]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/aacraid/commsup.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / aacraid / commsup.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 * Module Name:
25 * commsup.c
26 *
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 * communication.
29 *
30 */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
49
50 #include "aacraid.h"
51
52 /**
53 * fib_map_alloc - allocate the fib objects
54 * @dev: Adapter to allocate for
55 *
56 * Allocate and map the shared PCI space for the FIB blocks used to
57 * talk to the Adaptec firmware.
58 */
59
60 static int fib_map_alloc(struct aac_dev *dev)
61 {
62 dprintk((KERN_INFO
63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68 &dev->hw_fib_pa))==NULL)
69 return -ENOMEM;
70 return 0;
71 }
72
73 /**
74 * aac_fib_map_free - free the fib objects
75 * @dev: Adapter to free
76 *
77 * Free the PCI mappings and the memory allocated for FIB blocks
78 * on this adapter.
79 */
80
81 void aac_fib_map_free(struct aac_dev *dev)
82 {
83 pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
84 }
85
86 /**
87 * aac_fib_setup - setup the fibs
88 * @dev: Adapter to set up
89 *
90 * Allocate the PCI space for the fibs, map it and then intialise the
91 * fib area, the unmapped fib data and also the free list
92 */
93
94 int aac_fib_setup(struct aac_dev * dev)
95 {
96 struct fib *fibptr;
97 struct hw_fib *hw_fib;
98 dma_addr_t hw_fib_pa;
99 int i;
100
101 while (((i = fib_map_alloc(dev)) == -ENOMEM)
102 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
103 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
104 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
105 }
106 if (i<0)
107 return -ENOMEM;
108
109 hw_fib = dev->hw_fib_va;
110 hw_fib_pa = dev->hw_fib_pa;
111 memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
112 /*
113 * Initialise the fibs
114 */
115 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
116 {
117 fibptr->dev = dev;
118 fibptr->hw_fib_va = hw_fib;
119 fibptr->data = (void *) fibptr->hw_fib_va->data;
120 fibptr->next = fibptr+1; /* Forward chain the fibs */
121 init_MUTEX_LOCKED(&fibptr->event_wait);
122 spin_lock_init(&fibptr->event_lock);
123 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
124 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
125 fibptr->hw_fib_pa = hw_fib_pa;
126 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
127 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
128 }
129 /*
130 * Add the fib chain to the free list
131 */
132 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
133 /*
134 * Enable this to debug out of queue space
135 */
136 dev->free_fib = &dev->fibs[0];
137 return 0;
138 }
139
140 /**
141 * aac_fib_alloc - allocate a fib
142 * @dev: Adapter to allocate the fib for
143 *
144 * Allocate a fib from the adapter fib pool. If the pool is empty we
145 * return NULL.
146 */
147
148 struct fib *aac_fib_alloc(struct aac_dev *dev)
149 {
150 struct fib * fibptr;
151 unsigned long flags;
152 spin_lock_irqsave(&dev->fib_lock, flags);
153 fibptr = dev->free_fib;
154 if(!fibptr){
155 spin_unlock_irqrestore(&dev->fib_lock, flags);
156 return fibptr;
157 }
158 dev->free_fib = fibptr->next;
159 spin_unlock_irqrestore(&dev->fib_lock, flags);
160 /*
161 * Set the proper node type code and node byte size
162 */
163 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
164 fibptr->size = sizeof(struct fib);
165 /*
166 * Null out fields that depend on being zero at the start of
167 * each I/O
168 */
169 fibptr->hw_fib_va->header.XferState = 0;
170 fibptr->callback = NULL;
171 fibptr->callback_data = NULL;
172
173 return fibptr;
174 }
175
176 /**
177 * aac_fib_free - free a fib
178 * @fibptr: fib to free up
179 *
180 * Frees up a fib and places it on the appropriate queue
181 */
182
183 void aac_fib_free(struct fib *fibptr)
184 {
185 unsigned long flags;
186
187 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
188 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
189 aac_config.fib_timeouts++;
190 if (fibptr->hw_fib_va->header.XferState != 0) {
191 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
192 (void*)fibptr,
193 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
194 }
195 fibptr->next = fibptr->dev->free_fib;
196 fibptr->dev->free_fib = fibptr;
197 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
198 }
199
200 /**
201 * aac_fib_init - initialise a fib
202 * @fibptr: The fib to initialize
203 *
204 * Set up the generic fib fields ready for use
205 */
206
207 void aac_fib_init(struct fib *fibptr)
208 {
209 struct hw_fib *hw_fib = fibptr->hw_fib_va;
210
211 hw_fib->header.StructType = FIB_MAGIC;
212 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
213 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
214 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
215 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
216 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
217 }
218
219 /**
220 * fib_deallocate - deallocate a fib
221 * @fibptr: fib to deallocate
222 *
223 * Will deallocate and return to the free pool the FIB pointed to by the
224 * caller.
225 */
226
227 static void fib_dealloc(struct fib * fibptr)
228 {
229 struct hw_fib *hw_fib = fibptr->hw_fib_va;
230 BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
231 hw_fib->header.XferState = 0;
232 }
233
234 /*
235 * Commuication primitives define and support the queuing method we use to
236 * support host to adapter commuication. All queue accesses happen through
237 * these routines and are the only routines which have a knowledge of the
238 * how these queues are implemented.
239 */
240
241 /**
242 * aac_get_entry - get a queue entry
243 * @dev: Adapter
244 * @qid: Queue Number
245 * @entry: Entry return
246 * @index: Index return
247 * @nonotify: notification control
248 *
249 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
250 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
251 * returned.
252 */
253
254 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
255 {
256 struct aac_queue * q;
257 unsigned long idx;
258
259 /*
260 * All of the queues wrap when they reach the end, so we check
261 * to see if they have reached the end and if they have we just
262 * set the index back to zero. This is a wrap. You could or off
263 * the high bits in all updates but this is a bit faster I think.
264 */
265
266 q = &dev->queues->queue[qid];
267
268 idx = *index = le32_to_cpu(*(q->headers.producer));
269 /* Interrupt Moderation, only interrupt for first two entries */
270 if (idx != le32_to_cpu(*(q->headers.consumer))) {
271 if (--idx == 0) {
272 if (qid == AdapNormCmdQueue)
273 idx = ADAP_NORM_CMD_ENTRIES;
274 else
275 idx = ADAP_NORM_RESP_ENTRIES;
276 }
277 if (idx != le32_to_cpu(*(q->headers.consumer)))
278 *nonotify = 1;
279 }
280
281 if (qid == AdapNormCmdQueue) {
282 if (*index >= ADAP_NORM_CMD_ENTRIES)
283 *index = 0; /* Wrap to front of the Producer Queue. */
284 } else {
285 if (*index >= ADAP_NORM_RESP_ENTRIES)
286 *index = 0; /* Wrap to front of the Producer Queue. */
287 }
288
289 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
290 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
291 qid, q->numpending);
292 return 0;
293 } else {
294 *entry = q->base + *index;
295 return 1;
296 }
297 }
298
299 /**
300 * aac_queue_get - get the next free QE
301 * @dev: Adapter
302 * @index: Returned index
303 * @priority: Priority of fib
304 * @fib: Fib to associate with the queue entry
305 * @wait: Wait if queue full
306 * @fibptr: Driver fib object to go with fib
307 * @nonotify: Don't notify the adapter
308 *
309 * Gets the next free QE off the requested priorty adapter command
310 * queue and associates the Fib with the QE. The QE represented by
311 * index is ready to insert on the queue when this routine returns
312 * success.
313 */
314
315 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
316 {
317 struct aac_entry * entry = NULL;
318 int map = 0;
319
320 if (qid == AdapNormCmdQueue) {
321 /* if no entries wait for some if caller wants to */
322 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
323 {
324 printk(KERN_ERR "GetEntries failed\n");
325 }
326 /*
327 * Setup queue entry with a command, status and fib mapped
328 */
329 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
330 map = 1;
331 } else {
332 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
333 {
334 /* if no entries wait for some if caller wants to */
335 }
336 /*
337 * Setup queue entry with command, status and fib mapped
338 */
339 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
340 entry->addr = hw_fib->header.SenderFibAddress;
341 /* Restore adapters pointer to the FIB */
342 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
343 map = 0;
344 }
345 /*
346 * If MapFib is true than we need to map the Fib and put pointers
347 * in the queue entry.
348 */
349 if (map)
350 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
351 return 0;
352 }
353
354 /*
355 * Define the highest level of host to adapter communication routines.
356 * These routines will support host to adapter FS commuication. These
357 * routines have no knowledge of the commuication method used. This level
358 * sends and receives FIBs. This level has no knowledge of how these FIBs
359 * get passed back and forth.
360 */
361
362 /**
363 * aac_fib_send - send a fib to the adapter
364 * @command: Command to send
365 * @fibptr: The fib
366 * @size: Size of fib data area
367 * @priority: Priority of Fib
368 * @wait: Async/sync select
369 * @reply: True if a reply is wanted
370 * @callback: Called with reply
371 * @callback_data: Passed to callback
372 *
373 * Sends the requested FIB to the adapter and optionally will wait for a
374 * response FIB. If the caller does not wish to wait for a response than
375 * an event to wait on must be supplied. This event will be set when a
376 * response FIB is received from the adapter.
377 */
378
379 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
380 int priority, int wait, int reply, fib_callback callback,
381 void *callback_data)
382 {
383 struct aac_dev * dev = fibptr->dev;
384 struct hw_fib * hw_fib = fibptr->hw_fib_va;
385 unsigned long flags = 0;
386 unsigned long qflags;
387
388 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
389 return -EBUSY;
390 /*
391 * There are 5 cases with the wait and reponse requested flags.
392 * The only invalid cases are if the caller requests to wait and
393 * does not request a response and if the caller does not want a
394 * response and the Fib is not allocated from pool. If a response
395 * is not requesed the Fib will just be deallocaed by the DPC
396 * routine when the response comes back from the adapter. No
397 * further processing will be done besides deleting the Fib. We
398 * will have a debug mode where the adapter can notify the host
399 * it had a problem and the host can log that fact.
400 */
401 if (wait && !reply) {
402 return -EINVAL;
403 } else if (!wait && reply) {
404 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
405 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
406 } else if (!wait && !reply) {
407 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
408 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
409 } else if (wait && reply) {
410 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
411 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
412 }
413 /*
414 * Map the fib into 32bits by using the fib number
415 */
416
417 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
418 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
419 /*
420 * Set FIB state to indicate where it came from and if we want a
421 * response from the adapter. Also load the command from the
422 * caller.
423 *
424 * Map the hw fib pointer as a 32bit value
425 */
426 hw_fib->header.Command = cpu_to_le16(command);
427 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
428 fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/
429 /*
430 * Set the size of the Fib we want to send to the adapter
431 */
432 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
433 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
434 return -EMSGSIZE;
435 }
436 /*
437 * Get a queue entry connect the FIB to it and send an notify
438 * the adapter a command is ready.
439 */
440 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
441
442 /*
443 * Fill in the Callback and CallbackContext if we are not
444 * going to wait.
445 */
446 if (!wait) {
447 fibptr->callback = callback;
448 fibptr->callback_data = callback_data;
449 }
450
451 fibptr->done = 0;
452 fibptr->flags = 0;
453
454 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
455
456 dprintk((KERN_DEBUG "Fib contents:.\n"));
457 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
458 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
459 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
460 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
461 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
462 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
463
464 if (!dev->queues)
465 return -EBUSY;
466
467 if(wait)
468 spin_lock_irqsave(&fibptr->event_lock, flags);
469 aac_adapter_deliver(fibptr);
470
471 /*
472 * If the caller wanted us to wait for response wait now.
473 */
474
475 if (wait) {
476 spin_unlock_irqrestore(&fibptr->event_lock, flags);
477 /* Only set for first known interruptable command */
478 if (wait < 0) {
479 /*
480 * *VERY* Dangerous to time out a command, the
481 * assumption is made that we have no hope of
482 * functioning because an interrupt routing or other
483 * hardware failure has occurred.
484 */
485 unsigned long count = 36000000L; /* 3 minutes */
486 while (down_trylock(&fibptr->event_wait)) {
487 int blink;
488 if (--count == 0) {
489 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
490 spin_lock_irqsave(q->lock, qflags);
491 q->numpending--;
492 spin_unlock_irqrestore(q->lock, qflags);
493 if (wait == -1) {
494 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
495 "Usually a result of a PCI interrupt routing problem;\n"
496 "update mother board BIOS or consider utilizing one of\n"
497 "the SAFE mode kernel options (acpi, apic etc)\n");
498 }
499 return -ETIMEDOUT;
500 }
501 if ((blink = aac_adapter_check_health(dev)) > 0) {
502 if (wait == -1) {
503 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
504 "Usually a result of a serious unrecoverable hardware problem\n",
505 blink);
506 }
507 return -EFAULT;
508 }
509 udelay(5);
510 }
511 } else
512 (void)down_interruptible(&fibptr->event_wait);
513 spin_lock_irqsave(&fibptr->event_lock, flags);
514 if (fibptr->done == 0) {
515 fibptr->done = 2; /* Tell interrupt we aborted */
516 spin_unlock_irqrestore(&fibptr->event_lock, flags);
517 return -EINTR;
518 }
519 spin_unlock_irqrestore(&fibptr->event_lock, flags);
520 BUG_ON(fibptr->done == 0);
521
522 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
523 return -ETIMEDOUT;
524 return 0;
525 }
526 /*
527 * If the user does not want a response than return success otherwise
528 * return pending
529 */
530 if (reply)
531 return -EINPROGRESS;
532 else
533 return 0;
534 }
535
536 /**
537 * aac_consumer_get - get the top of the queue
538 * @dev: Adapter
539 * @q: Queue
540 * @entry: Return entry
541 *
542 * Will return a pointer to the entry on the top of the queue requested that
543 * we are a consumer of, and return the address of the queue entry. It does
544 * not change the state of the queue.
545 */
546
547 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
548 {
549 u32 index;
550 int status;
551 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
552 status = 0;
553 } else {
554 /*
555 * The consumer index must be wrapped if we have reached
556 * the end of the queue, else we just use the entry
557 * pointed to by the header index
558 */
559 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
560 index = 0;
561 else
562 index = le32_to_cpu(*q->headers.consumer);
563 *entry = q->base + index;
564 status = 1;
565 }
566 return(status);
567 }
568
569 /**
570 * aac_consumer_free - free consumer entry
571 * @dev: Adapter
572 * @q: Queue
573 * @qid: Queue ident
574 *
575 * Frees up the current top of the queue we are a consumer of. If the
576 * queue was full notify the producer that the queue is no longer full.
577 */
578
579 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
580 {
581 int wasfull = 0;
582 u32 notify;
583
584 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
585 wasfull = 1;
586
587 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
588 *q->headers.consumer = cpu_to_le32(1);
589 else
590 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
591
592 if (wasfull) {
593 switch (qid) {
594
595 case HostNormCmdQueue:
596 notify = HostNormCmdNotFull;
597 break;
598 case HostNormRespQueue:
599 notify = HostNormRespNotFull;
600 break;
601 default:
602 BUG();
603 return;
604 }
605 aac_adapter_notify(dev, notify);
606 }
607 }
608
609 /**
610 * aac_fib_adapter_complete - complete adapter issued fib
611 * @fibptr: fib to complete
612 * @size: size of fib
613 *
614 * Will do all necessary work to complete a FIB that was sent from
615 * the adapter.
616 */
617
618 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
619 {
620 struct hw_fib * hw_fib = fibptr->hw_fib_va;
621 struct aac_dev * dev = fibptr->dev;
622 struct aac_queue * q;
623 unsigned long nointr = 0;
624 unsigned long qflags;
625
626 if (hw_fib->header.XferState == 0) {
627 if (dev->comm_interface == AAC_COMM_MESSAGE)
628 kfree (hw_fib);
629 return 0;
630 }
631 /*
632 * If we plan to do anything check the structure type first.
633 */
634 if ( hw_fib->header.StructType != FIB_MAGIC ) {
635 if (dev->comm_interface == AAC_COMM_MESSAGE)
636 kfree (hw_fib);
637 return -EINVAL;
638 }
639 /*
640 * This block handles the case where the adapter had sent us a
641 * command and we have finished processing the command. We
642 * call completeFib when we are done processing the command
643 * and want to send a response back to the adapter. This will
644 * send the completed cdb to the adapter.
645 */
646 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
647 if (dev->comm_interface == AAC_COMM_MESSAGE) {
648 kfree (hw_fib);
649 } else {
650 u32 index;
651 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
652 if (size) {
653 size += sizeof(struct aac_fibhdr);
654 if (size > le16_to_cpu(hw_fib->header.SenderSize))
655 return -EMSGSIZE;
656 hw_fib->header.Size = cpu_to_le16(size);
657 }
658 q = &dev->queues->queue[AdapNormRespQueue];
659 spin_lock_irqsave(q->lock, qflags);
660 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
661 *(q->headers.producer) = cpu_to_le32(index + 1);
662 spin_unlock_irqrestore(q->lock, qflags);
663 if (!(nointr & (int)aac_config.irq_mod))
664 aac_adapter_notify(dev, AdapNormRespQueue);
665 }
666 }
667 else
668 {
669 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
670 BUG();
671 }
672 return 0;
673 }
674
675 /**
676 * aac_fib_complete - fib completion handler
677 * @fib: FIB to complete
678 *
679 * Will do all necessary work to complete a FIB.
680 */
681
682 int aac_fib_complete(struct fib *fibptr)
683 {
684 struct hw_fib * hw_fib = fibptr->hw_fib_va;
685
686 /*
687 * Check for a fib which has already been completed
688 */
689
690 if (hw_fib->header.XferState == 0)
691 return 0;
692 /*
693 * If we plan to do anything check the structure type first.
694 */
695
696 if (hw_fib->header.StructType != FIB_MAGIC)
697 return -EINVAL;
698 /*
699 * This block completes a cdb which orginated on the host and we
700 * just need to deallocate the cdb or reinit it. At this point the
701 * command is complete that we had sent to the adapter and this
702 * cdb could be reused.
703 */
704 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
705 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
706 {
707 fib_dealloc(fibptr);
708 }
709 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
710 {
711 /*
712 * This handles the case when the host has aborted the I/O
713 * to the adapter because the adapter is not responding
714 */
715 fib_dealloc(fibptr);
716 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
717 fib_dealloc(fibptr);
718 } else {
719 BUG();
720 }
721 return 0;
722 }
723
724 /**
725 * aac_printf - handle printf from firmware
726 * @dev: Adapter
727 * @val: Message info
728 *
729 * Print a message passed to us by the controller firmware on the
730 * Adaptec board
731 */
732
733 void aac_printf(struct aac_dev *dev, u32 val)
734 {
735 char *cp = dev->printfbuf;
736 if (dev->printf_enabled)
737 {
738 int length = val & 0xffff;
739 int level = (val >> 16) & 0xffff;
740
741 /*
742 * The size of the printfbuf is set in port.c
743 * There is no variable or define for it
744 */
745 if (length > 255)
746 length = 255;
747 if (cp[length] != 0)
748 cp[length] = 0;
749 if (level == LOG_AAC_HIGH_ERROR)
750 printk(KERN_WARNING "%s:%s", dev->name, cp);
751 else
752 printk(KERN_INFO "%s:%s", dev->name, cp);
753 }
754 memset(cp, 0, 256);
755 }
756
757
758 /**
759 * aac_handle_aif - Handle a message from the firmware
760 * @dev: Which adapter this fib is from
761 * @fibptr: Pointer to fibptr from adapter
762 *
763 * This routine handles a driver notify fib from the adapter and
764 * dispatches it to the appropriate routine for handling.
765 */
766
767 #define AIF_SNIFF_TIMEOUT (30*HZ)
768 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
769 {
770 struct hw_fib * hw_fib = fibptr->hw_fib_va;
771 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
772 u32 container;
773 struct scsi_device *device;
774 enum {
775 NOTHING,
776 DELETE,
777 ADD,
778 CHANGE
779 } device_config_needed;
780
781 /* Sniff for container changes */
782
783 if (!dev || !dev->fsa_dev)
784 return;
785 container = (u32)-1;
786
787 /*
788 * We have set this up to try and minimize the number of
789 * re-configures that take place. As a result of this when
790 * certain AIF's come in we will set a flag waiting for another
791 * type of AIF before setting the re-config flag.
792 */
793 switch (le32_to_cpu(aifcmd->command)) {
794 case AifCmdDriverNotify:
795 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
796 /*
797 * Morph or Expand complete
798 */
799 case AifDenMorphComplete:
800 case AifDenVolumeExtendComplete:
801 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
802 if (container >= dev->maximum_num_containers)
803 break;
804
805 /*
806 * Find the scsi_device associated with the SCSI
807 * address. Make sure we have the right array, and if
808 * so set the flag to initiate a new re-config once we
809 * see an AifEnConfigChange AIF come through.
810 */
811
812 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
813 device = scsi_device_lookup(dev->scsi_host_ptr,
814 CONTAINER_TO_CHANNEL(container),
815 CONTAINER_TO_ID(container),
816 CONTAINER_TO_LUN(container));
817 if (device) {
818 dev->fsa_dev[container].config_needed = CHANGE;
819 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
820 dev->fsa_dev[container].config_waiting_stamp = jiffies;
821 scsi_device_put(device);
822 }
823 }
824 }
825
826 /*
827 * If we are waiting on something and this happens to be
828 * that thing then set the re-configure flag.
829 */
830 if (container != (u32)-1) {
831 if (container >= dev->maximum_num_containers)
832 break;
833 if ((dev->fsa_dev[container].config_waiting_on ==
834 le32_to_cpu(*(u32 *)aifcmd->data)) &&
835 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
836 dev->fsa_dev[container].config_waiting_on = 0;
837 } else for (container = 0;
838 container < dev->maximum_num_containers; ++container) {
839 if ((dev->fsa_dev[container].config_waiting_on ==
840 le32_to_cpu(*(u32 *)aifcmd->data)) &&
841 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
842 dev->fsa_dev[container].config_waiting_on = 0;
843 }
844 break;
845
846 case AifCmdEventNotify:
847 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
848 /*
849 * Add an Array.
850 */
851 case AifEnAddContainer:
852 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
853 if (container >= dev->maximum_num_containers)
854 break;
855 dev->fsa_dev[container].config_needed = ADD;
856 dev->fsa_dev[container].config_waiting_on =
857 AifEnConfigChange;
858 dev->fsa_dev[container].config_waiting_stamp = jiffies;
859 break;
860
861 /*
862 * Delete an Array.
863 */
864 case AifEnDeleteContainer:
865 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
866 if (container >= dev->maximum_num_containers)
867 break;
868 dev->fsa_dev[container].config_needed = DELETE;
869 dev->fsa_dev[container].config_waiting_on =
870 AifEnConfigChange;
871 dev->fsa_dev[container].config_waiting_stamp = jiffies;
872 break;
873
874 /*
875 * Container change detected. If we currently are not
876 * waiting on something else, setup to wait on a Config Change.
877 */
878 case AifEnContainerChange:
879 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
880 if (container >= dev->maximum_num_containers)
881 break;
882 if (dev->fsa_dev[container].config_waiting_on &&
883 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
884 break;
885 dev->fsa_dev[container].config_needed = CHANGE;
886 dev->fsa_dev[container].config_waiting_on =
887 AifEnConfigChange;
888 dev->fsa_dev[container].config_waiting_stamp = jiffies;
889 break;
890
891 case AifEnConfigChange:
892 break;
893
894 }
895
896 /*
897 * If we are waiting on something and this happens to be
898 * that thing then set the re-configure flag.
899 */
900 if (container != (u32)-1) {
901 if (container >= dev->maximum_num_containers)
902 break;
903 if ((dev->fsa_dev[container].config_waiting_on ==
904 le32_to_cpu(*(u32 *)aifcmd->data)) &&
905 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
906 dev->fsa_dev[container].config_waiting_on = 0;
907 } else for (container = 0;
908 container < dev->maximum_num_containers; ++container) {
909 if ((dev->fsa_dev[container].config_waiting_on ==
910 le32_to_cpu(*(u32 *)aifcmd->data)) &&
911 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
912 dev->fsa_dev[container].config_waiting_on = 0;
913 }
914 break;
915
916 case AifCmdJobProgress:
917 /*
918 * These are job progress AIF's. When a Clear is being
919 * done on a container it is initially created then hidden from
920 * the OS. When the clear completes we don't get a config
921 * change so we monitor the job status complete on a clear then
922 * wait for a container change.
923 */
924
925 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
926 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
927 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
928 for (container = 0;
929 container < dev->maximum_num_containers;
930 ++container) {
931 /*
932 * Stomp on all config sequencing for all
933 * containers?
934 */
935 dev->fsa_dev[container].config_waiting_on =
936 AifEnContainerChange;
937 dev->fsa_dev[container].config_needed = ADD;
938 dev->fsa_dev[container].config_waiting_stamp =
939 jiffies;
940 }
941 }
942 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
943 && (((u32 *)aifcmd->data)[6] == 0)
944 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
945 for (container = 0;
946 container < dev->maximum_num_containers;
947 ++container) {
948 /*
949 * Stomp on all config sequencing for all
950 * containers?
951 */
952 dev->fsa_dev[container].config_waiting_on =
953 AifEnContainerChange;
954 dev->fsa_dev[container].config_needed = DELETE;
955 dev->fsa_dev[container].config_waiting_stamp =
956 jiffies;
957 }
958 }
959 break;
960 }
961
962 device_config_needed = NOTHING;
963 for (container = 0; container < dev->maximum_num_containers;
964 ++container) {
965 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
966 (dev->fsa_dev[container].config_needed != NOTHING) &&
967 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
968 device_config_needed =
969 dev->fsa_dev[container].config_needed;
970 dev->fsa_dev[container].config_needed = NOTHING;
971 break;
972 }
973 }
974 if (device_config_needed == NOTHING)
975 return;
976
977 /*
978 * If we decided that a re-configuration needs to be done,
979 * schedule it here on the way out the door, please close the door
980 * behind you.
981 */
982
983 /*
984 * Find the scsi_device associated with the SCSI address,
985 * and mark it as changed, invalidating the cache. This deals
986 * with changes to existing device IDs.
987 */
988
989 if (!dev || !dev->scsi_host_ptr)
990 return;
991 /*
992 * force reload of disk info via aac_probe_container
993 */
994 if ((device_config_needed == CHANGE)
995 && (dev->fsa_dev[container].valid == 1))
996 dev->fsa_dev[container].valid = 2;
997 if ((device_config_needed == CHANGE) ||
998 (device_config_needed == ADD))
999 aac_probe_container(dev, container);
1000 device = scsi_device_lookup(dev->scsi_host_ptr,
1001 CONTAINER_TO_CHANNEL(container),
1002 CONTAINER_TO_ID(container),
1003 CONTAINER_TO_LUN(container));
1004 if (device) {
1005 switch (device_config_needed) {
1006 case DELETE:
1007 case CHANGE:
1008 scsi_rescan_device(&device->sdev_gendev);
1009
1010 default:
1011 break;
1012 }
1013 scsi_device_put(device);
1014 }
1015 if (device_config_needed == ADD) {
1016 scsi_add_device(dev->scsi_host_ptr,
1017 CONTAINER_TO_CHANNEL(container),
1018 CONTAINER_TO_ID(container),
1019 CONTAINER_TO_LUN(container));
1020 }
1021
1022 }
1023
1024 static int _aac_reset_adapter(struct aac_dev *aac)
1025 {
1026 int index, quirks;
1027 int retval;
1028 struct Scsi_Host *host;
1029 struct scsi_device *dev;
1030 struct scsi_cmnd *command;
1031 struct scsi_cmnd *command_list;
1032
1033 /*
1034 * Assumptions:
1035 * - host is locked.
1036 * - in_reset is asserted, so no new i/o is getting to the
1037 * card.
1038 * - The card is dead.
1039 */
1040 host = aac->scsi_host_ptr;
1041 scsi_block_requests(host);
1042 aac_adapter_disable_int(aac);
1043 spin_unlock_irq(host->host_lock);
1044 kthread_stop(aac->thread);
1045
1046 /*
1047 * If a positive health, means in a known DEAD PANIC
1048 * state and the adapter could be reset to `try again'.
1049 */
1050 retval = aac_adapter_restart(aac, aac_adapter_check_health(aac));
1051
1052 if (retval)
1053 goto out;
1054
1055 /*
1056 * Loop through the fibs, close the synchronous FIBS
1057 */
1058 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1059 struct fib *fib = &aac->fibs[index];
1060 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1061 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1062 unsigned long flagv;
1063 spin_lock_irqsave(&fib->event_lock, flagv);
1064 up(&fib->event_wait);
1065 spin_unlock_irqrestore(&fib->event_lock, flagv);
1066 schedule();
1067 retval = 0;
1068 }
1069 }
1070 /* Give some extra time for ioctls to complete. */
1071 if (retval == 0)
1072 ssleep(2);
1073 index = aac->cardtype;
1074
1075 /*
1076 * Re-initialize the adapter, first free resources, then carefully
1077 * apply the initialization sequence to come back again. Only risk
1078 * is a change in Firmware dropping cache, it is assumed the caller
1079 * will ensure that i/o is queisced and the card is flushed in that
1080 * case.
1081 */
1082 aac_fib_map_free(aac);
1083 aac->hw_fib_va = NULL;
1084 aac->hw_fib_pa = 0;
1085 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1086 aac->comm_addr = NULL;
1087 aac->comm_phys = 0;
1088 kfree(aac->queues);
1089 aac->queues = NULL;
1090 free_irq(aac->pdev->irq, aac);
1091 kfree(aac->fsa_dev);
1092 aac->fsa_dev = NULL;
1093 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
1094 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1095 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1096 goto out;
1097 } else {
1098 if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) ||
1099 ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL))))
1100 goto out;
1101 }
1102 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1103 goto out;
1104 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
1105 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1106 goto out;
1107 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1108 if (IS_ERR(aac->thread)) {
1109 retval = PTR_ERR(aac->thread);
1110 goto out;
1111 }
1112 (void)aac_get_adapter_info(aac);
1113 quirks = aac_get_driver_ident(index)->quirks;
1114 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1115 host->sg_tablesize = 34;
1116 host->max_sectors = (host->sg_tablesize * 8) + 112;
1117 }
1118 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1119 host->sg_tablesize = 17;
1120 host->max_sectors = (host->sg_tablesize * 8) + 112;
1121 }
1122 aac_get_config_status(aac, 1);
1123 aac_get_containers(aac);
1124 /*
1125 * This is where the assumption that the Adapter is quiesced
1126 * is important.
1127 */
1128 command_list = NULL;
1129 __shost_for_each_device(dev, host) {
1130 unsigned long flags;
1131 spin_lock_irqsave(&dev->list_lock, flags);
1132 list_for_each_entry(command, &dev->cmd_list, list)
1133 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1134 command->SCp.buffer = (struct scatterlist *)command_list;
1135 command_list = command;
1136 }
1137 spin_unlock_irqrestore(&dev->list_lock, flags);
1138 }
1139 while ((command = command_list)) {
1140 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1141 command->SCp.buffer = NULL;
1142 command->result = DID_OK << 16
1143 | COMMAND_COMPLETE << 8
1144 | SAM_STAT_TASK_SET_FULL;
1145 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1146 command->scsi_done(command);
1147 }
1148 retval = 0;
1149
1150 out:
1151 aac->in_reset = 0;
1152 scsi_unblock_requests(host);
1153 spin_lock_irq(host->host_lock);
1154 return retval;
1155 }
1156
1157 int aac_check_health(struct aac_dev * aac)
1158 {
1159 int BlinkLED;
1160 unsigned long time_now, flagv = 0;
1161 struct list_head * entry;
1162 struct Scsi_Host * host;
1163
1164 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1165 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1166 return 0;
1167
1168 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1169 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1170 return 0; /* OK */
1171 }
1172
1173 aac->in_reset = 1;
1174
1175 /* Fake up an AIF:
1176 * aac_aifcmd.command = AifCmdEventNotify = 1
1177 * aac_aifcmd.seqnum = 0xFFFFFFFF
1178 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1179 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1180 * aac.aifcmd.data[2] = AifHighPriority = 3
1181 * aac.aifcmd.data[3] = BlinkLED
1182 */
1183
1184 time_now = jiffies/HZ;
1185 entry = aac->fib_list.next;
1186
1187 /*
1188 * For each Context that is on the
1189 * fibctxList, make a copy of the
1190 * fib, and then set the event to wake up the
1191 * thread that is waiting for it.
1192 */
1193 while (entry != &aac->fib_list) {
1194 /*
1195 * Extract the fibctx
1196 */
1197 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1198 struct hw_fib * hw_fib;
1199 struct fib * fib;
1200 /*
1201 * Check if the queue is getting
1202 * backlogged
1203 */
1204 if (fibctx->count > 20) {
1205 /*
1206 * It's *not* jiffies folks,
1207 * but jiffies / HZ, so do not
1208 * panic ...
1209 */
1210 u32 time_last = fibctx->jiffies;
1211 /*
1212 * Has it been > 2 minutes
1213 * since the last read off
1214 * the queue?
1215 */
1216 if ((time_now - time_last) > aif_timeout) {
1217 entry = entry->next;
1218 aac_close_fib_context(aac, fibctx);
1219 continue;
1220 }
1221 }
1222 /*
1223 * Warning: no sleep allowed while
1224 * holding spinlock
1225 */
1226 hw_fib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1227 fib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
1228 if (fib && hw_fib) {
1229 struct aac_aifcmd * aif;
1230
1231 memset(hw_fib, 0, sizeof(struct hw_fib));
1232 memset(fib, 0, sizeof(struct fib));
1233 fib->hw_fib_va = hw_fib;
1234 fib->dev = aac;
1235 aac_fib_init(fib);
1236 fib->type = FSAFS_NTC_FIB_CONTEXT;
1237 fib->size = sizeof (struct fib);
1238 fib->data = hw_fib->data;
1239 aif = (struct aac_aifcmd *)hw_fib->data;
1240 aif->command = cpu_to_le32(AifCmdEventNotify);
1241 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1242 aif->data[0] = cpu_to_le32(AifEnExpEvent);
1243 aif->data[1] = cpu_to_le32(AifExeFirmwarePanic);
1244 aif->data[2] = cpu_to_le32(AifHighPriority);
1245 aif->data[3] = cpu_to_le32(BlinkLED);
1246
1247 /*
1248 * Put the FIB onto the
1249 * fibctx's fibs
1250 */
1251 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1252 fibctx->count++;
1253 /*
1254 * Set the event to wake up the
1255 * thread that will waiting.
1256 */
1257 up(&fibctx->wait_sem);
1258 } else {
1259 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1260 kfree(fib);
1261 kfree(hw_fib);
1262 }
1263 entry = entry->next;
1264 }
1265
1266 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1267
1268 if (BlinkLED < 0) {
1269 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1270 goto out;
1271 }
1272
1273 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1274
1275 host = aac->scsi_host_ptr;
1276 spin_lock_irqsave(host->host_lock, flagv);
1277 BlinkLED = _aac_reset_adapter(aac);
1278 spin_unlock_irqrestore(host->host_lock, flagv);
1279 return BlinkLED;
1280
1281 out:
1282 aac->in_reset = 0;
1283 return BlinkLED;
1284 }
1285
1286
1287 /**
1288 * aac_command_thread - command processing thread
1289 * @dev: Adapter to monitor
1290 *
1291 * Waits on the commandready event in it's queue. When the event gets set
1292 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1293 * until the queue is empty. When the queue is empty it will wait for
1294 * more FIBs.
1295 */
1296
1297 int aac_command_thread(void *data)
1298 {
1299 struct aac_dev *dev = data;
1300 struct hw_fib *hw_fib, *hw_newfib;
1301 struct fib *fib, *newfib;
1302 struct aac_fib_context *fibctx;
1303 unsigned long flags;
1304 DECLARE_WAITQUEUE(wait, current);
1305
1306 /*
1307 * We can only have one thread per adapter for AIF's.
1308 */
1309 if (dev->aif_thread)
1310 return -EINVAL;
1311
1312 /*
1313 * Let the DPC know it has a place to send the AIF's to.
1314 */
1315 dev->aif_thread = 1;
1316 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1317 set_current_state(TASK_INTERRUPTIBLE);
1318 dprintk ((KERN_INFO "aac_command_thread start\n"));
1319 while(1)
1320 {
1321 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1322 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1323 struct list_head *entry;
1324 struct aac_aifcmd * aifcmd;
1325
1326 set_current_state(TASK_RUNNING);
1327
1328 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1329 list_del(entry);
1330
1331 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1332 fib = list_entry(entry, struct fib, fiblink);
1333 /*
1334 * We will process the FIB here or pass it to a
1335 * worker thread that is TBD. We Really can't
1336 * do anything at this point since we don't have
1337 * anything defined for this thread to do.
1338 */
1339 hw_fib = fib->hw_fib_va;
1340 memset(fib, 0, sizeof(struct fib));
1341 fib->type = FSAFS_NTC_FIB_CONTEXT;
1342 fib->size = sizeof( struct fib );
1343 fib->hw_fib_va = hw_fib;
1344 fib->data = hw_fib->data;
1345 fib->dev = dev;
1346 /*
1347 * We only handle AifRequest fibs from the adapter.
1348 */
1349 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1350 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1351 /* Handle Driver Notify Events */
1352 aac_handle_aif(dev, fib);
1353 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1354 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1355 } else {
1356 struct list_head *entry;
1357 /* The u32 here is important and intended. We are using
1358 32bit wrapping time to fit the adapter field */
1359
1360 u32 time_now, time_last;
1361 unsigned long flagv;
1362 unsigned num;
1363 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1364 struct fib ** fib_pool, ** fib_p;
1365
1366 /* Sniff events */
1367 if ((aifcmd->command ==
1368 cpu_to_le32(AifCmdEventNotify)) ||
1369 (aifcmd->command ==
1370 cpu_to_le32(AifCmdJobProgress))) {
1371 aac_handle_aif(dev, fib);
1372 }
1373
1374 time_now = jiffies/HZ;
1375
1376 /*
1377 * Warning: no sleep allowed while
1378 * holding spinlock. We take the estimate
1379 * and pre-allocate a set of fibs outside the
1380 * lock.
1381 */
1382 num = le32_to_cpu(dev->init->AdapterFibsSize)
1383 / sizeof(struct hw_fib); /* some extra */
1384 spin_lock_irqsave(&dev->fib_lock, flagv);
1385 entry = dev->fib_list.next;
1386 while (entry != &dev->fib_list) {
1387 entry = entry->next;
1388 ++num;
1389 }
1390 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1391 hw_fib_pool = NULL;
1392 fib_pool = NULL;
1393 if (num
1394 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1395 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1396 hw_fib_p = hw_fib_pool;
1397 fib_p = fib_pool;
1398 while (hw_fib_p < &hw_fib_pool[num]) {
1399 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1400 --hw_fib_p;
1401 break;
1402 }
1403 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1404 kfree(*(--hw_fib_p));
1405 break;
1406 }
1407 }
1408 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1409 kfree(fib_pool);
1410 fib_pool = NULL;
1411 kfree(hw_fib_pool);
1412 hw_fib_pool = NULL;
1413 }
1414 } else {
1415 kfree(hw_fib_pool);
1416 hw_fib_pool = NULL;
1417 }
1418 spin_lock_irqsave(&dev->fib_lock, flagv);
1419 entry = dev->fib_list.next;
1420 /*
1421 * For each Context that is on the
1422 * fibctxList, make a copy of the
1423 * fib, and then set the event to wake up the
1424 * thread that is waiting for it.
1425 */
1426 hw_fib_p = hw_fib_pool;
1427 fib_p = fib_pool;
1428 while (entry != &dev->fib_list) {
1429 /*
1430 * Extract the fibctx
1431 */
1432 fibctx = list_entry(entry, struct aac_fib_context, next);
1433 /*
1434 * Check if the queue is getting
1435 * backlogged
1436 */
1437 if (fibctx->count > 20)
1438 {
1439 /*
1440 * It's *not* jiffies folks,
1441 * but jiffies / HZ so do not
1442 * panic ...
1443 */
1444 time_last = fibctx->jiffies;
1445 /*
1446 * Has it been > 2 minutes
1447 * since the last read off
1448 * the queue?
1449 */
1450 if ((time_now - time_last) > aif_timeout) {
1451 entry = entry->next;
1452 aac_close_fib_context(dev, fibctx);
1453 continue;
1454 }
1455 }
1456 /*
1457 * Warning: no sleep allowed while
1458 * holding spinlock
1459 */
1460 if (hw_fib_p < &hw_fib_pool[num]) {
1461 hw_newfib = *hw_fib_p;
1462 *(hw_fib_p++) = NULL;
1463 newfib = *fib_p;
1464 *(fib_p++) = NULL;
1465 /*
1466 * Make the copy of the FIB
1467 */
1468 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1469 memcpy(newfib, fib, sizeof(struct fib));
1470 newfib->hw_fib_va = hw_newfib;
1471 /*
1472 * Put the FIB onto the
1473 * fibctx's fibs
1474 */
1475 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1476 fibctx->count++;
1477 /*
1478 * Set the event to wake up the
1479 * thread that is waiting.
1480 */
1481 up(&fibctx->wait_sem);
1482 } else {
1483 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1484 }
1485 entry = entry->next;
1486 }
1487 /*
1488 * Set the status of this FIB
1489 */
1490 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1491 aac_fib_adapter_complete(fib, sizeof(u32));
1492 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1493 /* Free up the remaining resources */
1494 hw_fib_p = hw_fib_pool;
1495 fib_p = fib_pool;
1496 while (hw_fib_p < &hw_fib_pool[num]) {
1497 kfree(*hw_fib_p);
1498 kfree(*fib_p);
1499 ++fib_p;
1500 ++hw_fib_p;
1501 }
1502 kfree(hw_fib_pool);
1503 kfree(fib_pool);
1504 }
1505 kfree(fib);
1506 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1507 }
1508 /*
1509 * There are no more AIF's
1510 */
1511 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1512 schedule();
1513
1514 if (kthread_should_stop())
1515 break;
1516 set_current_state(TASK_INTERRUPTIBLE);
1517 }
1518 if (dev->queues)
1519 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1520 dev->aif_thread = 0;
1521 return 0;
1522 }