]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/scsi/aacraid/commsup.c
Pull video into release branch
[mirror_ubuntu-zesty-kernel.git] / drivers / scsi / aacraid / commsup.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 * Module Name:
25 * commsup.c
26 *
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 * communication.
29 *
30 */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
49
50 #include "aacraid.h"
51
52 /**
53 * fib_map_alloc - allocate the fib objects
54 * @dev: Adapter to allocate for
55 *
56 * Allocate and map the shared PCI space for the FIB blocks used to
57 * talk to the Adaptec firmware.
58 */
59
60 static int fib_map_alloc(struct aac_dev *dev)
61 {
62 dprintk((KERN_INFO
63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68 &dev->hw_fib_pa))==NULL)
69 return -ENOMEM;
70 return 0;
71 }
72
73 /**
74 * aac_fib_map_free - free the fib objects
75 * @dev: Adapter to free
76 *
77 * Free the PCI mappings and the memory allocated for FIB blocks
78 * on this adapter.
79 */
80
81 void aac_fib_map_free(struct aac_dev *dev)
82 {
83 pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
84 }
85
86 /**
87 * aac_fib_setup - setup the fibs
88 * @dev: Adapter to set up
89 *
90 * Allocate the PCI space for the fibs, map it and then intialise the
91 * fib area, the unmapped fib data and also the free list
92 */
93
94 int aac_fib_setup(struct aac_dev * dev)
95 {
96 struct fib *fibptr;
97 struct hw_fib *hw_fib;
98 dma_addr_t hw_fib_pa;
99 int i;
100
101 while (((i = fib_map_alloc(dev)) == -ENOMEM)
102 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
103 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
104 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
105 }
106 if (i<0)
107 return -ENOMEM;
108
109 hw_fib = dev->hw_fib_va;
110 hw_fib_pa = dev->hw_fib_pa;
111 memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
112 /*
113 * Initialise the fibs
114 */
115 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
116 {
117 fibptr->dev = dev;
118 fibptr->hw_fib_va = hw_fib;
119 fibptr->data = (void *) fibptr->hw_fib_va->data;
120 fibptr->next = fibptr+1; /* Forward chain the fibs */
121 init_MUTEX_LOCKED(&fibptr->event_wait);
122 spin_lock_init(&fibptr->event_lock);
123 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
124 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
125 fibptr->hw_fib_pa = hw_fib_pa;
126 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
127 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
128 }
129 /*
130 * Add the fib chain to the free list
131 */
132 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
133 /*
134 * Enable this to debug out of queue space
135 */
136 dev->free_fib = &dev->fibs[0];
137 return 0;
138 }
139
140 /**
141 * aac_fib_alloc - allocate a fib
142 * @dev: Adapter to allocate the fib for
143 *
144 * Allocate a fib from the adapter fib pool. If the pool is empty we
145 * return NULL.
146 */
147
148 struct fib *aac_fib_alloc(struct aac_dev *dev)
149 {
150 struct fib * fibptr;
151 unsigned long flags;
152 spin_lock_irqsave(&dev->fib_lock, flags);
153 fibptr = dev->free_fib;
154 if(!fibptr){
155 spin_unlock_irqrestore(&dev->fib_lock, flags);
156 return fibptr;
157 }
158 dev->free_fib = fibptr->next;
159 spin_unlock_irqrestore(&dev->fib_lock, flags);
160 /*
161 * Set the proper node type code and node byte size
162 */
163 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
164 fibptr->size = sizeof(struct fib);
165 /*
166 * Null out fields that depend on being zero at the start of
167 * each I/O
168 */
169 fibptr->hw_fib_va->header.XferState = 0;
170 fibptr->callback = NULL;
171 fibptr->callback_data = NULL;
172
173 return fibptr;
174 }
175
176 /**
177 * aac_fib_free - free a fib
178 * @fibptr: fib to free up
179 *
180 * Frees up a fib and places it on the appropriate queue
181 */
182
183 void aac_fib_free(struct fib *fibptr)
184 {
185 unsigned long flags;
186
187 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
188 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
189 aac_config.fib_timeouts++;
190 if (fibptr->hw_fib_va->header.XferState != 0) {
191 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
192 (void*)fibptr,
193 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
194 }
195 fibptr->next = fibptr->dev->free_fib;
196 fibptr->dev->free_fib = fibptr;
197 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
198 }
199
200 /**
201 * aac_fib_init - initialise a fib
202 * @fibptr: The fib to initialize
203 *
204 * Set up the generic fib fields ready for use
205 */
206
207 void aac_fib_init(struct fib *fibptr)
208 {
209 struct hw_fib *hw_fib = fibptr->hw_fib_va;
210
211 hw_fib->header.StructType = FIB_MAGIC;
212 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
213 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
214 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
215 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
216 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
217 }
218
219 /**
220 * fib_deallocate - deallocate a fib
221 * @fibptr: fib to deallocate
222 *
223 * Will deallocate and return to the free pool the FIB pointed to by the
224 * caller.
225 */
226
227 static void fib_dealloc(struct fib * fibptr)
228 {
229 struct hw_fib *hw_fib = fibptr->hw_fib_va;
230 BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
231 hw_fib->header.XferState = 0;
232 }
233
234 /*
235 * Commuication primitives define and support the queuing method we use to
236 * support host to adapter commuication. All queue accesses happen through
237 * these routines and are the only routines which have a knowledge of the
238 * how these queues are implemented.
239 */
240
241 /**
242 * aac_get_entry - get a queue entry
243 * @dev: Adapter
244 * @qid: Queue Number
245 * @entry: Entry return
246 * @index: Index return
247 * @nonotify: notification control
248 *
249 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
250 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
251 * returned.
252 */
253
254 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
255 {
256 struct aac_queue * q;
257 unsigned long idx;
258
259 /*
260 * All of the queues wrap when they reach the end, so we check
261 * to see if they have reached the end and if they have we just
262 * set the index back to zero. This is a wrap. You could or off
263 * the high bits in all updates but this is a bit faster I think.
264 */
265
266 q = &dev->queues->queue[qid];
267
268 idx = *index = le32_to_cpu(*(q->headers.producer));
269 /* Interrupt Moderation, only interrupt for first two entries */
270 if (idx != le32_to_cpu(*(q->headers.consumer))) {
271 if (--idx == 0) {
272 if (qid == AdapNormCmdQueue)
273 idx = ADAP_NORM_CMD_ENTRIES;
274 else
275 idx = ADAP_NORM_RESP_ENTRIES;
276 }
277 if (idx != le32_to_cpu(*(q->headers.consumer)))
278 *nonotify = 1;
279 }
280
281 if (qid == AdapNormCmdQueue) {
282 if (*index >= ADAP_NORM_CMD_ENTRIES)
283 *index = 0; /* Wrap to front of the Producer Queue. */
284 } else {
285 if (*index >= ADAP_NORM_RESP_ENTRIES)
286 *index = 0; /* Wrap to front of the Producer Queue. */
287 }
288
289 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
290 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
291 qid, q->numpending);
292 return 0;
293 } else {
294 *entry = q->base + *index;
295 return 1;
296 }
297 }
298
299 /**
300 * aac_queue_get - get the next free QE
301 * @dev: Adapter
302 * @index: Returned index
303 * @priority: Priority of fib
304 * @fib: Fib to associate with the queue entry
305 * @wait: Wait if queue full
306 * @fibptr: Driver fib object to go with fib
307 * @nonotify: Don't notify the adapter
308 *
309 * Gets the next free QE off the requested priorty adapter command
310 * queue and associates the Fib with the QE. The QE represented by
311 * index is ready to insert on the queue when this routine returns
312 * success.
313 */
314
315 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
316 {
317 struct aac_entry * entry = NULL;
318 int map = 0;
319
320 if (qid == AdapNormCmdQueue) {
321 /* if no entries wait for some if caller wants to */
322 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
323 {
324 printk(KERN_ERR "GetEntries failed\n");
325 }
326 /*
327 * Setup queue entry with a command, status and fib mapped
328 */
329 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
330 map = 1;
331 } else {
332 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
333 {
334 /* if no entries wait for some if caller wants to */
335 }
336 /*
337 * Setup queue entry with command, status and fib mapped
338 */
339 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
340 entry->addr = hw_fib->header.SenderFibAddress;
341 /* Restore adapters pointer to the FIB */
342 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
343 map = 0;
344 }
345 /*
346 * If MapFib is true than we need to map the Fib and put pointers
347 * in the queue entry.
348 */
349 if (map)
350 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
351 return 0;
352 }
353
354 /*
355 * Define the highest level of host to adapter communication routines.
356 * These routines will support host to adapter FS commuication. These
357 * routines have no knowledge of the commuication method used. This level
358 * sends and receives FIBs. This level has no knowledge of how these FIBs
359 * get passed back and forth.
360 */
361
362 /**
363 * aac_fib_send - send a fib to the adapter
364 * @command: Command to send
365 * @fibptr: The fib
366 * @size: Size of fib data area
367 * @priority: Priority of Fib
368 * @wait: Async/sync select
369 * @reply: True if a reply is wanted
370 * @callback: Called with reply
371 * @callback_data: Passed to callback
372 *
373 * Sends the requested FIB to the adapter and optionally will wait for a
374 * response FIB. If the caller does not wish to wait for a response than
375 * an event to wait on must be supplied. This event will be set when a
376 * response FIB is received from the adapter.
377 */
378
379 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
380 int priority, int wait, int reply, fib_callback callback,
381 void *callback_data)
382 {
383 struct aac_dev * dev = fibptr->dev;
384 struct hw_fib * hw_fib = fibptr->hw_fib_va;
385 unsigned long flags = 0;
386 unsigned long qflags;
387
388 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
389 return -EBUSY;
390 /*
391 * There are 5 cases with the wait and reponse requested flags.
392 * The only invalid cases are if the caller requests to wait and
393 * does not request a response and if the caller does not want a
394 * response and the Fib is not allocated from pool. If a response
395 * is not requesed the Fib will just be deallocaed by the DPC
396 * routine when the response comes back from the adapter. No
397 * further processing will be done besides deleting the Fib. We
398 * will have a debug mode where the adapter can notify the host
399 * it had a problem and the host can log that fact.
400 */
401 if (wait && !reply) {
402 return -EINVAL;
403 } else if (!wait && reply) {
404 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
405 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
406 } else if (!wait && !reply) {
407 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
408 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
409 } else if (wait && reply) {
410 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
411 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
412 }
413 /*
414 * Map the fib into 32bits by using the fib number
415 */
416
417 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
418 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
419 /*
420 * Set FIB state to indicate where it came from and if we want a
421 * response from the adapter. Also load the command from the
422 * caller.
423 *
424 * Map the hw fib pointer as a 32bit value
425 */
426 hw_fib->header.Command = cpu_to_le16(command);
427 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
428 fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/
429 /*
430 * Set the size of the Fib we want to send to the adapter
431 */
432 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
433 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
434 return -EMSGSIZE;
435 }
436 /*
437 * Get a queue entry connect the FIB to it and send an notify
438 * the adapter a command is ready.
439 */
440 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
441
442 /*
443 * Fill in the Callback and CallbackContext if we are not
444 * going to wait.
445 */
446 if (!wait) {
447 fibptr->callback = callback;
448 fibptr->callback_data = callback_data;
449 }
450
451 fibptr->done = 0;
452 fibptr->flags = 0;
453
454 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
455
456 dprintk((KERN_DEBUG "Fib contents:.\n"));
457 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
458 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
459 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
460 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
461 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
462 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
463
464 if (!dev->queues)
465 return -EBUSY;
466
467 if(wait)
468 spin_lock_irqsave(&fibptr->event_lock, flags);
469 aac_adapter_deliver(fibptr);
470
471 /*
472 * If the caller wanted us to wait for response wait now.
473 */
474
475 if (wait) {
476 spin_unlock_irqrestore(&fibptr->event_lock, flags);
477 /* Only set for first known interruptable command */
478 if (wait < 0) {
479 /*
480 * *VERY* Dangerous to time out a command, the
481 * assumption is made that we have no hope of
482 * functioning because an interrupt routing or other
483 * hardware failure has occurred.
484 */
485 unsigned long count = 36000000L; /* 3 minutes */
486 while (down_trylock(&fibptr->event_wait)) {
487 int blink;
488 if (--count == 0) {
489 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
490 spin_lock_irqsave(q->lock, qflags);
491 q->numpending--;
492 spin_unlock_irqrestore(q->lock, qflags);
493 if (wait == -1) {
494 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
495 "Usually a result of a PCI interrupt routing problem;\n"
496 "update mother board BIOS or consider utilizing one of\n"
497 "the SAFE mode kernel options (acpi, apic etc)\n");
498 }
499 return -ETIMEDOUT;
500 }
501 if ((blink = aac_adapter_check_health(dev)) > 0) {
502 if (wait == -1) {
503 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
504 "Usually a result of a serious unrecoverable hardware problem\n",
505 blink);
506 }
507 return -EFAULT;
508 }
509 udelay(5);
510 }
511 } else
512 (void)down_interruptible(&fibptr->event_wait);
513 spin_lock_irqsave(&fibptr->event_lock, flags);
514 if (fibptr->done == 0) {
515 fibptr->done = 2; /* Tell interrupt we aborted */
516 spin_unlock_irqrestore(&fibptr->event_lock, flags);
517 return -EINTR;
518 }
519 spin_unlock_irqrestore(&fibptr->event_lock, flags);
520 BUG_ON(fibptr->done == 0);
521
522 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
523 return -ETIMEDOUT;
524 return 0;
525 }
526 /*
527 * If the user does not want a response than return success otherwise
528 * return pending
529 */
530 if (reply)
531 return -EINPROGRESS;
532 else
533 return 0;
534 }
535
536 /**
537 * aac_consumer_get - get the top of the queue
538 * @dev: Adapter
539 * @q: Queue
540 * @entry: Return entry
541 *
542 * Will return a pointer to the entry on the top of the queue requested that
543 * we are a consumer of, and return the address of the queue entry. It does
544 * not change the state of the queue.
545 */
546
547 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
548 {
549 u32 index;
550 int status;
551 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
552 status = 0;
553 } else {
554 /*
555 * The consumer index must be wrapped if we have reached
556 * the end of the queue, else we just use the entry
557 * pointed to by the header index
558 */
559 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
560 index = 0;
561 else
562 index = le32_to_cpu(*q->headers.consumer);
563 *entry = q->base + index;
564 status = 1;
565 }
566 return(status);
567 }
568
569 /**
570 * aac_consumer_free - free consumer entry
571 * @dev: Adapter
572 * @q: Queue
573 * @qid: Queue ident
574 *
575 * Frees up the current top of the queue we are a consumer of. If the
576 * queue was full notify the producer that the queue is no longer full.
577 */
578
579 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
580 {
581 int wasfull = 0;
582 u32 notify;
583
584 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
585 wasfull = 1;
586
587 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
588 *q->headers.consumer = cpu_to_le32(1);
589 else
590 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
591
592 if (wasfull) {
593 switch (qid) {
594
595 case HostNormCmdQueue:
596 notify = HostNormCmdNotFull;
597 break;
598 case HostNormRespQueue:
599 notify = HostNormRespNotFull;
600 break;
601 default:
602 BUG();
603 return;
604 }
605 aac_adapter_notify(dev, notify);
606 }
607 }
608
609 /**
610 * aac_fib_adapter_complete - complete adapter issued fib
611 * @fibptr: fib to complete
612 * @size: size of fib
613 *
614 * Will do all necessary work to complete a FIB that was sent from
615 * the adapter.
616 */
617
618 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
619 {
620 struct hw_fib * hw_fib = fibptr->hw_fib_va;
621 struct aac_dev * dev = fibptr->dev;
622 struct aac_queue * q;
623 unsigned long nointr = 0;
624 unsigned long qflags;
625
626 if (hw_fib->header.XferState == 0) {
627 if (dev->comm_interface == AAC_COMM_MESSAGE)
628 kfree (hw_fib);
629 return 0;
630 }
631 /*
632 * If we plan to do anything check the structure type first.
633 */
634 if ( hw_fib->header.StructType != FIB_MAGIC ) {
635 if (dev->comm_interface == AAC_COMM_MESSAGE)
636 kfree (hw_fib);
637 return -EINVAL;
638 }
639 /*
640 * This block handles the case where the adapter had sent us a
641 * command and we have finished processing the command. We
642 * call completeFib when we are done processing the command
643 * and want to send a response back to the adapter. This will
644 * send the completed cdb to the adapter.
645 */
646 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
647 if (dev->comm_interface == AAC_COMM_MESSAGE) {
648 kfree (hw_fib);
649 } else {
650 u32 index;
651 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
652 if (size) {
653 size += sizeof(struct aac_fibhdr);
654 if (size > le16_to_cpu(hw_fib->header.SenderSize))
655 return -EMSGSIZE;
656 hw_fib->header.Size = cpu_to_le16(size);
657 }
658 q = &dev->queues->queue[AdapNormRespQueue];
659 spin_lock_irqsave(q->lock, qflags);
660 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
661 *(q->headers.producer) = cpu_to_le32(index + 1);
662 spin_unlock_irqrestore(q->lock, qflags);
663 if (!(nointr & (int)aac_config.irq_mod))
664 aac_adapter_notify(dev, AdapNormRespQueue);
665 }
666 }
667 else
668 {
669 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
670 BUG();
671 }
672 return 0;
673 }
674
675 /**
676 * aac_fib_complete - fib completion handler
677 * @fib: FIB to complete
678 *
679 * Will do all necessary work to complete a FIB.
680 */
681
682 int aac_fib_complete(struct fib *fibptr)
683 {
684 struct hw_fib * hw_fib = fibptr->hw_fib_va;
685
686 /*
687 * Check for a fib which has already been completed
688 */
689
690 if (hw_fib->header.XferState == 0)
691 return 0;
692 /*
693 * If we plan to do anything check the structure type first.
694 */
695
696 if (hw_fib->header.StructType != FIB_MAGIC)
697 return -EINVAL;
698 /*
699 * This block completes a cdb which orginated on the host and we
700 * just need to deallocate the cdb or reinit it. At this point the
701 * command is complete that we had sent to the adapter and this
702 * cdb could be reused.
703 */
704 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
705 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
706 {
707 fib_dealloc(fibptr);
708 }
709 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
710 {
711 /*
712 * This handles the case when the host has aborted the I/O
713 * to the adapter because the adapter is not responding
714 */
715 fib_dealloc(fibptr);
716 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
717 fib_dealloc(fibptr);
718 } else {
719 BUG();
720 }
721 return 0;
722 }
723
724 /**
725 * aac_printf - handle printf from firmware
726 * @dev: Adapter
727 * @val: Message info
728 *
729 * Print a message passed to us by the controller firmware on the
730 * Adaptec board
731 */
732
733 void aac_printf(struct aac_dev *dev, u32 val)
734 {
735 char *cp = dev->printfbuf;
736 if (dev->printf_enabled)
737 {
738 int length = val & 0xffff;
739 int level = (val >> 16) & 0xffff;
740
741 /*
742 * The size of the printfbuf is set in port.c
743 * There is no variable or define for it
744 */
745 if (length > 255)
746 length = 255;
747 if (cp[length] != 0)
748 cp[length] = 0;
749 if (level == LOG_AAC_HIGH_ERROR)
750 printk(KERN_WARNING "%s:%s", dev->name, cp);
751 else
752 printk(KERN_INFO "%s:%s", dev->name, cp);
753 }
754 memset(cp, 0, 256);
755 }
756
757
758 /**
759 * aac_handle_aif - Handle a message from the firmware
760 * @dev: Which adapter this fib is from
761 * @fibptr: Pointer to fibptr from adapter
762 *
763 * This routine handles a driver notify fib from the adapter and
764 * dispatches it to the appropriate routine for handling.
765 */
766
767 #define AIF_SNIFF_TIMEOUT (30*HZ)
768 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
769 {
770 struct hw_fib * hw_fib = fibptr->hw_fib_va;
771 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
772 u32 container;
773 struct scsi_device *device;
774 enum {
775 NOTHING,
776 DELETE,
777 ADD,
778 CHANGE
779 } device_config_needed;
780
781 /* Sniff for container changes */
782
783 if (!dev || !dev->fsa_dev)
784 return;
785 container = (u32)-1;
786
787 /*
788 * We have set this up to try and minimize the number of
789 * re-configures that take place. As a result of this when
790 * certain AIF's come in we will set a flag waiting for another
791 * type of AIF before setting the re-config flag.
792 */
793 switch (le32_to_cpu(aifcmd->command)) {
794 case AifCmdDriverNotify:
795 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
796 /*
797 * Morph or Expand complete
798 */
799 case AifDenMorphComplete:
800 case AifDenVolumeExtendComplete:
801 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
802 if (container >= dev->maximum_num_containers)
803 break;
804
805 /*
806 * Find the scsi_device associated with the SCSI
807 * address. Make sure we have the right array, and if
808 * so set the flag to initiate a new re-config once we
809 * see an AifEnConfigChange AIF come through.
810 */
811
812 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
813 device = scsi_device_lookup(dev->scsi_host_ptr,
814 CONTAINER_TO_CHANNEL(container),
815 CONTAINER_TO_ID(container),
816 CONTAINER_TO_LUN(container));
817 if (device) {
818 dev->fsa_dev[container].config_needed = CHANGE;
819 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
820 dev->fsa_dev[container].config_waiting_stamp = jiffies;
821 scsi_device_put(device);
822 }
823 }
824 }
825
826 /*
827 * If we are waiting on something and this happens to be
828 * that thing then set the re-configure flag.
829 */
830 if (container != (u32)-1) {
831 if (container >= dev->maximum_num_containers)
832 break;
833 if ((dev->fsa_dev[container].config_waiting_on ==
834 le32_to_cpu(*(u32 *)aifcmd->data)) &&
835 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
836 dev->fsa_dev[container].config_waiting_on = 0;
837 } else for (container = 0;
838 container < dev->maximum_num_containers; ++container) {
839 if ((dev->fsa_dev[container].config_waiting_on ==
840 le32_to_cpu(*(u32 *)aifcmd->data)) &&
841 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
842 dev->fsa_dev[container].config_waiting_on = 0;
843 }
844 break;
845
846 case AifCmdEventNotify:
847 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
848 /*
849 * Add an Array.
850 */
851 case AifEnAddContainer:
852 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
853 if (container >= dev->maximum_num_containers)
854 break;
855 dev->fsa_dev[container].config_needed = ADD;
856 dev->fsa_dev[container].config_waiting_on =
857 AifEnConfigChange;
858 dev->fsa_dev[container].config_waiting_stamp = jiffies;
859 break;
860
861 /*
862 * Delete an Array.
863 */
864 case AifEnDeleteContainer:
865 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
866 if (container >= dev->maximum_num_containers)
867 break;
868 dev->fsa_dev[container].config_needed = DELETE;
869 dev->fsa_dev[container].config_waiting_on =
870 AifEnConfigChange;
871 dev->fsa_dev[container].config_waiting_stamp = jiffies;
872 break;
873
874 /*
875 * Container change detected. If we currently are not
876 * waiting on something else, setup to wait on a Config Change.
877 */
878 case AifEnContainerChange:
879 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
880 if (container >= dev->maximum_num_containers)
881 break;
882 if (dev->fsa_dev[container].config_waiting_on &&
883 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
884 break;
885 dev->fsa_dev[container].config_needed = CHANGE;
886 dev->fsa_dev[container].config_waiting_on =
887 AifEnConfigChange;
888 dev->fsa_dev[container].config_waiting_stamp = jiffies;
889 break;
890
891 case AifEnConfigChange:
892 break;
893
894 }
895
896 /*
897 * If we are waiting on something and this happens to be
898 * that thing then set the re-configure flag.
899 */
900 if (container != (u32)-1) {
901 if (container >= dev->maximum_num_containers)
902 break;
903 if ((dev->fsa_dev[container].config_waiting_on ==
904 le32_to_cpu(*(u32 *)aifcmd->data)) &&
905 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
906 dev->fsa_dev[container].config_waiting_on = 0;
907 } else for (container = 0;
908 container < dev->maximum_num_containers; ++container) {
909 if ((dev->fsa_dev[container].config_waiting_on ==
910 le32_to_cpu(*(u32 *)aifcmd->data)) &&
911 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
912 dev->fsa_dev[container].config_waiting_on = 0;
913 }
914 break;
915
916 case AifCmdJobProgress:
917 /*
918 * These are job progress AIF's. When a Clear is being
919 * done on a container it is initially created then hidden from
920 * the OS. When the clear completes we don't get a config
921 * change so we monitor the job status complete on a clear then
922 * wait for a container change.
923 */
924
925 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
926 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
927 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
928 for (container = 0;
929 container < dev->maximum_num_containers;
930 ++container) {
931 /*
932 * Stomp on all config sequencing for all
933 * containers?
934 */
935 dev->fsa_dev[container].config_waiting_on =
936 AifEnContainerChange;
937 dev->fsa_dev[container].config_needed = ADD;
938 dev->fsa_dev[container].config_waiting_stamp =
939 jiffies;
940 }
941 }
942 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
943 && (((u32 *)aifcmd->data)[6] == 0)
944 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
945 for (container = 0;
946 container < dev->maximum_num_containers;
947 ++container) {
948 /*
949 * Stomp on all config sequencing for all
950 * containers?
951 */
952 dev->fsa_dev[container].config_waiting_on =
953 AifEnContainerChange;
954 dev->fsa_dev[container].config_needed = DELETE;
955 dev->fsa_dev[container].config_waiting_stamp =
956 jiffies;
957 }
958 }
959 break;
960 }
961
962 device_config_needed = NOTHING;
963 for (container = 0; container < dev->maximum_num_containers;
964 ++container) {
965 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
966 (dev->fsa_dev[container].config_needed != NOTHING) &&
967 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
968 device_config_needed =
969 dev->fsa_dev[container].config_needed;
970 dev->fsa_dev[container].config_needed = NOTHING;
971 break;
972 }
973 }
974 if (device_config_needed == NOTHING)
975 return;
976
977 /*
978 * If we decided that a re-configuration needs to be done,
979 * schedule it here on the way out the door, please close the door
980 * behind you.
981 */
982
983 /*
984 * Find the scsi_device associated with the SCSI address,
985 * and mark it as changed, invalidating the cache. This deals
986 * with changes to existing device IDs.
987 */
988
989 if (!dev || !dev->scsi_host_ptr)
990 return;
991 /*
992 * force reload of disk info via aac_probe_container
993 */
994 if ((device_config_needed == CHANGE)
995 && (dev->fsa_dev[container].valid == 1))
996 dev->fsa_dev[container].valid = 2;
997 if ((device_config_needed == CHANGE) ||
998 (device_config_needed == ADD))
999 aac_probe_container(dev, container);
1000 device = scsi_device_lookup(dev->scsi_host_ptr,
1001 CONTAINER_TO_CHANNEL(container),
1002 CONTAINER_TO_ID(container),
1003 CONTAINER_TO_LUN(container));
1004 if (device) {
1005 switch (device_config_needed) {
1006 case DELETE:
1007 case CHANGE:
1008 scsi_rescan_device(&device->sdev_gendev);
1009
1010 default:
1011 break;
1012 }
1013 scsi_device_put(device);
1014 }
1015 if (device_config_needed == ADD) {
1016 scsi_add_device(dev->scsi_host_ptr,
1017 CONTAINER_TO_CHANNEL(container),
1018 CONTAINER_TO_ID(container),
1019 CONTAINER_TO_LUN(container));
1020 }
1021
1022 }
1023
1024 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1025 {
1026 int index, quirks;
1027 int retval;
1028 struct Scsi_Host *host;
1029 struct scsi_device *dev;
1030 struct scsi_cmnd *command;
1031 struct scsi_cmnd *command_list;
1032 int jafo = 0;
1033
1034 /*
1035 * Assumptions:
1036 * - host is locked, unless called by the aacraid thread.
1037 * (a matter of convenience, due to legacy issues surrounding
1038 * eh_host_adapter_reset).
1039 * - in_reset is asserted, so no new i/o is getting to the
1040 * card.
1041 * - The card is dead, or will be very shortly ;-/ so no new
1042 * commands are completing in the interrupt service.
1043 */
1044 host = aac->scsi_host_ptr;
1045 scsi_block_requests(host);
1046 aac_adapter_disable_int(aac);
1047 if (aac->thread->pid != current->pid) {
1048 spin_unlock_irq(host->host_lock);
1049 kthread_stop(aac->thread);
1050 jafo = 1;
1051 }
1052
1053 /*
1054 * If a positive health, means in a known DEAD PANIC
1055 * state and the adapter could be reset to `try again'.
1056 */
1057 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1058
1059 if (retval)
1060 goto out;
1061
1062 /*
1063 * Loop through the fibs, close the synchronous FIBS
1064 */
1065 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1066 struct fib *fib = &aac->fibs[index];
1067 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1068 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1069 unsigned long flagv;
1070 spin_lock_irqsave(&fib->event_lock, flagv);
1071 up(&fib->event_wait);
1072 spin_unlock_irqrestore(&fib->event_lock, flagv);
1073 schedule();
1074 retval = 0;
1075 }
1076 }
1077 /* Give some extra time for ioctls to complete. */
1078 if (retval == 0)
1079 ssleep(2);
1080 index = aac->cardtype;
1081
1082 /*
1083 * Re-initialize the adapter, first free resources, then carefully
1084 * apply the initialization sequence to come back again. Only risk
1085 * is a change in Firmware dropping cache, it is assumed the caller
1086 * will ensure that i/o is queisced and the card is flushed in that
1087 * case.
1088 */
1089 aac_fib_map_free(aac);
1090 aac->hw_fib_va = NULL;
1091 aac->hw_fib_pa = 0;
1092 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1093 aac->comm_addr = NULL;
1094 aac->comm_phys = 0;
1095 kfree(aac->queues);
1096 aac->queues = NULL;
1097 free_irq(aac->pdev->irq, aac);
1098 kfree(aac->fsa_dev);
1099 aac->fsa_dev = NULL;
1100 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
1101 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1102 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1103 goto out;
1104 } else {
1105 if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) ||
1106 ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL))))
1107 goto out;
1108 }
1109 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1110 goto out;
1111 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
1112 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1113 goto out;
1114 if (jafo) {
1115 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1116 if (IS_ERR(aac->thread)) {
1117 retval = PTR_ERR(aac->thread);
1118 goto out;
1119 }
1120 }
1121 (void)aac_get_adapter_info(aac);
1122 quirks = aac_get_driver_ident(index)->quirks;
1123 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1124 host->sg_tablesize = 34;
1125 host->max_sectors = (host->sg_tablesize * 8) + 112;
1126 }
1127 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1128 host->sg_tablesize = 17;
1129 host->max_sectors = (host->sg_tablesize * 8) + 112;
1130 }
1131 aac_get_config_status(aac, 1);
1132 aac_get_containers(aac);
1133 /*
1134 * This is where the assumption that the Adapter is quiesced
1135 * is important.
1136 */
1137 command_list = NULL;
1138 __shost_for_each_device(dev, host) {
1139 unsigned long flags;
1140 spin_lock_irqsave(&dev->list_lock, flags);
1141 list_for_each_entry(command, &dev->cmd_list, list)
1142 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1143 command->SCp.buffer = (struct scatterlist *)command_list;
1144 command_list = command;
1145 }
1146 spin_unlock_irqrestore(&dev->list_lock, flags);
1147 }
1148 while ((command = command_list)) {
1149 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1150 command->SCp.buffer = NULL;
1151 command->result = DID_OK << 16
1152 | COMMAND_COMPLETE << 8
1153 | SAM_STAT_TASK_SET_FULL;
1154 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1155 command->scsi_done(command);
1156 }
1157 retval = 0;
1158
1159 out:
1160 aac->in_reset = 0;
1161 scsi_unblock_requests(host);
1162 if (jafo) {
1163 spin_lock_irq(host->host_lock);
1164 }
1165 return retval;
1166 }
1167
1168 int aac_reset_adapter(struct aac_dev * aac, int forced)
1169 {
1170 unsigned long flagv = 0;
1171 int retval;
1172 struct Scsi_Host * host;
1173
1174 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1175 return -EBUSY;
1176
1177 if (aac->in_reset) {
1178 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1179 return -EBUSY;
1180 }
1181 aac->in_reset = 1;
1182 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1183
1184 /*
1185 * Wait for all commands to complete to this specific
1186 * target (block maximum 60 seconds). Although not necessary,
1187 * it does make us a good storage citizen.
1188 */
1189 host = aac->scsi_host_ptr;
1190 scsi_block_requests(host);
1191 if (forced < 2) for (retval = 60; retval; --retval) {
1192 struct scsi_device * dev;
1193 struct scsi_cmnd * command;
1194 int active = 0;
1195
1196 __shost_for_each_device(dev, host) {
1197 spin_lock_irqsave(&dev->list_lock, flagv);
1198 list_for_each_entry(command, &dev->cmd_list, list) {
1199 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1200 active++;
1201 break;
1202 }
1203 }
1204 spin_unlock_irqrestore(&dev->list_lock, flagv);
1205 if (active)
1206 break;
1207
1208 }
1209 /*
1210 * We can exit If all the commands are complete
1211 */
1212 if (active == 0)
1213 break;
1214 ssleep(1);
1215 }
1216
1217 /* Quiesce build, flush cache, write through mode */
1218 aac_send_shutdown(aac);
1219 spin_lock_irqsave(host->host_lock, flagv);
1220 retval = _aac_reset_adapter(aac, forced);
1221 spin_unlock_irqrestore(host->host_lock, flagv);
1222
1223 if (retval == -ENODEV) {
1224 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1225 struct fib * fibctx = aac_fib_alloc(aac);
1226 if (fibctx) {
1227 struct aac_pause *cmd;
1228 int status;
1229
1230 aac_fib_init(fibctx);
1231
1232 cmd = (struct aac_pause *) fib_data(fibctx);
1233
1234 cmd->command = cpu_to_le32(VM_ContainerConfig);
1235 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1236 cmd->timeout = cpu_to_le32(1);
1237 cmd->min = cpu_to_le32(1);
1238 cmd->noRescan = cpu_to_le32(1);
1239 cmd->count = cpu_to_le32(0);
1240
1241 status = aac_fib_send(ContainerCommand,
1242 fibctx,
1243 sizeof(struct aac_pause),
1244 FsaNormal,
1245 -2 /* Timeout silently */, 1,
1246 NULL, NULL);
1247
1248 if (status >= 0)
1249 aac_fib_complete(fibctx);
1250 aac_fib_free(fibctx);
1251 }
1252 }
1253
1254 return retval;
1255 }
1256
1257 int aac_check_health(struct aac_dev * aac)
1258 {
1259 int BlinkLED;
1260 unsigned long time_now, flagv = 0;
1261 struct list_head * entry;
1262 struct Scsi_Host * host;
1263
1264 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1265 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1266 return 0;
1267
1268 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1269 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1270 return 0; /* OK */
1271 }
1272
1273 aac->in_reset = 1;
1274
1275 /* Fake up an AIF:
1276 * aac_aifcmd.command = AifCmdEventNotify = 1
1277 * aac_aifcmd.seqnum = 0xFFFFFFFF
1278 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1279 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1280 * aac.aifcmd.data[2] = AifHighPriority = 3
1281 * aac.aifcmd.data[3] = BlinkLED
1282 */
1283
1284 time_now = jiffies/HZ;
1285 entry = aac->fib_list.next;
1286
1287 /*
1288 * For each Context that is on the
1289 * fibctxList, make a copy of the
1290 * fib, and then set the event to wake up the
1291 * thread that is waiting for it.
1292 */
1293 while (entry != &aac->fib_list) {
1294 /*
1295 * Extract the fibctx
1296 */
1297 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1298 struct hw_fib * hw_fib;
1299 struct fib * fib;
1300 /*
1301 * Check if the queue is getting
1302 * backlogged
1303 */
1304 if (fibctx->count > 20) {
1305 /*
1306 * It's *not* jiffies folks,
1307 * but jiffies / HZ, so do not
1308 * panic ...
1309 */
1310 u32 time_last = fibctx->jiffies;
1311 /*
1312 * Has it been > 2 minutes
1313 * since the last read off
1314 * the queue?
1315 */
1316 if ((time_now - time_last) > aif_timeout) {
1317 entry = entry->next;
1318 aac_close_fib_context(aac, fibctx);
1319 continue;
1320 }
1321 }
1322 /*
1323 * Warning: no sleep allowed while
1324 * holding spinlock
1325 */
1326 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1327 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1328 if (fib && hw_fib) {
1329 struct aac_aifcmd * aif;
1330
1331 fib->hw_fib_va = hw_fib;
1332 fib->dev = aac;
1333 aac_fib_init(fib);
1334 fib->type = FSAFS_NTC_FIB_CONTEXT;
1335 fib->size = sizeof (struct fib);
1336 fib->data = hw_fib->data;
1337 aif = (struct aac_aifcmd *)hw_fib->data;
1338 aif->command = cpu_to_le32(AifCmdEventNotify);
1339 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1340 aif->data[0] = cpu_to_le32(AifEnExpEvent);
1341 aif->data[1] = cpu_to_le32(AifExeFirmwarePanic);
1342 aif->data[2] = cpu_to_le32(AifHighPriority);
1343 aif->data[3] = cpu_to_le32(BlinkLED);
1344
1345 /*
1346 * Put the FIB onto the
1347 * fibctx's fibs
1348 */
1349 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1350 fibctx->count++;
1351 /*
1352 * Set the event to wake up the
1353 * thread that will waiting.
1354 */
1355 up(&fibctx->wait_sem);
1356 } else {
1357 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1358 kfree(fib);
1359 kfree(hw_fib);
1360 }
1361 entry = entry->next;
1362 }
1363
1364 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1365
1366 if (BlinkLED < 0) {
1367 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1368 goto out;
1369 }
1370
1371 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1372
1373 if (!check_reset || (aac->supplement_adapter_info.SupportedOptions2 &
1374 le32_to_cpu(AAC_OPTION_IGNORE_RESET)))
1375 goto out;
1376 host = aac->scsi_host_ptr;
1377 if (aac->thread->pid != current->pid)
1378 spin_lock_irqsave(host->host_lock, flagv);
1379 BlinkLED = _aac_reset_adapter(aac, 0);
1380 if (aac->thread->pid != current->pid)
1381 spin_unlock_irqrestore(host->host_lock, flagv);
1382 return BlinkLED;
1383
1384 out:
1385 aac->in_reset = 0;
1386 return BlinkLED;
1387 }
1388
1389
1390 /**
1391 * aac_command_thread - command processing thread
1392 * @dev: Adapter to monitor
1393 *
1394 * Waits on the commandready event in it's queue. When the event gets set
1395 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1396 * until the queue is empty. When the queue is empty it will wait for
1397 * more FIBs.
1398 */
1399
1400 int aac_command_thread(void *data)
1401 {
1402 struct aac_dev *dev = data;
1403 struct hw_fib *hw_fib, *hw_newfib;
1404 struct fib *fib, *newfib;
1405 struct aac_fib_context *fibctx;
1406 unsigned long flags;
1407 DECLARE_WAITQUEUE(wait, current);
1408 unsigned long next_jiffies = jiffies + HZ;
1409 unsigned long next_check_jiffies = next_jiffies;
1410 long difference = HZ;
1411
1412 /*
1413 * We can only have one thread per adapter for AIF's.
1414 */
1415 if (dev->aif_thread)
1416 return -EINVAL;
1417
1418 /*
1419 * Let the DPC know it has a place to send the AIF's to.
1420 */
1421 dev->aif_thread = 1;
1422 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1423 set_current_state(TASK_INTERRUPTIBLE);
1424 dprintk ((KERN_INFO "aac_command_thread start\n"));
1425 while(1)
1426 {
1427 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1428 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1429 struct list_head *entry;
1430 struct aac_aifcmd * aifcmd;
1431
1432 set_current_state(TASK_RUNNING);
1433
1434 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1435 list_del(entry);
1436
1437 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1438 fib = list_entry(entry, struct fib, fiblink);
1439 /*
1440 * We will process the FIB here or pass it to a
1441 * worker thread that is TBD. We Really can't
1442 * do anything at this point since we don't have
1443 * anything defined for this thread to do.
1444 */
1445 hw_fib = fib->hw_fib_va;
1446 memset(fib, 0, sizeof(struct fib));
1447 fib->type = FSAFS_NTC_FIB_CONTEXT;
1448 fib->size = sizeof( struct fib );
1449 fib->hw_fib_va = hw_fib;
1450 fib->data = hw_fib->data;
1451 fib->dev = dev;
1452 /*
1453 * We only handle AifRequest fibs from the adapter.
1454 */
1455 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1456 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1457 /* Handle Driver Notify Events */
1458 aac_handle_aif(dev, fib);
1459 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1460 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1461 } else {
1462 struct list_head *entry;
1463 /* The u32 here is important and intended. We are using
1464 32bit wrapping time to fit the adapter field */
1465
1466 u32 time_now, time_last;
1467 unsigned long flagv;
1468 unsigned num;
1469 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1470 struct fib ** fib_pool, ** fib_p;
1471
1472 /* Sniff events */
1473 if ((aifcmd->command ==
1474 cpu_to_le32(AifCmdEventNotify)) ||
1475 (aifcmd->command ==
1476 cpu_to_le32(AifCmdJobProgress))) {
1477 aac_handle_aif(dev, fib);
1478 }
1479
1480 time_now = jiffies/HZ;
1481
1482 /*
1483 * Warning: no sleep allowed while
1484 * holding spinlock. We take the estimate
1485 * and pre-allocate a set of fibs outside the
1486 * lock.
1487 */
1488 num = le32_to_cpu(dev->init->AdapterFibsSize)
1489 / sizeof(struct hw_fib); /* some extra */
1490 spin_lock_irqsave(&dev->fib_lock, flagv);
1491 entry = dev->fib_list.next;
1492 while (entry != &dev->fib_list) {
1493 entry = entry->next;
1494 ++num;
1495 }
1496 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1497 hw_fib_pool = NULL;
1498 fib_pool = NULL;
1499 if (num
1500 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1501 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1502 hw_fib_p = hw_fib_pool;
1503 fib_p = fib_pool;
1504 while (hw_fib_p < &hw_fib_pool[num]) {
1505 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1506 --hw_fib_p;
1507 break;
1508 }
1509 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1510 kfree(*(--hw_fib_p));
1511 break;
1512 }
1513 }
1514 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1515 kfree(fib_pool);
1516 fib_pool = NULL;
1517 kfree(hw_fib_pool);
1518 hw_fib_pool = NULL;
1519 }
1520 } else {
1521 kfree(hw_fib_pool);
1522 hw_fib_pool = NULL;
1523 }
1524 spin_lock_irqsave(&dev->fib_lock, flagv);
1525 entry = dev->fib_list.next;
1526 /*
1527 * For each Context that is on the
1528 * fibctxList, make a copy of the
1529 * fib, and then set the event to wake up the
1530 * thread that is waiting for it.
1531 */
1532 hw_fib_p = hw_fib_pool;
1533 fib_p = fib_pool;
1534 while (entry != &dev->fib_list) {
1535 /*
1536 * Extract the fibctx
1537 */
1538 fibctx = list_entry(entry, struct aac_fib_context, next);
1539 /*
1540 * Check if the queue is getting
1541 * backlogged
1542 */
1543 if (fibctx->count > 20)
1544 {
1545 /*
1546 * It's *not* jiffies folks,
1547 * but jiffies / HZ so do not
1548 * panic ...
1549 */
1550 time_last = fibctx->jiffies;
1551 /*
1552 * Has it been > 2 minutes
1553 * since the last read off
1554 * the queue?
1555 */
1556 if ((time_now - time_last) > aif_timeout) {
1557 entry = entry->next;
1558 aac_close_fib_context(dev, fibctx);
1559 continue;
1560 }
1561 }
1562 /*
1563 * Warning: no sleep allowed while
1564 * holding spinlock
1565 */
1566 if (hw_fib_p < &hw_fib_pool[num]) {
1567 hw_newfib = *hw_fib_p;
1568 *(hw_fib_p++) = NULL;
1569 newfib = *fib_p;
1570 *(fib_p++) = NULL;
1571 /*
1572 * Make the copy of the FIB
1573 */
1574 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1575 memcpy(newfib, fib, sizeof(struct fib));
1576 newfib->hw_fib_va = hw_newfib;
1577 /*
1578 * Put the FIB onto the
1579 * fibctx's fibs
1580 */
1581 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1582 fibctx->count++;
1583 /*
1584 * Set the event to wake up the
1585 * thread that is waiting.
1586 */
1587 up(&fibctx->wait_sem);
1588 } else {
1589 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1590 }
1591 entry = entry->next;
1592 }
1593 /*
1594 * Set the status of this FIB
1595 */
1596 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1597 aac_fib_adapter_complete(fib, sizeof(u32));
1598 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1599 /* Free up the remaining resources */
1600 hw_fib_p = hw_fib_pool;
1601 fib_p = fib_pool;
1602 while (hw_fib_p < &hw_fib_pool[num]) {
1603 kfree(*hw_fib_p);
1604 kfree(*fib_p);
1605 ++fib_p;
1606 ++hw_fib_p;
1607 }
1608 kfree(hw_fib_pool);
1609 kfree(fib_pool);
1610 }
1611 kfree(fib);
1612 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1613 }
1614 /*
1615 * There are no more AIF's
1616 */
1617 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1618
1619 /*
1620 * Background activity
1621 */
1622 if ((time_before(next_check_jiffies,next_jiffies))
1623 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1624 next_check_jiffies = next_jiffies;
1625 if (aac_check_health(dev) == 0) {
1626 difference = ((long)(unsigned)check_interval)
1627 * HZ;
1628 next_check_jiffies = jiffies + difference;
1629 } else if (!dev->queues)
1630 break;
1631 }
1632 if (!time_before(next_check_jiffies,next_jiffies)
1633 && ((difference = next_jiffies - jiffies) <= 0)) {
1634 struct timeval now;
1635 int ret;
1636
1637 /* Don't even try to talk to adapter if its sick */
1638 ret = aac_check_health(dev);
1639 if (!ret && !dev->queues)
1640 break;
1641 next_check_jiffies = jiffies
1642 + ((long)(unsigned)check_interval)
1643 * HZ;
1644 do_gettimeofday(&now);
1645
1646 /* Synchronize our watches */
1647 if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1648 && (now.tv_usec > (1000000 / HZ)))
1649 difference = (((1000000 - now.tv_usec) * HZ)
1650 + 500000) / 1000000;
1651 else if (ret == 0) {
1652 struct fib *fibptr;
1653
1654 if ((fibptr = aac_fib_alloc(dev))) {
1655 u32 * info;
1656
1657 aac_fib_init(fibptr);
1658
1659 info = (u32 *) fib_data(fibptr);
1660 if (now.tv_usec > 500000)
1661 ++now.tv_sec;
1662
1663 *info = cpu_to_le32(now.tv_sec);
1664
1665 (void)aac_fib_send(SendHostTime,
1666 fibptr,
1667 sizeof(*info),
1668 FsaNormal,
1669 1, 1,
1670 NULL,
1671 NULL);
1672 aac_fib_complete(fibptr);
1673 aac_fib_free(fibptr);
1674 }
1675 difference = (long)(unsigned)update_interval*HZ;
1676 } else {
1677 /* retry shortly */
1678 difference = 10 * HZ;
1679 }
1680 next_jiffies = jiffies + difference;
1681 if (time_before(next_check_jiffies,next_jiffies))
1682 difference = next_check_jiffies - jiffies;
1683 }
1684 if (difference <= 0)
1685 difference = 1;
1686 set_current_state(TASK_INTERRUPTIBLE);
1687 schedule_timeout(difference);
1688
1689 if (kthread_should_stop())
1690 break;
1691 }
1692 if (dev->queues)
1693 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1694 dev->aif_thread = 0;
1695 return 0;
1696 }