]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/aacraid/commsup.c
scsi: aacraid: Insure command thread is not recursively stopped
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / aacraid / commsup.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 * Module Name:
27 * commsup.c
28 *
29 * Abstract: Contain all routines that are required for FSA host/adapter
30 * communication.
31 *
32 */
33
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/crash_dump.h>
37 #include <linux/types.h>
38 #include <linux/sched.h>
39 #include <linux/pci.h>
40 #include <linux/spinlock.h>
41 #include <linux/slab.h>
42 #include <linux/completion.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/interrupt.h>
47 #include <linux/semaphore.h>
48 #include <linux/bcd.h>
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_host.h>
51 #include <scsi/scsi_device.h>
52 #include <scsi/scsi_cmnd.h>
53
54 #include "aacraid.h"
55
56 /**
57 * fib_map_alloc - allocate the fib objects
58 * @dev: Adapter to allocate for
59 *
60 * Allocate and map the shared PCI space for the FIB blocks used to
61 * talk to the Adaptec firmware.
62 */
63
64 static int fib_map_alloc(struct aac_dev *dev)
65 {
66 if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
67 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
68 else
69 dev->max_cmd_size = dev->max_fib_size;
70 if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
71 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
72 } else {
73 dev->max_cmd_size = dev->max_fib_size;
74 }
75
76 dprintk((KERN_INFO
77 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
78 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
79 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
80 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
81 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
82 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
83 &dev->hw_fib_pa, GFP_KERNEL);
84 if (dev->hw_fib_va == NULL)
85 return -ENOMEM;
86 return 0;
87 }
88
89 /**
90 * aac_fib_map_free - free the fib objects
91 * @dev: Adapter to free
92 *
93 * Free the PCI mappings and the memory allocated for FIB blocks
94 * on this adapter.
95 */
96
97 void aac_fib_map_free(struct aac_dev *dev)
98 {
99 size_t alloc_size;
100 size_t fib_size;
101 int num_fibs;
102
103 if(!dev->hw_fib_va || !dev->max_cmd_size)
104 return;
105
106 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
107 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
108 alloc_size = fib_size * num_fibs + ALIGN32 - 1;
109
110 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
111 dev->hw_fib_pa);
112
113 dev->hw_fib_va = NULL;
114 dev->hw_fib_pa = 0;
115 }
116
117 void aac_fib_vector_assign(struct aac_dev *dev)
118 {
119 u32 i = 0;
120 u32 vector = 1;
121 struct fib *fibptr = NULL;
122
123 for (i = 0, fibptr = &dev->fibs[i];
124 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
125 i++, fibptr++) {
126 if ((dev->max_msix == 1) ||
127 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
128 - dev->vector_cap))) {
129 fibptr->vector_no = 0;
130 } else {
131 fibptr->vector_no = vector;
132 vector++;
133 if (vector == dev->max_msix)
134 vector = 1;
135 }
136 }
137 }
138
139 /**
140 * aac_fib_setup - setup the fibs
141 * @dev: Adapter to set up
142 *
143 * Allocate the PCI space for the fibs, map it and then initialise the
144 * fib area, the unmapped fib data and also the free list
145 */
146
147 int aac_fib_setup(struct aac_dev * dev)
148 {
149 struct fib *fibptr;
150 struct hw_fib *hw_fib;
151 dma_addr_t hw_fib_pa;
152 int i;
153 u32 max_cmds;
154
155 while (((i = fib_map_alloc(dev)) == -ENOMEM)
156 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
157 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
158 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
159 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
160 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
161 }
162 if (i<0)
163 return -ENOMEM;
164
165 memset(dev->hw_fib_va, 0,
166 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
167 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
168
169 /* 32 byte alignment for PMC */
170 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
171 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
172 (hw_fib_pa - dev->hw_fib_pa));
173
174 /* add Xport header */
175 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
176 sizeof(struct aac_fib_xporthdr));
177 hw_fib_pa += sizeof(struct aac_fib_xporthdr);
178
179 /*
180 * Initialise the fibs
181 */
182 for (i = 0, fibptr = &dev->fibs[i];
183 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
184 i++, fibptr++)
185 {
186 fibptr->flags = 0;
187 fibptr->size = sizeof(struct fib);
188 fibptr->dev = dev;
189 fibptr->hw_fib_va = hw_fib;
190 fibptr->data = (void *) fibptr->hw_fib_va->data;
191 fibptr->next = fibptr+1; /* Forward chain the fibs */
192 sema_init(&fibptr->event_wait, 0);
193 spin_lock_init(&fibptr->event_lock);
194 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
195 hw_fib->header.SenderSize =
196 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
197 fibptr->hw_fib_pa = hw_fib_pa;
198 fibptr->hw_sgl_pa = hw_fib_pa +
199 offsetof(struct aac_hba_cmd_req, sge[2]);
200 /*
201 * one element is for the ptr to the separate sg list,
202 * second element for 32 byte alignment
203 */
204 fibptr->hw_error_pa = hw_fib_pa +
205 offsetof(struct aac_native_hba, resp.resp_bytes[0]);
206
207 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
208 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
209 hw_fib_pa = hw_fib_pa +
210 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
211 }
212
213 /*
214 *Assign vector numbers to fibs
215 */
216 aac_fib_vector_assign(dev);
217
218 /*
219 * Add the fib chain to the free list
220 */
221 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
222 /*
223 * Set 8 fibs aside for management tools
224 */
225 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
226 return 0;
227 }
228
229 /**
230 * aac_fib_alloc_tag-allocate a fib using tags
231 * @dev: Adapter to allocate the fib for
232 *
233 * Allocate a fib from the adapter fib pool using tags
234 * from the blk layer.
235 */
236
237 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
238 {
239 struct fib *fibptr;
240
241 fibptr = &dev->fibs[scmd->request->tag];
242 /*
243 * Null out fields that depend on being zero at the start of
244 * each I/O
245 */
246 fibptr->hw_fib_va->header.XferState = 0;
247 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
248 fibptr->callback_data = NULL;
249 fibptr->callback = NULL;
250
251 return fibptr;
252 }
253
254 /**
255 * aac_fib_alloc - allocate a fib
256 * @dev: Adapter to allocate the fib for
257 *
258 * Allocate a fib from the adapter fib pool. If the pool is empty we
259 * return NULL.
260 */
261
262 struct fib *aac_fib_alloc(struct aac_dev *dev)
263 {
264 struct fib * fibptr;
265 unsigned long flags;
266 spin_lock_irqsave(&dev->fib_lock, flags);
267 fibptr = dev->free_fib;
268 if(!fibptr){
269 spin_unlock_irqrestore(&dev->fib_lock, flags);
270 return fibptr;
271 }
272 dev->free_fib = fibptr->next;
273 spin_unlock_irqrestore(&dev->fib_lock, flags);
274 /*
275 * Set the proper node type code and node byte size
276 */
277 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
278 fibptr->size = sizeof(struct fib);
279 /*
280 * Null out fields that depend on being zero at the start of
281 * each I/O
282 */
283 fibptr->hw_fib_va->header.XferState = 0;
284 fibptr->flags = 0;
285 fibptr->callback = NULL;
286 fibptr->callback_data = NULL;
287
288 return fibptr;
289 }
290
291 /**
292 * aac_fib_free - free a fib
293 * @fibptr: fib to free up
294 *
295 * Frees up a fib and places it on the appropriate queue
296 */
297
298 void aac_fib_free(struct fib *fibptr)
299 {
300 unsigned long flags;
301
302 if (fibptr->done == 2)
303 return;
304
305 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
306 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
307 aac_config.fib_timeouts++;
308 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
309 fibptr->hw_fib_va->header.XferState != 0) {
310 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
311 (void*)fibptr,
312 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
313 }
314 fibptr->next = fibptr->dev->free_fib;
315 fibptr->dev->free_fib = fibptr;
316 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
317 }
318
319 /**
320 * aac_fib_init - initialise a fib
321 * @fibptr: The fib to initialize
322 *
323 * Set up the generic fib fields ready for use
324 */
325
326 void aac_fib_init(struct fib *fibptr)
327 {
328 struct hw_fib *hw_fib = fibptr->hw_fib_va;
329
330 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
331 hw_fib->header.StructType = FIB_MAGIC;
332 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
333 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
334 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
335 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
336 }
337
338 /**
339 * fib_deallocate - deallocate a fib
340 * @fibptr: fib to deallocate
341 *
342 * Will deallocate and return to the free pool the FIB pointed to by the
343 * caller.
344 */
345
346 static void fib_dealloc(struct fib * fibptr)
347 {
348 struct hw_fib *hw_fib = fibptr->hw_fib_va;
349 hw_fib->header.XferState = 0;
350 }
351
352 /*
353 * Commuication primitives define and support the queuing method we use to
354 * support host to adapter commuication. All queue accesses happen through
355 * these routines and are the only routines which have a knowledge of the
356 * how these queues are implemented.
357 */
358
359 /**
360 * aac_get_entry - get a queue entry
361 * @dev: Adapter
362 * @qid: Queue Number
363 * @entry: Entry return
364 * @index: Index return
365 * @nonotify: notification control
366 *
367 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
368 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
369 * returned.
370 */
371
372 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
373 {
374 struct aac_queue * q;
375 unsigned long idx;
376
377 /*
378 * All of the queues wrap when they reach the end, so we check
379 * to see if they have reached the end and if they have we just
380 * set the index back to zero. This is a wrap. You could or off
381 * the high bits in all updates but this is a bit faster I think.
382 */
383
384 q = &dev->queues->queue[qid];
385
386 idx = *index = le32_to_cpu(*(q->headers.producer));
387 /* Interrupt Moderation, only interrupt for first two entries */
388 if (idx != le32_to_cpu(*(q->headers.consumer))) {
389 if (--idx == 0) {
390 if (qid == AdapNormCmdQueue)
391 idx = ADAP_NORM_CMD_ENTRIES;
392 else
393 idx = ADAP_NORM_RESP_ENTRIES;
394 }
395 if (idx != le32_to_cpu(*(q->headers.consumer)))
396 *nonotify = 1;
397 }
398
399 if (qid == AdapNormCmdQueue) {
400 if (*index >= ADAP_NORM_CMD_ENTRIES)
401 *index = 0; /* Wrap to front of the Producer Queue. */
402 } else {
403 if (*index >= ADAP_NORM_RESP_ENTRIES)
404 *index = 0; /* Wrap to front of the Producer Queue. */
405 }
406
407 /* Queue is full */
408 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
409 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
410 qid, atomic_read(&q->numpending));
411 return 0;
412 } else {
413 *entry = q->base + *index;
414 return 1;
415 }
416 }
417
418 /**
419 * aac_queue_get - get the next free QE
420 * @dev: Adapter
421 * @index: Returned index
422 * @priority: Priority of fib
423 * @fib: Fib to associate with the queue entry
424 * @wait: Wait if queue full
425 * @fibptr: Driver fib object to go with fib
426 * @nonotify: Don't notify the adapter
427 *
428 * Gets the next free QE off the requested priorty adapter command
429 * queue and associates the Fib with the QE. The QE represented by
430 * index is ready to insert on the queue when this routine returns
431 * success.
432 */
433
434 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
435 {
436 struct aac_entry * entry = NULL;
437 int map = 0;
438
439 if (qid == AdapNormCmdQueue) {
440 /* if no entries wait for some if caller wants to */
441 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
442 printk(KERN_ERR "GetEntries failed\n");
443 }
444 /*
445 * Setup queue entry with a command, status and fib mapped
446 */
447 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
448 map = 1;
449 } else {
450 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
451 /* if no entries wait for some if caller wants to */
452 }
453 /*
454 * Setup queue entry with command, status and fib mapped
455 */
456 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
457 entry->addr = hw_fib->header.SenderFibAddress;
458 /* Restore adapters pointer to the FIB */
459 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
460 map = 0;
461 }
462 /*
463 * If MapFib is true than we need to map the Fib and put pointers
464 * in the queue entry.
465 */
466 if (map)
467 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
468 return 0;
469 }
470
471 /*
472 * Define the highest level of host to adapter communication routines.
473 * These routines will support host to adapter FS commuication. These
474 * routines have no knowledge of the commuication method used. This level
475 * sends and receives FIBs. This level has no knowledge of how these FIBs
476 * get passed back and forth.
477 */
478
479 /**
480 * aac_fib_send - send a fib to the adapter
481 * @command: Command to send
482 * @fibptr: The fib
483 * @size: Size of fib data area
484 * @priority: Priority of Fib
485 * @wait: Async/sync select
486 * @reply: True if a reply is wanted
487 * @callback: Called with reply
488 * @callback_data: Passed to callback
489 *
490 * Sends the requested FIB to the adapter and optionally will wait for a
491 * response FIB. If the caller does not wish to wait for a response than
492 * an event to wait on must be supplied. This event will be set when a
493 * response FIB is received from the adapter.
494 */
495
496 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
497 int priority, int wait, int reply, fib_callback callback,
498 void *callback_data)
499 {
500 struct aac_dev * dev = fibptr->dev;
501 struct hw_fib * hw_fib = fibptr->hw_fib_va;
502 unsigned long flags = 0;
503 unsigned long mflags = 0;
504 unsigned long sflags = 0;
505
506 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
507 return -EBUSY;
508
509 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
510 return -EINVAL;
511
512 /*
513 * There are 5 cases with the wait and response requested flags.
514 * The only invalid cases are if the caller requests to wait and
515 * does not request a response and if the caller does not want a
516 * response and the Fib is not allocated from pool. If a response
517 * is not requesed the Fib will just be deallocaed by the DPC
518 * routine when the response comes back from the adapter. No
519 * further processing will be done besides deleting the Fib. We
520 * will have a debug mode where the adapter can notify the host
521 * it had a problem and the host can log that fact.
522 */
523 fibptr->flags = 0;
524 if (wait && !reply) {
525 return -EINVAL;
526 } else if (!wait && reply) {
527 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
528 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
529 } else if (!wait && !reply) {
530 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
531 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
532 } else if (wait && reply) {
533 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
534 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
535 }
536 /*
537 * Map the fib into 32bits by using the fib number
538 */
539
540 hw_fib->header.SenderFibAddress =
541 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
542
543 /* use the same shifted value for handle to be compatible
544 * with the new native hba command handle
545 */
546 hw_fib->header.Handle =
547 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
548
549 /*
550 * Set FIB state to indicate where it came from and if we want a
551 * response from the adapter. Also load the command from the
552 * caller.
553 *
554 * Map the hw fib pointer as a 32bit value
555 */
556 hw_fib->header.Command = cpu_to_le16(command);
557 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
558 /*
559 * Set the size of the Fib we want to send to the adapter
560 */
561 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
562 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
563 return -EMSGSIZE;
564 }
565 /*
566 * Get a queue entry connect the FIB to it and send an notify
567 * the adapter a command is ready.
568 */
569 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
570
571 /*
572 * Fill in the Callback and CallbackContext if we are not
573 * going to wait.
574 */
575 if (!wait) {
576 fibptr->callback = callback;
577 fibptr->callback_data = callback_data;
578 fibptr->flags = FIB_CONTEXT_FLAG;
579 }
580
581 fibptr->done = 0;
582
583 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
584
585 dprintk((KERN_DEBUG "Fib contents:.\n"));
586 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
587 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
588 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
589 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
590 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
591 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
592
593 if (!dev->queues)
594 return -EBUSY;
595
596 if (wait) {
597
598 spin_lock_irqsave(&dev->manage_lock, mflags);
599 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
600 printk(KERN_INFO "No management Fibs Available:%d\n",
601 dev->management_fib_count);
602 spin_unlock_irqrestore(&dev->manage_lock, mflags);
603 return -EBUSY;
604 }
605 dev->management_fib_count++;
606 spin_unlock_irqrestore(&dev->manage_lock, mflags);
607 spin_lock_irqsave(&fibptr->event_lock, flags);
608 }
609
610 if (dev->sync_mode) {
611 if (wait)
612 spin_unlock_irqrestore(&fibptr->event_lock, flags);
613 spin_lock_irqsave(&dev->sync_lock, sflags);
614 if (dev->sync_fib) {
615 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
616 spin_unlock_irqrestore(&dev->sync_lock, sflags);
617 } else {
618 dev->sync_fib = fibptr;
619 spin_unlock_irqrestore(&dev->sync_lock, sflags);
620 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
621 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
622 NULL, NULL, NULL, NULL, NULL);
623 }
624 if (wait) {
625 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
626 if (down_interruptible(&fibptr->event_wait)) {
627 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
628 return -EFAULT;
629 }
630 return 0;
631 }
632 return -EINPROGRESS;
633 }
634
635 if (aac_adapter_deliver(fibptr) != 0) {
636 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
637 if (wait) {
638 spin_unlock_irqrestore(&fibptr->event_lock, flags);
639 spin_lock_irqsave(&dev->manage_lock, mflags);
640 dev->management_fib_count--;
641 spin_unlock_irqrestore(&dev->manage_lock, mflags);
642 }
643 return -EBUSY;
644 }
645
646
647 /*
648 * If the caller wanted us to wait for response wait now.
649 */
650
651 if (wait) {
652 spin_unlock_irqrestore(&fibptr->event_lock, flags);
653 /* Only set for first known interruptable command */
654 if (wait < 0) {
655 /*
656 * *VERY* Dangerous to time out a command, the
657 * assumption is made that we have no hope of
658 * functioning because an interrupt routing or other
659 * hardware failure has occurred.
660 */
661 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
662 while (down_trylock(&fibptr->event_wait)) {
663 int blink;
664 if (time_is_before_eq_jiffies(timeout)) {
665 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
666 atomic_dec(&q->numpending);
667 if (wait == -1) {
668 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
669 "Usually a result of a PCI interrupt routing problem;\n"
670 "update mother board BIOS or consider utilizing one of\n"
671 "the SAFE mode kernel options (acpi, apic etc)\n");
672 }
673 return -ETIMEDOUT;
674 }
675
676 if (unlikely(pci_channel_offline(dev->pdev)))
677 return -EFAULT;
678
679 if ((blink = aac_adapter_check_health(dev)) > 0) {
680 if (wait == -1) {
681 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
682 "Usually a result of a serious unrecoverable hardware problem\n",
683 blink);
684 }
685 return -EFAULT;
686 }
687 /*
688 * Allow other processes / CPUS to use core
689 */
690 schedule();
691 }
692 } else if (down_interruptible(&fibptr->event_wait)) {
693 /* Do nothing ... satisfy
694 * down_interruptible must_check */
695 }
696
697 spin_lock_irqsave(&fibptr->event_lock, flags);
698 if (fibptr->done == 0) {
699 fibptr->done = 2; /* Tell interrupt we aborted */
700 spin_unlock_irqrestore(&fibptr->event_lock, flags);
701 return -ERESTARTSYS;
702 }
703 spin_unlock_irqrestore(&fibptr->event_lock, flags);
704 BUG_ON(fibptr->done == 0);
705
706 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
707 return -ETIMEDOUT;
708 return 0;
709 }
710 /*
711 * If the user does not want a response than return success otherwise
712 * return pending
713 */
714 if (reply)
715 return -EINPROGRESS;
716 else
717 return 0;
718 }
719
720 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
721 void *callback_data)
722 {
723 struct aac_dev *dev = fibptr->dev;
724 int wait;
725 unsigned long flags = 0;
726 unsigned long mflags = 0;
727 struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
728 fibptr->hw_fib_va;
729
730 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
731 if (callback) {
732 wait = 0;
733 fibptr->callback = callback;
734 fibptr->callback_data = callback_data;
735 } else
736 wait = 1;
737
738
739 hbacmd->iu_type = command;
740
741 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
742 /* bit1 of request_id must be 0 */
743 hbacmd->request_id =
744 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
745 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
746 } else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
747 return -EINVAL;
748
749
750 if (wait) {
751 spin_lock_irqsave(&dev->manage_lock, mflags);
752 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
753 spin_unlock_irqrestore(&dev->manage_lock, mflags);
754 return -EBUSY;
755 }
756 dev->management_fib_count++;
757 spin_unlock_irqrestore(&dev->manage_lock, mflags);
758 spin_lock_irqsave(&fibptr->event_lock, flags);
759 }
760
761 if (aac_adapter_deliver(fibptr) != 0) {
762 if (wait) {
763 spin_unlock_irqrestore(&fibptr->event_lock, flags);
764 spin_lock_irqsave(&dev->manage_lock, mflags);
765 dev->management_fib_count--;
766 spin_unlock_irqrestore(&dev->manage_lock, mflags);
767 }
768 return -EBUSY;
769 }
770 FIB_COUNTER_INCREMENT(aac_config.NativeSent);
771
772 if (wait) {
773
774 spin_unlock_irqrestore(&fibptr->event_lock, flags);
775
776 if (unlikely(pci_channel_offline(dev->pdev)))
777 return -EFAULT;
778
779 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
780 if (down_interruptible(&fibptr->event_wait))
781 fibptr->done = 2;
782 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
783
784 spin_lock_irqsave(&fibptr->event_lock, flags);
785 if ((fibptr->done == 0) || (fibptr->done == 2)) {
786 fibptr->done = 2; /* Tell interrupt we aborted */
787 spin_unlock_irqrestore(&fibptr->event_lock, flags);
788 return -ERESTARTSYS;
789 }
790 spin_unlock_irqrestore(&fibptr->event_lock, flags);
791 WARN_ON(fibptr->done == 0);
792
793 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
794 return -ETIMEDOUT;
795
796 return 0;
797 }
798
799 return -EINPROGRESS;
800 }
801
802 /**
803 * aac_consumer_get - get the top of the queue
804 * @dev: Adapter
805 * @q: Queue
806 * @entry: Return entry
807 *
808 * Will return a pointer to the entry on the top of the queue requested that
809 * we are a consumer of, and return the address of the queue entry. It does
810 * not change the state of the queue.
811 */
812
813 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
814 {
815 u32 index;
816 int status;
817 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
818 status = 0;
819 } else {
820 /*
821 * The consumer index must be wrapped if we have reached
822 * the end of the queue, else we just use the entry
823 * pointed to by the header index
824 */
825 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
826 index = 0;
827 else
828 index = le32_to_cpu(*q->headers.consumer);
829 *entry = q->base + index;
830 status = 1;
831 }
832 return(status);
833 }
834
835 /**
836 * aac_consumer_free - free consumer entry
837 * @dev: Adapter
838 * @q: Queue
839 * @qid: Queue ident
840 *
841 * Frees up the current top of the queue we are a consumer of. If the
842 * queue was full notify the producer that the queue is no longer full.
843 */
844
845 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
846 {
847 int wasfull = 0;
848 u32 notify;
849
850 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
851 wasfull = 1;
852
853 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
854 *q->headers.consumer = cpu_to_le32(1);
855 else
856 le32_add_cpu(q->headers.consumer, 1);
857
858 if (wasfull) {
859 switch (qid) {
860
861 case HostNormCmdQueue:
862 notify = HostNormCmdNotFull;
863 break;
864 case HostNormRespQueue:
865 notify = HostNormRespNotFull;
866 break;
867 default:
868 BUG();
869 return;
870 }
871 aac_adapter_notify(dev, notify);
872 }
873 }
874
875 /**
876 * aac_fib_adapter_complete - complete adapter issued fib
877 * @fibptr: fib to complete
878 * @size: size of fib
879 *
880 * Will do all necessary work to complete a FIB that was sent from
881 * the adapter.
882 */
883
884 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
885 {
886 struct hw_fib * hw_fib = fibptr->hw_fib_va;
887 struct aac_dev * dev = fibptr->dev;
888 struct aac_queue * q;
889 unsigned long nointr = 0;
890 unsigned long qflags;
891
892 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
893 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
894 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
895 kfree(hw_fib);
896 return 0;
897 }
898
899 if (hw_fib->header.XferState == 0) {
900 if (dev->comm_interface == AAC_COMM_MESSAGE)
901 kfree(hw_fib);
902 return 0;
903 }
904 /*
905 * If we plan to do anything check the structure type first.
906 */
907 if (hw_fib->header.StructType != FIB_MAGIC &&
908 hw_fib->header.StructType != FIB_MAGIC2 &&
909 hw_fib->header.StructType != FIB_MAGIC2_64) {
910 if (dev->comm_interface == AAC_COMM_MESSAGE)
911 kfree(hw_fib);
912 return -EINVAL;
913 }
914 /*
915 * This block handles the case where the adapter had sent us a
916 * command and we have finished processing the command. We
917 * call completeFib when we are done processing the command
918 * and want to send a response back to the adapter. This will
919 * send the completed cdb to the adapter.
920 */
921 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
922 if (dev->comm_interface == AAC_COMM_MESSAGE) {
923 kfree (hw_fib);
924 } else {
925 u32 index;
926 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
927 if (size) {
928 size += sizeof(struct aac_fibhdr);
929 if (size > le16_to_cpu(hw_fib->header.SenderSize))
930 return -EMSGSIZE;
931 hw_fib->header.Size = cpu_to_le16(size);
932 }
933 q = &dev->queues->queue[AdapNormRespQueue];
934 spin_lock_irqsave(q->lock, qflags);
935 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
936 *(q->headers.producer) = cpu_to_le32(index + 1);
937 spin_unlock_irqrestore(q->lock, qflags);
938 if (!(nointr & (int)aac_config.irq_mod))
939 aac_adapter_notify(dev, AdapNormRespQueue);
940 }
941 } else {
942 printk(KERN_WARNING "aac_fib_adapter_complete: "
943 "Unknown xferstate detected.\n");
944 BUG();
945 }
946 return 0;
947 }
948
949 /**
950 * aac_fib_complete - fib completion handler
951 * @fib: FIB to complete
952 *
953 * Will do all necessary work to complete a FIB.
954 */
955
956 int aac_fib_complete(struct fib *fibptr)
957 {
958 struct hw_fib * hw_fib = fibptr->hw_fib_va;
959
960 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
961 fib_dealloc(fibptr);
962 return 0;
963 }
964
965 /*
966 * Check for a fib which has already been completed or with a
967 * status wait timeout
968 */
969
970 if (hw_fib->header.XferState == 0 || fibptr->done == 2)
971 return 0;
972 /*
973 * If we plan to do anything check the structure type first.
974 */
975
976 if (hw_fib->header.StructType != FIB_MAGIC &&
977 hw_fib->header.StructType != FIB_MAGIC2 &&
978 hw_fib->header.StructType != FIB_MAGIC2_64)
979 return -EINVAL;
980 /*
981 * This block completes a cdb which orginated on the host and we
982 * just need to deallocate the cdb or reinit it. At this point the
983 * command is complete that we had sent to the adapter and this
984 * cdb could be reused.
985 */
986
987 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
988 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
989 {
990 fib_dealloc(fibptr);
991 }
992 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
993 {
994 /*
995 * This handles the case when the host has aborted the I/O
996 * to the adapter because the adapter is not responding
997 */
998 fib_dealloc(fibptr);
999 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
1000 fib_dealloc(fibptr);
1001 } else {
1002 BUG();
1003 }
1004 return 0;
1005 }
1006
1007 /**
1008 * aac_printf - handle printf from firmware
1009 * @dev: Adapter
1010 * @val: Message info
1011 *
1012 * Print a message passed to us by the controller firmware on the
1013 * Adaptec board
1014 */
1015
1016 void aac_printf(struct aac_dev *dev, u32 val)
1017 {
1018 char *cp = dev->printfbuf;
1019 if (dev->printf_enabled)
1020 {
1021 int length = val & 0xffff;
1022 int level = (val >> 16) & 0xffff;
1023
1024 /*
1025 * The size of the printfbuf is set in port.c
1026 * There is no variable or define for it
1027 */
1028 if (length > 255)
1029 length = 255;
1030 if (cp[length] != 0)
1031 cp[length] = 0;
1032 if (level == LOG_AAC_HIGH_ERROR)
1033 printk(KERN_WARNING "%s:%s", dev->name, cp);
1034 else
1035 printk(KERN_INFO "%s:%s", dev->name, cp);
1036 }
1037 memset(cp, 0, 256);
1038 }
1039
1040 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1041 {
1042 return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1043 }
1044
1045
1046 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1047 {
1048 switch (aac_aif_data(aifcmd, 1)) {
1049 case AifBuCacheDataLoss:
1050 if (aac_aif_data(aifcmd, 2))
1051 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1052 aac_aif_data(aifcmd, 2));
1053 else
1054 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1055 break;
1056 case AifBuCacheDataRecover:
1057 if (aac_aif_data(aifcmd, 2))
1058 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1059 aac_aif_data(aifcmd, 2));
1060 else
1061 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1062 break;
1063 }
1064 }
1065
1066 /**
1067 * aac_handle_aif - Handle a message from the firmware
1068 * @dev: Which adapter this fib is from
1069 * @fibptr: Pointer to fibptr from adapter
1070 *
1071 * This routine handles a driver notify fib from the adapter and
1072 * dispatches it to the appropriate routine for handling.
1073 */
1074
1075 #define AIF_SNIFF_TIMEOUT (500*HZ)
1076 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1077 {
1078 struct hw_fib * hw_fib = fibptr->hw_fib_va;
1079 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1080 u32 channel, id, lun, container;
1081 struct scsi_device *device;
1082 enum {
1083 NOTHING,
1084 DELETE,
1085 ADD,
1086 CHANGE
1087 } device_config_needed = NOTHING;
1088
1089 /* Sniff for container changes */
1090
1091 if (!dev || !dev->fsa_dev)
1092 return;
1093 container = channel = id = lun = (u32)-1;
1094
1095 /*
1096 * We have set this up to try and minimize the number of
1097 * re-configures that take place. As a result of this when
1098 * certain AIF's come in we will set a flag waiting for another
1099 * type of AIF before setting the re-config flag.
1100 */
1101 switch (le32_to_cpu(aifcmd->command)) {
1102 case AifCmdDriverNotify:
1103 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1104 case AifRawDeviceRemove:
1105 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1106 if ((container >> 28)) {
1107 container = (u32)-1;
1108 break;
1109 }
1110 channel = (container >> 24) & 0xF;
1111 if (channel >= dev->maximum_num_channels) {
1112 container = (u32)-1;
1113 break;
1114 }
1115 id = container & 0xFFFF;
1116 if (id >= dev->maximum_num_physicals) {
1117 container = (u32)-1;
1118 break;
1119 }
1120 lun = (container >> 16) & 0xFF;
1121 container = (u32)-1;
1122 channel = aac_phys_to_logical(channel);
1123 device_config_needed = DELETE;
1124 break;
1125
1126 /*
1127 * Morph or Expand complete
1128 */
1129 case AifDenMorphComplete:
1130 case AifDenVolumeExtendComplete:
1131 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1132 if (container >= dev->maximum_num_containers)
1133 break;
1134
1135 /*
1136 * Find the scsi_device associated with the SCSI
1137 * address. Make sure we have the right array, and if
1138 * so set the flag to initiate a new re-config once we
1139 * see an AifEnConfigChange AIF come through.
1140 */
1141
1142 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1143 device = scsi_device_lookup(dev->scsi_host_ptr,
1144 CONTAINER_TO_CHANNEL(container),
1145 CONTAINER_TO_ID(container),
1146 CONTAINER_TO_LUN(container));
1147 if (device) {
1148 dev->fsa_dev[container].config_needed = CHANGE;
1149 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1150 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1151 scsi_device_put(device);
1152 }
1153 }
1154 }
1155
1156 /*
1157 * If we are waiting on something and this happens to be
1158 * that thing then set the re-configure flag.
1159 */
1160 if (container != (u32)-1) {
1161 if (container >= dev->maximum_num_containers)
1162 break;
1163 if ((dev->fsa_dev[container].config_waiting_on ==
1164 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1165 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1166 dev->fsa_dev[container].config_waiting_on = 0;
1167 } else for (container = 0;
1168 container < dev->maximum_num_containers; ++container) {
1169 if ((dev->fsa_dev[container].config_waiting_on ==
1170 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1171 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1172 dev->fsa_dev[container].config_waiting_on = 0;
1173 }
1174 break;
1175
1176 case AifCmdEventNotify:
1177 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1178 case AifEnBatteryEvent:
1179 dev->cache_protected =
1180 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1181 break;
1182 /*
1183 * Add an Array.
1184 */
1185 case AifEnAddContainer:
1186 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1187 if (container >= dev->maximum_num_containers)
1188 break;
1189 dev->fsa_dev[container].config_needed = ADD;
1190 dev->fsa_dev[container].config_waiting_on =
1191 AifEnConfigChange;
1192 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1193 break;
1194
1195 /*
1196 * Delete an Array.
1197 */
1198 case AifEnDeleteContainer:
1199 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1200 if (container >= dev->maximum_num_containers)
1201 break;
1202 dev->fsa_dev[container].config_needed = DELETE;
1203 dev->fsa_dev[container].config_waiting_on =
1204 AifEnConfigChange;
1205 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1206 break;
1207
1208 /*
1209 * Container change detected. If we currently are not
1210 * waiting on something else, setup to wait on a Config Change.
1211 */
1212 case AifEnContainerChange:
1213 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1214 if (container >= dev->maximum_num_containers)
1215 break;
1216 if (dev->fsa_dev[container].config_waiting_on &&
1217 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1218 break;
1219 dev->fsa_dev[container].config_needed = CHANGE;
1220 dev->fsa_dev[container].config_waiting_on =
1221 AifEnConfigChange;
1222 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1223 break;
1224
1225 case AifEnConfigChange:
1226 break;
1227
1228 case AifEnAddJBOD:
1229 case AifEnDeleteJBOD:
1230 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1231 if ((container >> 28)) {
1232 container = (u32)-1;
1233 break;
1234 }
1235 channel = (container >> 24) & 0xF;
1236 if (channel >= dev->maximum_num_channels) {
1237 container = (u32)-1;
1238 break;
1239 }
1240 id = container & 0xFFFF;
1241 if (id >= dev->maximum_num_physicals) {
1242 container = (u32)-1;
1243 break;
1244 }
1245 lun = (container >> 16) & 0xFF;
1246 container = (u32)-1;
1247 channel = aac_phys_to_logical(channel);
1248 device_config_needed =
1249 (((__le32 *)aifcmd->data)[0] ==
1250 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1251 if (device_config_needed == ADD) {
1252 device = scsi_device_lookup(dev->scsi_host_ptr,
1253 channel,
1254 id,
1255 lun);
1256 if (device) {
1257 scsi_remove_device(device);
1258 scsi_device_put(device);
1259 }
1260 }
1261 break;
1262
1263 case AifEnEnclosureManagement:
1264 /*
1265 * If in JBOD mode, automatic exposure of new
1266 * physical target to be suppressed until configured.
1267 */
1268 if (dev->jbod)
1269 break;
1270 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1271 case EM_DRIVE_INSERTION:
1272 case EM_DRIVE_REMOVAL:
1273 case EM_SES_DRIVE_INSERTION:
1274 case EM_SES_DRIVE_REMOVAL:
1275 container = le32_to_cpu(
1276 ((__le32 *)aifcmd->data)[2]);
1277 if ((container >> 28)) {
1278 container = (u32)-1;
1279 break;
1280 }
1281 channel = (container >> 24) & 0xF;
1282 if (channel >= dev->maximum_num_channels) {
1283 container = (u32)-1;
1284 break;
1285 }
1286 id = container & 0xFFFF;
1287 lun = (container >> 16) & 0xFF;
1288 container = (u32)-1;
1289 if (id >= dev->maximum_num_physicals) {
1290 /* legacy dev_t ? */
1291 if ((0x2000 <= id) || lun || channel ||
1292 ((channel = (id >> 7) & 0x3F) >=
1293 dev->maximum_num_channels))
1294 break;
1295 lun = (id >> 4) & 7;
1296 id &= 0xF;
1297 }
1298 channel = aac_phys_to_logical(channel);
1299 device_config_needed =
1300 ((((__le32 *)aifcmd->data)[3]
1301 == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1302 (((__le32 *)aifcmd->data)[3]
1303 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1304 ADD : DELETE;
1305 break;
1306 }
1307 case AifBuManagerEvent:
1308 aac_handle_aif_bu(dev, aifcmd);
1309 break;
1310 }
1311
1312 /*
1313 * If we are waiting on something and this happens to be
1314 * that thing then set the re-configure flag.
1315 */
1316 if (container != (u32)-1) {
1317 if (container >= dev->maximum_num_containers)
1318 break;
1319 if ((dev->fsa_dev[container].config_waiting_on ==
1320 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1321 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1322 dev->fsa_dev[container].config_waiting_on = 0;
1323 } else for (container = 0;
1324 container < dev->maximum_num_containers; ++container) {
1325 if ((dev->fsa_dev[container].config_waiting_on ==
1326 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1327 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1328 dev->fsa_dev[container].config_waiting_on = 0;
1329 }
1330 break;
1331
1332 case AifCmdJobProgress:
1333 /*
1334 * These are job progress AIF's. When a Clear is being
1335 * done on a container it is initially created then hidden from
1336 * the OS. When the clear completes we don't get a config
1337 * change so we monitor the job status complete on a clear then
1338 * wait for a container change.
1339 */
1340
1341 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1342 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1343 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1344 for (container = 0;
1345 container < dev->maximum_num_containers;
1346 ++container) {
1347 /*
1348 * Stomp on all config sequencing for all
1349 * containers?
1350 */
1351 dev->fsa_dev[container].config_waiting_on =
1352 AifEnContainerChange;
1353 dev->fsa_dev[container].config_needed = ADD;
1354 dev->fsa_dev[container].config_waiting_stamp =
1355 jiffies;
1356 }
1357 }
1358 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1359 ((__le32 *)aifcmd->data)[6] == 0 &&
1360 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1361 for (container = 0;
1362 container < dev->maximum_num_containers;
1363 ++container) {
1364 /*
1365 * Stomp on all config sequencing for all
1366 * containers?
1367 */
1368 dev->fsa_dev[container].config_waiting_on =
1369 AifEnContainerChange;
1370 dev->fsa_dev[container].config_needed = DELETE;
1371 dev->fsa_dev[container].config_waiting_stamp =
1372 jiffies;
1373 }
1374 }
1375 break;
1376 }
1377
1378 container = 0;
1379 retry_next:
1380 if (device_config_needed == NOTHING)
1381 for (; container < dev->maximum_num_containers; ++container) {
1382 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1383 (dev->fsa_dev[container].config_needed != NOTHING) &&
1384 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1385 device_config_needed =
1386 dev->fsa_dev[container].config_needed;
1387 dev->fsa_dev[container].config_needed = NOTHING;
1388 channel = CONTAINER_TO_CHANNEL(container);
1389 id = CONTAINER_TO_ID(container);
1390 lun = CONTAINER_TO_LUN(container);
1391 break;
1392 }
1393 }
1394 if (device_config_needed == NOTHING)
1395 return;
1396
1397 /*
1398 * If we decided that a re-configuration needs to be done,
1399 * schedule it here on the way out the door, please close the door
1400 * behind you.
1401 */
1402
1403 /*
1404 * Find the scsi_device associated with the SCSI address,
1405 * and mark it as changed, invalidating the cache. This deals
1406 * with changes to existing device IDs.
1407 */
1408
1409 if (!dev || !dev->scsi_host_ptr)
1410 return;
1411 /*
1412 * force reload of disk info via aac_probe_container
1413 */
1414 if ((channel == CONTAINER_CHANNEL) &&
1415 (device_config_needed != NOTHING)) {
1416 if (dev->fsa_dev[container].valid == 1)
1417 dev->fsa_dev[container].valid = 2;
1418 aac_probe_container(dev, container);
1419 }
1420 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1421 if (device) {
1422 switch (device_config_needed) {
1423 case DELETE:
1424 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1425 scsi_remove_device(device);
1426 #else
1427 if (scsi_device_online(device)) {
1428 scsi_device_set_state(device, SDEV_OFFLINE);
1429 sdev_printk(KERN_INFO, device,
1430 "Device offlined - %s\n",
1431 (channel == CONTAINER_CHANNEL) ?
1432 "array deleted" :
1433 "enclosure services event");
1434 }
1435 #endif
1436 break;
1437 case ADD:
1438 if (!scsi_device_online(device)) {
1439 sdev_printk(KERN_INFO, device,
1440 "Device online - %s\n",
1441 (channel == CONTAINER_CHANNEL) ?
1442 "array created" :
1443 "enclosure services event");
1444 scsi_device_set_state(device, SDEV_RUNNING);
1445 }
1446 /* FALLTHRU */
1447 case CHANGE:
1448 if ((channel == CONTAINER_CHANNEL)
1449 && (!dev->fsa_dev[container].valid)) {
1450 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1451 scsi_remove_device(device);
1452 #else
1453 if (!scsi_device_online(device))
1454 break;
1455 scsi_device_set_state(device, SDEV_OFFLINE);
1456 sdev_printk(KERN_INFO, device,
1457 "Device offlined - %s\n",
1458 "array failed");
1459 #endif
1460 break;
1461 }
1462 scsi_rescan_device(&device->sdev_gendev);
1463
1464 default:
1465 break;
1466 }
1467 scsi_device_put(device);
1468 device_config_needed = NOTHING;
1469 }
1470 if (device_config_needed == ADD)
1471 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1472 if (channel == CONTAINER_CHANNEL) {
1473 container++;
1474 device_config_needed = NOTHING;
1475 goto retry_next;
1476 }
1477 }
1478
1479 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1480 {
1481 int index, quirks;
1482 int retval;
1483 struct Scsi_Host *host;
1484 struct scsi_device *dev;
1485 struct scsi_cmnd *command;
1486 struct scsi_cmnd *command_list;
1487 int jafo = 0;
1488 int bled;
1489 u64 dmamask;
1490 int num_of_fibs = 0;
1491
1492 /*
1493 * Assumptions:
1494 * - host is locked, unless called by the aacraid thread.
1495 * (a matter of convenience, due to legacy issues surrounding
1496 * eh_host_adapter_reset).
1497 * - in_reset is asserted, so no new i/o is getting to the
1498 * card.
1499 * - The card is dead, or will be very shortly ;-/ so no new
1500 * commands are completing in the interrupt service.
1501 */
1502 host = aac->scsi_host_ptr;
1503 scsi_block_requests(host);
1504 aac_adapter_disable_int(aac);
1505 if (aac->thread && aac->thread->pid != current->pid) {
1506 spin_unlock_irq(host->host_lock);
1507 kthread_stop(aac->thread);
1508 aac->thread = NULL;
1509 jafo = 1;
1510 }
1511
1512 /*
1513 * If a positive health, means in a known DEAD PANIC
1514 * state and the adapter could be reset to `try again'.
1515 */
1516 bled = forced ? 0 : aac_adapter_check_health(aac);
1517 retval = aac_adapter_restart(aac, bled, reset_type);
1518
1519 if (retval)
1520 goto out;
1521
1522 /*
1523 * Loop through the fibs, close the synchronous FIBS
1524 */
1525 retval = 1;
1526 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1527 for (index = 0; index < num_of_fibs; index++) {
1528
1529 struct fib *fib = &aac->fibs[index];
1530 __le32 XferState = fib->hw_fib_va->header.XferState;
1531 bool is_response_expected = false;
1532
1533 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1534 (XferState & cpu_to_le32(ResponseExpected)))
1535 is_response_expected = true;
1536
1537 if (is_response_expected
1538 || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1539 unsigned long flagv;
1540 spin_lock_irqsave(&fib->event_lock, flagv);
1541 up(&fib->event_wait);
1542 spin_unlock_irqrestore(&fib->event_lock, flagv);
1543 schedule();
1544 retval = 0;
1545 }
1546 }
1547 /* Give some extra time for ioctls to complete. */
1548 if (retval == 0)
1549 ssleep(2);
1550 index = aac->cardtype;
1551
1552 /*
1553 * Re-initialize the adapter, first free resources, then carefully
1554 * apply the initialization sequence to come back again. Only risk
1555 * is a change in Firmware dropping cache, it is assumed the caller
1556 * will ensure that i/o is queisced and the card is flushed in that
1557 * case.
1558 */
1559 aac_free_irq(aac);
1560 aac_fib_map_free(aac);
1561 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1562 aac->comm_phys);
1563 aac->comm_addr = NULL;
1564 aac->comm_phys = 0;
1565 kfree(aac->queues);
1566 aac->queues = NULL;
1567 kfree(aac->fsa_dev);
1568 aac->fsa_dev = NULL;
1569
1570 dmamask = DMA_BIT_MASK(32);
1571 quirks = aac_get_driver_ident(index)->quirks;
1572 if (quirks & AAC_QUIRK_31BIT)
1573 retval = pci_set_dma_mask(aac->pdev, dmamask);
1574 else if (!(quirks & AAC_QUIRK_SRC))
1575 retval = pci_set_dma_mask(aac->pdev, dmamask);
1576 else
1577 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1578
1579 if (quirks & AAC_QUIRK_31BIT && !retval) {
1580 dmamask = DMA_BIT_MASK(31);
1581 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1582 }
1583
1584 if (retval)
1585 goto out;
1586
1587 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1588 goto out;
1589
1590 if (jafo) {
1591 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1592 aac->name);
1593 if (IS_ERR(aac->thread)) {
1594 retval = PTR_ERR(aac->thread);
1595 aac->thread = NULL;
1596 goto out;
1597 }
1598 }
1599 (void)aac_get_adapter_info(aac);
1600 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1601 host->sg_tablesize = 34;
1602 host->max_sectors = (host->sg_tablesize * 8) + 112;
1603 }
1604 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1605 host->sg_tablesize = 17;
1606 host->max_sectors = (host->sg_tablesize * 8) + 112;
1607 }
1608 aac_get_config_status(aac, 1);
1609 aac_get_containers(aac);
1610 /*
1611 * This is where the assumption that the Adapter is quiesced
1612 * is important.
1613 */
1614 command_list = NULL;
1615 __shost_for_each_device(dev, host) {
1616 unsigned long flags;
1617 spin_lock_irqsave(&dev->list_lock, flags);
1618 list_for_each_entry(command, &dev->cmd_list, list)
1619 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1620 command->SCp.buffer = (struct scatterlist *)command_list;
1621 command_list = command;
1622 }
1623 spin_unlock_irqrestore(&dev->list_lock, flags);
1624 }
1625 while ((command = command_list)) {
1626 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1627 command->SCp.buffer = NULL;
1628 command->result = DID_OK << 16
1629 | COMMAND_COMPLETE << 8
1630 | SAM_STAT_TASK_SET_FULL;
1631 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1632 command->scsi_done(command);
1633 }
1634 /*
1635 * Any Device that was already marked offline needs to be marked
1636 * running
1637 */
1638 __shost_for_each_device(dev, host) {
1639 if (!scsi_device_online(dev))
1640 scsi_device_set_state(dev, SDEV_RUNNING);
1641 }
1642 retval = 0;
1643
1644 out:
1645 aac->in_reset = 0;
1646 scsi_unblock_requests(host);
1647
1648 /*
1649 * Issue bus rescan to catch any configuration that might have
1650 * occurred
1651 */
1652 if (!retval && !is_kdump_kernel()) {
1653 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1654 aac_schedule_safw_scan_worker(aac);
1655 }
1656
1657 if (jafo) {
1658 spin_lock_irq(host->host_lock);
1659 }
1660 return retval;
1661 }
1662
1663 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1664 {
1665 unsigned long flagv = 0;
1666 int retval;
1667 struct Scsi_Host * host;
1668 int bled;
1669
1670 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1671 return -EBUSY;
1672
1673 if (aac->in_reset) {
1674 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1675 return -EBUSY;
1676 }
1677 aac->in_reset = 1;
1678 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1679
1680 /*
1681 * Wait for all commands to complete to this specific
1682 * target (block maximum 60 seconds). Although not necessary,
1683 * it does make us a good storage citizen.
1684 */
1685 host = aac->scsi_host_ptr;
1686 scsi_block_requests(host);
1687
1688 /* Quiesce build, flush cache, write through mode */
1689 if (forced < 2)
1690 aac_send_shutdown(aac);
1691 spin_lock_irqsave(host->host_lock, flagv);
1692 bled = forced ? forced :
1693 (aac_check_reset != 0 && aac_check_reset != 1);
1694 retval = _aac_reset_adapter(aac, bled, reset_type);
1695 spin_unlock_irqrestore(host->host_lock, flagv);
1696
1697 if ((forced < 2) && (retval == -ENODEV)) {
1698 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1699 struct fib * fibctx = aac_fib_alloc(aac);
1700 if (fibctx) {
1701 struct aac_pause *cmd;
1702 int status;
1703
1704 aac_fib_init(fibctx);
1705
1706 cmd = (struct aac_pause *) fib_data(fibctx);
1707
1708 cmd->command = cpu_to_le32(VM_ContainerConfig);
1709 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1710 cmd->timeout = cpu_to_le32(1);
1711 cmd->min = cpu_to_le32(1);
1712 cmd->noRescan = cpu_to_le32(1);
1713 cmd->count = cpu_to_le32(0);
1714
1715 status = aac_fib_send(ContainerCommand,
1716 fibctx,
1717 sizeof(struct aac_pause),
1718 FsaNormal,
1719 -2 /* Timeout silently */, 1,
1720 NULL, NULL);
1721
1722 if (status >= 0)
1723 aac_fib_complete(fibctx);
1724 /* FIB should be freed only after getting
1725 * the response from the F/W */
1726 if (status != -ERESTARTSYS)
1727 aac_fib_free(fibctx);
1728 }
1729 }
1730
1731 return retval;
1732 }
1733
1734 int aac_check_health(struct aac_dev * aac)
1735 {
1736 int BlinkLED;
1737 unsigned long time_now, flagv = 0;
1738 struct list_head * entry;
1739
1740 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1741 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1742 return 0;
1743
1744 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1745 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1746 return 0; /* OK */
1747 }
1748
1749 aac->in_reset = 1;
1750
1751 /* Fake up an AIF:
1752 * aac_aifcmd.command = AifCmdEventNotify = 1
1753 * aac_aifcmd.seqnum = 0xFFFFFFFF
1754 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1755 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1756 * aac.aifcmd.data[2] = AifHighPriority = 3
1757 * aac.aifcmd.data[3] = BlinkLED
1758 */
1759
1760 time_now = jiffies/HZ;
1761 entry = aac->fib_list.next;
1762
1763 /*
1764 * For each Context that is on the
1765 * fibctxList, make a copy of the
1766 * fib, and then set the event to wake up the
1767 * thread that is waiting for it.
1768 */
1769 while (entry != &aac->fib_list) {
1770 /*
1771 * Extract the fibctx
1772 */
1773 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1774 struct hw_fib * hw_fib;
1775 struct fib * fib;
1776 /*
1777 * Check if the queue is getting
1778 * backlogged
1779 */
1780 if (fibctx->count > 20) {
1781 /*
1782 * It's *not* jiffies folks,
1783 * but jiffies / HZ, so do not
1784 * panic ...
1785 */
1786 u32 time_last = fibctx->jiffies;
1787 /*
1788 * Has it been > 2 minutes
1789 * since the last read off
1790 * the queue?
1791 */
1792 if ((time_now - time_last) > aif_timeout) {
1793 entry = entry->next;
1794 aac_close_fib_context(aac, fibctx);
1795 continue;
1796 }
1797 }
1798 /*
1799 * Warning: no sleep allowed while
1800 * holding spinlock
1801 */
1802 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1803 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1804 if (fib && hw_fib) {
1805 struct aac_aifcmd * aif;
1806
1807 fib->hw_fib_va = hw_fib;
1808 fib->dev = aac;
1809 aac_fib_init(fib);
1810 fib->type = FSAFS_NTC_FIB_CONTEXT;
1811 fib->size = sizeof (struct fib);
1812 fib->data = hw_fib->data;
1813 aif = (struct aac_aifcmd *)hw_fib->data;
1814 aif->command = cpu_to_le32(AifCmdEventNotify);
1815 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1816 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1817 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1818 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1819 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1820
1821 /*
1822 * Put the FIB onto the
1823 * fibctx's fibs
1824 */
1825 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1826 fibctx->count++;
1827 /*
1828 * Set the event to wake up the
1829 * thread that will waiting.
1830 */
1831 up(&fibctx->wait_sem);
1832 } else {
1833 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1834 kfree(fib);
1835 kfree(hw_fib);
1836 }
1837 entry = entry->next;
1838 }
1839
1840 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1841
1842 if (BlinkLED < 0) {
1843 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1844 aac->name, BlinkLED);
1845 goto out;
1846 }
1847
1848 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1849
1850 out:
1851 aac->in_reset = 0;
1852 return BlinkLED;
1853 }
1854
1855 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1856 {
1857 return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1858 }
1859
1860 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1861 int bus,
1862 int target)
1863 {
1864 if (bus != CONTAINER_CHANNEL)
1865 bus = aac_phys_to_logical(bus);
1866
1867 return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1868 }
1869
1870 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1871 {
1872 if (bus != CONTAINER_CHANNEL)
1873 bus = aac_phys_to_logical(bus);
1874
1875 return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1876 }
1877
1878 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1879 {
1880 if (sdev)
1881 scsi_device_put(sdev);
1882 }
1883
1884 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1885 {
1886 struct scsi_device *sdev;
1887
1888 sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1889 scsi_remove_device(sdev);
1890 aac_put_safw_scsi_device(sdev);
1891 }
1892
1893 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1894 int bus, int target)
1895 {
1896 return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1897 }
1898
1899 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1900 {
1901 if (is_safw_raid_volume(dev, bus, target))
1902 return dev->fsa_dev[target].valid;
1903 else
1904 return aac_is_safw_scan_count_equal(dev, bus, target);
1905 }
1906
1907 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1908 {
1909 int is_exposed = 0;
1910 struct scsi_device *sdev;
1911
1912 sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1913 if (sdev)
1914 is_exposed = 1;
1915 aac_put_safw_scsi_device(sdev);
1916
1917 return is_exposed;
1918 }
1919
1920 static int aac_update_safw_host_devices(struct aac_dev *dev)
1921 {
1922 int i;
1923 int bus;
1924 int target;
1925 int is_exposed = 0;
1926 int rcode = 0;
1927
1928 rcode = aac_setup_safw_adapter(dev);
1929 if (unlikely(rcode < 0)) {
1930 goto out;
1931 }
1932
1933 for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1934
1935 bus = get_bus_number(i);
1936 target = get_target_number(i);
1937
1938 is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1939
1940 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1941 aac_add_safw_device(dev, bus, target);
1942 else if (!aac_is_safw_target_valid(dev, bus, target) &&
1943 is_exposed)
1944 aac_remove_safw_device(dev, bus, target);
1945 }
1946 out:
1947 return rcode;
1948 }
1949
1950 static int aac_scan_safw_host(struct aac_dev *dev)
1951 {
1952 int rcode = 0;
1953
1954 rcode = aac_update_safw_host_devices(dev);
1955 if (rcode)
1956 aac_schedule_safw_scan_worker(dev);
1957
1958 return rcode;
1959 }
1960
1961 int aac_scan_host(struct aac_dev *dev)
1962 {
1963 int rcode = 0;
1964
1965 mutex_lock(&dev->scan_mutex);
1966 if (dev->sa_firmware)
1967 rcode = aac_scan_safw_host(dev);
1968 else
1969 scsi_scan_host(dev->scsi_host_ptr);
1970 mutex_unlock(&dev->scan_mutex);
1971
1972 return rcode;
1973 }
1974
1975 /**
1976 * aac_handle_sa_aif Handle a message from the firmware
1977 * @dev: Which adapter this fib is from
1978 * @fibptr: Pointer to fibptr from adapter
1979 *
1980 * This routine handles a driver notify fib from the adapter and
1981 * dispatches it to the appropriate routine for handling.
1982 */
1983 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1984 {
1985 int i;
1986 u32 events = 0;
1987
1988 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1989 events = SA_AIF_HOTPLUG;
1990 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1991 events = SA_AIF_HARDWARE;
1992 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1993 events = SA_AIF_PDEV_CHANGE;
1994 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1995 events = SA_AIF_LDEV_CHANGE;
1996 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1997 events = SA_AIF_BPSTAT_CHANGE;
1998 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1999 events = SA_AIF_BPCFG_CHANGE;
2000
2001 switch (events) {
2002 case SA_AIF_HOTPLUG:
2003 case SA_AIF_HARDWARE:
2004 case SA_AIF_PDEV_CHANGE:
2005 case SA_AIF_LDEV_CHANGE:
2006 case SA_AIF_BPCFG_CHANGE:
2007
2008 aac_scan_host(dev);
2009
2010 break;
2011
2012 case SA_AIF_BPSTAT_CHANGE:
2013 /* currently do nothing */
2014 break;
2015 }
2016
2017 for (i = 1; i <= 10; ++i) {
2018 events = src_readl(dev, MUnit.IDR);
2019 if (events & (1<<23)) {
2020 pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2021 i, 10);
2022 ssleep(1);
2023 }
2024 }
2025 }
2026
2027 static int get_fib_count(struct aac_dev *dev)
2028 {
2029 unsigned int num = 0;
2030 struct list_head *entry;
2031 unsigned long flagv;
2032
2033 /*
2034 * Warning: no sleep allowed while
2035 * holding spinlock. We take the estimate
2036 * and pre-allocate a set of fibs outside the
2037 * lock.
2038 */
2039 num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2040 / sizeof(struct hw_fib); /* some extra */
2041 spin_lock_irqsave(&dev->fib_lock, flagv);
2042 entry = dev->fib_list.next;
2043 while (entry != &dev->fib_list) {
2044 entry = entry->next;
2045 ++num;
2046 }
2047 spin_unlock_irqrestore(&dev->fib_lock, flagv);
2048
2049 return num;
2050 }
2051
2052 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2053 struct fib **fib_pool,
2054 unsigned int num)
2055 {
2056 struct hw_fib **hw_fib_p;
2057 struct fib **fib_p;
2058
2059 hw_fib_p = hw_fib_pool;
2060 fib_p = fib_pool;
2061 while (hw_fib_p < &hw_fib_pool[num]) {
2062 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2063 if (!(*(hw_fib_p++))) {
2064 --hw_fib_p;
2065 break;
2066 }
2067
2068 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2069 if (!(*(fib_p++))) {
2070 kfree(*(--hw_fib_p));
2071 break;
2072 }
2073 }
2074
2075 /*
2076 * Get the actual number of allocated fibs
2077 */
2078 num = hw_fib_p - hw_fib_pool;
2079 return num;
2080 }
2081
2082 static void wakeup_fibctx_threads(struct aac_dev *dev,
2083 struct hw_fib **hw_fib_pool,
2084 struct fib **fib_pool,
2085 struct fib *fib,
2086 struct hw_fib *hw_fib,
2087 unsigned int num)
2088 {
2089 unsigned long flagv;
2090 struct list_head *entry;
2091 struct hw_fib **hw_fib_p;
2092 struct fib **fib_p;
2093 u32 time_now, time_last;
2094 struct hw_fib *hw_newfib;
2095 struct fib *newfib;
2096 struct aac_fib_context *fibctx;
2097
2098 time_now = jiffies/HZ;
2099 spin_lock_irqsave(&dev->fib_lock, flagv);
2100 entry = dev->fib_list.next;
2101 /*
2102 * For each Context that is on the
2103 * fibctxList, make a copy of the
2104 * fib, and then set the event to wake up the
2105 * thread that is waiting for it.
2106 */
2107
2108 hw_fib_p = hw_fib_pool;
2109 fib_p = fib_pool;
2110 while (entry != &dev->fib_list) {
2111 /*
2112 * Extract the fibctx
2113 */
2114 fibctx = list_entry(entry, struct aac_fib_context,
2115 next);
2116 /*
2117 * Check if the queue is getting
2118 * backlogged
2119 */
2120 if (fibctx->count > 20) {
2121 /*
2122 * It's *not* jiffies folks,
2123 * but jiffies / HZ so do not
2124 * panic ...
2125 */
2126 time_last = fibctx->jiffies;
2127 /*
2128 * Has it been > 2 minutes
2129 * since the last read off
2130 * the queue?
2131 */
2132 if ((time_now - time_last) > aif_timeout) {
2133 entry = entry->next;
2134 aac_close_fib_context(dev, fibctx);
2135 continue;
2136 }
2137 }
2138 /*
2139 * Warning: no sleep allowed while
2140 * holding spinlock
2141 */
2142 if (hw_fib_p >= &hw_fib_pool[num]) {
2143 pr_warn("aifd: didn't allocate NewFib\n");
2144 entry = entry->next;
2145 continue;
2146 }
2147
2148 hw_newfib = *hw_fib_p;
2149 *(hw_fib_p++) = NULL;
2150 newfib = *fib_p;
2151 *(fib_p++) = NULL;
2152 /*
2153 * Make the copy of the FIB
2154 */
2155 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2156 memcpy(newfib, fib, sizeof(struct fib));
2157 newfib->hw_fib_va = hw_newfib;
2158 /*
2159 * Put the FIB onto the
2160 * fibctx's fibs
2161 */
2162 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2163 fibctx->count++;
2164 /*
2165 * Set the event to wake up the
2166 * thread that is waiting.
2167 */
2168 up(&fibctx->wait_sem);
2169
2170 entry = entry->next;
2171 }
2172 /*
2173 * Set the status of this FIB
2174 */
2175 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2176 aac_fib_adapter_complete(fib, sizeof(u32));
2177 spin_unlock_irqrestore(&dev->fib_lock, flagv);
2178
2179 }
2180
2181 static void aac_process_events(struct aac_dev *dev)
2182 {
2183 struct hw_fib *hw_fib;
2184 struct fib *fib;
2185 unsigned long flags;
2186 spinlock_t *t_lock;
2187
2188 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2189 spin_lock_irqsave(t_lock, flags);
2190
2191 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2192 struct list_head *entry;
2193 struct aac_aifcmd *aifcmd;
2194 unsigned int num;
2195 struct hw_fib **hw_fib_pool, **hw_fib_p;
2196 struct fib **fib_pool, **fib_p;
2197
2198 set_current_state(TASK_RUNNING);
2199
2200 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2201 list_del(entry);
2202
2203 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2204 spin_unlock_irqrestore(t_lock, flags);
2205
2206 fib = list_entry(entry, struct fib, fiblink);
2207 hw_fib = fib->hw_fib_va;
2208 if (dev->sa_firmware) {
2209 /* Thor AIF */
2210 aac_handle_sa_aif(dev, fib);
2211 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2212 goto free_fib;
2213 }
2214 /*
2215 * We will process the FIB here or pass it to a
2216 * worker thread that is TBD. We Really can't
2217 * do anything at this point since we don't have
2218 * anything defined for this thread to do.
2219 */
2220 memset(fib, 0, sizeof(struct fib));
2221 fib->type = FSAFS_NTC_FIB_CONTEXT;
2222 fib->size = sizeof(struct fib);
2223 fib->hw_fib_va = hw_fib;
2224 fib->data = hw_fib->data;
2225 fib->dev = dev;
2226 /*
2227 * We only handle AifRequest fibs from the adapter.
2228 */
2229
2230 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2231 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2232 /* Handle Driver Notify Events */
2233 aac_handle_aif(dev, fib);
2234 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2235 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2236 goto free_fib;
2237 }
2238 /*
2239 * The u32 here is important and intended. We are using
2240 * 32bit wrapping time to fit the adapter field
2241 */
2242
2243 /* Sniff events */
2244 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2245 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2246 aac_handle_aif(dev, fib);
2247 }
2248
2249 /*
2250 * get number of fibs to process
2251 */
2252 num = get_fib_count(dev);
2253 if (!num)
2254 goto free_fib;
2255
2256 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2257 GFP_KERNEL);
2258 if (!hw_fib_pool)
2259 goto free_fib;
2260
2261 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2262 if (!fib_pool)
2263 goto free_hw_fib_pool;
2264
2265 /*
2266 * Fill up fib pointer pools with actual fibs
2267 * and hw_fibs
2268 */
2269 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2270 if (!num)
2271 goto free_mem;
2272
2273 /*
2274 * wakeup the thread that is waiting for
2275 * the response from fw (ioctl)
2276 */
2277 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2278 fib, hw_fib, num);
2279
2280 free_mem:
2281 /* Free up the remaining resources */
2282 hw_fib_p = hw_fib_pool;
2283 fib_p = fib_pool;
2284 while (hw_fib_p < &hw_fib_pool[num]) {
2285 kfree(*hw_fib_p);
2286 kfree(*fib_p);
2287 ++fib_p;
2288 ++hw_fib_p;
2289 }
2290 kfree(fib_pool);
2291 free_hw_fib_pool:
2292 kfree(hw_fib_pool);
2293 free_fib:
2294 kfree(fib);
2295 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2296 spin_lock_irqsave(t_lock, flags);
2297 }
2298 /*
2299 * There are no more AIF's
2300 */
2301 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2302 spin_unlock_irqrestore(t_lock, flags);
2303 }
2304
2305 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2306 u32 datasize)
2307 {
2308 struct aac_srb *srbcmd;
2309 struct sgmap64 *sg64;
2310 dma_addr_t addr;
2311 char *dma_buf;
2312 struct fib *fibptr;
2313 int ret = -ENOMEM;
2314 u32 vbus, vid;
2315
2316 fibptr = aac_fib_alloc(dev);
2317 if (!fibptr)
2318 goto out;
2319
2320 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2321 GFP_KERNEL);
2322 if (!dma_buf)
2323 goto fib_free_out;
2324
2325 aac_fib_init(fibptr);
2326
2327 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2328 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2329
2330 srbcmd = (struct aac_srb *)fib_data(fibptr);
2331
2332 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2333 srbcmd->channel = cpu_to_le32(vbus);
2334 srbcmd->id = cpu_to_le32(vid);
2335 srbcmd->lun = 0;
2336 srbcmd->flags = cpu_to_le32(SRB_DataOut);
2337 srbcmd->timeout = cpu_to_le32(10);
2338 srbcmd->retry_limit = 0;
2339 srbcmd->cdb_size = cpu_to_le32(12);
2340 srbcmd->count = cpu_to_le32(datasize);
2341
2342 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2343 srbcmd->cdb[0] = BMIC_OUT;
2344 srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2345 memcpy(dma_buf, (char *)wellness_str, datasize);
2346
2347 sg64 = (struct sgmap64 *)&srbcmd->sg;
2348 sg64->count = cpu_to_le32(1);
2349 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2350 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2351 sg64->sg[0].count = cpu_to_le32(datasize);
2352
2353 ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2354 FsaNormal, 1, 1, NULL, NULL);
2355
2356 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2357
2358 /*
2359 * Do not set XferState to zero unless
2360 * receives a response from F/W
2361 */
2362 if (ret >= 0)
2363 aac_fib_complete(fibptr);
2364
2365 /*
2366 * FIB should be freed only after
2367 * getting the response from the F/W
2368 */
2369 if (ret != -ERESTARTSYS)
2370 goto fib_free_out;
2371
2372 out:
2373 return ret;
2374 fib_free_out:
2375 aac_fib_free(fibptr);
2376 goto out;
2377 }
2378
2379 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2380 {
2381 struct tm cur_tm;
2382 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2383 u32 datasize = sizeof(wellness_str);
2384 time64_t local_time;
2385 int ret = -ENODEV;
2386
2387 if (!dev->sa_firmware)
2388 goto out;
2389
2390 local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2391 time64_to_tm(local_time, 0, &cur_tm);
2392 cur_tm.tm_mon += 1;
2393 cur_tm.tm_year += 1900;
2394 wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2395 wellness_str[9] = bin2bcd(cur_tm.tm_min);
2396 wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2397 wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2398 wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2399 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2400 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2401
2402 ret = aac_send_wellness_command(dev, wellness_str, datasize);
2403
2404 out:
2405 return ret;
2406 }
2407
2408 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2409 {
2410 int ret = -ENOMEM;
2411 struct fib *fibptr;
2412 __le32 *info;
2413
2414 fibptr = aac_fib_alloc(dev);
2415 if (!fibptr)
2416 goto out;
2417
2418 aac_fib_init(fibptr);
2419 info = (__le32 *)fib_data(fibptr);
2420 *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2421 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2422 1, 1, NULL, NULL);
2423
2424 /*
2425 * Do not set XferState to zero unless
2426 * receives a response from F/W
2427 */
2428 if (ret >= 0)
2429 aac_fib_complete(fibptr);
2430
2431 /*
2432 * FIB should be freed only after
2433 * getting the response from the F/W
2434 */
2435 if (ret != -ERESTARTSYS)
2436 aac_fib_free(fibptr);
2437
2438 out:
2439 return ret;
2440 }
2441
2442 /**
2443 * aac_command_thread - command processing thread
2444 * @dev: Adapter to monitor
2445 *
2446 * Waits on the commandready event in it's queue. When the event gets set
2447 * it will pull FIBs off it's queue. It will continue to pull FIBs off
2448 * until the queue is empty. When the queue is empty it will wait for
2449 * more FIBs.
2450 */
2451
2452 int aac_command_thread(void *data)
2453 {
2454 struct aac_dev *dev = data;
2455 DECLARE_WAITQUEUE(wait, current);
2456 unsigned long next_jiffies = jiffies + HZ;
2457 unsigned long next_check_jiffies = next_jiffies;
2458 long difference = HZ;
2459
2460 /*
2461 * We can only have one thread per adapter for AIF's.
2462 */
2463 if (dev->aif_thread)
2464 return -EINVAL;
2465
2466 /*
2467 * Let the DPC know it has a place to send the AIF's to.
2468 */
2469 dev->aif_thread = 1;
2470 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2471 set_current_state(TASK_INTERRUPTIBLE);
2472 dprintk ((KERN_INFO "aac_command_thread start\n"));
2473 while (1) {
2474
2475 aac_process_events(dev);
2476
2477 /*
2478 * Background activity
2479 */
2480 if ((time_before(next_check_jiffies,next_jiffies))
2481 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2482 next_check_jiffies = next_jiffies;
2483 if (aac_adapter_check_health(dev) == 0) {
2484 difference = ((long)(unsigned)check_interval)
2485 * HZ;
2486 next_check_jiffies = jiffies + difference;
2487 } else if (!dev->queues)
2488 break;
2489 }
2490 if (!time_before(next_check_jiffies,next_jiffies)
2491 && ((difference = next_jiffies - jiffies) <= 0)) {
2492 struct timespec64 now;
2493 int ret;
2494
2495 /* Don't even try to talk to adapter if its sick */
2496 ret = aac_adapter_check_health(dev);
2497 if (ret || !dev->queues)
2498 break;
2499 next_check_jiffies = jiffies
2500 + ((long)(unsigned)check_interval)
2501 * HZ;
2502 ktime_get_real_ts64(&now);
2503
2504 /* Synchronize our watches */
2505 if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2506 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2507 difference = HZ + HZ / 2 -
2508 now.tv_nsec / (NSEC_PER_SEC / HZ);
2509 else {
2510 if (now.tv_nsec > NSEC_PER_SEC / 2)
2511 ++now.tv_sec;
2512
2513 if (dev->sa_firmware)
2514 ret =
2515 aac_send_safw_hostttime(dev, &now);
2516 else
2517 ret = aac_send_hosttime(dev, &now);
2518
2519 difference = (long)(unsigned)update_interval*HZ;
2520 }
2521 next_jiffies = jiffies + difference;
2522 if (time_before(next_check_jiffies,next_jiffies))
2523 difference = next_check_jiffies - jiffies;
2524 }
2525 if (difference <= 0)
2526 difference = 1;
2527 set_current_state(TASK_INTERRUPTIBLE);
2528
2529 if (kthread_should_stop())
2530 break;
2531
2532 /*
2533 * we probably want usleep_range() here instead of the
2534 * jiffies computation
2535 */
2536 schedule_timeout(difference);
2537
2538 if (kthread_should_stop())
2539 break;
2540 }
2541 if (dev->queues)
2542 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2543 dev->aif_thread = 0;
2544 return 0;
2545 }
2546
2547 int aac_acquire_irq(struct aac_dev *dev)
2548 {
2549 int i;
2550 int j;
2551 int ret = 0;
2552
2553 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2554 for (i = 0; i < dev->max_msix; i++) {
2555 dev->aac_msix[i].vector_no = i;
2556 dev->aac_msix[i].dev = dev;
2557 if (request_irq(pci_irq_vector(dev->pdev, i),
2558 dev->a_ops.adapter_intr,
2559 0, "aacraid", &(dev->aac_msix[i]))) {
2560 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2561 dev->name, dev->id, i);
2562 for (j = 0 ; j < i ; j++)
2563 free_irq(pci_irq_vector(dev->pdev, j),
2564 &(dev->aac_msix[j]));
2565 pci_disable_msix(dev->pdev);
2566 ret = -1;
2567 }
2568 }
2569 } else {
2570 dev->aac_msix[0].vector_no = 0;
2571 dev->aac_msix[0].dev = dev;
2572
2573 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2574 IRQF_SHARED, "aacraid",
2575 &(dev->aac_msix[0])) < 0) {
2576 if (dev->msi)
2577 pci_disable_msi(dev->pdev);
2578 printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2579 dev->name, dev->id);
2580 ret = -1;
2581 }
2582 }
2583 return ret;
2584 }
2585
2586 void aac_free_irq(struct aac_dev *dev)
2587 {
2588 int i;
2589 int cpu;
2590
2591 cpu = cpumask_first(cpu_online_mask);
2592 if (aac_is_src(dev)) {
2593 if (dev->max_msix > 1) {
2594 for (i = 0; i < dev->max_msix; i++)
2595 free_irq(pci_irq_vector(dev->pdev, i),
2596 &(dev->aac_msix[i]));
2597 } else {
2598 free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2599 }
2600 } else {
2601 free_irq(dev->pdev->irq, dev);
2602 }
2603 if (dev->msi)
2604 pci_disable_msi(dev->pdev);
2605 else if (dev->max_msix > 1)
2606 pci_disable_msix(dev->pdev);
2607 }