to_cpu(dresp->status) == ST_OK) &&
485 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
486 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
487 fsa_dev_ptr->valid = 1;
488 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
489 fsa_dev_ptr->size
490 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
491 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
492 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
493 }
494 if ((fsa_dev_ptr->valid & 1) == 0)
495 fsa_dev_ptr->valid = 0;
496 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
497 }
498 aac_fib_complete(fibptr);
499 aac_fib_free(fibptr);
500 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
501 scsicmd->SCp.ptr = NULL;
502 (*callback)(scsicmd);
503 return;
504 }
505
506 static void _aac_probe_container1(void * context, struct fib * fibptr)
507 {
508 struct scsi_cmnd * scsicmd;
509 struct aac_mount * dresp;
510 struct aac_query_mount *dinfo;
511 int status;
512
513 dresp = (struct aac_mount *) fib_data(fibptr);
514 dresp->mnt[0].capacityhigh = 0;
515 if ((le32_to_cpu(dresp->status) != ST_OK) ||
516 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
517 _aac_probe_container2(context, fibptr);
518 return;
519 }
520 scsicmd = (struct scsi_cmnd *) context;
521
522 if (!aac_valid_context(scsicmd, fibptr))
523 return;
524
525 aac_fib_init(fibptr);
526
527 dinfo = (struct aac_query_mount *)fib_data(fibptr);
528
529 dinfo->command = cpu_to_le32(VM_NameServe64);
530 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
531 dinfo->type = cpu_to_le32(FT_FILESYS);
532
533 status = aac_fib_send(ContainerCommand,
534 fibptr,
535 sizeof(struct aac_query_mount),
536 FsaNormal,
537 0, 1,
538 _aac_probe_container2,
539 (void *) scsicmd);
540 /*
541 * Check that the command queued to the controller
542 */
543 if (status == -EINPROGRESS)
544 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
545 else if (status < 0) {
546 /* Inherit results from VM_NameServe, if any */
547 dresp->status = cpu_to_le32(ST_OK);
548 _aac_probe_container2(context, fibptr);
549 }
550 }
551
552 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
553 {
554 struct fib * fibptr;
555 int status = -ENOMEM;
556
557 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
558 struct aac_query_mount *dinfo;
559
560 aac_fib_init(fibptr);
561
562 dinfo = (struct aac_query_mount *)fib_data(fibptr);
563
564 dinfo->command = cpu_to_le32(VM_NameServe);
565 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
566 dinfo->type = cpu_to_le32(FT_FILESYS);
567 scsicmd->SCp.ptr = (char *)callback;
568
569 status = aac_fib_send(ContainerCommand,
570 fibptr,
571 sizeof(struct aac_query_mount),
572 FsaNormal,
573 0, 1,
574 _aac_probe_container1,
575 (void *) scsicmd);
576 /*
577 * Check that the command queued to the controller
578 */
579 if (status == -EINPROGRESS) {
580 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
581 return 0;
582 }
583 if (status < 0) {
584 scsicmd->SCp.ptr = NULL;
585 aac_fib_complete(fibptr);
586 aac_fib_free(fibptr);
587 }
588 }
589 if (status < 0) {
590 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
591 if (fsa_dev_ptr) {
592 fsa_dev_ptr += scmd_id(scsicmd);
593 if ((fsa_dev_ptr->valid & 1) == 0) {
594 fsa_dev_ptr->valid = 0;
595 return (*callback)(scsicmd);
596 }
597 }
598 }
599 return status;
600 }
601
602 /**
603 * aac_probe_container - query a logical volume
604 * @dev: device to query
605 * @cid: container identifier
606 *
607 * Queries the controller about the given volume. The volume information
608 * is updated in the struct fsa_dev_info structure rather than returned.
609 */
610 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
611 {
612 scsicmd->device = NULL;
613 return 0;
614 }
615
616 int aac_probe_container(struct aac_dev *dev, int cid)
617 {
618 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
619 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
620 int status;
621
622 if (!scsicmd || !scsidev) {
623 kfree(scsicmd);
624 kfree(scsidev);
625 return -ENOMEM;
626 }
627 scsicmd->list.next = NULL;
628 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
629
630 scsicmd->device = scsidev;
631 scsidev->sdev_state = 0;
632 scsidev->id = cid;
633 scsidev->host = dev->scsi_host_ptr;
634
635 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
636 while (scsicmd->device == scsidev)
637 schedule();
638 kfree(scsidev);
639 status = scsicmd->SCp.Status;
640 kfree(scsicmd);
641 return status;
642 }
643
644 /* Local Structure to set SCSI inquiry data strings */
645 struct scsi_inq {
646 char vid[8]; /* Vendor ID */
647 char pid[16]; /* Product ID */
648 char prl[4]; /* Product Revision Level */
649 };
650
651 /**
652 * InqStrCopy - string merge
653 * @a: string to copy from
654 * @b: string to copy to
655 *
656 * Copy a String from one location to another
657 * without copying \0
658 */
659
660 static void inqstrcpy(char *a, char *b)
661 {
662
663 while(*a != (char)0)
664 *b++ = *a++;
665 }
666
667 static char *container_types[] = {
668 "None",
669 "Volume",
670 "Mirror",
671 "Stripe",
672 "RAID5",
673 "SSRW",
674 "SSRO",
675 "Morph",
676 "Legacy",
677 "RAID4",
678 "RAID10",
679 "RAID00",
680 "V-MIRRORS",
681 "PSEUDO R4",
682 "RAID50",
683 "RAID5D",
684 "RAID5D0",
685 "RAID1E",
686 "RAID6",
687 "RAID60",
688 "Unknown"
689 };
690
691
692
693 /* Function: setinqstr
694 *
695 * Arguments: [1] pointer to void [1] int
696 *
697 * Purpose: Sets SCSI inquiry data strings for vendor, product
698 * and revision level. Allows strings to be set in platform dependant
699 * files instead of in OS dependant driver source.
700 */
701
702 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
703 {
704 struct scsi_inq *str;
705
706 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
707 memset(str, ' ', sizeof(*str));
708
709 if (dev->supplement_adapter_info.AdapterTypeText[0]) {
710 char * cp = dev->supplement_adapter_info.AdapterTypeText;
711 int c = sizeof(str->vid);
712 while (*cp && *cp != ' ' && --c)
713 ++cp;
714 c = *cp;
715 *cp = '\0';
716 inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
717 str->vid);
718 *cp = c;
719 while (*cp && *cp != ' ')
720 ++cp;
721 while (*cp == ' ')
722 ++cp;
723 /* last six chars reserved for vol type */
724 c = 0;
725 if (strlen(cp) > sizeof(str->pid)) {
726 c = cp[sizeof(str->pid)];
727 cp[sizeof(str->pid)] = '\0';
728 }
729 inqstrcpy (cp, str->pid);
730 if (c)
731 cp[sizeof(str->pid)] = c;
732 } else {
733 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
734
735 inqstrcpy (mp->vname, str->vid);
736 /* last six chars reserved for vol type */
737 inqstrcpy (mp->model, str->pid);
738 }
739
740 if (tindex < ARRAY_SIZE(container_types)){
741 char *findit = str->pid;
742
743 for ( ; *findit != ' '; findit++); /* walk till we find a space */
744 /* RAID is superfluous in the context of a RAID device */
745 if (memcmp(findit-4, "RAID", 4) == 0)
746 *(findit -= 4) = ' ';
747 if (((findit - str->pid) + strlen(container_types[tindex]))
748 < (sizeof(str->pid) + sizeof(str->prl)))
749 inqstrcpy (container_types[tindex], findit + 1);
750 }
751 inqstrcpy ("V1.0", str->prl);
752 }
753
754 static void get_container_serial_callback(void *context, struct fib * fibptr)
755 {
756 struct aac_get_serial_resp * get_serial_reply;
757 struct scsi_cmnd * scsicmd;
758
759 BUG_ON(fibptr == NULL);
760
761 scsicmd = (struct scsi_cmnd *) context;
762 if (!aac_valid_context(scsicmd, fibptr))
763 return;
764
765 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
766 /* Failure is irrelevant, using default value instead */
767 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
768 char sp[13];
769 /* EVPD bit set */
770 sp[0] = INQD_PDT_DA;
771 sp[1] = scsicmd->cmnd[2];
772 sp[2] = 0;
773 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
774 le32_to_cpu(get_serial_reply->uid));
775 aac_internal_transfer(scsicmd, sp, 0, sizeof(sp));
776 }
777
778 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
779
780 aac_fib_complete(fibptr);
781 aac_fib_free(fibptr);
782 scsicmd->scsi_done(scsicmd);
783 }
784
785 /**
786 * aac_get_container_serial - get container serial, none blocking.
787 */
788 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
789 {
790 int status;
791 struct aac_get_serial *dinfo;
792 struct fib * cmd_fibcontext;
793 struct aac_dev * dev;
794
795 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
796
797 if (!(cmd_fibcontext = aac_fib_alloc(dev)))
798 return -ENOMEM;
799
800 aac_fib_init(cmd_fibcontext);
801 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
802
803 dinfo->command = cpu_to_le32(VM_ContainerConfig);
804 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
805 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
806
807 status = aac_fib_send(ContainerCommand,
808 cmd_fibcontext,
809 sizeof (struct aac_get_serial),
810 FsaNormal,
811 0, 1,
812 (fib_callback) get_container_serial_callback,
813 (void *) scsicmd);
814
815 /*
816 * Check that the command queued to the controller
817 */
818 if (status == -EINPROGRESS) {
819 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
820 return 0;
821 }
822
823 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
824 aac_fib_complete(cmd_fibcontext);
825 aac_fib_free(cmd_fibcontext);
826 return -1;
827 }
828
829 /* Function: setinqserial
830 *
831 * Arguments: [1] pointer to void [1] int
832 *
833 * Purpose: Sets SCSI Unit Serial number.
834 * This is a fake. We should read a proper
835 * serial number from the container. <SuSE>But
836 * without docs it's quite hard to do it :-)
837 * So this will have to do in the meantime.</SuSE>
838 */
839
840 static int setinqserial(struct aac_dev *dev, void *data, int cid)
841 {
842 /*
843 * This breaks array migration.
844 */
845 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
846 le32_to_cpu(dev->adapter_info.serial[0]), cid);
847 }
848
849 static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
850 u8 a_sense_code, u8 incorrect_length,
851 u8 bit_pointer, u16 field_pointer,
852 u32 residue)
853 {
854 sense_buf[0] = 0xF0; /* Sense data valid, err code 70h (current error) */
855 sense_buf[1] = 0; /* Segment number, always zero */
856
857 if (incorrect_length) {
858 sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
859 sense_buf[3] = BYTE3(residue);
860 sense_buf[4] = BYTE2(residue);
861 sense_buf[5] = BYTE1(residue);
862 sense_buf[6] = BYTE0(residue);
863 } else
864 sense_buf[2] = sense_key; /* Sense key */
865
866 if (sense_key == ILLEGAL_REQUEST)
867 sense_buf[7] = 10; /* Additional sense length */
868 else
869 sense_buf[7] = 6; /* Additional sense length */
870
871 sense_buf[12] = sense_code; /* Additional sense code */
872 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
873 if (sense_key == ILLEGAL_REQUEST) {
874 sense_buf[15] = 0;
875
876 if (sense_code == SENCODE_INVALID_PARAM_FIELD)
877 sense_buf[15] = 0x80;/* Std sense key specific field */
878 /* Illegal parameter is in the parameter block */
879
880 if (sense_code == SENCODE_INVALID_CDB_FIELD)
881 sense_buf[15] = 0xc0;/* Std sense key specific field */
882 /* Illegal parameter is in the CDB block */
883 sense_buf[15] |= bit_pointer;
884 sense_buf[16] = field_pointer >> 8; /* MSB */
885 sense_buf[17] = field_pointer; /* LSB */
886 }
887 }
888
889 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
890 {
891 if (lba & 0xffffffff00000000LL) {
892 int cid = scmd_id(cmd);
893 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
894 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
895 SAM_STAT_CHECK_CONDITION;
896 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
897 HARDWARE_ERROR,
898 SENCODE_INTERNAL_TARGET_FAILURE,
899 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
900 0, 0);
901 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
902 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(cmd->sense_buffer))
903 ? sizeof(cmd->sense_buffer)
904 : sizeof(dev->fsa_dev[cid].sense_data));
905 cmd->scsi_done(cmd);
906 return 1;
907 }
908 return 0;
909 }
910
911 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
912 {
913 return 0;
914 }
915
916 static void io_callback(void *context, struct fib * fibptr);
917
918 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
919 {
920 u16 fibsize;
921 struct aac_raw_io *readcmd;
922 aac_fib_init(fib);
923 readcmd = (struct aac_raw_io *) fib_data(fib);
924 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
925 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
926 readcmd->count = cpu_to_le32(count<<9);
927 readcmd->cid = cpu_to_le16(scmd_id(cmd));
928 readcmd->flags = cpu_to_le16(IO_TYPE_READ);
929 readcmd->bpTotal = 0;
930 readcmd->bpComplete = 0;
931
932 aac_build_sgraw(cmd, &readcmd->sg);
933 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
934 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
935 /*
936 * Now send the Fib to the adapter
937 */
938 return aac_fib_send(ContainerRawIo,
939 fib,
940 fibsize,
941 FsaNormal,
942 0, 1,
943 (fib_callback) io_callback,
944 (void *) cmd);
945 }
946
947 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
948 {
949 u16 fibsize;
950 struct aac_read64 *readcmd;
951 aac_fib_init(fib);
952 readcmd = (struct aac_read64 *) fib_data(fib);
953 readcmd->command = cpu_to_le32(VM_CtHostRead64);
954 readcmd->cid = cpu_to_le16(scmd_id(cmd));
955 readcmd->sector_count = cpu_to_le16(count);
956 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
957 readcmd->pad = 0;
958 readcmd->flags = 0;
959
960 aac_build_sg64(cmd, &readcmd->sg);
961 fibsize = sizeof(struct aac_read64) +
962 ((le32_to_cpu(readcmd->sg.count) - 1) *
963 sizeof (struct sgentry64));
964 BUG_ON (fibsize > (fib->dev->max_fib_size -
965 sizeof(struct aac_fibhdr)));
966 /*
967 * Now send the Fib to the adapter
968 */
969 return aac_fib_send(ContainerCommand64,
970 fib,
971 fibsize,
972 FsaNormal,
973 0, 1,
974 (fib_callback) io_callback,
975 (void *) cmd);
976 }
977
978 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
979 {
980 u16 fibsize;
981 struct aac_read *readcmd;
982 aac_fib_init(fib);
983 readcmd = (struct aac_read *) fib_data(fib);
984 readcmd->command = cpu_to_le32(VM_CtBlockRead);
985 readcmd->cid = cpu_to_le16(scmd_id(cmd));
986 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
987 readcmd->count = cpu_to_le32(count * 512);
988
989 aac_build_sg(cmd, &readcmd->sg);
990 fibsize = sizeof(struct aac_read) +
991 ((le32_to_cpu(readcmd->sg.count) - 1) *
992 sizeof (struct sgentry));
993 BUG_ON (fibsize > (fib->dev->max_fib_size -
994 sizeof(struct aac_fibhdr)));
995 /*
996 * Now send the Fib to the adapter
997 */
998 return aac_fib_send(ContainerCommand,
999 fib,
1000 fibsize,
1001 FsaNormal,
1002 0, 1,
1003 (fib_callback) io_callback,
1004 (void *) cmd);
1005 }
1006
1007 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1008 {
1009 u16 fibsize;
1010 struct aac_raw_io *writecmd;
1011 aac_fib_init(fib);
1012 writecmd = (struct aac_raw_io *) fib_data(fib);
1013 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1014 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1015 writecmd->count = cpu_to_le32(count<<9);
1016 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1017 writecmd->flags = fua ?
1018 cpu_to_le16(IO_TYPE_WRITE|IO_SUREWRITE) :
1019 cpu_to_le16(IO_TYPE_WRITE);
1020 writecmd->bpTotal = 0;
1021 writecmd->bpComplete = 0;
1022
1023 aac_build_sgraw(cmd, &writecmd->sg);
1024 fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
1025 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1026 /*
1027 * Now send the Fib to the adapter
1028 */
1029 return aac_fib_send(ContainerRawIo,
1030 fib,
1031 fibsize,
1032 FsaNormal,
1033 0, 1,
1034 (fib_callback) io_callback,
1035 (void *) cmd);
1036 }
1037
1038 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1039 {
1040 u16 fibsize;
1041 struct aac_write64 *writecmd;
1042 aac_fib_init(fib);
1043 writecmd = (struct aac_write64 *) fib_data(fib);
1044 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1045 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1046 writecmd->sector_count = cpu_to_le16(count);
1047 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1048 writecmd->pad = 0;
1049 writecmd->flags = 0;
1050
1051 aac_build_sg64(cmd, &writecmd->sg);
1052 fibsize = sizeof(struct aac_write64) +
1053 ((le32_to_cpu(writecmd->sg.count) - 1) *
1054 sizeof (struct sgentry64));
1055 BUG_ON (fibsize > (fib->dev->max_fib_size -
1056 sizeof(struct aac_fibhdr)));
1057 /*
1058 * Now send the Fib to the adapter
1059 */
1060 return aac_fib_send(ContainerCommand64,
1061 fib,
1062 fibsize,
1063 FsaNormal,
1064 0, 1,
1065 (fib_callback) io_callback,
1066 (void *) cmd);
1067 }
1068
1069 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1070 {
1071 u16 fibsize;
1072 struct aac_write *writecmd;
1073 aac_fib_init(fib);
1074 writecmd = (struct aac_write *) fib_data(fib);
1075 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1076 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1077 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1078 writecmd->count = cpu_to_le32(count * 512);
1079 writecmd->sg.count = cpu_to_le32(1);
1080 /* ->stable is not used - it did mean which type of write */
1081
1082 aac_build_sg(cmd, &writecmd->sg);
1083 fibsize = sizeof(struct aac_write) +
1084 ((le32_to_cpu(writecmd->sg.count) - 1) *
1085 sizeof (struct sgentry));
1086 BUG_ON (fibsize > (fib->dev->max_fib_size -
1087 sizeof(struct aac_fibhdr)));
1088 /*
1089 * Now send the Fib to the adapter
1090 */
1091 return aac_fib_send(ContainerCommand,
1092 fib,
1093 fibsize,
1094 FsaNormal,
1095 0, 1,
1096 (fib_callback) io_callback,
1097 (void *) cmd);
1098 }
1099
1100 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1101 {
1102 struct aac_srb * srbcmd;
1103 u32 flag;
1104 u32 timeout;
1105
1106 aac_fib_init(fib);
1107 switch(cmd->sc_data_direction){
1108 case DMA_TO_DEVICE:
1109 flag = SRB_DataOut;
1110 break;
1111 case DMA_BIDIRECTIONAL:
1112 flag = SRB_DataIn | SRB_DataOut;
1113 break;
1114 case DMA_FROM_DEVICE:
1115 flag = SRB_DataIn;
1116 break;
1117 case DMA_NONE:
1118 default: /* shuts up some versions of gcc */
1119 flag = SRB_NoDataXfer;
1120 break;
1121 }
1122
1123 srbcmd = (struct aac_srb*) fib_data(fib);
1124 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1125 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1126 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1127 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1128 srbcmd->flags = cpu_to_le32(flag);
1129 timeout = cmd->timeout_per_command/HZ;
1130 if (timeout == 0)
1131 timeout = 1;
1132 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1133 srbcmd->retry_limit = 0; /* Obsolete parameter */
1134 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1135 return srbcmd;
1136 }
1137
1138 static void aac_srb_callback(void *context, struct fib * fibptr);
1139
1140 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1141 {
1142 u16 fibsize;
1143 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1144
1145 aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
1146 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1147
1148 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1149 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1150 /*
1151 * Build Scatter/Gather list
1152 */
1153 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1154 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1155 sizeof (struct sgentry64));
1156 BUG_ON (fibsize > (fib->dev->max_fib_size -
1157 sizeof(struct aac_fibhdr)));
1158
1159 /*
1160 * Now send the Fib to the adapter
1161 */
1162 return aac_fib_send(ScsiPortCommand64, fib,
1163 fibsize, FsaNormal, 0, 1,
1164 (fib_callback) aac_srb_callback,
1165 (void *) cmd);
1166 }
1167
1168 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1169 {
1170 u16 fibsize;
1171 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1172
1173 aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
1174 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1175
1176 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1177 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1178 /*
1179 * Build Scatter/Gather list
1180 */
1181 fibsize = sizeof (struct aac_srb) +
1182 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1183 sizeof (struct sgentry));
1184 BUG_ON (fibsize > (fib->dev->max_fib_size -
1185 sizeof(struct aac_fibhdr)));
1186
1187 /*
1188 * Now send the Fib to the adapter
1189 */
1190 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1191 (fib_callback) aac_srb_callback, (void *) cmd);
1192 }
1193
1194 int aac_get_adapter_info(struct aac_dev* dev)
1195 {
1196 struct fib* fibptr;
1197 int rcode;
1198 u32 tmp;
1199 struct aac_adapter_info *info;
1200 struct aac_bus_info *command;
1201 struct aac_bus_info_response *bus_info;
1202
1203 if (!(fibptr = aac_fib_alloc(dev)))
1204 return -ENOMEM;
1205
1206 aac_fib_init(fibptr);
1207 info = (struct aac_adapter_info *) fib_data(fibptr);
1208 memset(info,0,sizeof(*info));
1209
1210 rcode = aac_fib_send(RequestAdapterInfo,
1211 fibptr,
1212 sizeof(*info),
1213 FsaNormal,
1214 -1, 1, /* First `interrupt' command uses special wait */
1215 NULL,
1216 NULL);
1217
1218 if (rcode < 0) {
1219 aac_fib_complete(fibptr);
1220 aac_fib_free(fibptr);
1221 return rcode;
1222 }
1223 memcpy(&dev->adapter_info, info, sizeof(*info));
1224
1225 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1226 struct aac_supplement_adapter_info * info;
1227
1228 aac_fib_init(fibptr);
1229
1230 info = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1231
1232 memset(info,0,sizeof(*info));
1233
1234 rcode = aac_fib_send(RequestSupplementAdapterInfo,
1235 fibptr,
1236 sizeof(*info),
1237 FsaNormal,
1238 1, 1,
1239 NULL,
1240 NULL);
1241
1242 if (rcode >= 0)
1243 memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
1244 }
1245
1246
1247 /*
1248 * GetBusInfo
1249 */
1250
1251 aac_fib_init(fibptr);
1252
1253 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1254
1255 memset(bus_info, 0, sizeof(*bus_info));
1256
1257 command = (struct aac_bus_info *)bus_info;
1258
1259 command->Command = cpu_to_le32(VM_Ioctl);
1260 command->ObjType = cpu_to_le32(FT_DRIVE);
1261 command->MethodId = cpu_to_le32(1);
1262 command->CtlCmd = cpu_to_le32(GetBusInfo);
1263
1264 rcode = aac_fib_send(ContainerCommand,
1265 fibptr,
1266 sizeof (*bus_info),
1267 FsaNormal,
1268 1, 1,
1269 NULL, NULL);
1270
1271 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1272 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1273 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1274 }
1275
1276 if (!dev->in_reset) {
1277 char buffer[16];
1278 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1279 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1280 dev->name,
1281 dev->id,
1282 tmp>>24,
1283 (tmp>>16)&0xff,
1284 tmp&0xff,
1285 le32_to_cpu(dev->adapter_info.kernelbuild),
1286 (int)sizeof(dev->supplement_adapter_info.BuildDate),
1287 dev->supplement_adapter_info.BuildDate);
1288 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1289 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1290 dev->name, dev->id,
1291 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1292 le32_to_cpu(dev->adapter_info.monitorbuild));
1293 tmp = le32_to_cpu(dev->adapter_info.biosrev);
1294 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1295 dev->name, dev->id,
1296 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1297 le32_to_cpu(dev->adapter_info.biosbuild));
1298 buffer[0] = '\0';
1299 if (aac_show_serial_number(
1300 shost_to_class(dev->scsi_host_ptr), buffer))
1301 printk(KERN_INFO "%s%d: serial %s",
1302 dev->name, dev->id, buffer);
1303 if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1304 printk(KERN_INFO "%s%d: TSID %.*s\n",
1305 dev->name, dev->id,
1306 (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1307 dev->supplement_adapter_info.VpdInfo.Tsid);
1308 }
1309 if (!check_reset ||
1310 (dev->supplement_adapter_info.SupportedOptions2 &
1311 le32_to_cpu(AAC_OPTION_IGNORE_RESET))) {
1312 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1313 dev->name, dev->id);
1314 }
1315 }
1316
1317 dev->nondasd_support = 0;
1318 dev->raid_scsi_mode = 0;
1319 if(dev->adapter_info.options & AAC_OPT_NONDASD){
1320 dev->nondasd_support = 1;
1321 }
1322
1323 /*
1324 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1325 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1326 * force nondasd support on. If we decide to allow the non-dasd flag
1327 * additional changes changes will have to be made to support
1328 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
1329 * changed to support the new dev->raid_scsi_mode flag instead of
1330 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1331 * function aac_detect will have to be modified where it sets up the
1332 * max number of channels based on the aac->nondasd_support flag only.
1333 */
1334 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1335 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1336 dev->nondasd_support = 1;
1337 dev->raid_scsi_mode = 1;
1338 }
1339 if (dev->raid_scsi_mode != 0)
1340 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1341 dev->name, dev->id);
1342
1343 if(nondasd != -1) {
1344 dev->nondasd_support = (nondasd!=0);
1345 }
1346 if(dev->nondasd_support != 0){
1347 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1348 }
1349
1350 dev->dac_support = 0;
1351 if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
1352 printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
1353 dev->dac_support = 1;
1354 }
1355
1356 if(dacmode != -1) {
1357 dev->dac_support = (dacmode!=0);
1358 }
1359 if(dev->dac_support != 0) {
1360 if (!pci_set_dma_mask(dev->pdev, DMA_64BIT_MASK) &&
1361 !pci_set_consistent_dma_mask(dev->pdev, DMA_64BIT_MASK)) {
1362 printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1363 dev->name, dev->id);
1364 } else if (!pci_set_dma_mask(dev->pdev, DMA_32BIT_MASK) &&
1365 !pci_set_consistent_dma_mask(dev->pdev, DMA_32BIT_MASK)) {
1366 printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1367 dev->name, dev->id);
1368 dev->dac_support = 0;
1369 } else {
1370 printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1371 dev->name, dev->id);
1372 rcode = -ENOMEM;
1373 }
1374 }
1375 /*
1376 * Deal with configuring for the individualized limits of each packet
1377 * interface.
1378 */
1379 dev->a_ops.adapter_scsi = (dev->dac_support)
1380 ? aac_scsi_64
1381 : aac_scsi_32;
1382 if (dev->raw_io_interface) {
1383 dev->a_ops.adapter_bounds = (dev->raw_io_64)
1384 ? aac_bounds_64
1385 : aac_bounds_32;
1386 dev->a_ops.adapter_read = aac_read_raw_io;
1387 dev->a_ops.adapter_write = aac_write_raw_io;
1388 } else {
1389 dev->a_ops.adapter_bounds = aac_bounds_32;
1390 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1391 sizeof(struct aac_fibhdr) -
1392 sizeof(struct aac_write) + sizeof(struct sgentry)) /
1393 sizeof(struct sgentry);
1394 if (dev->dac_support) {
1395 dev->a_ops.adapter_read = aac_read_block64;
1396 dev->a_ops.adapter_write = aac_write_block64;
1397 /*
1398 * 38 scatter gather elements
1399 */
1400 dev->scsi_host_ptr->sg_tablesize =
1401 (dev->max_fib_size -
1402 sizeof(struct aac_fibhdr) -
1403 sizeof(struct aac_write64) +
1404 sizeof(struct sgentry64)) /
1405 sizeof(struct sgentry64);
1406 } else {
1407 dev->a_ops.adapter_read = aac_read_block;
1408 dev->a_ops.adapter_write = aac_write_block;
1409 }
1410 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1411 if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1412 /*
1413 * Worst case size that could cause sg overflow when
1414 * we break up SG elements that are larger than 64KB.
1415 * Would be nice if we could tell the SCSI layer what
1416 * the maximum SG element size can be. Worst case is
1417 * (sg_tablesize-1) 4KB elements with one 64KB
1418 * element.
1419 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
1420 */
1421 dev->scsi_host_ptr->max_sectors =
1422 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1423 }
1424 }
1425
1426 aac_fib_complete(fibptr);
1427 aac_fib_free(fibptr);
1428
1429 return rcode;
1430 }
1431
1432
1433 static void io_callback(void *context, struct fib * fibptr)
1434 {
1435 struct aac_dev *dev;
1436 struct aac_read_reply *readreply;
1437 struct scsi_cmnd *scsicmd;
1438 u32 cid;
1439
1440 scsicmd = (struct scsi_cmnd *) context;
1441
1442 if (!aac_valid_context(scsicmd, fibptr))
1443 return;
1444
1445 dev = fibptr->dev;
1446 cid = scmd_id(scsicmd);
1447
1448 if (nblank(dprintk(x))) {
1449 u64 lba;
1450 switch (scsicmd->cmnd[0]) {
1451 case WRITE_6:
1452 case READ_6:
1453 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1454 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1455 break;
1456 case WRITE_16:
1457 case READ_16:
1458 lba = ((u64)scsicmd->cmnd[2] << 56) |
1459 ((u64)scsicmd->cmnd[3] << 48) |
1460 ((u64)scsicmd->cmnd[4] << 40) |
1461 ((u64)scsicmd->cmnd[5] << 32) |
1462 ((u64)scsicmd->cmnd[6] << 24) |
1463 (scsicmd->cmnd[7] << 16) |
1464 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1465 break;
1466 case WRITE_12:
1467 case READ_12:
1468 lba = ((u64)scsicmd->cmnd[2] << 24) |
1469 (scsicmd->cmnd[3] << 16) |
1470 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1471 break;
1472 default:
1473 lba = ((u64)scsicmd->cmnd[2] << 24) |
1474 (scsicmd->cmnd[3] << 16) |
1475 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1476 break;
1477 }
1478 printk(KERN_DEBUG
1479 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1480 smp_processor_id(), (unsigned long long)lba, jiffies);
1481 }
1482
1483 BUG_ON(fibptr == NULL);
1484
1485 scsi_dma_unmap(scsicmd);
1486
1487 readreply = (struct aac_read_reply *)fib_data(fibptr);
1488 if (le32_to_cpu(readreply->status) == ST_OK)
1489 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1490 else {
1491 #ifdef AAC_DETAILED_STATUS_INFO
1492 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1493 le32_to_cpu(readreply->status));
1494 #endif
1495 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1496 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1497 HARDWARE_ERROR,
1498 SENCODE_INTERNAL_TARGET_FAILURE,
1499 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1500 0, 0);
1501 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1502 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1503 ? sizeof(scsicmd->sense_buffer)
1504 : sizeof(dev->fsa_dev[cid].sense_data));
1505 }
1506 aac_fib_complete(fibptr);
1507 aac_fib_free(fibptr);
1508
1509 scsicmd->scsi_done(scsicmd);
1510 }
1511
1512 static int aac_read(struct scsi_cmnd * scsicmd)
1513 {
1514 u64 lba;
1515 u32 count;
1516 int status;
1517 struct aac_dev *dev;
1518 struct fib * cmd_fibcontext;
1519
1520 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1521 /*
1522 * Get block address and transfer length
1523 */
1524 switch (scsicmd->cmnd[0]) {
1525 case READ_6:
1526 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1527
1528 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1529 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1530 count = scsicmd->cmnd[4];
1531
1532 if (count == 0)
1533 count = 256;
1534 break;
1535 case READ_16:
1536 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1537
1538 lba = ((u64)scsicmd->cmnd[2] << 56) |
1539 ((u64)scsicmd->cmnd[3] << 48) |
1540 ((u64)scsicmd->cmnd[4] << 40) |
1541 ((u64)scsicmd->cmnd[5] << 32) |
1542 ((u64)scsicmd->cmnd[6] << 24) |
1543 (scsicmd->cmnd[7] << 16) |
1544 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1545 count = (scsicmd->cmnd[10] << 24) |
1546 (scsicmd->cmnd[11] << 16) |
1547 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1548 break;
1549 case READ_12:
1550 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1551
1552 lba = ((u64)scsicmd->cmnd[2] << 24) |
1553 (scsicmd->cmnd[3] << 16) |
1554 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1555 count = (scsicmd->cmnd[6] << 24) |
1556 (scsicmd->cmnd[7] << 16) |
1557 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1558 break;
1559 default:
1560 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1561
1562 lba = ((u64)scsicmd->cmnd[2] << 24) |
1563 (scsicmd->cmnd[3] << 16) |
1564 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1565 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1566 break;
1567 }
1568 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1569 smp_processor_id(), (unsigned long long)lba, jiffies));
1570 if (aac_adapter_bounds(dev,scsicmd,lba))
1571 return 0;
1572 /*
1573 * Alocate and initialize a Fib
1574 */
1575 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1576 return -1;
1577 }
1578
1579 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1580
1581 /*
1582 * Check that the command queued to the controller
1583 */
1584 if (status == -EINPROGRESS) {
1585 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1586 return 0;
1587 }
1588
1589 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1590 /*
1591 * For some reason, the Fib didn't queue, return QUEUE_FULL
1592 */
1593 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1594 scsicmd->scsi_done(scsicmd);
1595 aac_fib_complete(cmd_fibcontext);
1596 aac_fib_free(cmd_fibcontext);
1597 return 0;
1598 }
1599
1600 static int aac_write(struct scsi_cmnd * scsicmd)
1601 {
1602 u64 lba;
1603 u32 count;
1604 int fua;
1605 int status;
1606 struct aac_dev *dev;
1607 struct fib * cmd_fibcontext;
1608
1609 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1610 /*
1611 * Get block address and transfer length
1612 */
1613 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
1614 {
1615 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1616 count = scsicmd->cmnd[4];
1617 if (count == 0)
1618 count = 256;
1619 fua = 0;
1620 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1621 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1622
1623 lba = ((u64)scsicmd->cmnd[2] << 56) |
1624 ((u64)scsicmd->cmnd[3] << 48) |
1625 ((u64)scsicmd->cmnd[4] << 40) |
1626 ((u64)scsicmd->cmnd[5] << 32) |
1627 ((u64)scsicmd->cmnd[6] << 24) |
1628 (scsicmd->cmnd[7] << 16) |
1629 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1630 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1631 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1632 fua = scsicmd->cmnd[1] & 0x8;
1633 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1634 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1635
1636 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1637 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1638 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1639 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1640 fua = scsicmd->cmnd[1] & 0x8;
1641 } else {
1642 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1643 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1644 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1645 fua = scsicmd->cmnd[1] & 0x8;
1646 }
1647 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1648 smp_processor_id(), (unsigned long long)lba, jiffies));
1649 if (aac_adapter_bounds(dev,scsicmd,lba))
1650 return 0;
1651 /*
1652 * Allocate and initialize a Fib then setup a BlockWrite command
1653 */
1654 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1655 scsicmd->result = DID_ERROR << 16;
1656 scsicmd->scsi_done(scsicmd);
1657 return 0;
1658 }
1659
1660 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
1661
1662 /*
1663 * Check that the command queued to the controller
1664 */
1665 if (status == -EINPROGRESS) {
1666 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1667 return 0;
1668 }
1669
1670 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1671 /*
1672 * For some reason, the Fib didn't queue, return QUEUE_FULL
1673 */
1674 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1675 scsicmd->scsi_done(scsicmd);
1676
1677 aac_fib_complete(cmd_fibcontext);
1678 aac_fib_free(cmd_fibcontext);
1679 return 0;
1680 }
1681
1682 static void synchronize_callback(void *context, struct fib *fibptr)
1683 {
1684 struct aac_synchronize_reply *synchronizereply;
1685 struct scsi_cmnd *cmd;
1686
1687 cmd = context;
1688
1689 if (!aac_valid_context(cmd, fibptr))
1690 return;
1691
1692 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1693 smp_processor_id(), jiffies));
1694 BUG_ON(fibptr == NULL);
1695
1696
1697 synchronizereply = fib_data(fibptr);
1698 if (le32_to_cpu(synchronizereply->status) == CT_OK)
1699 cmd->result = DID_OK << 16 |
1700 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1701 else {
1702 struct scsi_device *sdev = cmd->device;
1703 struct aac_dev *dev = fibptr->dev;
1704 u32 cid = sdev_id(sdev);
1705 printk(KERN_WARNING
1706 "synchronize_callback: synchronize failed, status = %d\n",
1707 le32_to_cpu(synchronizereply->status));
1708 cmd->result = DID_OK << 16 |
1709 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1710 set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
1711 HARDWARE_ERROR,
1712 SENCODE_INTERNAL_TARGET_FAILURE,
1713 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1714 0, 0);
1715 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1716 min(sizeof(dev->fsa_dev[cid].sense_data),
1717 sizeof(cmd->sense_buffer)));
1718 }
1719
1720 aac_fib_complete(fibptr);
1721 aac_fib_free(fibptr);
1722 cmd->scsi_done(cmd);
1723 }
1724
1725 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1726 {
1727 int status;
1728 struct fib *cmd_fibcontext;
1729 struct aac_synchronize *synchronizecmd;
1730 struct scsi_cmnd *cmd;
1731 struct scsi_device *sdev = scsicmd->device;
1732 int active = 0;
1733 struct aac_dev *aac;
1734 unsigned long flags;
1735
1736 /*
1737 * Wait for all outstanding queued commands to complete to this
1738 * specific target (block).
1739 */
1740 spin_lock_irqsave(&sdev->list_lock, flags);
1741 list_for_each_entry(cmd, &sdev->cmd_list, list)
1742 if (cmd != scsicmd && cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1743 ++active;
1744 break;
1745 }
1746
1747 spin_unlock_irqrestore(&sdev->list_lock, flags);
1748
1749 /*
1750 * Yield the processor (requeue for later)
1751 */
1752 if (active)
1753 return SCSI_MLQUEUE_DEVICE_BUSY;
1754
1755 aac = (struct aac_dev *)scsicmd->device->host->hostdata;
1756 if (aac->in_reset)
1757 return SCSI_MLQUEUE_HOST_BUSY;
1758
1759 /*
1760 * Allocate and initialize a Fib
1761 */
1762 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1763 return SCSI_MLQUEUE_HOST_BUSY;
1764
1765 aac_fib_init(cmd_fibcontext);
1766
1767 synchronizecmd = fib_data(cmd_fibcontext);
1768 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1769 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1770 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
1771 synchronizecmd->count =
1772 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1773
1774 /*
1775 * Now send the Fib to the adapter
1776 */
1777 status = aac_fib_send(ContainerCommand,
1778 cmd_fibcontext,
1779 sizeof(struct aac_synchronize),
1780 FsaNormal,
1781 0, 1,
1782 (fib_callback)synchronize_callback,
1783 (void *)scsicmd);
1784
1785 /*
1786 * Check that the command queued to the controller
1787 */
1788 if (status == -EINPROGRESS) {
1789 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1790 return 0;
1791 }
1792
1793 printk(KERN_WARNING
1794 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1795 aac_fib_complete(cmd_fibcontext);
1796 aac_fib_free(cmd_fibcontext);
1797 return SCSI_MLQUEUE_HOST_BUSY;
1798 }
1799
1800 /**
1801 * aac_scsi_cmd() - Process SCSI command
1802 * @scsicmd: SCSI command block
1803 *
1804 * Emulate a SCSI command and queue the required request for the
1805 * aacraid firmware.
1806 */
1807
1808 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1809 {
1810 u32 cid;
1811 struct Scsi_Host *host = scsicmd->device->host;
1812 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1813 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1814
1815 if (fsa_dev_ptr == NULL)
1816 return -1;
1817 /*
1818 * If the bus, id or lun is out of range, return fail
1819 * Test does not apply to ID 16, the pseudo id for the controller
1820 * itself.
1821 */
1822 cid = scmd_id(scsicmd);
1823 if (cid != host->this_id) {
1824 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
1825 if((cid >= dev->maximum_num_containers) ||
1826 (scsicmd->device->lun != 0)) {
1827 scsicmd->result = DID_NO_CONNECT << 16;
1828 scsicmd->scsi_done(scsicmd);
1829 return 0;
1830 }
1831
1832 /*
1833 * If the target container doesn't exist, it may have
1834 * been newly created
1835 */
1836 if ((fsa_dev_ptr[cid].valid & 1) == 0) {
1837 switch (scsicmd->cmnd[0]) {
1838 case SERVICE_ACTION_IN:
1839 if (!(dev->raw_io_interface) ||
1840 !(dev->raw_io_64) ||
1841 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1842 break;
1843 case INQUIRY:
1844 case READ_CAPACITY:
1845 case TEST_UNIT_READY:
1846 if (dev->in_reset)
1847 return -1;
1848 return _aac_probe_container(scsicmd,
1849 aac_probe_container_callback2);
1850 default:
1851 break;
1852 }
1853 }
1854 } else { /* check for physical non-dasd devices */
1855 if ((dev->nondasd_support == 1) || expose_physicals) {
1856 if (dev->in_reset)
1857 return -1;
1858 return aac_send_srb_fib(scsicmd);
1859 } else {
1860 scsicmd->result = DID_NO_CONNECT << 16;
1861 scsicmd->scsi_done(scsicmd);
1862 return 0;
1863 }
1864 }
1865 }
1866 /*
1867 * else Command for the controller itself
1868 */
1869 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
1870 (scsicmd->cmnd[0] != TEST_UNIT_READY))
1871 {
1872 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
1873 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1874 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1875 ILLEGAL_REQUEST,
1876 SENCODE_INVALID_COMMAND,
1877 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1878 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1879 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1880 ? sizeof(scsicmd->sense_buffer)
1881 : sizeof(dev->fsa_dev[cid].sense_data));
1882 scsicmd->scsi_done(scsicmd);
1883 return 0;
1884 }
1885
1886
1887 /* Handle commands here that don't really require going out to the adapter */
1888 switch (scsicmd->cmnd[0]) {
1889 case INQUIRY:
1890 {
1891 struct inquiry_data inq_data;
1892
1893 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
1894 memset(&inq_data, 0, sizeof (struct inquiry_data));
1895
1896 if (scsicmd->cmnd[1] & 0x1 ) {
1897 char *arr = (char *)&inq_data;
1898
1899 /* EVPD bit set */
1900 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
1901 INQD_PDT_PROC : INQD_PDT_DA;
1902 if (scsicmd->cmnd[2] == 0) {
1903 /* supported vital product data pages */
1904 arr[3] = 2;
1905 arr[4] = 0x0;
1906 arr[5] = 0x80;
1907 arr[1] = scsicmd->cmnd[2];
1908 aac_internal_transfer(scsicmd, &inq_data, 0,
1909 sizeof(inq_data));
1910 scsicmd->result = DID_OK << 16 |
1911 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1912 } else if (scsicmd->cmnd[2] == 0x80) {
1913 /* unit serial number page */
1914 arr[3] = setinqserial(dev, &arr[4],
1915 scmd_id(scsicmd));
1916 arr[1] = scsicmd->cmnd[2];
1917 aac_internal_transfer(scsicmd, &inq_data, 0,
1918 sizeof(inq_data));
1919 return aac_get_container_serial(scsicmd);
1920 } else {
1921 /* vpd page not implemented */
1922 scsicmd->result = DID_OK << 16 |
1923 COMMAND_COMPLETE << 8 |
1924 SAM_STAT_CHECK_CONDITION;
1925 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1926 ILLEGAL_REQUEST,
1927 SENCODE_INVALID_CDB_FIELD,
1928 ASENCODE_NO_SENSE, 0, 7, 2, 0);
1929 memcpy(scsicmd->sense_buffer,
1930 &dev->fsa_dev[cid].sense_data,
1931 (sizeof(dev->fsa_dev[cid].sense_data) >
1932 sizeof(scsicmd->sense_buffer))
1933 ? sizeof(scsicmd->sense_buffer)
1934 : sizeof(dev->fsa_dev[cid].sense_data));
1935 }
1936 scsicmd->scsi_done(scsicmd);
1937 return 0;
1938 }
1939 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
1940 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
1941 inq_data.inqd_len = 31;
1942 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
1943 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
1944 /*
1945 * Set the Vendor, Product, and Revision Level
1946 * see: <vendor>.c i.e. aac.c
1947 */
1948 if (cid == host->this_id) {
1949 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
1950 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
1951 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1952 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1953 scsicmd->scsi_done(scsicmd);
1954 return 0;
1955 }
1956 if (dev->in_reset)
1957 return -1;
1958 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
1959 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
1960 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1961 return aac_get_container_name(scsicmd);
1962 }
1963 case SERVICE_ACTION_IN:
1964 if (!(dev->raw_io_interface) ||
1965 !(dev->raw_io_64) ||
1966 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1967 break;
1968 {
1969 u64 capacity;
1970 char cp[13];
1971
1972 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
1973 capacity = fsa_dev_ptr[cid].size - 1;
1974 cp[0] = (capacity >> 56) & 0xff;
1975 cp[1] = (capacity >> 48) & 0xff;
1976 cp[2] = (capacity >> 40) & 0xff;
1977 cp[3] = (capacity >> 32) & 0xff;
1978 cp[4] = (capacity >> 24) & 0xff;
1979 cp[5] = (capacity >> 16) & 0xff;
1980 cp[6] = (capacity >> 8) & 0xff;
1981 cp[7] = (capacity >> 0) & 0xff;
1982 cp[8] = 0;
1983 cp[9] = 0;
1984 cp[10] = 2;
1985 cp[11] = 0;
1986 cp[12] = 0;
1987 aac_internal_transfer(scsicmd, cp, 0,
1988 min_t(size_t, scsicmd->cmnd[13], sizeof(cp)));
1989 if (sizeof(cp) < scsicmd->cmnd[13]) {
1990 unsigned int len, offset = sizeof(cp);
1991
1992 memset(cp, 0, offset);
1993 do {
1994 len = min_t(size_t, scsicmd->cmnd[13] - offset,
1995 sizeof(cp));
1996 aac_internal_transfer(scsicmd, cp, offset, len);
1997 } while ((offset += len) < scsicmd->cmnd[13]);
1998 }
1999
2000 /* Do not cache partition table for arrays */
2001 scsicmd->device->removable = 1;
2002
2003 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2004 scsicmd->scsi_done(scsicmd);
2005
2006 return 0;
2007 }
2008
2009 case READ_CAPACITY:
2010 {
2011 u32 capacity;
2012 char cp[8];
2013
2014 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2015 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2016 capacity = fsa_dev_ptr[cid].size - 1;
2017 else
2018 capacity = (u32)-1;
2019
2020 cp[0] = (capacity >> 24) & 0xff;
2021 cp[1] = (capacity >> 16) & 0xff;
2022 cp[2] = (capacity >> 8) & 0xff;
2023 cp[3] = (capacity >> 0) & 0xff;
2024 cp[4] = 0;
2025 cp[5] = 0;
2026 cp[6] = 2;
2027 cp[7] = 0;
2028 aac_internal_transfer(scsicmd, cp, 0, sizeof(cp));
2029 /* Do not cache partition table for arrays */
2030 scsicmd->device->removable = 1;
2031
2032 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2033 scsicmd->scsi_done(scsicmd);
2034
2035 return 0;
2036 }
2037
2038 case MODE_SENSE:
2039 {
2040 char mode_buf[7];
2041 int mode_buf_length = 4;
2042
2043 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2044 mode_buf[0] = 3; /* Mode data length */
2045 mode_buf[1] = 0; /* Medium type - default */
2046 mode_buf[2] = 0; /* Device-specific param,
2047 bit 8: 0/1 = write enabled/protected
2048 bit 4: 0/1 = FUA enabled */
2049 if (dev->raw_io_interface)
2050 mode_buf[2] = 0x10;
2051 mode_buf[3] = 0; /* Block descriptor length */
2052 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2053 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2054 mode_buf[0] = 6;
2055 mode_buf[4] = 8;
2056 mode_buf[5] = 1;
2057 mode_buf[6] = 0x04; /* WCE */
2058 mode_buf_length = 7;
2059 if (mode_buf_length > scsicmd->cmnd[4])
2060 mode_buf_length = scsicmd->cmnd[4];
2061 }
2062 aac_internal_transfer(scsicmd, mode_buf, 0, mode_buf_length);
2063 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2064 scsicmd->scsi_done(scsicmd);
2065
2066 return 0;
2067 }
2068 case MODE_SENSE_10:
2069 {
2070 char mode_buf[11];
2071 int mode_buf_length = 8;
2072
2073 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2074 mode_buf[0] = 0; /* Mode data length (MSB) */
2075 mode_buf[1] = 6; /* Mode data length (LSB) */
2076 mode_buf[2] = 0; /* Medium type - default */
2077 mode_buf[3] = 0; /* Device-specific param,
2078 bit 8: 0/1 = write enabled/protected
2079 bit 4: 0/1 = FUA enabled */
2080 if (dev->raw_io_interface)
2081 mode_buf[3] = 0x10;
2082 mode_buf[4] = 0; /* reserved */
2083 mode_buf[5] = 0; /* reserved */
2084 mode_buf[6] = 0; /* Block descriptor length (MSB) */
2085 mode_buf[7] = 0; /* Block descriptor length (LSB) */
2086 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2087 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2088 mode_buf[1] = 9;
2089 mode_buf[8] = 8;
2090 mode_buf[9] = 1;
2091 mode_buf[10] = 0x04; /* WCE */
2092 mode_buf_length = 11;
2093 if (mode_buf_length > scsicmd->cmnd[8])
2094 mode_buf_length = scsicmd->cmnd[8];
2095 }
2096 aac_internal_transfer(scsicmd, mode_buf, 0, mode_buf_length);
2097
2098 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2099 scsicmd->scsi_done(scsicmd);
2100
2101 return 0;
2102 }
2103 case REQUEST_SENSE:
2104 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2105 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2106 memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2107 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2108 scsicmd->scsi_done(scsicmd);
2109 return 0;
2110
2111 case ALLOW_MEDIUM_REMOVAL:
2112 dprintk((KERN_DEBUG "LOCK command.\n"));
2113 if (scsicmd->cmnd[4])
2114 fsa_dev_ptr[cid].locked = 1;
2115 else
2116 fsa_dev_ptr[cid].locked = 0;
2117
2118 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2119 scsicmd->scsi_done(scsicmd);
2120 return 0;
2121 /*
2122 * These commands are all No-Ops
2123 */
2124 case TEST_UNIT_READY:
2125 case RESERVE:
2126 case RELEASE:
2127 case REZERO_UNIT:
2128 case REASSIGN_BLOCKS:
2129 case SEEK_10:
2130 case START_STOP:
2131 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2132 scsicmd->scsi_done(scsicmd);
2133 return 0;
2134 }
2135
2136 switch (scsicmd->cmnd[0])
2137 {
2138 case READ_6:
2139 case READ_10:
2140 case READ_12:
2141 case READ_16:
2142 if (dev->in_reset)
2143 return -1;
2144 /*
2145 * Hack to keep track of ordinal number of the device that
2146 * corresponds to a container. Needed to convert
2147 * containers to /dev/sd device names
2148 */
2149
2150 if (scsicmd->request->rq_disk)
2151 strlcpy(fsa_dev_ptr[cid].devname,
2152 scsicmd->request->rq_disk->disk_name,
2153 min(sizeof(fsa_dev_ptr[cid].devname),
2154 sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2155
2156 return aac_read(scsicmd);
2157
2158 case WRITE_6:
2159 case WRITE_10:
2160 case WRITE_12:
2161 case WRITE_16:
2162 if (dev->in_reset)
2163 return -1;
2164 return aac_write(scsicmd);
2165
2166 case SYNCHRONIZE_CACHE:
2167 /* Issue FIB to tell Firmware to flush it's cache */
2168 return aac_synchronize(scsicmd);
2169
2170 default:
2171 /*
2172 * Unhandled commands
2173 */
2174 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2175 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2176 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
2177 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2178 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
2179 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2180 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
2181 ? sizeof(scsicmd->sense_buffer)
2182 : sizeof(dev->fsa_dev[cid].sense_data));
2183 scsicmd->scsi_done(scsicmd);
2184 return 0;
2185 }
2186 }
2187
2188 static int query_disk(struct aac_dev *dev, void __user *arg)
2189 {
2190 struct aac_query_disk qd;
2191 struct fsa_dev_info *fsa_dev_ptr;
2192
2193 fsa_dev_ptr = dev->fsa_dev;
2194 if (!fsa_dev_ptr)
2195 return -EBUSY;
2196 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2197 return -EFAULT;
2198 if (qd.cnum == -1)
2199 qd.cnum = qd.id;
2200 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2201 {
2202 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2203 return -EINVAL;
2204 qd.instance = dev->scsi_host_ptr->host_no;
2205 qd.bus = 0;
2206 qd.id = CONTAINER_TO_ID(qd.cnum);
2207 qd.lun = CONTAINER_TO_LUN(qd.cnum);
2208 }
2209 else return -EINVAL;
2210
2211 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2212 qd.locked = fsa_dev_ptr[qd.cnum].locked;
2213 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2214
2215 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2216 qd.unmapped = 1;
2217 else
2218 qd.unmapped = 0;
2219
2220 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2221 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2222
2223 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2224 return -EFAULT;
2225 return 0;
2226 }
2227
2228 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2229 {
2230 struct aac_delete_disk dd;
2231 struct fsa_dev_info *fsa_dev_ptr;
2232
2233 fsa_dev_ptr = dev->fsa_dev;
2234 if (!fsa_dev_ptr)
2235 return -EBUSY;
2236
2237 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2238 return -EFAULT;
2239
2240 if (dd.cnum >= dev->maximum_num_containers)
2241 return -EINVAL;
2242 /*
2243 * Mark this container as being deleted.
2244 */
2245 fsa_dev_ptr[dd.cnum].deleted = 1;
2246 /*
2247 * Mark the container as no longer valid
2248 */
2249 fsa_dev_ptr[dd.cnum].valid = 0;
2250 return 0;
2251 }
2252
2253 static int delete_disk(struct aac_dev *dev, void __user *arg)
2254 {
2255 struct aac_delete_disk dd;
2256 struct fsa_dev_info *fsa_dev_ptr;
2257
2258 fsa_dev_ptr = dev->fsa_dev;
2259 if (!fsa_dev_ptr)
2260 return -EBUSY;
2261
2262 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2263 return -EFAULT;
2264
2265 if (dd.cnum >= dev->maximum_num_containers)
2266 return -EINVAL;
2267 /*
2268 * If the container is locked, it can not be deleted by the API.
2269 */
2270 if (fsa_dev_ptr[dd.cnum].locked)
2271 return -EBUSY;
2272 else {
2273 /*
2274 * Mark the container as no longer being valid.
2275 */
2276 fsa_dev_ptr[dd.cnum].valid = 0;
2277 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2278 return 0;
2279 }
2280 }
2281
2282 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2283 {
2284 switch (cmd) {
2285 case FSACTL_QUERY_DISK:
2286 return query_disk(dev, arg);
2287 case FSACTL_DELETE_DISK:
2288 return delete_disk(dev, arg);
2289 case FSACTL_FORCE_DELETE_DISK:
2290 return force_delete_disk(dev, arg);
2291 case FSACTL_GET_CONTAINERS:
2292 return aac_get_containers(dev);
2293 default:
2294 return -ENOTTY;
2295 }
2296 }
2297
2298 /**
2299 *
2300 * aac_srb_callback
2301 * @context: the context set in the fib - here it is scsi cmd
2302 * @fibptr: pointer to the fib
2303 *
2304 * Handles the completion of a scsi command to a non dasd device
2305 *
2306 */
2307
2308 static void aac_srb_callback(void *context, struct fib * fibptr)
2309 {
2310 struct aac_dev *dev;
2311 struct aac_srb_reply *srbreply;
2312 struct scsi_cmnd *scsicmd;
2313
2314 scsicmd = (struct scsi_cmnd *) context;
2315
2316 if (!aac_valid_context(scsicmd, fibptr))
2317 return;
2318
2319 BUG_ON(fibptr == NULL);
2320
2321 dev = fibptr->dev;
2322
2323 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2324
2325 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
2326 /*
2327 * Calculate resid for sg
2328 */
2329
2330 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2331 - le32_to_cpu(srbreply->data_xfer_length));
2332
2333 scsi_dma_unmap(scsicmd);
2334
2335 /*
2336 * First check the fib status
2337 */
2338
2339 if (le32_to_cpu(srbreply->status) != ST_OK){
2340 int len;
2341 printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2342 len = (le32_to_cpu(srbreply->sense_data_size) >
2343 sizeof(scsicmd->sense_buffer)) ?
2344 sizeof(scsicmd->sense_buffer) :
2345 le32_to_cpu(srbreply->sense_data_size);
2346 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2347 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2348 }
2349
2350 /*
2351 * Next check the srb status
2352 */
2353 switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2354 case SRB_STATUS_ERROR_RECOVERY:
2355 case SRB_STATUS_PENDING:
2356 case SRB_STATUS_SUCCESS:
2357 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2358 break;
2359 case SRB_STATUS_DATA_OVERRUN:
2360 switch(scsicmd->cmnd[0]){
2361 case READ_6:
2362 case WRITE_6:
2363 case READ_10:
2364 case WRITE_10:
2365 case READ_12:
2366 case WRITE_12:
2367 case READ_16:
2368 case WRITE_16:
2369 if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
2370 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2371 } else {
2372 printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2373 }
2374 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2375 break;
2376 case INQUIRY: {
2377 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2378 break;
2379 }
2380 default:
2381 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2382 break;
2383 }
2384 break;
2385 case SRB_STATUS_ABORTED:
2386 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2387 break;
2388 case SRB_STATUS_ABORT_FAILED:
2389 // Not sure about this one - but assuming the hba was trying to abort for some reason
2390 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2391 break;
2392 case SRB_STATUS_PARITY_ERROR:
2393 scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2394 break;
2395 case SRB_STATUS_NO_DEVICE:
2396 case SRB_STATUS_INVALID_PATH_ID:
2397 case SRB_STATUS_INVALID_TARGET_ID:
2398 case SRB_STATUS_INVALID_LUN:
2399 case SRB_STATUS_SELECTION_TIMEOUT:
2400 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2401 break;
2402
2403 case SRB_STATUS_COMMAND_TIMEOUT:
2404 case SRB_STATUS_TIMEOUT:
2405 scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2406 break;
2407
2408 case SRB_STATUS_BUSY:
2409 scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
2410 break;
2411
2412 case SRB_STATUS_BUS_RESET:
2413 scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2414 break;
2415
2416 case SRB_STATUS_MESSAGE_REJECTED:
2417 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2418 break;
2419 case SRB_STATUS_REQUEST_FLUSHED:
2420 case SRB_STATUS_ERROR:
2421 case SRB_STATUS_INVALID_REQUEST:
2422 case SRB_STATUS_REQUEST_SENSE_FAILED:
2423 case SRB_STATUS_NO_HBA:
2424 case SRB_STATUS_UNEXPECTED_BUS_FREE:
2425 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2426 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2427 case SRB_STATUS_DELAYED_RETRY:
2428 case SRB_STATUS_BAD_FUNCTION:
2429 case SRB_STATUS_NOT_STARTED:
2430 case SRB_STATUS_NOT_IN_USE:
2431 case SRB_STATUS_FORCE_ABORT:
2432 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2433 default:
2434 #ifdef AAC_DETAILED_STATUS_INFO
2435 printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2436 le32_to_cpu(srbreply->srb_status) & 0x3F,
2437 aac_get_status_string(
2438 le32_to_cpu(srbreply->srb_status) & 0x3F),
2439 scsicmd->cmnd[0],
2440 le32_to_cpu(srbreply->scsi_status));
2441 #endif
2442 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2443 break;
2444 }
2445 if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){ // Check Condition
2446 int len;
2447 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2448 len = (le32_to_cpu(srbreply->sense_data_size) >
2449 sizeof(scsicmd->sense_buffer)) ?
2450 sizeof(scsicmd->sense_buffer) :
2451 le32_to_cpu(srbreply->sense_data_size);
2452 #ifdef AAC_DETAILED_STATUS_INFO
2453 printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2454 le32_to_cpu(srbreply->status), len);
2455 #endif
2456 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2457
2458 }
2459 /*
2460 * OR in the scsi status (already shifted up a bit)
2461 */
2462 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2463
2464 aac_fib_complete(fibptr);
2465 aac_fib_free(fibptr);
2466 scsicmd->scsi_done(scsicmd);
2467 }
2468
2469 /**
2470 *
2471 * aac_send_scb_fib
2472 * @scsicmd: the scsi command block
2473 *
2474 * This routine will form a FIB and fill in the aac_srb from the
2475 * scsicmd passed in.
2476 */
2477
2478 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2479 {
2480 struct fib* cmd_fibcontext;
2481 struct aac_dev* dev;
2482 int status;
2483
2484 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2485 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2486 scsicmd->device->lun > 7) {
2487 scsicmd->result = DID_NO_CONNECT << 16;
2488 scsicmd->scsi_done(scsicmd);
2489 return 0;
2490 }
2491
2492 /*
2493 * Allocate and initialize a Fib then setup a BlockWrite command
2494 */
2495 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2496 return -1;
2497 }
2498 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2499
2500 /*
2501 * Check that the command queued to the controller
2502 */
2503 if (status == -EINPROGRESS) {
2504 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2505 return 0;
2506 }
2507
2508 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2509 aac_fib_complete(cmd_fibcontext);
2510 aac_fib_free(cmd_fibcontext);
2511
2512 return -1;
2513 }
2514
2515 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2516 {
2517 struct aac_dev *dev;
2518 unsigned long byte_count = 0;
2519 int nseg;
2520
2521 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2522 // Get rid of old data
2523 psg->count = 0;
2524 psg->sg[0].addr = 0;
2525 psg->sg[0].count = 0;
2526
2527 nseg = scsi_dma_map(scsicmd);
2528 BUG_ON(nseg < 0);
2529 if (nseg) {
2530 struct scatterlist *sg;
2531 int i;
2532
2533 psg->count = cpu_to_le32(nseg);
2534
2535 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2536 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2537 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2538 byte_count += sg_dma_len(sg);
2539 }
2540 /* hba wants the size to be exact */
2541 if (byte_count > scsi_bufflen(scsicmd)) {
2542 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2543 (byte_count - scsi_bufflen(scsicmd));
2544 psg->sg[i-1].count = cpu_to_le32(temp);
2545 byte_count = scsi_bufflen(scsicmd);
2546 }
2547 /* Check for command underflow */
2548 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2549 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2550 byte_count, scsicmd->underflow);
2551 }
2552 }
2553 return byte_count;
2554 }
2555
2556
2557 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2558 {
2559 struct aac_dev *dev;
2560 unsigned long byte_count = 0;
2561 u64 addr;
2562 int nseg;
2563
2564 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2565 // Get rid of old data
2566 psg->count = 0;
2567 psg->sg[0].addr[0] = 0;
2568 psg->sg[0].addr[1] = 0;
2569 psg->sg[0].count = 0;
2570
2571 nseg = scsi_dma_map(scsicmd);
2572 BUG_ON(nseg < 0);
2573 if (nseg) {
2574 struct scatterlist *sg;
2575 int i;
2576
2577 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2578 int count = sg_dma_len(sg);
2579 addr = sg_dma_address(sg);
2580 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2581 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2582 psg->sg[i].count = cpu_to_le32(count);
2583 byte_count += count;
2584 }
2585 psg->count = cpu_to_le32(nseg);
2586 /* hba wants the size to be exact */
2587 if (byte_count > scsi_bufflen(scsicmd)) {
2588 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2589 (byte_count - scsi_bufflen(scsicmd));
2590 psg->sg[i-1].count = cpu_to_le32(temp);
2591 byte_count = scsi_bufflen(scsicmd);
2592 }
2593 /* Check for command underflow */
2594 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2595 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2596 byte_count, scsicmd->underflow);
2597 }
2598 }
2599 return byte_count;
2600 }
2601
2602 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2603 {
2604 unsigned long byte_count = 0;
2605 int nseg;
2606
2607 // Get rid of old data
2608 psg->count = 0;
2609 psg->sg[0].next = 0;
2610 psg->sg[0].prev = 0;
2611 psg->sg[0].addr[0] = 0;
2612 psg->sg[0].addr[1] = 0;
2613 psg->sg[0].count = 0;
2614 psg->sg[0].flags = 0;
2615
2616 nseg = scsi_dma_map(scsicmd);
2617 BUG_ON(nseg < 0);
2618 if (nseg) {
2619 struct scatterlist *sg;
2620 int i;
2621
2622 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2623 int count = sg_dma_len(sg);
2624 u64 addr = sg_dma_address(sg);
2625 psg->sg[i].next = 0;
2626 psg->sg[i].prev = 0;
2627 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2628 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2629 psg->sg[i].count = cpu_to_le32(count);
2630 psg->sg[i].flags = 0;
2631 byte_count += count;
2632 }
2633 psg->count = cpu_to_le32(nseg);
2634 /* hba wants the size to be exact */
2635 if (byte_count > scsi_bufflen(scsicmd)) {
2636 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2637 (byte_count - scsi_bufflen(scsicmd));
2638 psg->sg[i-1].count = cpu_to_le32(temp);
2639 byte_count = scsi_bufflen(scsicmd);
2640 }
2641 /* Check for command underflow */
2642 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2643 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2644 byte_count, scsicmd->underflow);
2645 }
2646 }
2647 return byte_count;
2648 }
2649
2650 #ifdef AAC_DETAILED_STATUS_INFO
2651
2652 struct aac_srb_status_info {
2653 u32 status;
2654 char *str;
2655 };
2656
2657
2658 static struct aac_srb_status_info srb_status_info[] = {
2659 { SRB_STATUS_PENDING, "Pending Status"},
2660 { SRB_STATUS_SUCCESS, "Success"},
2661 { SRB_STATUS_ABORTED, "Aborted Command"},
2662 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
2663 { SRB_STATUS_ERROR, "Error Event"},
2664 { SRB_STATUS_BUSY, "Device Busy"},
2665 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
2666 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
2667 { SRB_STATUS_NO_DEVICE, "No Device"},
2668 { SRB_STATUS_TIMEOUT, "Timeout"},
2669 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
2670 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
2671 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
2672 { SRB_STATUS_BUS_RESET, "Bus Reset"},
2673 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
2674 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2675 { SRB_STATUS_NO_HBA, "No HBA"},
2676 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
2677 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2678 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2679 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2680 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
2681 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
2682 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
2683 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
2684 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
2685 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
2686 { SRB_STATUS_NOT_STARTED, "Not Started"},
2687 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
2688 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
2689 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2690 { 0xff, "Unknown Error"}
2691 };
2692
2693 char *aac_get_status_string(u32 status)
2694 {
2695 int i;
2696
2697 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
2698 if (srb_status_info[i].status == status)
2699 return srb_status_info[i].str;
2700
2701 return "Bad Status Code";
2702 }
2703
2704 #endif