]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/aacraid/commsup.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / aacraid / commsup.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 * Module Name:
27 * commsup.c
28 *
29 * Abstract: Contain all routines that are required for FSA host/adapter
30 * communication.
31 *
32 */
33
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/sched.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/slab.h>
41 #include <linux/completion.h>
42 #include <linux/blkdev.h>
43 #include <linux/delay.h>
44 #include <linux/kthread.h>
45 #include <linux/interrupt.h>
46 #include <linux/semaphore.h>
47 #include <linux/bcd.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_host.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_cmnd.h>
52
53 #include "aacraid.h"
54
55 /**
56 * fib_map_alloc - allocate the fib objects
57 * @dev: Adapter to allocate for
58 *
59 * Allocate and map the shared PCI space for the FIB blocks used to
60 * talk to the Adaptec firmware.
61 */
62
63 static int fib_map_alloc(struct aac_dev *dev)
64 {
65 if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
66 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
67 else
68 dev->max_cmd_size = dev->max_fib_size;
69 if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
70 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
71 } else {
72 dev->max_cmd_size = dev->max_fib_size;
73 }
74
75 dprintk((KERN_INFO
76 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
77 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
78 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
79 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
80 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
81 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
82 &dev->hw_fib_pa, GFP_KERNEL);
83 if (dev->hw_fib_va == NULL)
84 return -ENOMEM;
85 return 0;
86 }
87
88 /**
89 * aac_fib_map_free - free the fib objects
90 * @dev: Adapter to free
91 *
92 * Free the PCI mappings and the memory allocated for FIB blocks
93 * on this adapter.
94 */
95
96 void aac_fib_map_free(struct aac_dev *dev)
97 {
98 size_t alloc_size;
99 size_t fib_size;
100 int num_fibs;
101
102 if(!dev->hw_fib_va || !dev->max_cmd_size)
103 return;
104
105 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
106 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
107 alloc_size = fib_size * num_fibs + ALIGN32 - 1;
108
109 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
110 dev->hw_fib_pa);
111
112 dev->hw_fib_va = NULL;
113 dev->hw_fib_pa = 0;
114 }
115
116 void aac_fib_vector_assign(struct aac_dev *dev)
117 {
118 u32 i = 0;
119 u32 vector = 1;
120 struct fib *fibptr = NULL;
121
122 for (i = 0, fibptr = &dev->fibs[i];
123 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
124 i++, fibptr++) {
125 if ((dev->max_msix == 1) ||
126 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
127 - dev->vector_cap))) {
128 fibptr->vector_no = 0;
129 } else {
130 fibptr->vector_no = vector;
131 vector++;
132 if (vector == dev->max_msix)
133 vector = 1;
134 }
135 }
136 }
137
138 /**
139 * aac_fib_setup - setup the fibs
140 * @dev: Adapter to set up
141 *
142 * Allocate the PCI space for the fibs, map it and then initialise the
143 * fib area, the unmapped fib data and also the free list
144 */
145
146 int aac_fib_setup(struct aac_dev * dev)
147 {
148 struct fib *fibptr;
149 struct hw_fib *hw_fib;
150 dma_addr_t hw_fib_pa;
151 int i;
152 u32 max_cmds;
153
154 while (((i = fib_map_alloc(dev)) == -ENOMEM)
155 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
156 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
157 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
158 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
159 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
160 }
161 if (i<0)
162 return -ENOMEM;
163
164 memset(dev->hw_fib_va, 0,
165 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
166 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
167
168 /* 32 byte alignment for PMC */
169 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
170 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
171 (hw_fib_pa - dev->hw_fib_pa));
172
173 /* add Xport header */
174 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
175 sizeof(struct aac_fib_xporthdr));
176 hw_fib_pa += sizeof(struct aac_fib_xporthdr);
177
178 /*
179 * Initialise the fibs
180 */
181 for (i = 0, fibptr = &dev->fibs[i];
182 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
183 i++, fibptr++)
184 {
185 fibptr->flags = 0;
186 fibptr->size = sizeof(struct fib);
187 fibptr->dev = dev;
188 fibptr->hw_fib_va = hw_fib;
189 fibptr->data = (void *) fibptr->hw_fib_va->data;
190 fibptr->next = fibptr+1; /* Forward chain the fibs */
191 sema_init(&fibptr->event_wait, 0);
192 spin_lock_init(&fibptr->event_lock);
193 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
194 hw_fib->header.SenderSize =
195 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
196 fibptr->hw_fib_pa = hw_fib_pa;
197 fibptr->hw_sgl_pa = hw_fib_pa +
198 offsetof(struct aac_hba_cmd_req, sge[2]);
199 /*
200 * one element is for the ptr to the separate sg list,
201 * second element for 32 byte alignment
202 */
203 fibptr->hw_error_pa = hw_fib_pa +
204 offsetof(struct aac_native_hba, resp.resp_bytes[0]);
205
206 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
207 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
208 hw_fib_pa = hw_fib_pa +
209 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
210 }
211
212 /*
213 *Assign vector numbers to fibs
214 */
215 aac_fib_vector_assign(dev);
216
217 /*
218 * Add the fib chain to the free list
219 */
220 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
221 /*
222 * Set 8 fibs aside for management tools
223 */
224 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
225 return 0;
226 }
227
228 /**
229 * aac_fib_alloc_tag-allocate a fib using tags
230 * @dev: Adapter to allocate the fib for
231 *
232 * Allocate a fib from the adapter fib pool using tags
233 * from the blk layer.
234 */
235
236 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
237 {
238 struct fib *fibptr;
239
240 fibptr = &dev->fibs[scmd->request->tag];
241 /*
242 * Null out fields that depend on being zero at the start of
243 * each I/O
244 */
245 fibptr->hw_fib_va->header.XferState = 0;
246 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
247 fibptr->callback_data = NULL;
248 fibptr->callback = NULL;
249
250 return fibptr;
251 }
252
253 /**
254 * aac_fib_alloc - allocate a fib
255 * @dev: Adapter to allocate the fib for
256 *
257 * Allocate a fib from the adapter fib pool. If the pool is empty we
258 * return NULL.
259 */
260
261 struct fib *aac_fib_alloc(struct aac_dev *dev)
262 {
263 struct fib * fibptr;
264 unsigned long flags;
265 spin_lock_irqsave(&dev->fib_lock, flags);
266 fibptr = dev->free_fib;
267 if(!fibptr){
268 spin_unlock_irqrestore(&dev->fib_lock, flags);
269 return fibptr;
270 }
271 dev->free_fib = fibptr->next;
272 spin_unlock_irqrestore(&dev->fib_lock, flags);
273 /*
274 * Set the proper node type code and node byte size
275 */
276 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
277 fibptr->size = sizeof(struct fib);
278 /*
279 * Null out fields that depend on being zero at the start of
280 * each I/O
281 */
282 fibptr->hw_fib_va->header.XferState = 0;
283 fibptr->flags = 0;
284 fibptr->callback = NULL;
285 fibptr->callback_data = NULL;
286
287 return fibptr;
288 }
289
290 /**
291 * aac_fib_free - free a fib
292 * @fibptr: fib to free up
293 *
294 * Frees up a fib and places it on the appropriate queue
295 */
296
297 void aac_fib_free(struct fib *fibptr)
298 {
299 unsigned long flags;
300
301 if (fibptr->done == 2)
302 return;
303
304 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
305 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
306 aac_config.fib_timeouts++;
307 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
308 fibptr->hw_fib_va->header.XferState != 0) {
309 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
310 (void*)fibptr,
311 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
312 }
313 fibptr->next = fibptr->dev->free_fib;
314 fibptr->dev->free_fib = fibptr;
315 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
316 }
317
318 /**
319 * aac_fib_init - initialise a fib
320 * @fibptr: The fib to initialize
321 *
322 * Set up the generic fib fields ready for use
323 */
324
325 void aac_fib_init(struct fib *fibptr)
326 {
327 struct hw_fib *hw_fib = fibptr->hw_fib_va;
328
329 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
330 hw_fib->header.StructType = FIB_MAGIC;
331 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
332 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
333 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
334 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
335 }
336
337 /**
338 * fib_deallocate - deallocate a fib
339 * @fibptr: fib to deallocate
340 *
341 * Will deallocate and return to the free pool the FIB pointed to by the
342 * caller.
343 */
344
345 static void fib_dealloc(struct fib * fibptr)
346 {
347 struct hw_fib *hw_fib = fibptr->hw_fib_va;
348 hw_fib->header.XferState = 0;
349 }
350
351 /*
352 * Commuication primitives define and support the queuing method we use to
353 * support host to adapter commuication. All queue accesses happen through
354 * these routines and are the only routines which have a knowledge of the
355 * how these queues are implemented.
356 */
357
358 /**
359 * aac_get_entry - get a queue entry
360 * @dev: Adapter
361 * @qid: Queue Number
362 * @entry: Entry return
363 * @index: Index return
364 * @nonotify: notification control
365 *
366 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
367 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
368 * returned.
369 */
370
371 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
372 {
373 struct aac_queue * q;
374 unsigned long idx;
375
376 /*
377 * All of the queues wrap when they reach the end, so we check
378 * to see if they have reached the end and if they have we just
379 * set the index back to zero. This is a wrap. You could or off
380 * the high bits in all updates but this is a bit faster I think.
381 */
382
383 q = &dev->queues->queue[qid];
384
385 idx = *index = le32_to_cpu(*(q->headers.producer));
386 /* Interrupt Moderation, only interrupt for first two entries */
387 if (idx != le32_to_cpu(*(q->headers.consumer))) {
388 if (--idx == 0) {
389 if (qid == AdapNormCmdQueue)
390 idx = ADAP_NORM_CMD_ENTRIES;
391 else
392 idx = ADAP_NORM_RESP_ENTRIES;
393 }
394 if (idx != le32_to_cpu(*(q->headers.consumer)))
395 *nonotify = 1;
396 }
397
398 if (qid == AdapNormCmdQueue) {
399 if (*index >= ADAP_NORM_CMD_ENTRIES)
400 *index = 0; /* Wrap to front of the Producer Queue. */
401 } else {
402 if (*index >= ADAP_NORM_RESP_ENTRIES)
403 *index = 0; /* Wrap to front of the Producer Queue. */
404 }
405
406 /* Queue is full */
407 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
408 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
409 qid, atomic_read(&q->numpending));
410 return 0;
411 } else {
412 *entry = q->base + *index;
413 return 1;
414 }
415 }
416
417 /**
418 * aac_queue_get - get the next free QE
419 * @dev: Adapter
420 * @index: Returned index
421 * @priority: Priority of fib
422 * @fib: Fib to associate with the queue entry
423 * @wait: Wait if queue full
424 * @fibptr: Driver fib object to go with fib
425 * @nonotify: Don't notify the adapter
426 *
427 * Gets the next free QE off the requested priorty adapter command
428 * queue and associates the Fib with the QE. The QE represented by
429 * index is ready to insert on the queue when this routine returns
430 * success.
431 */
432
433 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
434 {
435 struct aac_entry * entry = NULL;
436 int map = 0;
437
438 if (qid == AdapNormCmdQueue) {
439 /* if no entries wait for some if caller wants to */
440 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
441 printk(KERN_ERR "GetEntries failed\n");
442 }
443 /*
444 * Setup queue entry with a command, status and fib mapped
445 */
446 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
447 map = 1;
448 } else {
449 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
450 /* if no entries wait for some if caller wants to */
451 }
452 /*
453 * Setup queue entry with command, status and fib mapped
454 */
455 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
456 entry->addr = hw_fib->header.SenderFibAddress;
457 /* Restore adapters pointer to the FIB */
458 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
459 map = 0;
460 }
461 /*
462 * If MapFib is true than we need to map the Fib and put pointers
463 * in the queue entry.
464 */
465 if (map)
466 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
467 return 0;
468 }
469
470 /*
471 * Define the highest level of host to adapter communication routines.
472 * These routines will support host to adapter FS commuication. These
473 * routines have no knowledge of the commuication method used. This level
474 * sends and receives FIBs. This level has no knowledge of how these FIBs
475 * get passed back and forth.
476 */
477
478 /**
479 * aac_fib_send - send a fib to the adapter
480 * @command: Command to send
481 * @fibptr: The fib
482 * @size: Size of fib data area
483 * @priority: Priority of Fib
484 * @wait: Async/sync select
485 * @reply: True if a reply is wanted
486 * @callback: Called with reply
487 * @callback_data: Passed to callback
488 *
489 * Sends the requested FIB to the adapter and optionally will wait for a
490 * response FIB. If the caller does not wish to wait for a response than
491 * an event to wait on must be supplied. This event will be set when a
492 * response FIB is received from the adapter.
493 */
494
495 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
496 int priority, int wait, int reply, fib_callback callback,
497 void *callback_data)
498 {
499 struct aac_dev * dev = fibptr->dev;
500 struct hw_fib * hw_fib = fibptr->hw_fib_va;
501 unsigned long flags = 0;
502 unsigned long mflags = 0;
503 unsigned long sflags = 0;
504
505 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
506 return -EBUSY;
507
508 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
509 return -EINVAL;
510
511 /*
512 * There are 5 cases with the wait and response requested flags.
513 * The only invalid cases are if the caller requests to wait and
514 * does not request a response and if the caller does not want a
515 * response and the Fib is not allocated from pool. If a response
516 * is not requesed the Fib will just be deallocaed by the DPC
517 * routine when the response comes back from the adapter. No
518 * further processing will be done besides deleting the Fib. We
519 * will have a debug mode where the adapter can notify the host
520 * it had a problem and the host can log that fact.
521 */
522 fibptr->flags = 0;
523 if (wait && !reply) {
524 return -EINVAL;
525 } else if (!wait && reply) {
526 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
527 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
528 } else if (!wait && !reply) {
529 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
530 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
531 } else if (wait && reply) {
532 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
533 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
534 }
535 /*
536 * Map the fib into 32bits by using the fib number
537 */
538
539 hw_fib->header.SenderFibAddress =
540 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
541
542 /* use the same shifted value for handle to be compatible
543 * with the new native hba command handle
544 */
545 hw_fib->header.Handle =
546 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
547
548 /*
549 * Set FIB state to indicate where it came from and if we want a
550 * response from the adapter. Also load the command from the
551 * caller.
552 *
553 * Map the hw fib pointer as a 32bit value
554 */
555 hw_fib->header.Command = cpu_to_le16(command);
556 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
557 /*
558 * Set the size of the Fib we want to send to the adapter
559 */
560 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
561 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
562 return -EMSGSIZE;
563 }
564 /*
565 * Get a queue entry connect the FIB to it and send an notify
566 * the adapter a command is ready.
567 */
568 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
569
570 /*
571 * Fill in the Callback and CallbackContext if we are not
572 * going to wait.
573 */
574 if (!wait) {
575 fibptr->callback = callback;
576 fibptr->callback_data = callback_data;
577 fibptr->flags = FIB_CONTEXT_FLAG;
578 }
579
580 fibptr->done = 0;
581
582 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
583
584 dprintk((KERN_DEBUG "Fib contents:.\n"));
585 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
586 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
587 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
588 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
589 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
590 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
591
592 if (!dev->queues)
593 return -EBUSY;
594
595 if (wait) {
596
597 spin_lock_irqsave(&dev->manage_lock, mflags);
598 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
599 printk(KERN_INFO "No management Fibs Available:%d\n",
600 dev->management_fib_count);
601 spin_unlock_irqrestore(&dev->manage_lock, mflags);
602 return -EBUSY;
603 }
604 dev->management_fib_count++;
605 spin_unlock_irqrestore(&dev->manage_lock, mflags);
606 spin_lock_irqsave(&fibptr->event_lock, flags);
607 }
608
609 if (dev->sync_mode) {
610 if (wait)
611 spin_unlock_irqrestore(&fibptr->event_lock, flags);
612 spin_lock_irqsave(&dev->sync_lock, sflags);
613 if (dev->sync_fib) {
614 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
615 spin_unlock_irqrestore(&dev->sync_lock, sflags);
616 } else {
617 dev->sync_fib = fibptr;
618 spin_unlock_irqrestore(&dev->sync_lock, sflags);
619 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
620 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
621 NULL, NULL, NULL, NULL, NULL);
622 }
623 if (wait) {
624 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
625 if (down_interruptible(&fibptr->event_wait)) {
626 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
627 return -EFAULT;
628 }
629 return 0;
630 }
631 return -EINPROGRESS;
632 }
633
634 if (aac_adapter_deliver(fibptr) != 0) {
635 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
636 if (wait) {
637 spin_unlock_irqrestore(&fibptr->event_lock, flags);
638 spin_lock_irqsave(&dev->manage_lock, mflags);
639 dev->management_fib_count--;
640 spin_unlock_irqrestore(&dev->manage_lock, mflags);
641 }
642 return -EBUSY;
643 }
644
645
646 /*
647 * If the caller wanted us to wait for response wait now.
648 */
649
650 if (wait) {
651 spin_unlock_irqrestore(&fibptr->event_lock, flags);
652 /* Only set for first known interruptable command */
653 if (wait < 0) {
654 /*
655 * *VERY* Dangerous to time out a command, the
656 * assumption is made that we have no hope of
657 * functioning because an interrupt routing or other
658 * hardware failure has occurred.
659 */
660 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
661 while (down_trylock(&fibptr->event_wait)) {
662 int blink;
663 if (time_is_before_eq_jiffies(timeout)) {
664 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
665 atomic_dec(&q->numpending);
666 if (wait == -1) {
667 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
668 "Usually a result of a PCI interrupt routing problem;\n"
669 "update mother board BIOS or consider utilizing one of\n"
670 "the SAFE mode kernel options (acpi, apic etc)\n");
671 }
672 return -ETIMEDOUT;
673 }
674
675 if (unlikely(pci_channel_offline(dev->pdev)))
676 return -EFAULT;
677
678 if ((blink = aac_adapter_check_health(dev)) > 0) {
679 if (wait == -1) {
680 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
681 "Usually a result of a serious unrecoverable hardware problem\n",
682 blink);
683 }
684 return -EFAULT;
685 }
686 /*
687 * Allow other processes / CPUS to use core
688 */
689 schedule();
690 }
691 } else if (down_interruptible(&fibptr->event_wait)) {
692 /* Do nothing ... satisfy
693 * down_interruptible must_check */
694 }
695
696 spin_lock_irqsave(&fibptr->event_lock, flags);
697 if (fibptr->done == 0) {
698 fibptr->done = 2; /* Tell interrupt we aborted */
699 spin_unlock_irqrestore(&fibptr->event_lock, flags);
700 return -ERESTARTSYS;
701 }
702 spin_unlock_irqrestore(&fibptr->event_lock, flags);
703 BUG_ON(fibptr->done == 0);
704
705 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
706 return -ETIMEDOUT;
707 return 0;
708 }
709 /*
710 * If the user does not want a response than return success otherwise
711 * return pending
712 */
713 if (reply)
714 return -EINPROGRESS;
715 else
716 return 0;
717 }
718
719 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
720 void *callback_data)
721 {
722 struct aac_dev *dev = fibptr->dev;
723 int wait;
724 unsigned long flags = 0;
725 unsigned long mflags = 0;
726
727 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
728 if (callback) {
729 wait = 0;
730 fibptr->callback = callback;
731 fibptr->callback_data = callback_data;
732 } else
733 wait = 1;
734
735
736 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
737 struct aac_hba_cmd_req *hbacmd =
738 (struct aac_hba_cmd_req *)fibptr->hw_fib_va;
739
740 hbacmd->iu_type = command;
741 /* bit1 of request_id must be 0 */
742 hbacmd->request_id =
743 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
744 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
745 } else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
746 return -EINVAL;
747
748
749 if (wait) {
750 spin_lock_irqsave(&dev->manage_lock, mflags);
751 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
752 spin_unlock_irqrestore(&dev->manage_lock, mflags);
753 return -EBUSY;
754 }
755 dev->management_fib_count++;
756 spin_unlock_irqrestore(&dev->manage_lock, mflags);
757 spin_lock_irqsave(&fibptr->event_lock, flags);
758 }
759
760 if (aac_adapter_deliver(fibptr) != 0) {
761 if (wait) {
762 spin_unlock_irqrestore(&fibptr->event_lock, flags);
763 spin_lock_irqsave(&dev->manage_lock, mflags);
764 dev->management_fib_count--;
765 spin_unlock_irqrestore(&dev->manage_lock, mflags);
766 }
767 return -EBUSY;
768 }
769 FIB_COUNTER_INCREMENT(aac_config.NativeSent);
770
771 if (wait) {
772
773 spin_unlock_irqrestore(&fibptr->event_lock, flags);
774
775 if (unlikely(pci_channel_offline(dev->pdev)))
776 return -EFAULT;
777
778 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
779 if (down_interruptible(&fibptr->event_wait))
780 fibptr->done = 2;
781 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
782
783 spin_lock_irqsave(&fibptr->event_lock, flags);
784 if ((fibptr->done == 0) || (fibptr->done == 2)) {
785 fibptr->done = 2; /* Tell interrupt we aborted */
786 spin_unlock_irqrestore(&fibptr->event_lock, flags);
787 return -ERESTARTSYS;
788 }
789 spin_unlock_irqrestore(&fibptr->event_lock, flags);
790 WARN_ON(fibptr->done == 0);
791
792 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
793 return -ETIMEDOUT;
794
795 return 0;
796 }
797
798 return -EINPROGRESS;
799 }
800
801 /**
802 * aac_consumer_get - get the top of the queue
803 * @dev: Adapter
804 * @q: Queue
805 * @entry: Return entry
806 *
807 * Will return a pointer to the entry on the top of the queue requested that
808 * we are a consumer of, and return the address of the queue entry. It does
809 * not change the state of the queue.
810 */
811
812 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
813 {
814 u32 index;
815 int status;
816 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
817 status = 0;
818 } else {
819 /*
820 * The consumer index must be wrapped if we have reached
821 * the end of the queue, else we just use the entry
822 * pointed to by the header index
823 */
824 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
825 index = 0;
826 else
827 index = le32_to_cpu(*q->headers.consumer);
828 *entry = q->base + index;
829 status = 1;
830 }
831 return(status);
832 }
833
834 /**
835 * aac_consumer_free - free consumer entry
836 * @dev: Adapter
837 * @q: Queue
838 * @qid: Queue ident
839 *
840 * Frees up the current top of the queue we are a consumer of. If the
841 * queue was full notify the producer that the queue is no longer full.
842 */
843
844 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
845 {
846 int wasfull = 0;
847 u32 notify;
848
849 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
850 wasfull = 1;
851
852 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
853 *q->headers.consumer = cpu_to_le32(1);
854 else
855 le32_add_cpu(q->headers.consumer, 1);
856
857 if (wasfull) {
858 switch (qid) {
859
860 case HostNormCmdQueue:
861 notify = HostNormCmdNotFull;
862 break;
863 case HostNormRespQueue:
864 notify = HostNormRespNotFull;
865 break;
866 default:
867 BUG();
868 return;
869 }
870 aac_adapter_notify(dev, notify);
871 }
872 }
873
874 /**
875 * aac_fib_adapter_complete - complete adapter issued fib
876 * @fibptr: fib to complete
877 * @size: size of fib
878 *
879 * Will do all necessary work to complete a FIB that was sent from
880 * the adapter.
881 */
882
883 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
884 {
885 struct hw_fib * hw_fib = fibptr->hw_fib_va;
886 struct aac_dev * dev = fibptr->dev;
887 struct aac_queue * q;
888 unsigned long nointr = 0;
889 unsigned long qflags;
890
891 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
892 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
893 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
894 kfree(hw_fib);
895 return 0;
896 }
897
898 if (hw_fib->header.XferState == 0) {
899 if (dev->comm_interface == AAC_COMM_MESSAGE)
900 kfree(hw_fib);
901 return 0;
902 }
903 /*
904 * If we plan to do anything check the structure type first.
905 */
906 if (hw_fib->header.StructType != FIB_MAGIC &&
907 hw_fib->header.StructType != FIB_MAGIC2 &&
908 hw_fib->header.StructType != FIB_MAGIC2_64) {
909 if (dev->comm_interface == AAC_COMM_MESSAGE)
910 kfree(hw_fib);
911 return -EINVAL;
912 }
913 /*
914 * This block handles the case where the adapter had sent us a
915 * command and we have finished processing the command. We
916 * call completeFib when we are done processing the command
917 * and want to send a response back to the adapter. This will
918 * send the completed cdb to the adapter.
919 */
920 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
921 if (dev->comm_interface == AAC_COMM_MESSAGE) {
922 kfree (hw_fib);
923 } else {
924 u32 index;
925 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
926 if (size) {
927 size += sizeof(struct aac_fibhdr);
928 if (size > le16_to_cpu(hw_fib->header.SenderSize))
929 return -EMSGSIZE;
930 hw_fib->header.Size = cpu_to_le16(size);
931 }
932 q = &dev->queues->queue[AdapNormRespQueue];
933 spin_lock_irqsave(q->lock, qflags);
934 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
935 *(q->headers.producer) = cpu_to_le32(index + 1);
936 spin_unlock_irqrestore(q->lock, qflags);
937 if (!(nointr & (int)aac_config.irq_mod))
938 aac_adapter_notify(dev, AdapNormRespQueue);
939 }
940 } else {
941 printk(KERN_WARNING "aac_fib_adapter_complete: "
942 "Unknown xferstate detected.\n");
943 BUG();
944 }
945 return 0;
946 }
947
948 /**
949 * aac_fib_complete - fib completion handler
950 * @fib: FIB to complete
951 *
952 * Will do all necessary work to complete a FIB.
953 */
954
955 int aac_fib_complete(struct fib *fibptr)
956 {
957 struct hw_fib * hw_fib = fibptr->hw_fib_va;
958
959 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
960 fib_dealloc(fibptr);
961 return 0;
962 }
963
964 /*
965 * Check for a fib which has already been completed or with a
966 * status wait timeout
967 */
968
969 if (hw_fib->header.XferState == 0 || fibptr->done == 2)
970 return 0;
971 /*
972 * If we plan to do anything check the structure type first.
973 */
974
975 if (hw_fib->header.StructType != FIB_MAGIC &&
976 hw_fib->header.StructType != FIB_MAGIC2 &&
977 hw_fib->header.StructType != FIB_MAGIC2_64)
978 return -EINVAL;
979 /*
980 * This block completes a cdb which orginated on the host and we
981 * just need to deallocate the cdb or reinit it. At this point the
982 * command is complete that we had sent to the adapter and this
983 * cdb could be reused.
984 */
985
986 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
987 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
988 {
989 fib_dealloc(fibptr);
990 }
991 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
992 {
993 /*
994 * This handles the case when the host has aborted the I/O
995 * to the adapter because the adapter is not responding
996 */
997 fib_dealloc(fibptr);
998 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
999 fib_dealloc(fibptr);
1000 } else {
1001 BUG();
1002 }
1003 return 0;
1004 }
1005
1006 /**
1007 * aac_printf - handle printf from firmware
1008 * @dev: Adapter
1009 * @val: Message info
1010 *
1011 * Print a message passed to us by the controller firmware on the
1012 * Adaptec board
1013 */
1014
1015 void aac_printf(struct aac_dev *dev, u32 val)
1016 {
1017 char *cp = dev->printfbuf;
1018 if (dev->printf_enabled)
1019 {
1020 int length = val & 0xffff;
1021 int level = (val >> 16) & 0xffff;
1022
1023 /*
1024 * The size of the printfbuf is set in port.c
1025 * There is no variable or define for it
1026 */
1027 if (length > 255)
1028 length = 255;
1029 if (cp[length] != 0)
1030 cp[length] = 0;
1031 if (level == LOG_AAC_HIGH_ERROR)
1032 printk(KERN_WARNING "%s:%s", dev->name, cp);
1033 else
1034 printk(KERN_INFO "%s:%s", dev->name, cp);
1035 }
1036 memset(cp, 0, 256);
1037 }
1038
1039 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1040 {
1041 return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1042 }
1043
1044
1045 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1046 {
1047 switch (aac_aif_data(aifcmd, 1)) {
1048 case AifBuCacheDataLoss:
1049 if (aac_aif_data(aifcmd, 2))
1050 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1051 aac_aif_data(aifcmd, 2));
1052 else
1053 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1054 break;
1055 case AifBuCacheDataRecover:
1056 if (aac_aif_data(aifcmd, 2))
1057 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1058 aac_aif_data(aifcmd, 2));
1059 else
1060 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1061 break;
1062 }
1063 }
1064
1065 /**
1066 * aac_handle_aif - Handle a message from the firmware
1067 * @dev: Which adapter this fib is from
1068 * @fibptr: Pointer to fibptr from adapter
1069 *
1070 * This routine handles a driver notify fib from the adapter and
1071 * dispatches it to the appropriate routine for handling.
1072 */
1073
1074 #define AIF_SNIFF_TIMEOUT (500*HZ)
1075 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1076 {
1077 struct hw_fib * hw_fib = fibptr->hw_fib_va;
1078 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1079 u32 channel, id, lun, container;
1080 struct scsi_device *device;
1081 enum {
1082 NOTHING,
1083 DELETE,
1084 ADD,
1085 CHANGE
1086 } device_config_needed = NOTHING;
1087
1088 /* Sniff for container changes */
1089
1090 if (!dev || !dev->fsa_dev)
1091 return;
1092 container = channel = id = lun = (u32)-1;
1093
1094 /*
1095 * We have set this up to try and minimize the number of
1096 * re-configures that take place. As a result of this when
1097 * certain AIF's come in we will set a flag waiting for another
1098 * type of AIF before setting the re-config flag.
1099 */
1100 switch (le32_to_cpu(aifcmd->command)) {
1101 case AifCmdDriverNotify:
1102 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1103 case AifRawDeviceRemove:
1104 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1105 if ((container >> 28)) {
1106 container = (u32)-1;
1107 break;
1108 }
1109 channel = (container >> 24) & 0xF;
1110 if (channel >= dev->maximum_num_channels) {
1111 container = (u32)-1;
1112 break;
1113 }
1114 id = container & 0xFFFF;
1115 if (id >= dev->maximum_num_physicals) {
1116 container = (u32)-1;
1117 break;
1118 }
1119 lun = (container >> 16) & 0xFF;
1120 container = (u32)-1;
1121 channel = aac_phys_to_logical(channel);
1122 device_config_needed = DELETE;
1123 break;
1124
1125 /*
1126 * Morph or Expand complete
1127 */
1128 case AifDenMorphComplete:
1129 case AifDenVolumeExtendComplete:
1130 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1131 if (container >= dev->maximum_num_containers)
1132 break;
1133
1134 /*
1135 * Find the scsi_device associated with the SCSI
1136 * address. Make sure we have the right array, and if
1137 * so set the flag to initiate a new re-config once we
1138 * see an AifEnConfigChange AIF come through.
1139 */
1140
1141 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1142 device = scsi_device_lookup(dev->scsi_host_ptr,
1143 CONTAINER_TO_CHANNEL(container),
1144 CONTAINER_TO_ID(container),
1145 CONTAINER_TO_LUN(container));
1146 if (device) {
1147 dev->fsa_dev[container].config_needed = CHANGE;
1148 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1149 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1150 scsi_device_put(device);
1151 }
1152 }
1153 }
1154
1155 /*
1156 * If we are waiting on something and this happens to be
1157 * that thing then set the re-configure flag.
1158 */
1159 if (container != (u32)-1) {
1160 if (container >= dev->maximum_num_containers)
1161 break;
1162 if ((dev->fsa_dev[container].config_waiting_on ==
1163 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1164 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1165 dev->fsa_dev[container].config_waiting_on = 0;
1166 } else for (container = 0;
1167 container < dev->maximum_num_containers; ++container) {
1168 if ((dev->fsa_dev[container].config_waiting_on ==
1169 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1170 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1171 dev->fsa_dev[container].config_waiting_on = 0;
1172 }
1173 break;
1174
1175 case AifCmdEventNotify:
1176 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1177 case AifEnBatteryEvent:
1178 dev->cache_protected =
1179 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1180 break;
1181 /*
1182 * Add an Array.
1183 */
1184 case AifEnAddContainer:
1185 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186 if (container >= dev->maximum_num_containers)
1187 break;
1188 dev->fsa_dev[container].config_needed = ADD;
1189 dev->fsa_dev[container].config_waiting_on =
1190 AifEnConfigChange;
1191 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192 break;
1193
1194 /*
1195 * Delete an Array.
1196 */
1197 case AifEnDeleteContainer:
1198 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1199 if (container >= dev->maximum_num_containers)
1200 break;
1201 dev->fsa_dev[container].config_needed = DELETE;
1202 dev->fsa_dev[container].config_waiting_on =
1203 AifEnConfigChange;
1204 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1205 break;
1206
1207 /*
1208 * Container change detected. If we currently are not
1209 * waiting on something else, setup to wait on a Config Change.
1210 */
1211 case AifEnContainerChange:
1212 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1213 if (container >= dev->maximum_num_containers)
1214 break;
1215 if (dev->fsa_dev[container].config_waiting_on &&
1216 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1217 break;
1218 dev->fsa_dev[container].config_needed = CHANGE;
1219 dev->fsa_dev[container].config_waiting_on =
1220 AifEnConfigChange;
1221 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1222 break;
1223
1224 case AifEnConfigChange:
1225 break;
1226
1227 case AifEnAddJBOD:
1228 case AifEnDeleteJBOD:
1229 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1230 if ((container >> 28)) {
1231 container = (u32)-1;
1232 break;
1233 }
1234 channel = (container >> 24) & 0xF;
1235 if (channel >= dev->maximum_num_channels) {
1236 container = (u32)-1;
1237 break;
1238 }
1239 id = container & 0xFFFF;
1240 if (id >= dev->maximum_num_physicals) {
1241 container = (u32)-1;
1242 break;
1243 }
1244 lun = (container >> 16) & 0xFF;
1245 container = (u32)-1;
1246 channel = aac_phys_to_logical(channel);
1247 device_config_needed =
1248 (((__le32 *)aifcmd->data)[0] ==
1249 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1250 if (device_config_needed == ADD) {
1251 device = scsi_device_lookup(dev->scsi_host_ptr,
1252 channel,
1253 id,
1254 lun);
1255 if (device) {
1256 scsi_remove_device(device);
1257 scsi_device_put(device);
1258 }
1259 }
1260 break;
1261
1262 case AifEnEnclosureManagement:
1263 /*
1264 * If in JBOD mode, automatic exposure of new
1265 * physical target to be suppressed until configured.
1266 */
1267 if (dev->jbod)
1268 break;
1269 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1270 case EM_DRIVE_INSERTION:
1271 case EM_DRIVE_REMOVAL:
1272 case EM_SES_DRIVE_INSERTION:
1273 case EM_SES_DRIVE_REMOVAL:
1274 container = le32_to_cpu(
1275 ((__le32 *)aifcmd->data)[2]);
1276 if ((container >> 28)) {
1277 container = (u32)-1;
1278 break;
1279 }
1280 channel = (container >> 24) & 0xF;
1281 if (channel >= dev->maximum_num_channels) {
1282 container = (u32)-1;
1283 break;
1284 }
1285 id = container & 0xFFFF;
1286 lun = (container >> 16) & 0xFF;
1287 container = (u32)-1;
1288 if (id >= dev->maximum_num_physicals) {
1289 /* legacy dev_t ? */
1290 if ((0x2000 <= id) || lun || channel ||
1291 ((channel = (id >> 7) & 0x3F) >=
1292 dev->maximum_num_channels))
1293 break;
1294 lun = (id >> 4) & 7;
1295 id &= 0xF;
1296 }
1297 channel = aac_phys_to_logical(channel);
1298 device_config_needed =
1299 ((((__le32 *)aifcmd->data)[3]
1300 == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1301 (((__le32 *)aifcmd->data)[3]
1302 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1303 ADD : DELETE;
1304 break;
1305 }
1306 case AifBuManagerEvent:
1307 aac_handle_aif_bu(dev, aifcmd);
1308 break;
1309 }
1310
1311 /*
1312 * If we are waiting on something and this happens to be
1313 * that thing then set the re-configure flag.
1314 */
1315 if (container != (u32)-1) {
1316 if (container >= dev->maximum_num_containers)
1317 break;
1318 if ((dev->fsa_dev[container].config_waiting_on ==
1319 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1320 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1321 dev->fsa_dev[container].config_waiting_on = 0;
1322 } else for (container = 0;
1323 container < dev->maximum_num_containers; ++container) {
1324 if ((dev->fsa_dev[container].config_waiting_on ==
1325 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1326 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1327 dev->fsa_dev[container].config_waiting_on = 0;
1328 }
1329 break;
1330
1331 case AifCmdJobProgress:
1332 /*
1333 * These are job progress AIF's. When a Clear is being
1334 * done on a container it is initially created then hidden from
1335 * the OS. When the clear completes we don't get a config
1336 * change so we monitor the job status complete on a clear then
1337 * wait for a container change.
1338 */
1339
1340 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1341 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1342 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1343 for (container = 0;
1344 container < dev->maximum_num_containers;
1345 ++container) {
1346 /*
1347 * Stomp on all config sequencing for all
1348 * containers?
1349 */
1350 dev->fsa_dev[container].config_waiting_on =
1351 AifEnContainerChange;
1352 dev->fsa_dev[container].config_needed = ADD;
1353 dev->fsa_dev[container].config_waiting_stamp =
1354 jiffies;
1355 }
1356 }
1357 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1358 ((__le32 *)aifcmd->data)[6] == 0 &&
1359 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1360 for (container = 0;
1361 container < dev->maximum_num_containers;
1362 ++container) {
1363 /*
1364 * Stomp on all config sequencing for all
1365 * containers?
1366 */
1367 dev->fsa_dev[container].config_waiting_on =
1368 AifEnContainerChange;
1369 dev->fsa_dev[container].config_needed = DELETE;
1370 dev->fsa_dev[container].config_waiting_stamp =
1371 jiffies;
1372 }
1373 }
1374 break;
1375 }
1376
1377 container = 0;
1378 retry_next:
1379 if (device_config_needed == NOTHING)
1380 for (; container < dev->maximum_num_containers; ++container) {
1381 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1382 (dev->fsa_dev[container].config_needed != NOTHING) &&
1383 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1384 device_config_needed =
1385 dev->fsa_dev[container].config_needed;
1386 dev->fsa_dev[container].config_needed = NOTHING;
1387 channel = CONTAINER_TO_CHANNEL(container);
1388 id = CONTAINER_TO_ID(container);
1389 lun = CONTAINER_TO_LUN(container);
1390 break;
1391 }
1392 }
1393 if (device_config_needed == NOTHING)
1394 return;
1395
1396 /*
1397 * If we decided that a re-configuration needs to be done,
1398 * schedule it here on the way out the door, please close the door
1399 * behind you.
1400 */
1401
1402 /*
1403 * Find the scsi_device associated with the SCSI address,
1404 * and mark it as changed, invalidating the cache. This deals
1405 * with changes to existing device IDs.
1406 */
1407
1408 if (!dev || !dev->scsi_host_ptr)
1409 return;
1410 /*
1411 * force reload of disk info via aac_probe_container
1412 */
1413 if ((channel == CONTAINER_CHANNEL) &&
1414 (device_config_needed != NOTHING)) {
1415 if (dev->fsa_dev[container].valid == 1)
1416 dev->fsa_dev[container].valid = 2;
1417 aac_probe_container(dev, container);
1418 }
1419 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1420 if (device) {
1421 switch (device_config_needed) {
1422 case DELETE:
1423 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1424 scsi_remove_device(device);
1425 #else
1426 if (scsi_device_online(device)) {
1427 scsi_device_set_state(device, SDEV_OFFLINE);
1428 sdev_printk(KERN_INFO, device,
1429 "Device offlined - %s\n",
1430 (channel == CONTAINER_CHANNEL) ?
1431 "array deleted" :
1432 "enclosure services event");
1433 }
1434 #endif
1435 break;
1436 case ADD:
1437 if (!scsi_device_online(device)) {
1438 sdev_printk(KERN_INFO, device,
1439 "Device online - %s\n",
1440 (channel == CONTAINER_CHANNEL) ?
1441 "array created" :
1442 "enclosure services event");
1443 scsi_device_set_state(device, SDEV_RUNNING);
1444 }
1445 /* FALLTHRU */
1446 case CHANGE:
1447 if ((channel == CONTAINER_CHANNEL)
1448 && (!dev->fsa_dev[container].valid)) {
1449 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1450 scsi_remove_device(device);
1451 #else
1452 if (!scsi_device_online(device))
1453 break;
1454 scsi_device_set_state(device, SDEV_OFFLINE);
1455 sdev_printk(KERN_INFO, device,
1456 "Device offlined - %s\n",
1457 "array failed");
1458 #endif
1459 break;
1460 }
1461 scsi_rescan_device(&device->sdev_gendev);
1462
1463 default:
1464 break;
1465 }
1466 scsi_device_put(device);
1467 device_config_needed = NOTHING;
1468 }
1469 if (device_config_needed == ADD)
1470 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1471 if (channel == CONTAINER_CHANNEL) {
1472 container++;
1473 device_config_needed = NOTHING;
1474 goto retry_next;
1475 }
1476 }
1477
1478 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1479 {
1480 int index, quirks;
1481 int retval;
1482 struct Scsi_Host *host;
1483 struct scsi_device *dev;
1484 struct scsi_cmnd *command;
1485 struct scsi_cmnd *command_list;
1486 int jafo = 0;
1487 int bled;
1488 u64 dmamask;
1489 int num_of_fibs = 0;
1490
1491 /*
1492 * Assumptions:
1493 * - host is locked, unless called by the aacraid thread.
1494 * (a matter of convenience, due to legacy issues surrounding
1495 * eh_host_adapter_reset).
1496 * - in_reset is asserted, so no new i/o is getting to the
1497 * card.
1498 * - The card is dead, or will be very shortly ;-/ so no new
1499 * commands are completing in the interrupt service.
1500 */
1501 host = aac->scsi_host_ptr;
1502 scsi_block_requests(host);
1503 aac_adapter_disable_int(aac);
1504 if (aac->thread->pid != current->pid) {
1505 spin_unlock_irq(host->host_lock);
1506 kthread_stop(aac->thread);
1507 jafo = 1;
1508 }
1509
1510 /*
1511 * If a positive health, means in a known DEAD PANIC
1512 * state and the adapter could be reset to `try again'.
1513 */
1514 bled = forced ? 0 : aac_adapter_check_health(aac);
1515 retval = aac_adapter_restart(aac, bled, reset_type);
1516
1517 if (retval)
1518 goto out;
1519
1520 /*
1521 * Loop through the fibs, close the synchronous FIBS
1522 */
1523 retval = 1;
1524 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1525 for (index = 0; index < num_of_fibs; index++) {
1526
1527 struct fib *fib = &aac->fibs[index];
1528 __le32 XferState = fib->hw_fib_va->header.XferState;
1529 bool is_response_expected = false;
1530
1531 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1532 (XferState & cpu_to_le32(ResponseExpected)))
1533 is_response_expected = true;
1534
1535 if (is_response_expected
1536 || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1537 unsigned long flagv;
1538 spin_lock_irqsave(&fib->event_lock, flagv);
1539 up(&fib->event_wait);
1540 spin_unlock_irqrestore(&fib->event_lock, flagv);
1541 schedule();
1542 retval = 0;
1543 }
1544 }
1545 /* Give some extra time for ioctls to complete. */
1546 if (retval == 0)
1547 ssleep(2);
1548 index = aac->cardtype;
1549
1550 /*
1551 * Re-initialize the adapter, first free resources, then carefully
1552 * apply the initialization sequence to come back again. Only risk
1553 * is a change in Firmware dropping cache, it is assumed the caller
1554 * will ensure that i/o is queisced and the card is flushed in that
1555 * case.
1556 */
1557 aac_free_irq(aac);
1558 aac_fib_map_free(aac);
1559 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1560 aac->comm_phys);
1561 aac->comm_addr = NULL;
1562 aac->comm_phys = 0;
1563 kfree(aac->queues);
1564 aac->queues = NULL;
1565 kfree(aac->fsa_dev);
1566 aac->fsa_dev = NULL;
1567
1568 dmamask = DMA_BIT_MASK(32);
1569 quirks = aac_get_driver_ident(index)->quirks;
1570 if (quirks & AAC_QUIRK_31BIT)
1571 retval = pci_set_dma_mask(aac->pdev, dmamask);
1572 else if (!(quirks & AAC_QUIRK_SRC))
1573 retval = pci_set_dma_mask(aac->pdev, dmamask);
1574 else
1575 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1576
1577 if (quirks & AAC_QUIRK_31BIT && !retval) {
1578 dmamask = DMA_BIT_MASK(31);
1579 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1580 }
1581
1582 if (retval)
1583 goto out;
1584
1585 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1586 goto out;
1587
1588 if (jafo) {
1589 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1590 aac->name);
1591 if (IS_ERR(aac->thread)) {
1592 retval = PTR_ERR(aac->thread);
1593 goto out;
1594 }
1595 }
1596 (void)aac_get_adapter_info(aac);
1597 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1598 host->sg_tablesize = 34;
1599 host->max_sectors = (host->sg_tablesize * 8) + 112;
1600 }
1601 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1602 host->sg_tablesize = 17;
1603 host->max_sectors = (host->sg_tablesize * 8) + 112;
1604 }
1605 aac_get_config_status(aac, 1);
1606 aac_get_containers(aac);
1607 /*
1608 * This is where the assumption that the Adapter is quiesced
1609 * is important.
1610 */
1611 command_list = NULL;
1612 __shost_for_each_device(dev, host) {
1613 unsigned long flags;
1614 spin_lock_irqsave(&dev->list_lock, flags);
1615 list_for_each_entry(command, &dev->cmd_list, list)
1616 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1617 command->SCp.buffer = (struct scatterlist *)command_list;
1618 command_list = command;
1619 }
1620 spin_unlock_irqrestore(&dev->list_lock, flags);
1621 }
1622 while ((command = command_list)) {
1623 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1624 command->SCp.buffer = NULL;
1625 command->result = DID_OK << 16
1626 | COMMAND_COMPLETE << 8
1627 | SAM_STAT_TASK_SET_FULL;
1628 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1629 command->scsi_done(command);
1630 }
1631 /*
1632 * Any Device that was already marked offline needs to be cleaned up
1633 */
1634 __shost_for_each_device(dev, host) {
1635 if (!scsi_device_online(dev)) {
1636 sdev_printk(KERN_INFO, dev, "Removing offline device\n");
1637 scsi_remove_device(dev);
1638 scsi_device_put(dev);
1639 }
1640 }
1641 retval = 0;
1642
1643 out:
1644 aac->in_reset = 0;
1645 scsi_unblock_requests(host);
1646 /*
1647 * Issue bus rescan to catch any configuration that might have
1648 * occurred
1649 */
1650 if (!retval) {
1651 dev_info(&aac->pdev->dev, "Issuing bus rescan\n");
1652 scsi_scan_host(host);
1653 }
1654 if (jafo) {
1655 spin_lock_irq(host->host_lock);
1656 }
1657 return retval;
1658 }
1659
1660 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1661 {
1662 unsigned long flagv = 0;
1663 int retval;
1664 struct Scsi_Host * host;
1665 int bled;
1666
1667 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1668 return -EBUSY;
1669
1670 if (aac->in_reset) {
1671 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1672 return -EBUSY;
1673 }
1674 aac->in_reset = 1;
1675 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1676
1677 /*
1678 * Wait for all commands to complete to this specific
1679 * target (block maximum 60 seconds). Although not necessary,
1680 * it does make us a good storage citizen.
1681 */
1682 host = aac->scsi_host_ptr;
1683 scsi_block_requests(host);
1684 if (forced < 2) for (retval = 60; retval; --retval) {
1685 struct scsi_device * dev;
1686 struct scsi_cmnd * command;
1687 int active = 0;
1688
1689 __shost_for_each_device(dev, host) {
1690 spin_lock_irqsave(&dev->list_lock, flagv);
1691 list_for_each_entry(command, &dev->cmd_list, list) {
1692 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1693 active++;
1694 break;
1695 }
1696 }
1697 spin_unlock_irqrestore(&dev->list_lock, flagv);
1698 if (active)
1699 break;
1700
1701 }
1702 /*
1703 * We can exit If all the commands are complete
1704 */
1705 if (active == 0)
1706 break;
1707 ssleep(1);
1708 }
1709
1710 /* Quiesce build, flush cache, write through mode */
1711 if (forced < 2)
1712 aac_send_shutdown(aac);
1713 spin_lock_irqsave(host->host_lock, flagv);
1714 bled = forced ? forced :
1715 (aac_check_reset != 0 && aac_check_reset != 1);
1716 retval = _aac_reset_adapter(aac, bled, reset_type);
1717 spin_unlock_irqrestore(host->host_lock, flagv);
1718
1719 if ((forced < 2) && (retval == -ENODEV)) {
1720 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1721 struct fib * fibctx = aac_fib_alloc(aac);
1722 if (fibctx) {
1723 struct aac_pause *cmd;
1724 int status;
1725
1726 aac_fib_init(fibctx);
1727
1728 cmd = (struct aac_pause *) fib_data(fibctx);
1729
1730 cmd->command = cpu_to_le32(VM_ContainerConfig);
1731 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1732 cmd->timeout = cpu_to_le32(1);
1733 cmd->min = cpu_to_le32(1);
1734 cmd->noRescan = cpu_to_le32(1);
1735 cmd->count = cpu_to_le32(0);
1736
1737 status = aac_fib_send(ContainerCommand,
1738 fibctx,
1739 sizeof(struct aac_pause),
1740 FsaNormal,
1741 -2 /* Timeout silently */, 1,
1742 NULL, NULL);
1743
1744 if (status >= 0)
1745 aac_fib_complete(fibctx);
1746 /* FIB should be freed only after getting
1747 * the response from the F/W */
1748 if (status != -ERESTARTSYS)
1749 aac_fib_free(fibctx);
1750 }
1751 }
1752
1753 return retval;
1754 }
1755
1756 int aac_check_health(struct aac_dev * aac)
1757 {
1758 int BlinkLED;
1759 unsigned long time_now, flagv = 0;
1760 struct list_head * entry;
1761
1762 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1763 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1764 return 0;
1765
1766 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1767 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1768 return 0; /* OK */
1769 }
1770
1771 aac->in_reset = 1;
1772
1773 /* Fake up an AIF:
1774 * aac_aifcmd.command = AifCmdEventNotify = 1
1775 * aac_aifcmd.seqnum = 0xFFFFFFFF
1776 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1777 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1778 * aac.aifcmd.data[2] = AifHighPriority = 3
1779 * aac.aifcmd.data[3] = BlinkLED
1780 */
1781
1782 time_now = jiffies/HZ;
1783 entry = aac->fib_list.next;
1784
1785 /*
1786 * For each Context that is on the
1787 * fibctxList, make a copy of the
1788 * fib, and then set the event to wake up the
1789 * thread that is waiting for it.
1790 */
1791 while (entry != &aac->fib_list) {
1792 /*
1793 * Extract the fibctx
1794 */
1795 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1796 struct hw_fib * hw_fib;
1797 struct fib * fib;
1798 /*
1799 * Check if the queue is getting
1800 * backlogged
1801 */
1802 if (fibctx->count > 20) {
1803 /*
1804 * It's *not* jiffies folks,
1805 * but jiffies / HZ, so do not
1806 * panic ...
1807 */
1808 u32 time_last = fibctx->jiffies;
1809 /*
1810 * Has it been > 2 minutes
1811 * since the last read off
1812 * the queue?
1813 */
1814 if ((time_now - time_last) > aif_timeout) {
1815 entry = entry->next;
1816 aac_close_fib_context(aac, fibctx);
1817 continue;
1818 }
1819 }
1820 /*
1821 * Warning: no sleep allowed while
1822 * holding spinlock
1823 */
1824 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1825 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1826 if (fib && hw_fib) {
1827 struct aac_aifcmd * aif;
1828
1829 fib->hw_fib_va = hw_fib;
1830 fib->dev = aac;
1831 aac_fib_init(fib);
1832 fib->type = FSAFS_NTC_FIB_CONTEXT;
1833 fib->size = sizeof (struct fib);
1834 fib->data = hw_fib->data;
1835 aif = (struct aac_aifcmd *)hw_fib->data;
1836 aif->command = cpu_to_le32(AifCmdEventNotify);
1837 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1838 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1839 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1840 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1841 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1842
1843 /*
1844 * Put the FIB onto the
1845 * fibctx's fibs
1846 */
1847 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1848 fibctx->count++;
1849 /*
1850 * Set the event to wake up the
1851 * thread that will waiting.
1852 */
1853 up(&fibctx->wait_sem);
1854 } else {
1855 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1856 kfree(fib);
1857 kfree(hw_fib);
1858 }
1859 entry = entry->next;
1860 }
1861
1862 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1863
1864 if (BlinkLED < 0) {
1865 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1866 aac->name, BlinkLED);
1867 goto out;
1868 }
1869
1870 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1871
1872 out:
1873 aac->in_reset = 0;
1874 return BlinkLED;
1875 }
1876
1877
1878 static void aac_resolve_luns(struct aac_dev *dev)
1879 {
1880 int bus, target, channel;
1881 struct scsi_device *sdev;
1882 u8 devtype;
1883 u8 new_devtype;
1884
1885 for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
1886 for (target = 0; target < AAC_MAX_TARGETS; target++) {
1887
1888 if (bus == CONTAINER_CHANNEL)
1889 channel = CONTAINER_CHANNEL;
1890 else
1891 channel = aac_phys_to_logical(bus);
1892
1893 devtype = dev->hba_map[bus][target].devtype;
1894 new_devtype = dev->hba_map[bus][target].new_devtype;
1895
1896 sdev = scsi_device_lookup(dev->scsi_host_ptr, channel,
1897 target, 0);
1898
1899 if (!sdev && new_devtype)
1900 scsi_add_device(dev->scsi_host_ptr, channel,
1901 target, 0);
1902 else if (sdev && new_devtype != devtype)
1903 scsi_remove_device(sdev);
1904 else if (sdev && new_devtype == devtype)
1905 scsi_rescan_device(&sdev->sdev_gendev);
1906
1907 if (sdev)
1908 scsi_device_put(sdev);
1909
1910 dev->hba_map[bus][target].devtype = new_devtype;
1911 }
1912 }
1913 }
1914
1915 /**
1916 * aac_handle_sa_aif Handle a message from the firmware
1917 * @dev: Which adapter this fib is from
1918 * @fibptr: Pointer to fibptr from adapter
1919 *
1920 * This routine handles a driver notify fib from the adapter and
1921 * dispatches it to the appropriate routine for handling.
1922 */
1923 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1924 {
1925 int i, bus, target, container, rcode = 0;
1926 u32 events = 0;
1927 struct fib *fib;
1928 struct scsi_device *sdev;
1929
1930 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1931 events = SA_AIF_HOTPLUG;
1932 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1933 events = SA_AIF_HARDWARE;
1934 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1935 events = SA_AIF_PDEV_CHANGE;
1936 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1937 events = SA_AIF_LDEV_CHANGE;
1938 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1939 events = SA_AIF_BPSTAT_CHANGE;
1940 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1941 events = SA_AIF_BPCFG_CHANGE;
1942
1943 switch (events) {
1944 case SA_AIF_HOTPLUG:
1945 case SA_AIF_HARDWARE:
1946 case SA_AIF_PDEV_CHANGE:
1947 case SA_AIF_LDEV_CHANGE:
1948 case SA_AIF_BPCFG_CHANGE:
1949
1950 fib = aac_fib_alloc(dev);
1951 if (!fib) {
1952 pr_err("aac_handle_sa_aif: out of memory\n");
1953 return;
1954 }
1955 for (bus = 0; bus < AAC_MAX_BUSES; bus++)
1956 for (target = 0; target < AAC_MAX_TARGETS; target++)
1957 dev->hba_map[bus][target].new_devtype = 0;
1958
1959 rcode = aac_report_phys_luns(dev, fib, AAC_RESCAN);
1960
1961 if (rcode != -ERESTARTSYS)
1962 aac_fib_free(fib);
1963
1964 aac_resolve_luns(dev);
1965
1966 if (events == SA_AIF_LDEV_CHANGE ||
1967 events == SA_AIF_BPCFG_CHANGE) {
1968 aac_get_containers(dev);
1969 for (container = 0; container <
1970 dev->maximum_num_containers; ++container) {
1971 sdev = scsi_device_lookup(dev->scsi_host_ptr,
1972 CONTAINER_CHANNEL,
1973 container, 0);
1974 if (dev->fsa_dev[container].valid && !sdev) {
1975 scsi_add_device(dev->scsi_host_ptr,
1976 CONTAINER_CHANNEL,
1977 container, 0);
1978 } else if (!dev->fsa_dev[container].valid &&
1979 sdev) {
1980 scsi_remove_device(sdev);
1981 scsi_device_put(sdev);
1982 } else if (sdev) {
1983 scsi_rescan_device(&sdev->sdev_gendev);
1984 scsi_device_put(sdev);
1985 }
1986 }
1987 }
1988 break;
1989
1990 case SA_AIF_BPSTAT_CHANGE:
1991 /* currently do nothing */
1992 break;
1993 }
1994
1995 for (i = 1; i <= 10; ++i) {
1996 events = src_readl(dev, MUnit.IDR);
1997 if (events & (1<<23)) {
1998 pr_warn(" AIF not cleared by firmware - %d/%d)\n",
1999 i, 10);
2000 ssleep(1);
2001 }
2002 }
2003 }
2004
2005 static int get_fib_count(struct aac_dev *dev)
2006 {
2007 unsigned int num = 0;
2008 struct list_head *entry;
2009 unsigned long flagv;
2010
2011 /*
2012 * Warning: no sleep allowed while
2013 * holding spinlock. We take the estimate
2014 * and pre-allocate a set of fibs outside the
2015 * lock.
2016 */
2017 num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2018 / sizeof(struct hw_fib); /* some extra */
2019 spin_lock_irqsave(&dev->fib_lock, flagv);
2020 entry = dev->fib_list.next;
2021 while (entry != &dev->fib_list) {
2022 entry = entry->next;
2023 ++num;
2024 }
2025 spin_unlock_irqrestore(&dev->fib_lock, flagv);
2026
2027 return num;
2028 }
2029
2030 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2031 struct fib **fib_pool,
2032 unsigned int num)
2033 {
2034 struct hw_fib **hw_fib_p;
2035 struct fib **fib_p;
2036
2037 hw_fib_p = hw_fib_pool;
2038 fib_p = fib_pool;
2039 while (hw_fib_p < &hw_fib_pool[num]) {
2040 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2041 if (!(*(hw_fib_p++))) {
2042 --hw_fib_p;
2043 break;
2044 }
2045
2046 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2047 if (!(*(fib_p++))) {
2048 kfree(*(--hw_fib_p));
2049 break;
2050 }
2051 }
2052
2053 /*
2054 * Get the actual number of allocated fibs
2055 */
2056 num = hw_fib_p - hw_fib_pool;
2057 return num;
2058 }
2059
2060 static void wakeup_fibctx_threads(struct aac_dev *dev,
2061 struct hw_fib **hw_fib_pool,
2062 struct fib **fib_pool,
2063 struct fib *fib,
2064 struct hw_fib *hw_fib,
2065 unsigned int num)
2066 {
2067 unsigned long flagv;
2068 struct list_head *entry;
2069 struct hw_fib **hw_fib_p;
2070 struct fib **fib_p;
2071 u32 time_now, time_last;
2072 struct hw_fib *hw_newfib;
2073 struct fib *newfib;
2074 struct aac_fib_context *fibctx;
2075
2076 time_now = jiffies/HZ;
2077 spin_lock_irqsave(&dev->fib_lock, flagv);
2078 entry = dev->fib_list.next;
2079 /*
2080 * For each Context that is on the
2081 * fibctxList, make a copy of the
2082 * fib, and then set the event to wake up the
2083 * thread that is waiting for it.
2084 */
2085
2086 hw_fib_p = hw_fib_pool;
2087 fib_p = fib_pool;
2088 while (entry != &dev->fib_list) {
2089 /*
2090 * Extract the fibctx
2091 */
2092 fibctx = list_entry(entry, struct aac_fib_context,
2093 next);
2094 /*
2095 * Check if the queue is getting
2096 * backlogged
2097 */
2098 if (fibctx->count > 20) {
2099 /*
2100 * It's *not* jiffies folks,
2101 * but jiffies / HZ so do not
2102 * panic ...
2103 */
2104 time_last = fibctx->jiffies;
2105 /*
2106 * Has it been > 2 minutes
2107 * since the last read off
2108 * the queue?
2109 */
2110 if ((time_now - time_last) > aif_timeout) {
2111 entry = entry->next;
2112 aac_close_fib_context(dev, fibctx);
2113 continue;
2114 }
2115 }
2116 /*
2117 * Warning: no sleep allowed while
2118 * holding spinlock
2119 */
2120 if (hw_fib_p >= &hw_fib_pool[num]) {
2121 pr_warn("aifd: didn't allocate NewFib\n");
2122 entry = entry->next;
2123 continue;
2124 }
2125
2126 hw_newfib = *hw_fib_p;
2127 *(hw_fib_p++) = NULL;
2128 newfib = *fib_p;
2129 *(fib_p++) = NULL;
2130 /*
2131 * Make the copy of the FIB
2132 */
2133 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2134 memcpy(newfib, fib, sizeof(struct fib));
2135 newfib->hw_fib_va = hw_newfib;
2136 /*
2137 * Put the FIB onto the
2138 * fibctx's fibs
2139 */
2140 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2141 fibctx->count++;
2142 /*
2143 * Set the event to wake up the
2144 * thread that is waiting.
2145 */
2146 up(&fibctx->wait_sem);
2147
2148 entry = entry->next;
2149 }
2150 /*
2151 * Set the status of this FIB
2152 */
2153 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2154 aac_fib_adapter_complete(fib, sizeof(u32));
2155 spin_unlock_irqrestore(&dev->fib_lock, flagv);
2156
2157 }
2158
2159 static void aac_process_events(struct aac_dev *dev)
2160 {
2161 struct hw_fib *hw_fib;
2162 struct fib *fib;
2163 unsigned long flags;
2164 spinlock_t *t_lock;
2165
2166 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2167 spin_lock_irqsave(t_lock, flags);
2168
2169 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2170 struct list_head *entry;
2171 struct aac_aifcmd *aifcmd;
2172 unsigned int num;
2173 struct hw_fib **hw_fib_pool, **hw_fib_p;
2174 struct fib **fib_pool, **fib_p;
2175
2176 set_current_state(TASK_RUNNING);
2177
2178 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2179 list_del(entry);
2180
2181 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2182 spin_unlock_irqrestore(t_lock, flags);
2183
2184 fib = list_entry(entry, struct fib, fiblink);
2185 hw_fib = fib->hw_fib_va;
2186 if (dev->sa_firmware) {
2187 /* Thor AIF */
2188 aac_handle_sa_aif(dev, fib);
2189 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2190 goto free_fib;
2191 }
2192 /*
2193 * We will process the FIB here or pass it to a
2194 * worker thread that is TBD. We Really can't
2195 * do anything at this point since we don't have
2196 * anything defined for this thread to do.
2197 */
2198 memset(fib, 0, sizeof(struct fib));
2199 fib->type = FSAFS_NTC_FIB_CONTEXT;
2200 fib->size = sizeof(struct fib);
2201 fib->hw_fib_va = hw_fib;
2202 fib->data = hw_fib->data;
2203 fib->dev = dev;
2204 /*
2205 * We only handle AifRequest fibs from the adapter.
2206 */
2207
2208 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2209 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2210 /* Handle Driver Notify Events */
2211 aac_handle_aif(dev, fib);
2212 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2213 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2214 goto free_fib;
2215 }
2216 /*
2217 * The u32 here is important and intended. We are using
2218 * 32bit wrapping time to fit the adapter field
2219 */
2220
2221 /* Sniff events */
2222 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2223 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2224 aac_handle_aif(dev, fib);
2225 }
2226
2227 /*
2228 * get number of fibs to process
2229 */
2230 num = get_fib_count(dev);
2231 if (!num)
2232 goto free_fib;
2233
2234 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2235 GFP_KERNEL);
2236 if (!hw_fib_pool)
2237 goto free_fib;
2238
2239 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2240 if (!fib_pool)
2241 goto free_hw_fib_pool;
2242
2243 /*
2244 * Fill up fib pointer pools with actual fibs
2245 * and hw_fibs
2246 */
2247 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2248 if (!num)
2249 goto free_mem;
2250
2251 /*
2252 * wakeup the thread that is waiting for
2253 * the response from fw (ioctl)
2254 */
2255 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2256 fib, hw_fib, num);
2257
2258 free_mem:
2259 /* Free up the remaining resources */
2260 hw_fib_p = hw_fib_pool;
2261 fib_p = fib_pool;
2262 while (hw_fib_p < &hw_fib_pool[num]) {
2263 kfree(*hw_fib_p);
2264 kfree(*fib_p);
2265 ++fib_p;
2266 ++hw_fib_p;
2267 }
2268 kfree(fib_pool);
2269 free_hw_fib_pool:
2270 kfree(hw_fib_pool);
2271 free_fib:
2272 kfree(fib);
2273 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2274 spin_lock_irqsave(t_lock, flags);
2275 }
2276 /*
2277 * There are no more AIF's
2278 */
2279 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2280 spin_unlock_irqrestore(t_lock, flags);
2281 }
2282
2283 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2284 u32 datasize)
2285 {
2286 struct aac_srb *srbcmd;
2287 struct sgmap64 *sg64;
2288 dma_addr_t addr;
2289 char *dma_buf;
2290 struct fib *fibptr;
2291 int ret = -ENOMEM;
2292 u32 vbus, vid;
2293
2294 fibptr = aac_fib_alloc(dev);
2295 if (!fibptr)
2296 goto out;
2297
2298 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2299 GFP_KERNEL);
2300 if (!dma_buf)
2301 goto fib_free_out;
2302
2303 aac_fib_init(fibptr);
2304
2305 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2306 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2307
2308 srbcmd = (struct aac_srb *)fib_data(fibptr);
2309
2310 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2311 srbcmd->channel = cpu_to_le32(vbus);
2312 srbcmd->id = cpu_to_le32(vid);
2313 srbcmd->lun = 0;
2314 srbcmd->flags = cpu_to_le32(SRB_DataOut);
2315 srbcmd->timeout = cpu_to_le32(10);
2316 srbcmd->retry_limit = 0;
2317 srbcmd->cdb_size = cpu_to_le32(12);
2318 srbcmd->count = cpu_to_le32(datasize);
2319
2320 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2321 srbcmd->cdb[0] = BMIC_OUT;
2322 srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2323 memcpy(dma_buf, (char *)wellness_str, datasize);
2324
2325 sg64 = (struct sgmap64 *)&srbcmd->sg;
2326 sg64->count = cpu_to_le32(1);
2327 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2328 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2329 sg64->sg[0].count = cpu_to_le32(datasize);
2330
2331 ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2332 FsaNormal, 1, 1, NULL, NULL);
2333
2334 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2335
2336 /*
2337 * Do not set XferState to zero unless
2338 * receives a response from F/W
2339 */
2340 if (ret >= 0)
2341 aac_fib_complete(fibptr);
2342
2343 /*
2344 * FIB should be freed only after
2345 * getting the response from the F/W
2346 */
2347 if (ret != -ERESTARTSYS)
2348 goto fib_free_out;
2349
2350 out:
2351 return ret;
2352 fib_free_out:
2353 aac_fib_free(fibptr);
2354 goto out;
2355 }
2356
2357 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2358 {
2359 struct tm cur_tm;
2360 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2361 u32 datasize = sizeof(wellness_str);
2362 time64_t local_time;
2363 int ret = -ENODEV;
2364
2365 if (!dev->sa_firmware)
2366 goto out;
2367
2368 local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2369 time64_to_tm(local_time, 0, &cur_tm);
2370 cur_tm.tm_mon += 1;
2371 cur_tm.tm_year += 1900;
2372 wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2373 wellness_str[9] = bin2bcd(cur_tm.tm_min);
2374 wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2375 wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2376 wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2377 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2378 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2379
2380 ret = aac_send_wellness_command(dev, wellness_str, datasize);
2381
2382 out:
2383 return ret;
2384 }
2385
2386 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2387 {
2388 int ret = -ENOMEM;
2389 struct fib *fibptr;
2390 __le32 *info;
2391
2392 fibptr = aac_fib_alloc(dev);
2393 if (!fibptr)
2394 goto out;
2395
2396 aac_fib_init(fibptr);
2397 info = (__le32 *)fib_data(fibptr);
2398 *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2399 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2400 1, 1, NULL, NULL);
2401
2402 /*
2403 * Do not set XferState to zero unless
2404 * receives a response from F/W
2405 */
2406 if (ret >= 0)
2407 aac_fib_complete(fibptr);
2408
2409 /*
2410 * FIB should be freed only after
2411 * getting the response from the F/W
2412 */
2413 if (ret != -ERESTARTSYS)
2414 aac_fib_free(fibptr);
2415
2416 out:
2417 return ret;
2418 }
2419
2420 /**
2421 * aac_command_thread - command processing thread
2422 * @dev: Adapter to monitor
2423 *
2424 * Waits on the commandready event in it's queue. When the event gets set
2425 * it will pull FIBs off it's queue. It will continue to pull FIBs off
2426 * until the queue is empty. When the queue is empty it will wait for
2427 * more FIBs.
2428 */
2429
2430 int aac_command_thread(void *data)
2431 {
2432 struct aac_dev *dev = data;
2433 DECLARE_WAITQUEUE(wait, current);
2434 unsigned long next_jiffies = jiffies + HZ;
2435 unsigned long next_check_jiffies = next_jiffies;
2436 long difference = HZ;
2437
2438 /*
2439 * We can only have one thread per adapter for AIF's.
2440 */
2441 if (dev->aif_thread)
2442 return -EINVAL;
2443
2444 /*
2445 * Let the DPC know it has a place to send the AIF's to.
2446 */
2447 dev->aif_thread = 1;
2448 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2449 set_current_state(TASK_INTERRUPTIBLE);
2450 dprintk ((KERN_INFO "aac_command_thread start\n"));
2451 while (1) {
2452
2453 aac_process_events(dev);
2454
2455 /*
2456 * Background activity
2457 */
2458 if ((time_before(next_check_jiffies,next_jiffies))
2459 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2460 next_check_jiffies = next_jiffies;
2461 if (aac_adapter_check_health(dev) == 0) {
2462 difference = ((long)(unsigned)check_interval)
2463 * HZ;
2464 next_check_jiffies = jiffies + difference;
2465 } else if (!dev->queues)
2466 break;
2467 }
2468 if (!time_before(next_check_jiffies,next_jiffies)
2469 && ((difference = next_jiffies - jiffies) <= 0)) {
2470 struct timespec64 now;
2471 int ret;
2472
2473 /* Don't even try to talk to adapter if its sick */
2474 ret = aac_adapter_check_health(dev);
2475 if (ret || !dev->queues)
2476 break;
2477 next_check_jiffies = jiffies
2478 + ((long)(unsigned)check_interval)
2479 * HZ;
2480 ktime_get_real_ts64(&now);
2481
2482 /* Synchronize our watches */
2483 if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2484 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2485 difference = HZ + HZ / 2 -
2486 now.tv_nsec / (NSEC_PER_SEC / HZ);
2487 else {
2488 if (now.tv_nsec > NSEC_PER_SEC / 2)
2489 ++now.tv_sec;
2490
2491 if (dev->sa_firmware)
2492 ret =
2493 aac_send_safw_hostttime(dev, &now);
2494 else
2495 ret = aac_send_hosttime(dev, &now);
2496
2497 difference = (long)(unsigned)update_interval*HZ;
2498 }
2499 next_jiffies = jiffies + difference;
2500 if (time_before(next_check_jiffies,next_jiffies))
2501 difference = next_check_jiffies - jiffies;
2502 }
2503 if (difference <= 0)
2504 difference = 1;
2505 set_current_state(TASK_INTERRUPTIBLE);
2506
2507 if (kthread_should_stop())
2508 break;
2509
2510 /*
2511 * we probably want usleep_range() here instead of the
2512 * jiffies computation
2513 */
2514 schedule_timeout(difference);
2515
2516 if (kthread_should_stop())
2517 break;
2518 }
2519 if (dev->queues)
2520 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2521 dev->aif_thread = 0;
2522 return 0;
2523 }
2524
2525 int aac_acquire_irq(struct aac_dev *dev)
2526 {
2527 int i;
2528 int j;
2529 int ret = 0;
2530
2531 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2532 for (i = 0; i < dev->max_msix; i++) {
2533 dev->aac_msix[i].vector_no = i;
2534 dev->aac_msix[i].dev = dev;
2535 if (request_irq(pci_irq_vector(dev->pdev, i),
2536 dev->a_ops.adapter_intr,
2537 0, "aacraid", &(dev->aac_msix[i]))) {
2538 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2539 dev->name, dev->id, i);
2540 for (j = 0 ; j < i ; j++)
2541 free_irq(pci_irq_vector(dev->pdev, j),
2542 &(dev->aac_msix[j]));
2543 pci_disable_msix(dev->pdev);
2544 ret = -1;
2545 }
2546 }
2547 } else {
2548 dev->aac_msix[0].vector_no = 0;
2549 dev->aac_msix[0].dev = dev;
2550
2551 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2552 IRQF_SHARED, "aacraid",
2553 &(dev->aac_msix[0])) < 0) {
2554 if (dev->msi)
2555 pci_disable_msi(dev->pdev);
2556 printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2557 dev->name, dev->id);
2558 ret = -1;
2559 }
2560 }
2561 return ret;
2562 }
2563
2564 void aac_free_irq(struct aac_dev *dev)
2565 {
2566 int i;
2567 int cpu;
2568
2569 cpu = cpumask_first(cpu_online_mask);
2570 if (aac_is_src(dev)) {
2571 if (dev->max_msix > 1) {
2572 for (i = 0; i < dev->max_msix; i++)
2573 free_irq(pci_irq_vector(dev->pdev, i),
2574 &(dev->aac_msix[i]));
2575 } else {
2576 free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2577 }
2578 } else {
2579 free_irq(dev->pdev->irq, dev);
2580 }
2581 if (dev->msi)
2582 pci_disable_msi(dev->pdev);
2583 else if (dev->max_msix > 1)
2584 pci_disable_msix(dev->pdev);
2585 }