]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/aacraid/commsup.c
Merge branch 'ccf/atmel-fixes-for-4.1' of https://github.com/bbrezillon/linux-at91...
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / aacraid / commsup.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING. If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Module Name:
26 * commsup.c
27 *
28 * Abstract: Contain all routines that are required for FSA host/adapter
29 * communication.
30 *
31 */
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/interrupt.h>
45 #include <linux/semaphore.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_cmnd.h>
50
51 #include "aacraid.h"
52
53 /**
54 * fib_map_alloc - allocate the fib objects
55 * @dev: Adapter to allocate for
56 *
57 * Allocate and map the shared PCI space for the FIB blocks used to
58 * talk to the Adaptec firmware.
59 */
60
61 static int fib_map_alloc(struct aac_dev *dev)
62 {
63 dprintk((KERN_INFO
64 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67 dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70 &dev->hw_fib_pa);
71 if (dev->hw_fib_va == NULL)
72 return -ENOMEM;
73 return 0;
74 }
75
76 /**
77 * aac_fib_map_free - free the fib objects
78 * @dev: Adapter to free
79 *
80 * Free the PCI mappings and the memory allocated for FIB blocks
81 * on this adapter.
82 */
83
84 void aac_fib_map_free(struct aac_dev *dev)
85 {
86 pci_free_consistent(dev->pdev,
87 dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
88 dev->hw_fib_va, dev->hw_fib_pa);
89 dev->hw_fib_va = NULL;
90 dev->hw_fib_pa = 0;
91 }
92
93 /**
94 * aac_fib_setup - setup the fibs
95 * @dev: Adapter to set up
96 *
97 * Allocate the PCI space for the fibs, map it and then initialise the
98 * fib area, the unmapped fib data and also the free list
99 */
100
101 int aac_fib_setup(struct aac_dev * dev)
102 {
103 struct fib *fibptr;
104 struct hw_fib *hw_fib;
105 dma_addr_t hw_fib_pa;
106 int i;
107
108 while (((i = fib_map_alloc(dev)) == -ENOMEM)
109 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
110 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
111 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
112 }
113 if (i<0)
114 return -ENOMEM;
115
116 /* 32 byte alignment for PMC */
117 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
118 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
119 (hw_fib_pa - dev->hw_fib_pa));
120 dev->hw_fib_pa = hw_fib_pa;
121 memset(dev->hw_fib_va, 0,
122 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
123 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
124
125 /* add Xport header */
126 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
127 sizeof(struct aac_fib_xporthdr));
128 dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
129
130 hw_fib = dev->hw_fib_va;
131 hw_fib_pa = dev->hw_fib_pa;
132 /*
133 * Initialise the fibs
134 */
135 for (i = 0, fibptr = &dev->fibs[i];
136 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
137 i++, fibptr++)
138 {
139 fibptr->flags = 0;
140 fibptr->dev = dev;
141 fibptr->hw_fib_va = hw_fib;
142 fibptr->data = (void *) fibptr->hw_fib_va->data;
143 fibptr->next = fibptr+1; /* Forward chain the fibs */
144 sema_init(&fibptr->event_wait, 0);
145 spin_lock_init(&fibptr->event_lock);
146 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
147 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
148 fibptr->hw_fib_pa = hw_fib_pa;
149 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
150 dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
151 hw_fib_pa = hw_fib_pa +
152 dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
153 }
154 /*
155 * Add the fib chain to the free list
156 */
157 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
158 /*
159 * Enable this to debug out of queue space
160 */
161 dev->free_fib = &dev->fibs[0];
162 return 0;
163 }
164
165 /**
166 * aac_fib_alloc - allocate a fib
167 * @dev: Adapter to allocate the fib for
168 *
169 * Allocate a fib from the adapter fib pool. If the pool is empty we
170 * return NULL.
171 */
172
173 struct fib *aac_fib_alloc(struct aac_dev *dev)
174 {
175 struct fib * fibptr;
176 unsigned long flags;
177 spin_lock_irqsave(&dev->fib_lock, flags);
178 fibptr = dev->free_fib;
179 if(!fibptr){
180 spin_unlock_irqrestore(&dev->fib_lock, flags);
181 return fibptr;
182 }
183 dev->free_fib = fibptr->next;
184 spin_unlock_irqrestore(&dev->fib_lock, flags);
185 /*
186 * Set the proper node type code and node byte size
187 */
188 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
189 fibptr->size = sizeof(struct fib);
190 /*
191 * Null out fields that depend on being zero at the start of
192 * each I/O
193 */
194 fibptr->hw_fib_va->header.XferState = 0;
195 fibptr->flags = 0;
196 fibptr->callback = NULL;
197 fibptr->callback_data = NULL;
198
199 return fibptr;
200 }
201
202 /**
203 * aac_fib_free - free a fib
204 * @fibptr: fib to free up
205 *
206 * Frees up a fib and places it on the appropriate queue
207 */
208
209 void aac_fib_free(struct fib *fibptr)
210 {
211 unsigned long flags;
212
213 if (fibptr->done == 2)
214 return;
215
216 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
217 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
218 aac_config.fib_timeouts++;
219 if (fibptr->hw_fib_va->header.XferState != 0) {
220 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
221 (void*)fibptr,
222 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
223 }
224 fibptr->next = fibptr->dev->free_fib;
225 fibptr->dev->free_fib = fibptr;
226 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
227 }
228
229 /**
230 * aac_fib_init - initialise a fib
231 * @fibptr: The fib to initialize
232 *
233 * Set up the generic fib fields ready for use
234 */
235
236 void aac_fib_init(struct fib *fibptr)
237 {
238 struct hw_fib *hw_fib = fibptr->hw_fib_va;
239
240 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
241 hw_fib->header.StructType = FIB_MAGIC;
242 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
243 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
244 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
245 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
246 }
247
248 /**
249 * fib_deallocate - deallocate a fib
250 * @fibptr: fib to deallocate
251 *
252 * Will deallocate and return to the free pool the FIB pointed to by the
253 * caller.
254 */
255
256 static void fib_dealloc(struct fib * fibptr)
257 {
258 struct hw_fib *hw_fib = fibptr->hw_fib_va;
259 hw_fib->header.XferState = 0;
260 }
261
262 /*
263 * Commuication primitives define and support the queuing method we use to
264 * support host to adapter commuication. All queue accesses happen through
265 * these routines and are the only routines which have a knowledge of the
266 * how these queues are implemented.
267 */
268
269 /**
270 * aac_get_entry - get a queue entry
271 * @dev: Adapter
272 * @qid: Queue Number
273 * @entry: Entry return
274 * @index: Index return
275 * @nonotify: notification control
276 *
277 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
278 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
279 * returned.
280 */
281
282 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
283 {
284 struct aac_queue * q;
285 unsigned long idx;
286
287 /*
288 * All of the queues wrap when they reach the end, so we check
289 * to see if they have reached the end and if they have we just
290 * set the index back to zero. This is a wrap. You could or off
291 * the high bits in all updates but this is a bit faster I think.
292 */
293
294 q = &dev->queues->queue[qid];
295
296 idx = *index = le32_to_cpu(*(q->headers.producer));
297 /* Interrupt Moderation, only interrupt for first two entries */
298 if (idx != le32_to_cpu(*(q->headers.consumer))) {
299 if (--idx == 0) {
300 if (qid == AdapNormCmdQueue)
301 idx = ADAP_NORM_CMD_ENTRIES;
302 else
303 idx = ADAP_NORM_RESP_ENTRIES;
304 }
305 if (idx != le32_to_cpu(*(q->headers.consumer)))
306 *nonotify = 1;
307 }
308
309 if (qid == AdapNormCmdQueue) {
310 if (*index >= ADAP_NORM_CMD_ENTRIES)
311 *index = 0; /* Wrap to front of the Producer Queue. */
312 } else {
313 if (*index >= ADAP_NORM_RESP_ENTRIES)
314 *index = 0; /* Wrap to front of the Producer Queue. */
315 }
316
317 /* Queue is full */
318 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
319 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
320 qid, atomic_read(&q->numpending));
321 return 0;
322 } else {
323 *entry = q->base + *index;
324 return 1;
325 }
326 }
327
328 /**
329 * aac_queue_get - get the next free QE
330 * @dev: Adapter
331 * @index: Returned index
332 * @priority: Priority of fib
333 * @fib: Fib to associate with the queue entry
334 * @wait: Wait if queue full
335 * @fibptr: Driver fib object to go with fib
336 * @nonotify: Don't notify the adapter
337 *
338 * Gets the next free QE off the requested priorty adapter command
339 * queue and associates the Fib with the QE. The QE represented by
340 * index is ready to insert on the queue when this routine returns
341 * success.
342 */
343
344 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
345 {
346 struct aac_entry * entry = NULL;
347 int map = 0;
348
349 if (qid == AdapNormCmdQueue) {
350 /* if no entries wait for some if caller wants to */
351 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
352 printk(KERN_ERR "GetEntries failed\n");
353 }
354 /*
355 * Setup queue entry with a command, status and fib mapped
356 */
357 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
358 map = 1;
359 } else {
360 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
361 /* if no entries wait for some if caller wants to */
362 }
363 /*
364 * Setup queue entry with command, status and fib mapped
365 */
366 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
367 entry->addr = hw_fib->header.SenderFibAddress;
368 /* Restore adapters pointer to the FIB */
369 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
370 map = 0;
371 }
372 /*
373 * If MapFib is true than we need to map the Fib and put pointers
374 * in the queue entry.
375 */
376 if (map)
377 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
378 return 0;
379 }
380
381 /*
382 * Define the highest level of host to adapter communication routines.
383 * These routines will support host to adapter FS commuication. These
384 * routines have no knowledge of the commuication method used. This level
385 * sends and receives FIBs. This level has no knowledge of how these FIBs
386 * get passed back and forth.
387 */
388
389 /**
390 * aac_fib_send - send a fib to the adapter
391 * @command: Command to send
392 * @fibptr: The fib
393 * @size: Size of fib data area
394 * @priority: Priority of Fib
395 * @wait: Async/sync select
396 * @reply: True if a reply is wanted
397 * @callback: Called with reply
398 * @callback_data: Passed to callback
399 *
400 * Sends the requested FIB to the adapter and optionally will wait for a
401 * response FIB. If the caller does not wish to wait for a response than
402 * an event to wait on must be supplied. This event will be set when a
403 * response FIB is received from the adapter.
404 */
405
406 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
407 int priority, int wait, int reply, fib_callback callback,
408 void *callback_data)
409 {
410 struct aac_dev * dev = fibptr->dev;
411 struct hw_fib * hw_fib = fibptr->hw_fib_va;
412 unsigned long flags = 0;
413 unsigned long mflags = 0;
414 unsigned long sflags = 0;
415
416
417 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
418 return -EBUSY;
419 /*
420 * There are 5 cases with the wait and response requested flags.
421 * The only invalid cases are if the caller requests to wait and
422 * does not request a response and if the caller does not want a
423 * response and the Fib is not allocated from pool. If a response
424 * is not requesed the Fib will just be deallocaed by the DPC
425 * routine when the response comes back from the adapter. No
426 * further processing will be done besides deleting the Fib. We
427 * will have a debug mode where the adapter can notify the host
428 * it had a problem and the host can log that fact.
429 */
430 fibptr->flags = 0;
431 if (wait && !reply) {
432 return -EINVAL;
433 } else if (!wait && reply) {
434 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
435 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
436 } else if (!wait && !reply) {
437 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
438 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
439 } else if (wait && reply) {
440 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
441 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
442 }
443 /*
444 * Map the fib into 32bits by using the fib number
445 */
446
447 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
448 hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1;
449 /*
450 * Set FIB state to indicate where it came from and if we want a
451 * response from the adapter. Also load the command from the
452 * caller.
453 *
454 * Map the hw fib pointer as a 32bit value
455 */
456 hw_fib->header.Command = cpu_to_le16(command);
457 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
458 /*
459 * Set the size of the Fib we want to send to the adapter
460 */
461 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
462 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
463 return -EMSGSIZE;
464 }
465 /*
466 * Get a queue entry connect the FIB to it and send an notify
467 * the adapter a command is ready.
468 */
469 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
470
471 /*
472 * Fill in the Callback and CallbackContext if we are not
473 * going to wait.
474 */
475 if (!wait) {
476 fibptr->callback = callback;
477 fibptr->callback_data = callback_data;
478 fibptr->flags = FIB_CONTEXT_FLAG;
479 }
480
481 fibptr->done = 0;
482
483 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
484
485 dprintk((KERN_DEBUG "Fib contents:.\n"));
486 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
487 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
488 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
489 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
490 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
491 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
492
493 if (!dev->queues)
494 return -EBUSY;
495
496 if (wait) {
497
498 spin_lock_irqsave(&dev->manage_lock, mflags);
499 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
500 printk(KERN_INFO "No management Fibs Available:%d\n",
501 dev->management_fib_count);
502 spin_unlock_irqrestore(&dev->manage_lock, mflags);
503 return -EBUSY;
504 }
505 dev->management_fib_count++;
506 spin_unlock_irqrestore(&dev->manage_lock, mflags);
507 spin_lock_irqsave(&fibptr->event_lock, flags);
508 }
509
510 if (dev->sync_mode) {
511 if (wait)
512 spin_unlock_irqrestore(&fibptr->event_lock, flags);
513 spin_lock_irqsave(&dev->sync_lock, sflags);
514 if (dev->sync_fib) {
515 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
516 spin_unlock_irqrestore(&dev->sync_lock, sflags);
517 } else {
518 dev->sync_fib = fibptr;
519 spin_unlock_irqrestore(&dev->sync_lock, sflags);
520 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
521 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
522 NULL, NULL, NULL, NULL, NULL);
523 }
524 if (wait) {
525 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
526 if (down_interruptible(&fibptr->event_wait)) {
527 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
528 return -EFAULT;
529 }
530 return 0;
531 }
532 return -EINPROGRESS;
533 }
534
535 if (aac_adapter_deliver(fibptr) != 0) {
536 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
537 if (wait) {
538 spin_unlock_irqrestore(&fibptr->event_lock, flags);
539 spin_lock_irqsave(&dev->manage_lock, mflags);
540 dev->management_fib_count--;
541 spin_unlock_irqrestore(&dev->manage_lock, mflags);
542 }
543 return -EBUSY;
544 }
545
546
547 /*
548 * If the caller wanted us to wait for response wait now.
549 */
550
551 if (wait) {
552 spin_unlock_irqrestore(&fibptr->event_lock, flags);
553 /* Only set for first known interruptable command */
554 if (wait < 0) {
555 /*
556 * *VERY* Dangerous to time out a command, the
557 * assumption is made that we have no hope of
558 * functioning because an interrupt routing or other
559 * hardware failure has occurred.
560 */
561 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
562 while (down_trylock(&fibptr->event_wait)) {
563 int blink;
564 if (time_is_before_eq_jiffies(timeout)) {
565 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
566 atomic_dec(&q->numpending);
567 if (wait == -1) {
568 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
569 "Usually a result of a PCI interrupt routing problem;\n"
570 "update mother board BIOS or consider utilizing one of\n"
571 "the SAFE mode kernel options (acpi, apic etc)\n");
572 }
573 return -ETIMEDOUT;
574 }
575 if ((blink = aac_adapter_check_health(dev)) > 0) {
576 if (wait == -1) {
577 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
578 "Usually a result of a serious unrecoverable hardware problem\n",
579 blink);
580 }
581 return -EFAULT;
582 }
583 /* We used to udelay() here but that absorbed
584 * a CPU when a timeout occured. Not very
585 * useful. */
586 cpu_relax();
587 }
588 } else if (down_interruptible(&fibptr->event_wait)) {
589 /* Do nothing ... satisfy
590 * down_interruptible must_check */
591 }
592
593 spin_lock_irqsave(&fibptr->event_lock, flags);
594 if (fibptr->done == 0) {
595 fibptr->done = 2; /* Tell interrupt we aborted */
596 spin_unlock_irqrestore(&fibptr->event_lock, flags);
597 return -ERESTARTSYS;
598 }
599 spin_unlock_irqrestore(&fibptr->event_lock, flags);
600 BUG_ON(fibptr->done == 0);
601
602 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
603 return -ETIMEDOUT;
604 return 0;
605 }
606 /*
607 * If the user does not want a response than return success otherwise
608 * return pending
609 */
610 if (reply)
611 return -EINPROGRESS;
612 else
613 return 0;
614 }
615
616 /**
617 * aac_consumer_get - get the top of the queue
618 * @dev: Adapter
619 * @q: Queue
620 * @entry: Return entry
621 *
622 * Will return a pointer to the entry on the top of the queue requested that
623 * we are a consumer of, and return the address of the queue entry. It does
624 * not change the state of the queue.
625 */
626
627 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
628 {
629 u32 index;
630 int status;
631 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
632 status = 0;
633 } else {
634 /*
635 * The consumer index must be wrapped if we have reached
636 * the end of the queue, else we just use the entry
637 * pointed to by the header index
638 */
639 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
640 index = 0;
641 else
642 index = le32_to_cpu(*q->headers.consumer);
643 *entry = q->base + index;
644 status = 1;
645 }
646 return(status);
647 }
648
649 /**
650 * aac_consumer_free - free consumer entry
651 * @dev: Adapter
652 * @q: Queue
653 * @qid: Queue ident
654 *
655 * Frees up the current top of the queue we are a consumer of. If the
656 * queue was full notify the producer that the queue is no longer full.
657 */
658
659 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
660 {
661 int wasfull = 0;
662 u32 notify;
663
664 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
665 wasfull = 1;
666
667 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
668 *q->headers.consumer = cpu_to_le32(1);
669 else
670 le32_add_cpu(q->headers.consumer, 1);
671
672 if (wasfull) {
673 switch (qid) {
674
675 case HostNormCmdQueue:
676 notify = HostNormCmdNotFull;
677 break;
678 case HostNormRespQueue:
679 notify = HostNormRespNotFull;
680 break;
681 default:
682 BUG();
683 return;
684 }
685 aac_adapter_notify(dev, notify);
686 }
687 }
688
689 /**
690 * aac_fib_adapter_complete - complete adapter issued fib
691 * @fibptr: fib to complete
692 * @size: size of fib
693 *
694 * Will do all necessary work to complete a FIB that was sent from
695 * the adapter.
696 */
697
698 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
699 {
700 struct hw_fib * hw_fib = fibptr->hw_fib_va;
701 struct aac_dev * dev = fibptr->dev;
702 struct aac_queue * q;
703 unsigned long nointr = 0;
704 unsigned long qflags;
705
706 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
707 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
708 kfree(hw_fib);
709 return 0;
710 }
711
712 if (hw_fib->header.XferState == 0) {
713 if (dev->comm_interface == AAC_COMM_MESSAGE)
714 kfree(hw_fib);
715 return 0;
716 }
717 /*
718 * If we plan to do anything check the structure type first.
719 */
720 if (hw_fib->header.StructType != FIB_MAGIC &&
721 hw_fib->header.StructType != FIB_MAGIC2 &&
722 hw_fib->header.StructType != FIB_MAGIC2_64) {
723 if (dev->comm_interface == AAC_COMM_MESSAGE)
724 kfree(hw_fib);
725 return -EINVAL;
726 }
727 /*
728 * This block handles the case where the adapter had sent us a
729 * command and we have finished processing the command. We
730 * call completeFib when we are done processing the command
731 * and want to send a response back to the adapter. This will
732 * send the completed cdb to the adapter.
733 */
734 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
735 if (dev->comm_interface == AAC_COMM_MESSAGE) {
736 kfree (hw_fib);
737 } else {
738 u32 index;
739 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
740 if (size) {
741 size += sizeof(struct aac_fibhdr);
742 if (size > le16_to_cpu(hw_fib->header.SenderSize))
743 return -EMSGSIZE;
744 hw_fib->header.Size = cpu_to_le16(size);
745 }
746 q = &dev->queues->queue[AdapNormRespQueue];
747 spin_lock_irqsave(q->lock, qflags);
748 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
749 *(q->headers.producer) = cpu_to_le32(index + 1);
750 spin_unlock_irqrestore(q->lock, qflags);
751 if (!(nointr & (int)aac_config.irq_mod))
752 aac_adapter_notify(dev, AdapNormRespQueue);
753 }
754 } else {
755 printk(KERN_WARNING "aac_fib_adapter_complete: "
756 "Unknown xferstate detected.\n");
757 BUG();
758 }
759 return 0;
760 }
761
762 /**
763 * aac_fib_complete - fib completion handler
764 * @fib: FIB to complete
765 *
766 * Will do all necessary work to complete a FIB.
767 */
768
769 int aac_fib_complete(struct fib *fibptr)
770 {
771 struct hw_fib * hw_fib = fibptr->hw_fib_va;
772
773 /*
774 * Check for a fib which has already been completed
775 */
776
777 if (hw_fib->header.XferState == 0)
778 return 0;
779 /*
780 * If we plan to do anything check the structure type first.
781 */
782
783 if (hw_fib->header.StructType != FIB_MAGIC &&
784 hw_fib->header.StructType != FIB_MAGIC2 &&
785 hw_fib->header.StructType != FIB_MAGIC2_64)
786 return -EINVAL;
787 /*
788 * This block completes a cdb which orginated on the host and we
789 * just need to deallocate the cdb or reinit it. At this point the
790 * command is complete that we had sent to the adapter and this
791 * cdb could be reused.
792 */
793
794 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
795 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
796 {
797 fib_dealloc(fibptr);
798 }
799 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
800 {
801 /*
802 * This handles the case when the host has aborted the I/O
803 * to the adapter because the adapter is not responding
804 */
805 fib_dealloc(fibptr);
806 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
807 fib_dealloc(fibptr);
808 } else {
809 BUG();
810 }
811 return 0;
812 }
813
814 /**
815 * aac_printf - handle printf from firmware
816 * @dev: Adapter
817 * @val: Message info
818 *
819 * Print a message passed to us by the controller firmware on the
820 * Adaptec board
821 */
822
823 void aac_printf(struct aac_dev *dev, u32 val)
824 {
825 char *cp = dev->printfbuf;
826 if (dev->printf_enabled)
827 {
828 int length = val & 0xffff;
829 int level = (val >> 16) & 0xffff;
830
831 /*
832 * The size of the printfbuf is set in port.c
833 * There is no variable or define for it
834 */
835 if (length > 255)
836 length = 255;
837 if (cp[length] != 0)
838 cp[length] = 0;
839 if (level == LOG_AAC_HIGH_ERROR)
840 printk(KERN_WARNING "%s:%s", dev->name, cp);
841 else
842 printk(KERN_INFO "%s:%s", dev->name, cp);
843 }
844 memset(cp, 0, 256);
845 }
846
847
848 /**
849 * aac_handle_aif - Handle a message from the firmware
850 * @dev: Which adapter this fib is from
851 * @fibptr: Pointer to fibptr from adapter
852 *
853 * This routine handles a driver notify fib from the adapter and
854 * dispatches it to the appropriate routine for handling.
855 */
856
857 #define AIF_SNIFF_TIMEOUT (500*HZ)
858 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
859 {
860 struct hw_fib * hw_fib = fibptr->hw_fib_va;
861 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
862 u32 channel, id, lun, container;
863 struct scsi_device *device;
864 enum {
865 NOTHING,
866 DELETE,
867 ADD,
868 CHANGE
869 } device_config_needed = NOTHING;
870
871 /* Sniff for container changes */
872
873 if (!dev || !dev->fsa_dev)
874 return;
875 container = channel = id = lun = (u32)-1;
876
877 /*
878 * We have set this up to try and minimize the number of
879 * re-configures that take place. As a result of this when
880 * certain AIF's come in we will set a flag waiting for another
881 * type of AIF before setting the re-config flag.
882 */
883 switch (le32_to_cpu(aifcmd->command)) {
884 case AifCmdDriverNotify:
885 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
886 case AifRawDeviceRemove:
887 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
888 if ((container >> 28)) {
889 container = (u32)-1;
890 break;
891 }
892 channel = (container >> 24) & 0xF;
893 if (channel >= dev->maximum_num_channels) {
894 container = (u32)-1;
895 break;
896 }
897 id = container & 0xFFFF;
898 if (id >= dev->maximum_num_physicals) {
899 container = (u32)-1;
900 break;
901 }
902 lun = (container >> 16) & 0xFF;
903 container = (u32)-1;
904 channel = aac_phys_to_logical(channel);
905 device_config_needed =
906 (((__le32 *)aifcmd->data)[0] ==
907 cpu_to_le32(AifRawDeviceRemove)) ? DELETE : ADD;
908
909 if (device_config_needed == ADD) {
910 device = scsi_device_lookup(
911 dev->scsi_host_ptr,
912 channel, id, lun);
913 if (device) {
914 scsi_remove_device(device);
915 scsi_device_put(device);
916 }
917 }
918 break;
919 /*
920 * Morph or Expand complete
921 */
922 case AifDenMorphComplete:
923 case AifDenVolumeExtendComplete:
924 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
925 if (container >= dev->maximum_num_containers)
926 break;
927
928 /*
929 * Find the scsi_device associated with the SCSI
930 * address. Make sure we have the right array, and if
931 * so set the flag to initiate a new re-config once we
932 * see an AifEnConfigChange AIF come through.
933 */
934
935 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
936 device = scsi_device_lookup(dev->scsi_host_ptr,
937 CONTAINER_TO_CHANNEL(container),
938 CONTAINER_TO_ID(container),
939 CONTAINER_TO_LUN(container));
940 if (device) {
941 dev->fsa_dev[container].config_needed = CHANGE;
942 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
943 dev->fsa_dev[container].config_waiting_stamp = jiffies;
944 scsi_device_put(device);
945 }
946 }
947 }
948
949 /*
950 * If we are waiting on something and this happens to be
951 * that thing then set the re-configure flag.
952 */
953 if (container != (u32)-1) {
954 if (container >= dev->maximum_num_containers)
955 break;
956 if ((dev->fsa_dev[container].config_waiting_on ==
957 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
958 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
959 dev->fsa_dev[container].config_waiting_on = 0;
960 } else for (container = 0;
961 container < dev->maximum_num_containers; ++container) {
962 if ((dev->fsa_dev[container].config_waiting_on ==
963 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
964 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
965 dev->fsa_dev[container].config_waiting_on = 0;
966 }
967 break;
968
969 case AifCmdEventNotify:
970 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
971 case AifEnBatteryEvent:
972 dev->cache_protected =
973 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
974 break;
975 /*
976 * Add an Array.
977 */
978 case AifEnAddContainer:
979 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
980 if (container >= dev->maximum_num_containers)
981 break;
982 dev->fsa_dev[container].config_needed = ADD;
983 dev->fsa_dev[container].config_waiting_on =
984 AifEnConfigChange;
985 dev->fsa_dev[container].config_waiting_stamp = jiffies;
986 break;
987
988 /*
989 * Delete an Array.
990 */
991 case AifEnDeleteContainer:
992 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
993 if (container >= dev->maximum_num_containers)
994 break;
995 dev->fsa_dev[container].config_needed = DELETE;
996 dev->fsa_dev[container].config_waiting_on =
997 AifEnConfigChange;
998 dev->fsa_dev[container].config_waiting_stamp = jiffies;
999 break;
1000
1001 /*
1002 * Container change detected. If we currently are not
1003 * waiting on something else, setup to wait on a Config Change.
1004 */
1005 case AifEnContainerChange:
1006 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1007 if (container >= dev->maximum_num_containers)
1008 break;
1009 if (dev->fsa_dev[container].config_waiting_on &&
1010 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1011 break;
1012 dev->fsa_dev[container].config_needed = CHANGE;
1013 dev->fsa_dev[container].config_waiting_on =
1014 AifEnConfigChange;
1015 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1016 break;
1017
1018 case AifEnConfigChange:
1019 break;
1020
1021 case AifEnAddJBOD:
1022 case AifEnDeleteJBOD:
1023 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1024 if ((container >> 28)) {
1025 container = (u32)-1;
1026 break;
1027 }
1028 channel = (container >> 24) & 0xF;
1029 if (channel >= dev->maximum_num_channels) {
1030 container = (u32)-1;
1031 break;
1032 }
1033 id = container & 0xFFFF;
1034 if (id >= dev->maximum_num_physicals) {
1035 container = (u32)-1;
1036 break;
1037 }
1038 lun = (container >> 16) & 0xFF;
1039 container = (u32)-1;
1040 channel = aac_phys_to_logical(channel);
1041 device_config_needed =
1042 (((__le32 *)aifcmd->data)[0] ==
1043 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1044 if (device_config_needed == ADD) {
1045 device = scsi_device_lookup(dev->scsi_host_ptr,
1046 channel,
1047 id,
1048 lun);
1049 if (device) {
1050 scsi_remove_device(device);
1051 scsi_device_put(device);
1052 }
1053 }
1054 break;
1055
1056 case AifEnEnclosureManagement:
1057 /*
1058 * If in JBOD mode, automatic exposure of new
1059 * physical target to be suppressed until configured.
1060 */
1061 if (dev->jbod)
1062 break;
1063 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1064 case EM_DRIVE_INSERTION:
1065 case EM_DRIVE_REMOVAL:
1066 case EM_SES_DRIVE_INSERTION:
1067 case EM_SES_DRIVE_REMOVAL:
1068 container = le32_to_cpu(
1069 ((__le32 *)aifcmd->data)[2]);
1070 if ((container >> 28)) {
1071 container = (u32)-1;
1072 break;
1073 }
1074 channel = (container >> 24) & 0xF;
1075 if (channel >= dev->maximum_num_channels) {
1076 container = (u32)-1;
1077 break;
1078 }
1079 id = container & 0xFFFF;
1080 lun = (container >> 16) & 0xFF;
1081 container = (u32)-1;
1082 if (id >= dev->maximum_num_physicals) {
1083 /* legacy dev_t ? */
1084 if ((0x2000 <= id) || lun || channel ||
1085 ((channel = (id >> 7) & 0x3F) >=
1086 dev->maximum_num_channels))
1087 break;
1088 lun = (id >> 4) & 7;
1089 id &= 0xF;
1090 }
1091 channel = aac_phys_to_logical(channel);
1092 device_config_needed =
1093 ((((__le32 *)aifcmd->data)[3]
1094 == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1095 (((__le32 *)aifcmd->data)[3]
1096 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1097 ADD : DELETE;
1098 break;
1099 }
1100 break;
1101 }
1102
1103 /*
1104 * If we are waiting on something and this happens to be
1105 * that thing then set the re-configure flag.
1106 */
1107 if (container != (u32)-1) {
1108 if (container >= dev->maximum_num_containers)
1109 break;
1110 if ((dev->fsa_dev[container].config_waiting_on ==
1111 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1112 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1113 dev->fsa_dev[container].config_waiting_on = 0;
1114 } else for (container = 0;
1115 container < dev->maximum_num_containers; ++container) {
1116 if ((dev->fsa_dev[container].config_waiting_on ==
1117 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1118 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1119 dev->fsa_dev[container].config_waiting_on = 0;
1120 }
1121 break;
1122
1123 case AifCmdJobProgress:
1124 /*
1125 * These are job progress AIF's. When a Clear is being
1126 * done on a container it is initially created then hidden from
1127 * the OS. When the clear completes we don't get a config
1128 * change so we monitor the job status complete on a clear then
1129 * wait for a container change.
1130 */
1131
1132 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1133 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1134 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1135 for (container = 0;
1136 container < dev->maximum_num_containers;
1137 ++container) {
1138 /*
1139 * Stomp on all config sequencing for all
1140 * containers?
1141 */
1142 dev->fsa_dev[container].config_waiting_on =
1143 AifEnContainerChange;
1144 dev->fsa_dev[container].config_needed = ADD;
1145 dev->fsa_dev[container].config_waiting_stamp =
1146 jiffies;
1147 }
1148 }
1149 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1150 ((__le32 *)aifcmd->data)[6] == 0 &&
1151 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1152 for (container = 0;
1153 container < dev->maximum_num_containers;
1154 ++container) {
1155 /*
1156 * Stomp on all config sequencing for all
1157 * containers?
1158 */
1159 dev->fsa_dev[container].config_waiting_on =
1160 AifEnContainerChange;
1161 dev->fsa_dev[container].config_needed = DELETE;
1162 dev->fsa_dev[container].config_waiting_stamp =
1163 jiffies;
1164 }
1165 }
1166 break;
1167 }
1168
1169 container = 0;
1170 retry_next:
1171 if (device_config_needed == NOTHING)
1172 for (; container < dev->maximum_num_containers; ++container) {
1173 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1174 (dev->fsa_dev[container].config_needed != NOTHING) &&
1175 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1176 device_config_needed =
1177 dev->fsa_dev[container].config_needed;
1178 dev->fsa_dev[container].config_needed = NOTHING;
1179 channel = CONTAINER_TO_CHANNEL(container);
1180 id = CONTAINER_TO_ID(container);
1181 lun = CONTAINER_TO_LUN(container);
1182 break;
1183 }
1184 }
1185 if (device_config_needed == NOTHING)
1186 return;
1187
1188 /*
1189 * If we decided that a re-configuration needs to be done,
1190 * schedule it here on the way out the door, please close the door
1191 * behind you.
1192 */
1193
1194 /*
1195 * Find the scsi_device associated with the SCSI address,
1196 * and mark it as changed, invalidating the cache. This deals
1197 * with changes to existing device IDs.
1198 */
1199
1200 if (!dev || !dev->scsi_host_ptr)
1201 return;
1202 /*
1203 * force reload of disk info via aac_probe_container
1204 */
1205 if ((channel == CONTAINER_CHANNEL) &&
1206 (device_config_needed != NOTHING)) {
1207 if (dev->fsa_dev[container].valid == 1)
1208 dev->fsa_dev[container].valid = 2;
1209 aac_probe_container(dev, container);
1210 }
1211 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1212 if (device) {
1213 switch (device_config_needed) {
1214 case DELETE:
1215 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1216 scsi_remove_device(device);
1217 #else
1218 if (scsi_device_online(device)) {
1219 scsi_device_set_state(device, SDEV_OFFLINE);
1220 sdev_printk(KERN_INFO, device,
1221 "Device offlined - %s\n",
1222 (channel == CONTAINER_CHANNEL) ?
1223 "array deleted" :
1224 "enclosure services event");
1225 }
1226 #endif
1227 break;
1228 case ADD:
1229 if (!scsi_device_online(device)) {
1230 sdev_printk(KERN_INFO, device,
1231 "Device online - %s\n",
1232 (channel == CONTAINER_CHANNEL) ?
1233 "array created" :
1234 "enclosure services event");
1235 scsi_device_set_state(device, SDEV_RUNNING);
1236 }
1237 /* FALLTHRU */
1238 case CHANGE:
1239 if ((channel == CONTAINER_CHANNEL)
1240 && (!dev->fsa_dev[container].valid)) {
1241 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1242 scsi_remove_device(device);
1243 #else
1244 if (!scsi_device_online(device))
1245 break;
1246 scsi_device_set_state(device, SDEV_OFFLINE);
1247 sdev_printk(KERN_INFO, device,
1248 "Device offlined - %s\n",
1249 "array failed");
1250 #endif
1251 break;
1252 }
1253 scsi_rescan_device(&device->sdev_gendev);
1254
1255 default:
1256 break;
1257 }
1258 scsi_device_put(device);
1259 device_config_needed = NOTHING;
1260 }
1261 if (device_config_needed == ADD)
1262 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1263 if (channel == CONTAINER_CHANNEL) {
1264 container++;
1265 device_config_needed = NOTHING;
1266 goto retry_next;
1267 }
1268 }
1269
1270 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1271 {
1272 int index, quirks;
1273 int retval, i;
1274 struct Scsi_Host *host;
1275 struct scsi_device *dev;
1276 struct scsi_cmnd *command;
1277 struct scsi_cmnd *command_list;
1278 int jafo = 0;
1279 int cpu;
1280
1281 /*
1282 * Assumptions:
1283 * - host is locked, unless called by the aacraid thread.
1284 * (a matter of convenience, due to legacy issues surrounding
1285 * eh_host_adapter_reset).
1286 * - in_reset is asserted, so no new i/o is getting to the
1287 * card.
1288 * - The card is dead, or will be very shortly ;-/ so no new
1289 * commands are completing in the interrupt service.
1290 */
1291 host = aac->scsi_host_ptr;
1292 scsi_block_requests(host);
1293 aac_adapter_disable_int(aac);
1294 if (aac->thread->pid != current->pid) {
1295 spin_unlock_irq(host->host_lock);
1296 kthread_stop(aac->thread);
1297 jafo = 1;
1298 }
1299
1300 /*
1301 * If a positive health, means in a known DEAD PANIC
1302 * state and the adapter could be reset to `try again'.
1303 */
1304 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1305
1306 if (retval)
1307 goto out;
1308
1309 /*
1310 * Loop through the fibs, close the synchronous FIBS
1311 */
1312 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1313 struct fib *fib = &aac->fibs[index];
1314 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1315 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1316 unsigned long flagv;
1317 spin_lock_irqsave(&fib->event_lock, flagv);
1318 up(&fib->event_wait);
1319 spin_unlock_irqrestore(&fib->event_lock, flagv);
1320 schedule();
1321 retval = 0;
1322 }
1323 }
1324 /* Give some extra time for ioctls to complete. */
1325 if (retval == 0)
1326 ssleep(2);
1327 index = aac->cardtype;
1328
1329 /*
1330 * Re-initialize the adapter, first free resources, then carefully
1331 * apply the initialization sequence to come back again. Only risk
1332 * is a change in Firmware dropping cache, it is assumed the caller
1333 * will ensure that i/o is queisced and the card is flushed in that
1334 * case.
1335 */
1336 aac_fib_map_free(aac);
1337 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1338 aac->comm_addr = NULL;
1339 aac->comm_phys = 0;
1340 kfree(aac->queues);
1341 aac->queues = NULL;
1342 cpu = cpumask_first(cpu_online_mask);
1343 if (aac->pdev->device == PMC_DEVICE_S6 ||
1344 aac->pdev->device == PMC_DEVICE_S7 ||
1345 aac->pdev->device == PMC_DEVICE_S8 ||
1346 aac->pdev->device == PMC_DEVICE_S9) {
1347 if (aac->max_msix > 1) {
1348 for (i = 0; i < aac->max_msix; i++) {
1349 if (irq_set_affinity_hint(
1350 aac->msixentry[i].vector,
1351 NULL)) {
1352 printk(KERN_ERR "%s%d: Failed to reset IRQ affinity for cpu %d\n",
1353 aac->name,
1354 aac->id,
1355 cpu);
1356 }
1357 cpu = cpumask_next(cpu,
1358 cpu_online_mask);
1359 free_irq(aac->msixentry[i].vector,
1360 &(aac->aac_msix[i]));
1361 }
1362 pci_disable_msix(aac->pdev);
1363 } else {
1364 free_irq(aac->pdev->irq, &(aac->aac_msix[0]));
1365 }
1366 } else {
1367 free_irq(aac->pdev->irq, aac);
1368 }
1369 if (aac->msi)
1370 pci_disable_msi(aac->pdev);
1371 kfree(aac->fsa_dev);
1372 aac->fsa_dev = NULL;
1373 quirks = aac_get_driver_ident(index)->quirks;
1374 if (quirks & AAC_QUIRK_31BIT) {
1375 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1376 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1377 goto out;
1378 } else {
1379 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1380 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1381 goto out;
1382 }
1383 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1384 goto out;
1385 if (quirks & AAC_QUIRK_31BIT)
1386 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1387 goto out;
1388 if (jafo) {
1389 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1390 aac->name);
1391 if (IS_ERR(aac->thread)) {
1392 retval = PTR_ERR(aac->thread);
1393 goto out;
1394 }
1395 }
1396 (void)aac_get_adapter_info(aac);
1397 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1398 host->sg_tablesize = 34;
1399 host->max_sectors = (host->sg_tablesize * 8) + 112;
1400 }
1401 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1402 host->sg_tablesize = 17;
1403 host->max_sectors = (host->sg_tablesize * 8) + 112;
1404 }
1405 aac_get_config_status(aac, 1);
1406 aac_get_containers(aac);
1407 /*
1408 * This is where the assumption that the Adapter is quiesced
1409 * is important.
1410 */
1411 command_list = NULL;
1412 __shost_for_each_device(dev, host) {
1413 unsigned long flags;
1414 spin_lock_irqsave(&dev->list_lock, flags);
1415 list_for_each_entry(command, &dev->cmd_list, list)
1416 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1417 command->SCp.buffer = (struct scatterlist *)command_list;
1418 command_list = command;
1419 }
1420 spin_unlock_irqrestore(&dev->list_lock, flags);
1421 }
1422 while ((command = command_list)) {
1423 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1424 command->SCp.buffer = NULL;
1425 command->result = DID_OK << 16
1426 | COMMAND_COMPLETE << 8
1427 | SAM_STAT_TASK_SET_FULL;
1428 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1429 command->scsi_done(command);
1430 }
1431 retval = 0;
1432
1433 out:
1434 aac->in_reset = 0;
1435 scsi_unblock_requests(host);
1436 if (jafo) {
1437 spin_lock_irq(host->host_lock);
1438 }
1439 return retval;
1440 }
1441
1442 int aac_reset_adapter(struct aac_dev * aac, int forced)
1443 {
1444 unsigned long flagv = 0;
1445 int retval;
1446 struct Scsi_Host * host;
1447
1448 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1449 return -EBUSY;
1450
1451 if (aac->in_reset) {
1452 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1453 return -EBUSY;
1454 }
1455 aac->in_reset = 1;
1456 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1457
1458 /*
1459 * Wait for all commands to complete to this specific
1460 * target (block maximum 60 seconds). Although not necessary,
1461 * it does make us a good storage citizen.
1462 */
1463 host = aac->scsi_host_ptr;
1464 scsi_block_requests(host);
1465 if (forced < 2) for (retval = 60; retval; --retval) {
1466 struct scsi_device * dev;
1467 struct scsi_cmnd * command;
1468 int active = 0;
1469
1470 __shost_for_each_device(dev, host) {
1471 spin_lock_irqsave(&dev->list_lock, flagv);
1472 list_for_each_entry(command, &dev->cmd_list, list) {
1473 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1474 active++;
1475 break;
1476 }
1477 }
1478 spin_unlock_irqrestore(&dev->list_lock, flagv);
1479 if (active)
1480 break;
1481
1482 }
1483 /*
1484 * We can exit If all the commands are complete
1485 */
1486 if (active == 0)
1487 break;
1488 ssleep(1);
1489 }
1490
1491 /* Quiesce build, flush cache, write through mode */
1492 if (forced < 2)
1493 aac_send_shutdown(aac);
1494 spin_lock_irqsave(host->host_lock, flagv);
1495 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1496 spin_unlock_irqrestore(host->host_lock, flagv);
1497
1498 if ((forced < 2) && (retval == -ENODEV)) {
1499 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1500 struct fib * fibctx = aac_fib_alloc(aac);
1501 if (fibctx) {
1502 struct aac_pause *cmd;
1503 int status;
1504
1505 aac_fib_init(fibctx);
1506
1507 cmd = (struct aac_pause *) fib_data(fibctx);
1508
1509 cmd->command = cpu_to_le32(VM_ContainerConfig);
1510 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1511 cmd->timeout = cpu_to_le32(1);
1512 cmd->min = cpu_to_le32(1);
1513 cmd->noRescan = cpu_to_le32(1);
1514 cmd->count = cpu_to_le32(0);
1515
1516 status = aac_fib_send(ContainerCommand,
1517 fibctx,
1518 sizeof(struct aac_pause),
1519 FsaNormal,
1520 -2 /* Timeout silently */, 1,
1521 NULL, NULL);
1522
1523 if (status >= 0)
1524 aac_fib_complete(fibctx);
1525 /* FIB should be freed only after getting
1526 * the response from the F/W */
1527 if (status != -ERESTARTSYS)
1528 aac_fib_free(fibctx);
1529 }
1530 }
1531
1532 return retval;
1533 }
1534
1535 int aac_check_health(struct aac_dev * aac)
1536 {
1537 int BlinkLED;
1538 unsigned long time_now, flagv = 0;
1539 struct list_head * entry;
1540 struct Scsi_Host * host;
1541
1542 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1543 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1544 return 0;
1545
1546 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1547 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1548 return 0; /* OK */
1549 }
1550
1551 aac->in_reset = 1;
1552
1553 /* Fake up an AIF:
1554 * aac_aifcmd.command = AifCmdEventNotify = 1
1555 * aac_aifcmd.seqnum = 0xFFFFFFFF
1556 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1557 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1558 * aac.aifcmd.data[2] = AifHighPriority = 3
1559 * aac.aifcmd.data[3] = BlinkLED
1560 */
1561
1562 time_now = jiffies/HZ;
1563 entry = aac->fib_list.next;
1564
1565 /*
1566 * For each Context that is on the
1567 * fibctxList, make a copy of the
1568 * fib, and then set the event to wake up the
1569 * thread that is waiting for it.
1570 */
1571 while (entry != &aac->fib_list) {
1572 /*
1573 * Extract the fibctx
1574 */
1575 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1576 struct hw_fib * hw_fib;
1577 struct fib * fib;
1578 /*
1579 * Check if the queue is getting
1580 * backlogged
1581 */
1582 if (fibctx->count > 20) {
1583 /*
1584 * It's *not* jiffies folks,
1585 * but jiffies / HZ, so do not
1586 * panic ...
1587 */
1588 u32 time_last = fibctx->jiffies;
1589 /*
1590 * Has it been > 2 minutes
1591 * since the last read off
1592 * the queue?
1593 */
1594 if ((time_now - time_last) > aif_timeout) {
1595 entry = entry->next;
1596 aac_close_fib_context(aac, fibctx);
1597 continue;
1598 }
1599 }
1600 /*
1601 * Warning: no sleep allowed while
1602 * holding spinlock
1603 */
1604 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1605 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1606 if (fib && hw_fib) {
1607 struct aac_aifcmd * aif;
1608
1609 fib->hw_fib_va = hw_fib;
1610 fib->dev = aac;
1611 aac_fib_init(fib);
1612 fib->type = FSAFS_NTC_FIB_CONTEXT;
1613 fib->size = sizeof (struct fib);
1614 fib->data = hw_fib->data;
1615 aif = (struct aac_aifcmd *)hw_fib->data;
1616 aif->command = cpu_to_le32(AifCmdEventNotify);
1617 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1618 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1619 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1620 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1621 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1622
1623 /*
1624 * Put the FIB onto the
1625 * fibctx's fibs
1626 */
1627 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1628 fibctx->count++;
1629 /*
1630 * Set the event to wake up the
1631 * thread that will waiting.
1632 */
1633 up(&fibctx->wait_sem);
1634 } else {
1635 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1636 kfree(fib);
1637 kfree(hw_fib);
1638 }
1639 entry = entry->next;
1640 }
1641
1642 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1643
1644 if (BlinkLED < 0) {
1645 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1646 goto out;
1647 }
1648
1649 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1650
1651 if (!aac_check_reset || ((aac_check_reset == 1) &&
1652 (aac->supplement_adapter_info.SupportedOptions2 &
1653 AAC_OPTION_IGNORE_RESET)))
1654 goto out;
1655 host = aac->scsi_host_ptr;
1656 if (aac->thread->pid != current->pid)
1657 spin_lock_irqsave(host->host_lock, flagv);
1658 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1659 if (aac->thread->pid != current->pid)
1660 spin_unlock_irqrestore(host->host_lock, flagv);
1661 return BlinkLED;
1662
1663 out:
1664 aac->in_reset = 0;
1665 return BlinkLED;
1666 }
1667
1668
1669 /**
1670 * aac_command_thread - command processing thread
1671 * @dev: Adapter to monitor
1672 *
1673 * Waits on the commandready event in it's queue. When the event gets set
1674 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1675 * until the queue is empty. When the queue is empty it will wait for
1676 * more FIBs.
1677 */
1678
1679 int aac_command_thread(void *data)
1680 {
1681 struct aac_dev *dev = data;
1682 struct hw_fib *hw_fib, *hw_newfib;
1683 struct fib *fib, *newfib;
1684 struct aac_fib_context *fibctx;
1685 unsigned long flags;
1686 DECLARE_WAITQUEUE(wait, current);
1687 unsigned long next_jiffies = jiffies + HZ;
1688 unsigned long next_check_jiffies = next_jiffies;
1689 long difference = HZ;
1690
1691 /*
1692 * We can only have one thread per adapter for AIF's.
1693 */
1694 if (dev->aif_thread)
1695 return -EINVAL;
1696
1697 /*
1698 * Let the DPC know it has a place to send the AIF's to.
1699 */
1700 dev->aif_thread = 1;
1701 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1702 set_current_state(TASK_INTERRUPTIBLE);
1703 dprintk ((KERN_INFO "aac_command_thread start\n"));
1704 while (1) {
1705 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1706 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1707 struct list_head *entry;
1708 struct aac_aifcmd * aifcmd;
1709
1710 set_current_state(TASK_RUNNING);
1711
1712 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1713 list_del(entry);
1714
1715 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1716 fib = list_entry(entry, struct fib, fiblink);
1717 /*
1718 * We will process the FIB here or pass it to a
1719 * worker thread that is TBD. We Really can't
1720 * do anything at this point since we don't have
1721 * anything defined for this thread to do.
1722 */
1723 hw_fib = fib->hw_fib_va;
1724 memset(fib, 0, sizeof(struct fib));
1725 fib->type = FSAFS_NTC_FIB_CONTEXT;
1726 fib->size = sizeof(struct fib);
1727 fib->hw_fib_va = hw_fib;
1728 fib->data = hw_fib->data;
1729 fib->dev = dev;
1730 /*
1731 * We only handle AifRequest fibs from the adapter.
1732 */
1733 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1734 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1735 /* Handle Driver Notify Events */
1736 aac_handle_aif(dev, fib);
1737 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1738 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1739 } else {
1740 /* The u32 here is important and intended. We are using
1741 32bit wrapping time to fit the adapter field */
1742
1743 u32 time_now, time_last;
1744 unsigned long flagv;
1745 unsigned num;
1746 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1747 struct fib ** fib_pool, ** fib_p;
1748
1749 /* Sniff events */
1750 if ((aifcmd->command ==
1751 cpu_to_le32(AifCmdEventNotify)) ||
1752 (aifcmd->command ==
1753 cpu_to_le32(AifCmdJobProgress))) {
1754 aac_handle_aif(dev, fib);
1755 }
1756
1757 time_now = jiffies/HZ;
1758
1759 /*
1760 * Warning: no sleep allowed while
1761 * holding spinlock. We take the estimate
1762 * and pre-allocate a set of fibs outside the
1763 * lock.
1764 */
1765 num = le32_to_cpu(dev->init->AdapterFibsSize)
1766 / sizeof(struct hw_fib); /* some extra */
1767 spin_lock_irqsave(&dev->fib_lock, flagv);
1768 entry = dev->fib_list.next;
1769 while (entry != &dev->fib_list) {
1770 entry = entry->next;
1771 ++num;
1772 }
1773 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1774 hw_fib_pool = NULL;
1775 fib_pool = NULL;
1776 if (num
1777 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1778 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1779 hw_fib_p = hw_fib_pool;
1780 fib_p = fib_pool;
1781 while (hw_fib_p < &hw_fib_pool[num]) {
1782 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1783 --hw_fib_p;
1784 break;
1785 }
1786 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1787 kfree(*(--hw_fib_p));
1788 break;
1789 }
1790 }
1791 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1792 kfree(fib_pool);
1793 fib_pool = NULL;
1794 kfree(hw_fib_pool);
1795 hw_fib_pool = NULL;
1796 }
1797 } else {
1798 kfree(hw_fib_pool);
1799 hw_fib_pool = NULL;
1800 }
1801 spin_lock_irqsave(&dev->fib_lock, flagv);
1802 entry = dev->fib_list.next;
1803 /*
1804 * For each Context that is on the
1805 * fibctxList, make a copy of the
1806 * fib, and then set the event to wake up the
1807 * thread that is waiting for it.
1808 */
1809 hw_fib_p = hw_fib_pool;
1810 fib_p = fib_pool;
1811 while (entry != &dev->fib_list) {
1812 /*
1813 * Extract the fibctx
1814 */
1815 fibctx = list_entry(entry, struct aac_fib_context, next);
1816 /*
1817 * Check if the queue is getting
1818 * backlogged
1819 */
1820 if (fibctx->count > 20)
1821 {
1822 /*
1823 * It's *not* jiffies folks,
1824 * but jiffies / HZ so do not
1825 * panic ...
1826 */
1827 time_last = fibctx->jiffies;
1828 /*
1829 * Has it been > 2 minutes
1830 * since the last read off
1831 * the queue?
1832 */
1833 if ((time_now - time_last) > aif_timeout) {
1834 entry = entry->next;
1835 aac_close_fib_context(dev, fibctx);
1836 continue;
1837 }
1838 }
1839 /*
1840 * Warning: no sleep allowed while
1841 * holding spinlock
1842 */
1843 if (hw_fib_p < &hw_fib_pool[num]) {
1844 hw_newfib = *hw_fib_p;
1845 *(hw_fib_p++) = NULL;
1846 newfib = *fib_p;
1847 *(fib_p++) = NULL;
1848 /*
1849 * Make the copy of the FIB
1850 */
1851 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1852 memcpy(newfib, fib, sizeof(struct fib));
1853 newfib->hw_fib_va = hw_newfib;
1854 /*
1855 * Put the FIB onto the
1856 * fibctx's fibs
1857 */
1858 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1859 fibctx->count++;
1860 /*
1861 * Set the event to wake up the
1862 * thread that is waiting.
1863 */
1864 up(&fibctx->wait_sem);
1865 } else {
1866 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1867 }
1868 entry = entry->next;
1869 }
1870 /*
1871 * Set the status of this FIB
1872 */
1873 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1874 aac_fib_adapter_complete(fib, sizeof(u32));
1875 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1876 /* Free up the remaining resources */
1877 hw_fib_p = hw_fib_pool;
1878 fib_p = fib_pool;
1879 while (hw_fib_p < &hw_fib_pool[num]) {
1880 kfree(*hw_fib_p);
1881 kfree(*fib_p);
1882 ++fib_p;
1883 ++hw_fib_p;
1884 }
1885 kfree(hw_fib_pool);
1886 kfree(fib_pool);
1887 }
1888 kfree(fib);
1889 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1890 }
1891 /*
1892 * There are no more AIF's
1893 */
1894 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1895
1896 /*
1897 * Background activity
1898 */
1899 if ((time_before(next_check_jiffies,next_jiffies))
1900 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1901 next_check_jiffies = next_jiffies;
1902 if (aac_check_health(dev) == 0) {
1903 difference = ((long)(unsigned)check_interval)
1904 * HZ;
1905 next_check_jiffies = jiffies + difference;
1906 } else if (!dev->queues)
1907 break;
1908 }
1909 if (!time_before(next_check_jiffies,next_jiffies)
1910 && ((difference = next_jiffies - jiffies) <= 0)) {
1911 struct timeval now;
1912 int ret;
1913
1914 /* Don't even try to talk to adapter if its sick */
1915 ret = aac_check_health(dev);
1916 if (!ret && !dev->queues)
1917 break;
1918 next_check_jiffies = jiffies
1919 + ((long)(unsigned)check_interval)
1920 * HZ;
1921 do_gettimeofday(&now);
1922
1923 /* Synchronize our watches */
1924 if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1925 && (now.tv_usec > (1000000 / HZ)))
1926 difference = (((1000000 - now.tv_usec) * HZ)
1927 + 500000) / 1000000;
1928 else if (ret == 0) {
1929 struct fib *fibptr;
1930
1931 if ((fibptr = aac_fib_alloc(dev))) {
1932 int status;
1933 __le32 *info;
1934
1935 aac_fib_init(fibptr);
1936
1937 info = (__le32 *) fib_data(fibptr);
1938 if (now.tv_usec > 500000)
1939 ++now.tv_sec;
1940
1941 *info = cpu_to_le32(now.tv_sec);
1942
1943 status = aac_fib_send(SendHostTime,
1944 fibptr,
1945 sizeof(*info),
1946 FsaNormal,
1947 1, 1,
1948 NULL,
1949 NULL);
1950 /* Do not set XferState to zero unless
1951 * receives a response from F/W */
1952 if (status >= 0)
1953 aac_fib_complete(fibptr);
1954 /* FIB should be freed only after
1955 * getting the response from the F/W */
1956 if (status != -ERESTARTSYS)
1957 aac_fib_free(fibptr);
1958 }
1959 difference = (long)(unsigned)update_interval*HZ;
1960 } else {
1961 /* retry shortly */
1962 difference = 10 * HZ;
1963 }
1964 next_jiffies = jiffies + difference;
1965 if (time_before(next_check_jiffies,next_jiffies))
1966 difference = next_check_jiffies - jiffies;
1967 }
1968 if (difference <= 0)
1969 difference = 1;
1970 set_current_state(TASK_INTERRUPTIBLE);
1971 schedule_timeout(difference);
1972
1973 if (kthread_should_stop())
1974 break;
1975 }
1976 if (dev->queues)
1977 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1978 dev->aif_thread = 0;
1979 return 0;
1980 }