]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/aacraid/commsup.c
[SCSI] aacraid: respond to enclosure service events
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / aacraid / commsup.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 * Module Name:
25 * commsup.c
26 *
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 * communication.
29 *
30 */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
49
50 #include "aacraid.h"
51
52 /**
53 * fib_map_alloc - allocate the fib objects
54 * @dev: Adapter to allocate for
55 *
56 * Allocate and map the shared PCI space for the FIB blocks used to
57 * talk to the Adaptec firmware.
58 */
59
60 static int fib_map_alloc(struct aac_dev *dev)
61 {
62 dprintk((KERN_INFO
63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68 &dev->hw_fib_pa))==NULL)
69 return -ENOMEM;
70 return 0;
71 }
72
73 /**
74 * aac_fib_map_free - free the fib objects
75 * @dev: Adapter to free
76 *
77 * Free the PCI mappings and the memory allocated for FIB blocks
78 * on this adapter.
79 */
80
81 void aac_fib_map_free(struct aac_dev *dev)
82 {
83 pci_free_consistent(dev->pdev,
84 dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
85 dev->hw_fib_va, dev->hw_fib_pa);
86 dev->hw_fib_va = NULL;
87 dev->hw_fib_pa = 0;
88 }
89
90 /**
91 * aac_fib_setup - setup the fibs
92 * @dev: Adapter to set up
93 *
94 * Allocate the PCI space for the fibs, map it and then intialise the
95 * fib area, the unmapped fib data and also the free list
96 */
97
98 int aac_fib_setup(struct aac_dev * dev)
99 {
100 struct fib *fibptr;
101 struct hw_fib *hw_fib;
102 dma_addr_t hw_fib_pa;
103 int i;
104
105 while (((i = fib_map_alloc(dev)) == -ENOMEM)
106 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
107 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
108 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
109 }
110 if (i<0)
111 return -ENOMEM;
112
113 hw_fib = dev->hw_fib_va;
114 hw_fib_pa = dev->hw_fib_pa;
115 memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
116 /*
117 * Initialise the fibs
118 */
119 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
120 {
121 fibptr->dev = dev;
122 fibptr->hw_fib_va = hw_fib;
123 fibptr->data = (void *) fibptr->hw_fib_va->data;
124 fibptr->next = fibptr+1; /* Forward chain the fibs */
125 init_MUTEX_LOCKED(&fibptr->event_wait);
126 spin_lock_init(&fibptr->event_lock);
127 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
128 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
129 fibptr->hw_fib_pa = hw_fib_pa;
130 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
131 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
132 }
133 /*
134 * Add the fib chain to the free list
135 */
136 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
137 /*
138 * Enable this to debug out of queue space
139 */
140 dev->free_fib = &dev->fibs[0];
141 return 0;
142 }
143
144 /**
145 * aac_fib_alloc - allocate a fib
146 * @dev: Adapter to allocate the fib for
147 *
148 * Allocate a fib from the adapter fib pool. If the pool is empty we
149 * return NULL.
150 */
151
152 struct fib *aac_fib_alloc(struct aac_dev *dev)
153 {
154 struct fib * fibptr;
155 unsigned long flags;
156 spin_lock_irqsave(&dev->fib_lock, flags);
157 fibptr = dev->free_fib;
158 if(!fibptr){
159 spin_unlock_irqrestore(&dev->fib_lock, flags);
160 return fibptr;
161 }
162 dev->free_fib = fibptr->next;
163 spin_unlock_irqrestore(&dev->fib_lock, flags);
164 /*
165 * Set the proper node type code and node byte size
166 */
167 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
168 fibptr->size = sizeof(struct fib);
169 /*
170 * Null out fields that depend on being zero at the start of
171 * each I/O
172 */
173 fibptr->hw_fib_va->header.XferState = 0;
174 fibptr->flags = 0;
175 fibptr->callback = NULL;
176 fibptr->callback_data = NULL;
177
178 return fibptr;
179 }
180
181 /**
182 * aac_fib_free - free a fib
183 * @fibptr: fib to free up
184 *
185 * Frees up a fib and places it on the appropriate queue
186 */
187
188 void aac_fib_free(struct fib *fibptr)
189 {
190 unsigned long flags;
191
192 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
193 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
194 aac_config.fib_timeouts++;
195 if (fibptr->hw_fib_va->header.XferState != 0) {
196 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
197 (void*)fibptr,
198 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
199 }
200 fibptr->next = fibptr->dev->free_fib;
201 fibptr->dev->free_fib = fibptr;
202 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
203 }
204
205 /**
206 * aac_fib_init - initialise a fib
207 * @fibptr: The fib to initialize
208 *
209 * Set up the generic fib fields ready for use
210 */
211
212 void aac_fib_init(struct fib *fibptr)
213 {
214 struct hw_fib *hw_fib = fibptr->hw_fib_va;
215
216 hw_fib->header.StructType = FIB_MAGIC;
217 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
218 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
219 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
220 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
221 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
222 }
223
224 /**
225 * fib_deallocate - deallocate a fib
226 * @fibptr: fib to deallocate
227 *
228 * Will deallocate and return to the free pool the FIB pointed to by the
229 * caller.
230 */
231
232 static void fib_dealloc(struct fib * fibptr)
233 {
234 struct hw_fib *hw_fib = fibptr->hw_fib_va;
235 BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
236 hw_fib->header.XferState = 0;
237 }
238
239 /*
240 * Commuication primitives define and support the queuing method we use to
241 * support host to adapter commuication. All queue accesses happen through
242 * these routines and are the only routines which have a knowledge of the
243 * how these queues are implemented.
244 */
245
246 /**
247 * aac_get_entry - get a queue entry
248 * @dev: Adapter
249 * @qid: Queue Number
250 * @entry: Entry return
251 * @index: Index return
252 * @nonotify: notification control
253 *
254 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
255 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
256 * returned.
257 */
258
259 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
260 {
261 struct aac_queue * q;
262 unsigned long idx;
263
264 /*
265 * All of the queues wrap when they reach the end, so we check
266 * to see if they have reached the end and if they have we just
267 * set the index back to zero. This is a wrap. You could or off
268 * the high bits in all updates but this is a bit faster I think.
269 */
270
271 q = &dev->queues->queue[qid];
272
273 idx = *index = le32_to_cpu(*(q->headers.producer));
274 /* Interrupt Moderation, only interrupt for first two entries */
275 if (idx != le32_to_cpu(*(q->headers.consumer))) {
276 if (--idx == 0) {
277 if (qid == AdapNormCmdQueue)
278 idx = ADAP_NORM_CMD_ENTRIES;
279 else
280 idx = ADAP_NORM_RESP_ENTRIES;
281 }
282 if (idx != le32_to_cpu(*(q->headers.consumer)))
283 *nonotify = 1;
284 }
285
286 if (qid == AdapNormCmdQueue) {
287 if (*index >= ADAP_NORM_CMD_ENTRIES)
288 *index = 0; /* Wrap to front of the Producer Queue. */
289 } else {
290 if (*index >= ADAP_NORM_RESP_ENTRIES)
291 *index = 0; /* Wrap to front of the Producer Queue. */
292 }
293
294 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
295 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
296 qid, q->numpending);
297 return 0;
298 } else {
299 *entry = q->base + *index;
300 return 1;
301 }
302 }
303
304 /**
305 * aac_queue_get - get the next free QE
306 * @dev: Adapter
307 * @index: Returned index
308 * @priority: Priority of fib
309 * @fib: Fib to associate with the queue entry
310 * @wait: Wait if queue full
311 * @fibptr: Driver fib object to go with fib
312 * @nonotify: Don't notify the adapter
313 *
314 * Gets the next free QE off the requested priorty adapter command
315 * queue and associates the Fib with the QE. The QE represented by
316 * index is ready to insert on the queue when this routine returns
317 * success.
318 */
319
320 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
321 {
322 struct aac_entry * entry = NULL;
323 int map = 0;
324
325 if (qid == AdapNormCmdQueue) {
326 /* if no entries wait for some if caller wants to */
327 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
328 {
329 printk(KERN_ERR "GetEntries failed\n");
330 }
331 /*
332 * Setup queue entry with a command, status and fib mapped
333 */
334 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
335 map = 1;
336 } else {
337 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
338 {
339 /* if no entries wait for some if caller wants to */
340 }
341 /*
342 * Setup queue entry with command, status and fib mapped
343 */
344 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
345 entry->addr = hw_fib->header.SenderFibAddress;
346 /* Restore adapters pointer to the FIB */
347 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
348 map = 0;
349 }
350 /*
351 * If MapFib is true than we need to map the Fib and put pointers
352 * in the queue entry.
353 */
354 if (map)
355 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
356 return 0;
357 }
358
359 /*
360 * Define the highest level of host to adapter communication routines.
361 * These routines will support host to adapter FS commuication. These
362 * routines have no knowledge of the commuication method used. This level
363 * sends and receives FIBs. This level has no knowledge of how these FIBs
364 * get passed back and forth.
365 */
366
367 /**
368 * aac_fib_send - send a fib to the adapter
369 * @command: Command to send
370 * @fibptr: The fib
371 * @size: Size of fib data area
372 * @priority: Priority of Fib
373 * @wait: Async/sync select
374 * @reply: True if a reply is wanted
375 * @callback: Called with reply
376 * @callback_data: Passed to callback
377 *
378 * Sends the requested FIB to the adapter and optionally will wait for a
379 * response FIB. If the caller does not wish to wait for a response than
380 * an event to wait on must be supplied. This event will be set when a
381 * response FIB is received from the adapter.
382 */
383
384 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
385 int priority, int wait, int reply, fib_callback callback,
386 void *callback_data)
387 {
388 struct aac_dev * dev = fibptr->dev;
389 struct hw_fib * hw_fib = fibptr->hw_fib_va;
390 unsigned long flags = 0;
391 unsigned long qflags;
392
393 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
394 return -EBUSY;
395 /*
396 * There are 5 cases with the wait and reponse requested flags.
397 * The only invalid cases are if the caller requests to wait and
398 * does not request a response and if the caller does not want a
399 * response and the Fib is not allocated from pool. If a response
400 * is not requesed the Fib will just be deallocaed by the DPC
401 * routine when the response comes back from the adapter. No
402 * further processing will be done besides deleting the Fib. We
403 * will have a debug mode where the adapter can notify the host
404 * it had a problem and the host can log that fact.
405 */
406 fibptr->flags = 0;
407 if (wait && !reply) {
408 return -EINVAL;
409 } else if (!wait && reply) {
410 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
411 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
412 } else if (!wait && !reply) {
413 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
414 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
415 } else if (wait && reply) {
416 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
417 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
418 }
419 /*
420 * Map the fib into 32bits by using the fib number
421 */
422
423 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
424 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
425 /*
426 * Set FIB state to indicate where it came from and if we want a
427 * response from the adapter. Also load the command from the
428 * caller.
429 *
430 * Map the hw fib pointer as a 32bit value
431 */
432 hw_fib->header.Command = cpu_to_le16(command);
433 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
434 fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/
435 /*
436 * Set the size of the Fib we want to send to the adapter
437 */
438 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
439 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
440 return -EMSGSIZE;
441 }
442 /*
443 * Get a queue entry connect the FIB to it and send an notify
444 * the adapter a command is ready.
445 */
446 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
447
448 /*
449 * Fill in the Callback and CallbackContext if we are not
450 * going to wait.
451 */
452 if (!wait) {
453 fibptr->callback = callback;
454 fibptr->callback_data = callback_data;
455 fibptr->flags = FIB_CONTEXT_FLAG;
456 }
457
458 fibptr->done = 0;
459
460 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
461
462 dprintk((KERN_DEBUG "Fib contents:.\n"));
463 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
464 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
465 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
466 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
467 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
468 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
469
470 if (!dev->queues)
471 return -EBUSY;
472
473 if(wait)
474 spin_lock_irqsave(&fibptr->event_lock, flags);
475 aac_adapter_deliver(fibptr);
476
477 /*
478 * If the caller wanted us to wait for response wait now.
479 */
480
481 if (wait) {
482 spin_unlock_irqrestore(&fibptr->event_lock, flags);
483 /* Only set for first known interruptable command */
484 if (wait < 0) {
485 /*
486 * *VERY* Dangerous to time out a command, the
487 * assumption is made that we have no hope of
488 * functioning because an interrupt routing or other
489 * hardware failure has occurred.
490 */
491 unsigned long count = 36000000L; /* 3 minutes */
492 while (down_trylock(&fibptr->event_wait)) {
493 int blink;
494 if (--count == 0) {
495 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
496 spin_lock_irqsave(q->lock, qflags);
497 q->numpending--;
498 spin_unlock_irqrestore(q->lock, qflags);
499 if (wait == -1) {
500 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
501 "Usually a result of a PCI interrupt routing problem;\n"
502 "update mother board BIOS or consider utilizing one of\n"
503 "the SAFE mode kernel options (acpi, apic etc)\n");
504 }
505 return -ETIMEDOUT;
506 }
507 if ((blink = aac_adapter_check_health(dev)) > 0) {
508 if (wait == -1) {
509 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
510 "Usually a result of a serious unrecoverable hardware problem\n",
511 blink);
512 }
513 return -EFAULT;
514 }
515 udelay(5);
516 }
517 } else
518 (void)down_interruptible(&fibptr->event_wait);
519 spin_lock_irqsave(&fibptr->event_lock, flags);
520 if (fibptr->done == 0) {
521 fibptr->done = 2; /* Tell interrupt we aborted */
522 spin_unlock_irqrestore(&fibptr->event_lock, flags);
523 return -EINTR;
524 }
525 spin_unlock_irqrestore(&fibptr->event_lock, flags);
526 BUG_ON(fibptr->done == 0);
527
528 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
529 return -ETIMEDOUT;
530 return 0;
531 }
532 /*
533 * If the user does not want a response than return success otherwise
534 * return pending
535 */
536 if (reply)
537 return -EINPROGRESS;
538 else
539 return 0;
540 }
541
542 /**
543 * aac_consumer_get - get the top of the queue
544 * @dev: Adapter
545 * @q: Queue
546 * @entry: Return entry
547 *
548 * Will return a pointer to the entry on the top of the queue requested that
549 * we are a consumer of, and return the address of the queue entry. It does
550 * not change the state of the queue.
551 */
552
553 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
554 {
555 u32 index;
556 int status;
557 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
558 status = 0;
559 } else {
560 /*
561 * The consumer index must be wrapped if we have reached
562 * the end of the queue, else we just use the entry
563 * pointed to by the header index
564 */
565 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
566 index = 0;
567 else
568 index = le32_to_cpu(*q->headers.consumer);
569 *entry = q->base + index;
570 status = 1;
571 }
572 return(status);
573 }
574
575 /**
576 * aac_consumer_free - free consumer entry
577 * @dev: Adapter
578 * @q: Queue
579 * @qid: Queue ident
580 *
581 * Frees up the current top of the queue we are a consumer of. If the
582 * queue was full notify the producer that the queue is no longer full.
583 */
584
585 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
586 {
587 int wasfull = 0;
588 u32 notify;
589
590 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
591 wasfull = 1;
592
593 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
594 *q->headers.consumer = cpu_to_le32(1);
595 else
596 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
597
598 if (wasfull) {
599 switch (qid) {
600
601 case HostNormCmdQueue:
602 notify = HostNormCmdNotFull;
603 break;
604 case HostNormRespQueue:
605 notify = HostNormRespNotFull;
606 break;
607 default:
608 BUG();
609 return;
610 }
611 aac_adapter_notify(dev, notify);
612 }
613 }
614
615 /**
616 * aac_fib_adapter_complete - complete adapter issued fib
617 * @fibptr: fib to complete
618 * @size: size of fib
619 *
620 * Will do all necessary work to complete a FIB that was sent from
621 * the adapter.
622 */
623
624 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
625 {
626 struct hw_fib * hw_fib = fibptr->hw_fib_va;
627 struct aac_dev * dev = fibptr->dev;
628 struct aac_queue * q;
629 unsigned long nointr = 0;
630 unsigned long qflags;
631
632 if (hw_fib->header.XferState == 0) {
633 if (dev->comm_interface == AAC_COMM_MESSAGE)
634 kfree (hw_fib);
635 return 0;
636 }
637 /*
638 * If we plan to do anything check the structure type first.
639 */
640 if ( hw_fib->header.StructType != FIB_MAGIC ) {
641 if (dev->comm_interface == AAC_COMM_MESSAGE)
642 kfree (hw_fib);
643 return -EINVAL;
644 }
645 /*
646 * This block handles the case where the adapter had sent us a
647 * command and we have finished processing the command. We
648 * call completeFib when we are done processing the command
649 * and want to send a response back to the adapter. This will
650 * send the completed cdb to the adapter.
651 */
652 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
653 if (dev->comm_interface == AAC_COMM_MESSAGE) {
654 kfree (hw_fib);
655 } else {
656 u32 index;
657 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
658 if (size) {
659 size += sizeof(struct aac_fibhdr);
660 if (size > le16_to_cpu(hw_fib->header.SenderSize))
661 return -EMSGSIZE;
662 hw_fib->header.Size = cpu_to_le16(size);
663 }
664 q = &dev->queues->queue[AdapNormRespQueue];
665 spin_lock_irqsave(q->lock, qflags);
666 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
667 *(q->headers.producer) = cpu_to_le32(index + 1);
668 spin_unlock_irqrestore(q->lock, qflags);
669 if (!(nointr & (int)aac_config.irq_mod))
670 aac_adapter_notify(dev, AdapNormRespQueue);
671 }
672 }
673 else
674 {
675 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
676 BUG();
677 }
678 return 0;
679 }
680
681 /**
682 * aac_fib_complete - fib completion handler
683 * @fib: FIB to complete
684 *
685 * Will do all necessary work to complete a FIB.
686 */
687
688 int aac_fib_complete(struct fib *fibptr)
689 {
690 struct hw_fib * hw_fib = fibptr->hw_fib_va;
691
692 /*
693 * Check for a fib which has already been completed
694 */
695
696 if (hw_fib->header.XferState == 0)
697 return 0;
698 /*
699 * If we plan to do anything check the structure type first.
700 */
701
702 if (hw_fib->header.StructType != FIB_MAGIC)
703 return -EINVAL;
704 /*
705 * This block completes a cdb which orginated on the host and we
706 * just need to deallocate the cdb or reinit it. At this point the
707 * command is complete that we had sent to the adapter and this
708 * cdb could be reused.
709 */
710 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
711 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
712 {
713 fib_dealloc(fibptr);
714 }
715 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
716 {
717 /*
718 * This handles the case when the host has aborted the I/O
719 * to the adapter because the adapter is not responding
720 */
721 fib_dealloc(fibptr);
722 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
723 fib_dealloc(fibptr);
724 } else {
725 BUG();
726 }
727 return 0;
728 }
729
730 /**
731 * aac_printf - handle printf from firmware
732 * @dev: Adapter
733 * @val: Message info
734 *
735 * Print a message passed to us by the controller firmware on the
736 * Adaptec board
737 */
738
739 void aac_printf(struct aac_dev *dev, u32 val)
740 {
741 char *cp = dev->printfbuf;
742 if (dev->printf_enabled)
743 {
744 int length = val & 0xffff;
745 int level = (val >> 16) & 0xffff;
746
747 /*
748 * The size of the printfbuf is set in port.c
749 * There is no variable or define for it
750 */
751 if (length > 255)
752 length = 255;
753 if (cp[length] != 0)
754 cp[length] = 0;
755 if (level == LOG_AAC_HIGH_ERROR)
756 printk(KERN_WARNING "%s:%s", dev->name, cp);
757 else
758 printk(KERN_INFO "%s:%s", dev->name, cp);
759 }
760 memset(cp, 0, 256);
761 }
762
763
764 /**
765 * aac_handle_aif - Handle a message from the firmware
766 * @dev: Which adapter this fib is from
767 * @fibptr: Pointer to fibptr from adapter
768 *
769 * This routine handles a driver notify fib from the adapter and
770 * dispatches it to the appropriate routine for handling.
771 */
772
773 #define AIF_SNIFF_TIMEOUT (30*HZ)
774 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
775 {
776 struct hw_fib * hw_fib = fibptr->hw_fib_va;
777 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
778 u32 channel, id, lun, container;
779 struct scsi_device *device;
780 enum {
781 NOTHING,
782 DELETE,
783 ADD,
784 CHANGE
785 } device_config_needed = NOTHING;
786
787 /* Sniff for container changes */
788
789 if (!dev || !dev->fsa_dev)
790 return;
791 container = channel = id = lun = (u32)-1;
792
793 /*
794 * We have set this up to try and minimize the number of
795 * re-configures that take place. As a result of this when
796 * certain AIF's come in we will set a flag waiting for another
797 * type of AIF before setting the re-config flag.
798 */
799 switch (le32_to_cpu(aifcmd->command)) {
800 case AifCmdDriverNotify:
801 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
802 /*
803 * Morph or Expand complete
804 */
805 case AifDenMorphComplete:
806 case AifDenVolumeExtendComplete:
807 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
808 if (container >= dev->maximum_num_containers)
809 break;
810
811 /*
812 * Find the scsi_device associated with the SCSI
813 * address. Make sure we have the right array, and if
814 * so set the flag to initiate a new re-config once we
815 * see an AifEnConfigChange AIF come through.
816 */
817
818 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
819 device = scsi_device_lookup(dev->scsi_host_ptr,
820 CONTAINER_TO_CHANNEL(container),
821 CONTAINER_TO_ID(container),
822 CONTAINER_TO_LUN(container));
823 if (device) {
824 dev->fsa_dev[container].config_needed = CHANGE;
825 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
826 dev->fsa_dev[container].config_waiting_stamp = jiffies;
827 scsi_device_put(device);
828 }
829 }
830 }
831
832 /*
833 * If we are waiting on something and this happens to be
834 * that thing then set the re-configure flag.
835 */
836 if (container != (u32)-1) {
837 if (container >= dev->maximum_num_containers)
838 break;
839 if ((dev->fsa_dev[container].config_waiting_on ==
840 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
841 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
842 dev->fsa_dev[container].config_waiting_on = 0;
843 } else for (container = 0;
844 container < dev->maximum_num_containers; ++container) {
845 if ((dev->fsa_dev[container].config_waiting_on ==
846 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
847 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
848 dev->fsa_dev[container].config_waiting_on = 0;
849 }
850 break;
851
852 case AifCmdEventNotify:
853 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
854 case AifEnBatteryEvent:
855 dev->cache_protected =
856 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
857 break;
858 /*
859 * Add an Array.
860 */
861 case AifEnAddContainer:
862 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
863 if (container >= dev->maximum_num_containers)
864 break;
865 dev->fsa_dev[container].config_needed = ADD;
866 dev->fsa_dev[container].config_waiting_on =
867 AifEnConfigChange;
868 dev->fsa_dev[container].config_waiting_stamp = jiffies;
869 break;
870
871 /*
872 * Delete an Array.
873 */
874 case AifEnDeleteContainer:
875 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
876 if (container >= dev->maximum_num_containers)
877 break;
878 dev->fsa_dev[container].config_needed = DELETE;
879 dev->fsa_dev[container].config_waiting_on =
880 AifEnConfigChange;
881 dev->fsa_dev[container].config_waiting_stamp = jiffies;
882 break;
883
884 /*
885 * Container change detected. If we currently are not
886 * waiting on something else, setup to wait on a Config Change.
887 */
888 case AifEnContainerChange:
889 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
890 if (container >= dev->maximum_num_containers)
891 break;
892 if (dev->fsa_dev[container].config_waiting_on &&
893 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
894 break;
895 dev->fsa_dev[container].config_needed = CHANGE;
896 dev->fsa_dev[container].config_waiting_on =
897 AifEnConfigChange;
898 dev->fsa_dev[container].config_waiting_stamp = jiffies;
899 break;
900
901 case AifEnConfigChange:
902 break;
903
904 case AifEnEnclosureManagement:
905 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
906 case EM_DRIVE_INSERTION:
907 case EM_DRIVE_REMOVAL:
908 container = le32_to_cpu(
909 ((__le32 *)aifcmd->data)[2]);
910 if ((container >> 28))
911 break;
912 channel = (container >> 24) & 0xF;
913 if (channel >= dev->maximum_num_channels)
914 break;
915 id = container & 0xFFFF;
916 lun = (container >> 16) & 0xFF;
917 if (id >= dev->maximum_num_physicals) {
918 /* legacy dev_t ? */
919 if ((0x2000 <= id) || lun || channel ||
920 ((channel = (id >> 7) & 0x3F) >=
921 dev->maximum_num_channels))
922 break;
923 lun = (id >> 4) & 7;
924 id &= 0xF;
925 }
926 channel = aac_phys_to_logical(channel);
927 device_config_needed =
928 (((__le32 *)aifcmd->data)[3]
929 == cpu_to_le32(EM_DRIVE_INSERTION)) ?
930 ADD : DELETE;
931 break;
932 }
933 break;
934 }
935
936 /*
937 * If we are waiting on something and this happens to be
938 * that thing then set the re-configure flag.
939 */
940 if (container != (u32)-1) {
941 if (container >= dev->maximum_num_containers)
942 break;
943 if ((dev->fsa_dev[container].config_waiting_on ==
944 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
945 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
946 dev->fsa_dev[container].config_waiting_on = 0;
947 } else for (container = 0;
948 container < dev->maximum_num_containers; ++container) {
949 if ((dev->fsa_dev[container].config_waiting_on ==
950 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
951 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
952 dev->fsa_dev[container].config_waiting_on = 0;
953 }
954 break;
955
956 case AifCmdJobProgress:
957 /*
958 * These are job progress AIF's. When a Clear is being
959 * done on a container it is initially created then hidden from
960 * the OS. When the clear completes we don't get a config
961 * change so we monitor the job status complete on a clear then
962 * wait for a container change.
963 */
964
965 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
966 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
967 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
968 for (container = 0;
969 container < dev->maximum_num_containers;
970 ++container) {
971 /*
972 * Stomp on all config sequencing for all
973 * containers?
974 */
975 dev->fsa_dev[container].config_waiting_on =
976 AifEnContainerChange;
977 dev->fsa_dev[container].config_needed = ADD;
978 dev->fsa_dev[container].config_waiting_stamp =
979 jiffies;
980 }
981 }
982 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
983 ((__le32 *)aifcmd->data)[6] == 0 &&
984 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
985 for (container = 0;
986 container < dev->maximum_num_containers;
987 ++container) {
988 /*
989 * Stomp on all config sequencing for all
990 * containers?
991 */
992 dev->fsa_dev[container].config_waiting_on =
993 AifEnContainerChange;
994 dev->fsa_dev[container].config_needed = DELETE;
995 dev->fsa_dev[container].config_waiting_stamp =
996 jiffies;
997 }
998 }
999 break;
1000 }
1001
1002 if (device_config_needed == NOTHING)
1003 for (container = 0; container < dev->maximum_num_containers;
1004 ++container) {
1005 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1006 (dev->fsa_dev[container].config_needed != NOTHING) &&
1007 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1008 device_config_needed =
1009 dev->fsa_dev[container].config_needed;
1010 dev->fsa_dev[container].config_needed = NOTHING;
1011 channel = CONTAINER_TO_CHANNEL(container);
1012 id = CONTAINER_TO_ID(container);
1013 lun = CONTAINER_TO_LUN(container);
1014 break;
1015 }
1016 }
1017 if (device_config_needed == NOTHING)
1018 return;
1019
1020 /*
1021 * If we decided that a re-configuration needs to be done,
1022 * schedule it here on the way out the door, please close the door
1023 * behind you.
1024 */
1025
1026 /*
1027 * Find the scsi_device associated with the SCSI address,
1028 * and mark it as changed, invalidating the cache. This deals
1029 * with changes to existing device IDs.
1030 */
1031
1032 if (!dev || !dev->scsi_host_ptr)
1033 return;
1034 /*
1035 * force reload of disk info via aac_probe_container
1036 */
1037 if ((channel == CONTAINER_CHANNEL) &&
1038 (device_config_needed != NOTHING)) {
1039 if (dev->fsa_dev[container].valid == 1)
1040 dev->fsa_dev[container].valid = 2;
1041 aac_probe_container(dev, container);
1042 }
1043 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1044 if (device) {
1045 switch (device_config_needed) {
1046 case DELETE:
1047 if (scsi_device_online(device)) {
1048 scsi_device_set_state(device, SDEV_OFFLINE);
1049 sdev_printk(KERN_INFO, device,
1050 "Device offlined - %s\n",
1051 (channel == CONTAINER_CHANNEL) ?
1052 "array deleted" :
1053 "enclosure services event");
1054 }
1055 break;
1056 case ADD:
1057 if (!scsi_device_online(device)) {
1058 sdev_printk(KERN_INFO, device,
1059 "Device online - %s\n",
1060 (channel == CONTAINER_CHANNEL) ?
1061 "array created" :
1062 "enclosure services event");
1063 scsi_device_set_state(device, SDEV_RUNNING);
1064 }
1065 /* FALLTHRU */
1066 case CHANGE:
1067 if ((channel == CONTAINER_CHANNEL)
1068 && (!dev->fsa_dev[container].valid)) {
1069 if (!scsi_device_online(device))
1070 break;
1071 scsi_device_set_state(device, SDEV_OFFLINE);
1072 sdev_printk(KERN_INFO, device,
1073 "Device offlined - %s\n",
1074 "array failed");
1075 break;
1076 }
1077 scsi_rescan_device(&device->sdev_gendev);
1078
1079 default:
1080 break;
1081 }
1082 scsi_device_put(device);
1083 device_config_needed = NOTHING;
1084 }
1085 if (device_config_needed == ADD)
1086 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1087 }
1088
1089 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1090 {
1091 int index, quirks;
1092 int retval;
1093 struct Scsi_Host *host;
1094 struct scsi_device *dev;
1095 struct scsi_cmnd *command;
1096 struct scsi_cmnd *command_list;
1097 int jafo = 0;
1098
1099 /*
1100 * Assumptions:
1101 * - host is locked, unless called by the aacraid thread.
1102 * (a matter of convenience, due to legacy issues surrounding
1103 * eh_host_adapter_reset).
1104 * - in_reset is asserted, so no new i/o is getting to the
1105 * card.
1106 * - The card is dead, or will be very shortly ;-/ so no new
1107 * commands are completing in the interrupt service.
1108 */
1109 host = aac->scsi_host_ptr;
1110 scsi_block_requests(host);
1111 aac_adapter_disable_int(aac);
1112 if (aac->thread->pid != current->pid) {
1113 spin_unlock_irq(host->host_lock);
1114 kthread_stop(aac->thread);
1115 jafo = 1;
1116 }
1117
1118 /*
1119 * If a positive health, means in a known DEAD PANIC
1120 * state and the adapter could be reset to `try again'.
1121 */
1122 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1123
1124 if (retval)
1125 goto out;
1126
1127 /*
1128 * Loop through the fibs, close the synchronous FIBS
1129 */
1130 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1131 struct fib *fib = &aac->fibs[index];
1132 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1133 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1134 unsigned long flagv;
1135 spin_lock_irqsave(&fib->event_lock, flagv);
1136 up(&fib->event_wait);
1137 spin_unlock_irqrestore(&fib->event_lock, flagv);
1138 schedule();
1139 retval = 0;
1140 }
1141 }
1142 /* Give some extra time for ioctls to complete. */
1143 if (retval == 0)
1144 ssleep(2);
1145 index = aac->cardtype;
1146
1147 /*
1148 * Re-initialize the adapter, first free resources, then carefully
1149 * apply the initialization sequence to come back again. Only risk
1150 * is a change in Firmware dropping cache, it is assumed the caller
1151 * will ensure that i/o is queisced and the card is flushed in that
1152 * case.
1153 */
1154 aac_fib_map_free(aac);
1155 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1156 aac->comm_addr = NULL;
1157 aac->comm_phys = 0;
1158 kfree(aac->queues);
1159 aac->queues = NULL;
1160 free_irq(aac->pdev->irq, aac);
1161 kfree(aac->fsa_dev);
1162 aac->fsa_dev = NULL;
1163 quirks = aac_get_driver_ident(index)->quirks;
1164 if (quirks & AAC_QUIRK_31BIT) {
1165 if (((retval = pci_set_dma_mask(aac->pdev, DMA_31BIT_MASK))) ||
1166 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_31BIT_MASK))))
1167 goto out;
1168 } else {
1169 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1170 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1171 goto out;
1172 }
1173 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1174 goto out;
1175 if (quirks & AAC_QUIRK_31BIT)
1176 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1177 goto out;
1178 if (jafo) {
1179 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1180 if (IS_ERR(aac->thread)) {
1181 retval = PTR_ERR(aac->thread);
1182 goto out;
1183 }
1184 }
1185 (void)aac_get_adapter_info(aac);
1186 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1187 host->sg_tablesize = 34;
1188 host->max_sectors = (host->sg_tablesize * 8) + 112;
1189 }
1190 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1191 host->sg_tablesize = 17;
1192 host->max_sectors = (host->sg_tablesize * 8) + 112;
1193 }
1194 aac_get_config_status(aac, 1);
1195 aac_get_containers(aac);
1196 /*
1197 * This is where the assumption that the Adapter is quiesced
1198 * is important.
1199 */
1200 command_list = NULL;
1201 __shost_for_each_device(dev, host) {
1202 unsigned long flags;
1203 spin_lock_irqsave(&dev->list_lock, flags);
1204 list_for_each_entry(command, &dev->cmd_list, list)
1205 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1206 command->SCp.buffer = (struct scatterlist *)command_list;
1207 command_list = command;
1208 }
1209 spin_unlock_irqrestore(&dev->list_lock, flags);
1210 }
1211 while ((command = command_list)) {
1212 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1213 command->SCp.buffer = NULL;
1214 command->result = DID_OK << 16
1215 | COMMAND_COMPLETE << 8
1216 | SAM_STAT_TASK_SET_FULL;
1217 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1218 command->scsi_done(command);
1219 }
1220 retval = 0;
1221
1222 out:
1223 aac->in_reset = 0;
1224 scsi_unblock_requests(host);
1225 if (jafo) {
1226 spin_lock_irq(host->host_lock);
1227 }
1228 return retval;
1229 }
1230
1231 int aac_reset_adapter(struct aac_dev * aac, int forced)
1232 {
1233 unsigned long flagv = 0;
1234 int retval;
1235 struct Scsi_Host * host;
1236
1237 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1238 return -EBUSY;
1239
1240 if (aac->in_reset) {
1241 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1242 return -EBUSY;
1243 }
1244 aac->in_reset = 1;
1245 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1246
1247 /*
1248 * Wait for all commands to complete to this specific
1249 * target (block maximum 60 seconds). Although not necessary,
1250 * it does make us a good storage citizen.
1251 */
1252 host = aac->scsi_host_ptr;
1253 scsi_block_requests(host);
1254 if (forced < 2) for (retval = 60; retval; --retval) {
1255 struct scsi_device * dev;
1256 struct scsi_cmnd * command;
1257 int active = 0;
1258
1259 __shost_for_each_device(dev, host) {
1260 spin_lock_irqsave(&dev->list_lock, flagv);
1261 list_for_each_entry(command, &dev->cmd_list, list) {
1262 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1263 active++;
1264 break;
1265 }
1266 }
1267 spin_unlock_irqrestore(&dev->list_lock, flagv);
1268 if (active)
1269 break;
1270
1271 }
1272 /*
1273 * We can exit If all the commands are complete
1274 */
1275 if (active == 0)
1276 break;
1277 ssleep(1);
1278 }
1279
1280 /* Quiesce build, flush cache, write through mode */
1281 if (forced < 2)
1282 aac_send_shutdown(aac);
1283 spin_lock_irqsave(host->host_lock, flagv);
1284 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1285 spin_unlock_irqrestore(host->host_lock, flagv);
1286
1287 if ((forced < 2) && (retval == -ENODEV)) {
1288 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1289 struct fib * fibctx = aac_fib_alloc(aac);
1290 if (fibctx) {
1291 struct aac_pause *cmd;
1292 int status;
1293
1294 aac_fib_init(fibctx);
1295
1296 cmd = (struct aac_pause *) fib_data(fibctx);
1297
1298 cmd->command = cpu_to_le32(VM_ContainerConfig);
1299 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1300 cmd->timeout = cpu_to_le32(1);
1301 cmd->min = cpu_to_le32(1);
1302 cmd->noRescan = cpu_to_le32(1);
1303 cmd->count = cpu_to_le32(0);
1304
1305 status = aac_fib_send(ContainerCommand,
1306 fibctx,
1307 sizeof(struct aac_pause),
1308 FsaNormal,
1309 -2 /* Timeout silently */, 1,
1310 NULL, NULL);
1311
1312 if (status >= 0)
1313 aac_fib_complete(fibctx);
1314 aac_fib_free(fibctx);
1315 }
1316 }
1317
1318 return retval;
1319 }
1320
1321 int aac_check_health(struct aac_dev * aac)
1322 {
1323 int BlinkLED;
1324 unsigned long time_now, flagv = 0;
1325 struct list_head * entry;
1326 struct Scsi_Host * host;
1327
1328 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1329 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1330 return 0;
1331
1332 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1333 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1334 return 0; /* OK */
1335 }
1336
1337 aac->in_reset = 1;
1338
1339 /* Fake up an AIF:
1340 * aac_aifcmd.command = AifCmdEventNotify = 1
1341 * aac_aifcmd.seqnum = 0xFFFFFFFF
1342 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1343 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1344 * aac.aifcmd.data[2] = AifHighPriority = 3
1345 * aac.aifcmd.data[3] = BlinkLED
1346 */
1347
1348 time_now = jiffies/HZ;
1349 entry = aac->fib_list.next;
1350
1351 /*
1352 * For each Context that is on the
1353 * fibctxList, make a copy of the
1354 * fib, and then set the event to wake up the
1355 * thread that is waiting for it.
1356 */
1357 while (entry != &aac->fib_list) {
1358 /*
1359 * Extract the fibctx
1360 */
1361 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1362 struct hw_fib * hw_fib;
1363 struct fib * fib;
1364 /*
1365 * Check if the queue is getting
1366 * backlogged
1367 */
1368 if (fibctx->count > 20) {
1369 /*
1370 * It's *not* jiffies folks,
1371 * but jiffies / HZ, so do not
1372 * panic ...
1373 */
1374 u32 time_last = fibctx->jiffies;
1375 /*
1376 * Has it been > 2 minutes
1377 * since the last read off
1378 * the queue?
1379 */
1380 if ((time_now - time_last) > aif_timeout) {
1381 entry = entry->next;
1382 aac_close_fib_context(aac, fibctx);
1383 continue;
1384 }
1385 }
1386 /*
1387 * Warning: no sleep allowed while
1388 * holding spinlock
1389 */
1390 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1391 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1392 if (fib && hw_fib) {
1393 struct aac_aifcmd * aif;
1394
1395 fib->hw_fib_va = hw_fib;
1396 fib->dev = aac;
1397 aac_fib_init(fib);
1398 fib->type = FSAFS_NTC_FIB_CONTEXT;
1399 fib->size = sizeof (struct fib);
1400 fib->data = hw_fib->data;
1401 aif = (struct aac_aifcmd *)hw_fib->data;
1402 aif->command = cpu_to_le32(AifCmdEventNotify);
1403 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1404 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1405 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1406 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1407 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1408
1409 /*
1410 * Put the FIB onto the
1411 * fibctx's fibs
1412 */
1413 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1414 fibctx->count++;
1415 /*
1416 * Set the event to wake up the
1417 * thread that will waiting.
1418 */
1419 up(&fibctx->wait_sem);
1420 } else {
1421 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1422 kfree(fib);
1423 kfree(hw_fib);
1424 }
1425 entry = entry->next;
1426 }
1427
1428 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1429
1430 if (BlinkLED < 0) {
1431 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1432 goto out;
1433 }
1434
1435 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1436
1437 if (!aac_check_reset || ((aac_check_reset != 1) &&
1438 (aac->supplement_adapter_info.SupportedOptions2 &
1439 AAC_OPTION_IGNORE_RESET)))
1440 goto out;
1441 host = aac->scsi_host_ptr;
1442 if (aac->thread->pid != current->pid)
1443 spin_lock_irqsave(host->host_lock, flagv);
1444 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1445 if (aac->thread->pid != current->pid)
1446 spin_unlock_irqrestore(host->host_lock, flagv);
1447 return BlinkLED;
1448
1449 out:
1450 aac->in_reset = 0;
1451 return BlinkLED;
1452 }
1453
1454
1455 /**
1456 * aac_command_thread - command processing thread
1457 * @dev: Adapter to monitor
1458 *
1459 * Waits on the commandready event in it's queue. When the event gets set
1460 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1461 * until the queue is empty. When the queue is empty it will wait for
1462 * more FIBs.
1463 */
1464
1465 int aac_command_thread(void *data)
1466 {
1467 struct aac_dev *dev = data;
1468 struct hw_fib *hw_fib, *hw_newfib;
1469 struct fib *fib, *newfib;
1470 struct aac_fib_context *fibctx;
1471 unsigned long flags;
1472 DECLARE_WAITQUEUE(wait, current);
1473 unsigned long next_jiffies = jiffies + HZ;
1474 unsigned long next_check_jiffies = next_jiffies;
1475 long difference = HZ;
1476
1477 /*
1478 * We can only have one thread per adapter for AIF's.
1479 */
1480 if (dev->aif_thread)
1481 return -EINVAL;
1482
1483 /*
1484 * Let the DPC know it has a place to send the AIF's to.
1485 */
1486 dev->aif_thread = 1;
1487 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1488 set_current_state(TASK_INTERRUPTIBLE);
1489 dprintk ((KERN_INFO "aac_command_thread start\n"));
1490 while(1)
1491 {
1492 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1493 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1494 struct list_head *entry;
1495 struct aac_aifcmd * aifcmd;
1496
1497 set_current_state(TASK_RUNNING);
1498
1499 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1500 list_del(entry);
1501
1502 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1503 fib = list_entry(entry, struct fib, fiblink);
1504 /*
1505 * We will process the FIB here or pass it to a
1506 * worker thread that is TBD. We Really can't
1507 * do anything at this point since we don't have
1508 * anything defined for this thread to do.
1509 */
1510 hw_fib = fib->hw_fib_va;
1511 memset(fib, 0, sizeof(struct fib));
1512 fib->type = FSAFS_NTC_FIB_CONTEXT;
1513 fib->size = sizeof( struct fib );
1514 fib->hw_fib_va = hw_fib;
1515 fib->data = hw_fib->data;
1516 fib->dev = dev;
1517 /*
1518 * We only handle AifRequest fibs from the adapter.
1519 */
1520 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1521 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1522 /* Handle Driver Notify Events */
1523 aac_handle_aif(dev, fib);
1524 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1525 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1526 } else {
1527 /* The u32 here is important and intended. We are using
1528 32bit wrapping time to fit the adapter field */
1529
1530 u32 time_now, time_last;
1531 unsigned long flagv;
1532 unsigned num;
1533 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1534 struct fib ** fib_pool, ** fib_p;
1535
1536 /* Sniff events */
1537 if ((aifcmd->command ==
1538 cpu_to_le32(AifCmdEventNotify)) ||
1539 (aifcmd->command ==
1540 cpu_to_le32(AifCmdJobProgress))) {
1541 aac_handle_aif(dev, fib);
1542 }
1543
1544 time_now = jiffies/HZ;
1545
1546 /*
1547 * Warning: no sleep allowed while
1548 * holding spinlock. We take the estimate
1549 * and pre-allocate a set of fibs outside the
1550 * lock.
1551 */
1552 num = le32_to_cpu(dev->init->AdapterFibsSize)
1553 / sizeof(struct hw_fib); /* some extra */
1554 spin_lock_irqsave(&dev->fib_lock, flagv);
1555 entry = dev->fib_list.next;
1556 while (entry != &dev->fib_list) {
1557 entry = entry->next;
1558 ++num;
1559 }
1560 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1561 hw_fib_pool = NULL;
1562 fib_pool = NULL;
1563 if (num
1564 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1565 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1566 hw_fib_p = hw_fib_pool;
1567 fib_p = fib_pool;
1568 while (hw_fib_p < &hw_fib_pool[num]) {
1569 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1570 --hw_fib_p;
1571 break;
1572 }
1573 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1574 kfree(*(--hw_fib_p));
1575 break;
1576 }
1577 }
1578 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1579 kfree(fib_pool);
1580 fib_pool = NULL;
1581 kfree(hw_fib_pool);
1582 hw_fib_pool = NULL;
1583 }
1584 } else {
1585 kfree(hw_fib_pool);
1586 hw_fib_pool = NULL;
1587 }
1588 spin_lock_irqsave(&dev->fib_lock, flagv);
1589 entry = dev->fib_list.next;
1590 /*
1591 * For each Context that is on the
1592 * fibctxList, make a copy of the
1593 * fib, and then set the event to wake up the
1594 * thread that is waiting for it.
1595 */
1596 hw_fib_p = hw_fib_pool;
1597 fib_p = fib_pool;
1598 while (entry != &dev->fib_list) {
1599 /*
1600 * Extract the fibctx
1601 */
1602 fibctx = list_entry(entry, struct aac_fib_context, next);
1603 /*
1604 * Check if the queue is getting
1605 * backlogged
1606 */
1607 if (fibctx->count > 20)
1608 {
1609 /*
1610 * It's *not* jiffies folks,
1611 * but jiffies / HZ so do not
1612 * panic ...
1613 */
1614 time_last = fibctx->jiffies;
1615 /*
1616 * Has it been > 2 minutes
1617 * since the last read off
1618 * the queue?
1619 */
1620 if ((time_now - time_last) > aif_timeout) {
1621 entry = entry->next;
1622 aac_close_fib_context(dev, fibctx);
1623 continue;
1624 }
1625 }
1626 /*
1627 * Warning: no sleep allowed while
1628 * holding spinlock
1629 */
1630 if (hw_fib_p < &hw_fib_pool[num]) {
1631 hw_newfib = *hw_fib_p;
1632 *(hw_fib_p++) = NULL;
1633 newfib = *fib_p;
1634 *(fib_p++) = NULL;
1635 /*
1636 * Make the copy of the FIB
1637 */
1638 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1639 memcpy(newfib, fib, sizeof(struct fib));
1640 newfib->hw_fib_va = hw_newfib;
1641 /*
1642 * Put the FIB onto the
1643 * fibctx's fibs
1644 */
1645 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1646 fibctx->count++;
1647 /*
1648 * Set the event to wake up the
1649 * thread that is waiting.
1650 */
1651 up(&fibctx->wait_sem);
1652 } else {
1653 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1654 }
1655 entry = entry->next;
1656 }
1657 /*
1658 * Set the status of this FIB
1659 */
1660 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1661 aac_fib_adapter_complete(fib, sizeof(u32));
1662 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1663 /* Free up the remaining resources */
1664 hw_fib_p = hw_fib_pool;
1665 fib_p = fib_pool;
1666 while (hw_fib_p < &hw_fib_pool[num]) {
1667 kfree(*hw_fib_p);
1668 kfree(*fib_p);
1669 ++fib_p;
1670 ++hw_fib_p;
1671 }
1672 kfree(hw_fib_pool);
1673 kfree(fib_pool);
1674 }
1675 kfree(fib);
1676 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1677 }
1678 /*
1679 * There are no more AIF's
1680 */
1681 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1682
1683 /*
1684 * Background activity
1685 */
1686 if ((time_before(next_check_jiffies,next_jiffies))
1687 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1688 next_check_jiffies = next_jiffies;
1689 if (aac_check_health(dev) == 0) {
1690 difference = ((long)(unsigned)check_interval)
1691 * HZ;
1692 next_check_jiffies = jiffies + difference;
1693 } else if (!dev->queues)
1694 break;
1695 }
1696 if (!time_before(next_check_jiffies,next_jiffies)
1697 && ((difference = next_jiffies - jiffies) <= 0)) {
1698 struct timeval now;
1699 int ret;
1700
1701 /* Don't even try to talk to adapter if its sick */
1702 ret = aac_check_health(dev);
1703 if (!ret && !dev->queues)
1704 break;
1705 next_check_jiffies = jiffies
1706 + ((long)(unsigned)check_interval)
1707 * HZ;
1708 do_gettimeofday(&now);
1709
1710 /* Synchronize our watches */
1711 if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1712 && (now.tv_usec > (1000000 / HZ)))
1713 difference = (((1000000 - now.tv_usec) * HZ)
1714 + 500000) / 1000000;
1715 else if (ret == 0) {
1716 struct fib *fibptr;
1717
1718 if ((fibptr = aac_fib_alloc(dev))) {
1719 __le32 *info;
1720
1721 aac_fib_init(fibptr);
1722
1723 info = (__le32 *) fib_data(fibptr);
1724 if (now.tv_usec > 500000)
1725 ++now.tv_sec;
1726
1727 *info = cpu_to_le32(now.tv_sec);
1728
1729 (void)aac_fib_send(SendHostTime,
1730 fibptr,
1731 sizeof(*info),
1732 FsaNormal,
1733 1, 1,
1734 NULL,
1735 NULL);
1736 aac_fib_complete(fibptr);
1737 aac_fib_free(fibptr);
1738 }
1739 difference = (long)(unsigned)update_interval*HZ;
1740 } else {
1741 /* retry shortly */
1742 difference = 10 * HZ;
1743 }
1744 next_jiffies = jiffies + difference;
1745 if (time_before(next_check_jiffies,next_jiffies))
1746 difference = next_check_jiffies - jiffies;
1747 }
1748 if (difference <= 0)
1749 difference = 1;
1750 set_current_state(TASK_INTERRUPTIBLE);
1751 schedule_timeout(difference);
1752
1753 if (kthread_should_stop())
1754 break;
1755 }
1756 if (dev->queues)
1757 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1758 dev->aif_thread = 0;
1759 return 0;
1760 }