]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/aacraid/commsup.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/kyle/parisc-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / aacraid / commsup.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 * Module Name:
25 * commsup.c
26 *
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 * communication.
29 *
30 */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
49
50 #include "aacraid.h"
51
52 /**
53 * fib_map_alloc - allocate the fib objects
54 * @dev: Adapter to allocate for
55 *
56 * Allocate and map the shared PCI space for the FIB blocks used to
57 * talk to the Adaptec firmware.
58 */
59
60 static int fib_map_alloc(struct aac_dev *dev)
61 {
62 dprintk((KERN_INFO
63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68 &dev->hw_fib_pa))==NULL)
69 return -ENOMEM;
70 return 0;
71 }
72
73 /**
74 * aac_fib_map_free - free the fib objects
75 * @dev: Adapter to free
76 *
77 * Free the PCI mappings and the memory allocated for FIB blocks
78 * on this adapter.
79 */
80
81 void aac_fib_map_free(struct aac_dev *dev)
82 {
83 pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
84 }
85
86 /**
87 * aac_fib_setup - setup the fibs
88 * @dev: Adapter to set up
89 *
90 * Allocate the PCI space for the fibs, map it and then intialise the
91 * fib area, the unmapped fib data and also the free list
92 */
93
94 int aac_fib_setup(struct aac_dev * dev)
95 {
96 struct fib *fibptr;
97 struct hw_fib *hw_fib_va;
98 dma_addr_t hw_fib_pa;
99 int i;
100
101 while (((i = fib_map_alloc(dev)) == -ENOMEM)
102 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
103 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
104 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
105 }
106 if (i<0)
107 return -ENOMEM;
108
109 hw_fib_va = dev->hw_fib_va;
110 hw_fib_pa = dev->hw_fib_pa;
111 memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
112 /*
113 * Initialise the fibs
114 */
115 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
116 {
117 fibptr->dev = dev;
118 fibptr->hw_fib = hw_fib_va;
119 fibptr->data = (void *) fibptr->hw_fib->data;
120 fibptr->next = fibptr+1; /* Forward chain the fibs */
121 init_MUTEX_LOCKED(&fibptr->event_wait);
122 spin_lock_init(&fibptr->event_lock);
123 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
124 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
125 fibptr->hw_fib_pa = hw_fib_pa;
126 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
127 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
128 }
129 /*
130 * Add the fib chain to the free list
131 */
132 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
133 /*
134 * Enable this to debug out of queue space
135 */
136 dev->free_fib = &dev->fibs[0];
137 return 0;
138 }
139
140 /**
141 * aac_fib_alloc - allocate a fib
142 * @dev: Adapter to allocate the fib for
143 *
144 * Allocate a fib from the adapter fib pool. If the pool is empty we
145 * return NULL.
146 */
147
148 struct fib *aac_fib_alloc(struct aac_dev *dev)
149 {
150 struct fib * fibptr;
151 unsigned long flags;
152 spin_lock_irqsave(&dev->fib_lock, flags);
153 fibptr = dev->free_fib;
154 if(!fibptr){
155 spin_unlock_irqrestore(&dev->fib_lock, flags);
156 return fibptr;
157 }
158 dev->free_fib = fibptr->next;
159 spin_unlock_irqrestore(&dev->fib_lock, flags);
160 /*
161 * Set the proper node type code and node byte size
162 */
163 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
164 fibptr->size = sizeof(struct fib);
165 /*
166 * Null out fields that depend on being zero at the start of
167 * each I/O
168 */
169 fibptr->hw_fib->header.XferState = 0;
170 fibptr->callback = NULL;
171 fibptr->callback_data = NULL;
172
173 return fibptr;
174 }
175
176 /**
177 * aac_fib_free - free a fib
178 * @fibptr: fib to free up
179 *
180 * Frees up a fib and places it on the appropriate queue
181 * (either free or timed out)
182 */
183
184 void aac_fib_free(struct fib *fibptr)
185 {
186 unsigned long flags;
187
188 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
189 if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
190 aac_config.fib_timeouts++;
191 fibptr->next = fibptr->dev->timeout_fib;
192 fibptr->dev->timeout_fib = fibptr;
193 } else {
194 if (fibptr->hw_fib->header.XferState != 0) {
195 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
196 (void*)fibptr,
197 le32_to_cpu(fibptr->hw_fib->header.XferState));
198 }
199 fibptr->next = fibptr->dev->free_fib;
200 fibptr->dev->free_fib = fibptr;
201 }
202 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
203 }
204
205 /**
206 * aac_fib_init - initialise a fib
207 * @fibptr: The fib to initialize
208 *
209 * Set up the generic fib fields ready for use
210 */
211
212 void aac_fib_init(struct fib *fibptr)
213 {
214 struct hw_fib *hw_fib = fibptr->hw_fib;
215
216 hw_fib->header.StructType = FIB_MAGIC;
217 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
218 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
219 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
220 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
221 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
222 }
223
224 /**
225 * fib_deallocate - deallocate a fib
226 * @fibptr: fib to deallocate
227 *
228 * Will deallocate and return to the free pool the FIB pointed to by the
229 * caller.
230 */
231
232 static void fib_dealloc(struct fib * fibptr)
233 {
234 struct hw_fib *hw_fib = fibptr->hw_fib;
235 BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
236 hw_fib->header.XferState = 0;
237 }
238
239 /*
240 * Commuication primitives define and support the queuing method we use to
241 * support host to adapter commuication. All queue accesses happen through
242 * these routines and are the only routines which have a knowledge of the
243 * how these queues are implemented.
244 */
245
246 /**
247 * aac_get_entry - get a queue entry
248 * @dev: Adapter
249 * @qid: Queue Number
250 * @entry: Entry return
251 * @index: Index return
252 * @nonotify: notification control
253 *
254 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
255 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
256 * returned.
257 */
258
259 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
260 {
261 struct aac_queue * q;
262 unsigned long idx;
263
264 /*
265 * All of the queues wrap when they reach the end, so we check
266 * to see if they have reached the end and if they have we just
267 * set the index back to zero. This is a wrap. You could or off
268 * the high bits in all updates but this is a bit faster I think.
269 */
270
271 q = &dev->queues->queue[qid];
272
273 idx = *index = le32_to_cpu(*(q->headers.producer));
274 /* Interrupt Moderation, only interrupt for first two entries */
275 if (idx != le32_to_cpu(*(q->headers.consumer))) {
276 if (--idx == 0) {
277 if (qid == AdapNormCmdQueue)
278 idx = ADAP_NORM_CMD_ENTRIES;
279 else
280 idx = ADAP_NORM_RESP_ENTRIES;
281 }
282 if (idx != le32_to_cpu(*(q->headers.consumer)))
283 *nonotify = 1;
284 }
285
286 if (qid == AdapNormCmdQueue) {
287 if (*index >= ADAP_NORM_CMD_ENTRIES)
288 *index = 0; /* Wrap to front of the Producer Queue. */
289 } else {
290 if (*index >= ADAP_NORM_RESP_ENTRIES)
291 *index = 0; /* Wrap to front of the Producer Queue. */
292 }
293
294 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
295 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
296 qid, q->numpending);
297 return 0;
298 } else {
299 *entry = q->base + *index;
300 return 1;
301 }
302 }
303
304 /**
305 * aac_queue_get - get the next free QE
306 * @dev: Adapter
307 * @index: Returned index
308 * @priority: Priority of fib
309 * @fib: Fib to associate with the queue entry
310 * @wait: Wait if queue full
311 * @fibptr: Driver fib object to go with fib
312 * @nonotify: Don't notify the adapter
313 *
314 * Gets the next free QE off the requested priorty adapter command
315 * queue and associates the Fib with the QE. The QE represented by
316 * index is ready to insert on the queue when this routine returns
317 * success.
318 */
319
320 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
321 {
322 struct aac_entry * entry = NULL;
323 int map = 0;
324
325 if (qid == AdapNormCmdQueue) {
326 /* if no entries wait for some if caller wants to */
327 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
328 {
329 printk(KERN_ERR "GetEntries failed\n");
330 }
331 /*
332 * Setup queue entry with a command, status and fib mapped
333 */
334 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
335 map = 1;
336 } else {
337 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
338 {
339 /* if no entries wait for some if caller wants to */
340 }
341 /*
342 * Setup queue entry with command, status and fib mapped
343 */
344 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
345 entry->addr = hw_fib->header.SenderFibAddress;
346 /* Restore adapters pointer to the FIB */
347 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
348 map = 0;
349 }
350 /*
351 * If MapFib is true than we need to map the Fib and put pointers
352 * in the queue entry.
353 */
354 if (map)
355 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
356 return 0;
357 }
358
359 /*
360 * Define the highest level of host to adapter communication routines.
361 * These routines will support host to adapter FS commuication. These
362 * routines have no knowledge of the commuication method used. This level
363 * sends and receives FIBs. This level has no knowledge of how these FIBs
364 * get passed back and forth.
365 */
366
367 /**
368 * aac_fib_send - send a fib to the adapter
369 * @command: Command to send
370 * @fibptr: The fib
371 * @size: Size of fib data area
372 * @priority: Priority of Fib
373 * @wait: Async/sync select
374 * @reply: True if a reply is wanted
375 * @callback: Called with reply
376 * @callback_data: Passed to callback
377 *
378 * Sends the requested FIB to the adapter and optionally will wait for a
379 * response FIB. If the caller does not wish to wait for a response than
380 * an event to wait on must be supplied. This event will be set when a
381 * response FIB is received from the adapter.
382 */
383
384 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
385 int priority, int wait, int reply, fib_callback callback,
386 void *callback_data)
387 {
388 struct aac_dev * dev = fibptr->dev;
389 struct hw_fib * hw_fib = fibptr->hw_fib;
390 unsigned long flags = 0;
391 unsigned long qflags;
392
393 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
394 return -EBUSY;
395 /*
396 * There are 5 cases with the wait and reponse requested flags.
397 * The only invalid cases are if the caller requests to wait and
398 * does not request a response and if the caller does not want a
399 * response and the Fib is not allocated from pool. If a response
400 * is not requesed the Fib will just be deallocaed by the DPC
401 * routine when the response comes back from the adapter. No
402 * further processing will be done besides deleting the Fib. We
403 * will have a debug mode where the adapter can notify the host
404 * it had a problem and the host can log that fact.
405 */
406 if (wait && !reply) {
407 return -EINVAL;
408 } else if (!wait && reply) {
409 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
410 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
411 } else if (!wait && !reply) {
412 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
413 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
414 } else if (wait && reply) {
415 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
416 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
417 }
418 /*
419 * Map the fib into 32bits by using the fib number
420 */
421
422 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
423 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
424 /*
425 * Set FIB state to indicate where it came from and if we want a
426 * response from the adapter. Also load the command from the
427 * caller.
428 *
429 * Map the hw fib pointer as a 32bit value
430 */
431 hw_fib->header.Command = cpu_to_le16(command);
432 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
433 fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/
434 /*
435 * Set the size of the Fib we want to send to the adapter
436 */
437 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
438 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
439 return -EMSGSIZE;
440 }
441 /*
442 * Get a queue entry connect the FIB to it and send an notify
443 * the adapter a command is ready.
444 */
445 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
446
447 /*
448 * Fill in the Callback and CallbackContext if we are not
449 * going to wait.
450 */
451 if (!wait) {
452 fibptr->callback = callback;
453 fibptr->callback_data = callback_data;
454 }
455
456 fibptr->done = 0;
457 fibptr->flags = 0;
458
459 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
460
461 dprintk((KERN_DEBUG "Fib contents:.\n"));
462 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
463 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
464 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
465 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
466 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
467 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
468
469 if (!dev->queues)
470 return -EBUSY;
471
472 if(wait)
473 spin_lock_irqsave(&fibptr->event_lock, flags);
474 aac_adapter_deliver(fibptr);
475
476 /*
477 * If the caller wanted us to wait for response wait now.
478 */
479
480 if (wait) {
481 spin_unlock_irqrestore(&fibptr->event_lock, flags);
482 /* Only set for first known interruptable command */
483 if (wait < 0) {
484 /*
485 * *VERY* Dangerous to time out a command, the
486 * assumption is made that we have no hope of
487 * functioning because an interrupt routing or other
488 * hardware failure has occurred.
489 */
490 unsigned long count = 36000000L; /* 3 minutes */
491 while (down_trylock(&fibptr->event_wait)) {
492 int blink;
493 if (--count == 0) {
494 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
495 spin_lock_irqsave(q->lock, qflags);
496 q->numpending--;
497 spin_unlock_irqrestore(q->lock, qflags);
498 if (wait == -1) {
499 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
500 "Usually a result of a PCI interrupt routing problem;\n"
501 "update mother board BIOS or consider utilizing one of\n"
502 "the SAFE mode kernel options (acpi, apic etc)\n");
503 }
504 return -ETIMEDOUT;
505 }
506 if ((blink = aac_adapter_check_health(dev)) > 0) {
507 if (wait == -1) {
508 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
509 "Usually a result of a serious unrecoverable hardware problem\n",
510 blink);
511 }
512 return -EFAULT;
513 }
514 udelay(5);
515 }
516 } else if (down_interruptible(&fibptr->event_wait)) {
517 spin_lock_irqsave(&fibptr->event_lock, flags);
518 if (fibptr->done == 0) {
519 fibptr->done = 2; /* Tell interrupt we aborted */
520 spin_unlock_irqrestore(&fibptr->event_lock, flags);
521 return -EINTR;
522 }
523 spin_unlock_irqrestore(&fibptr->event_lock, flags);
524 }
525 BUG_ON(fibptr->done == 0);
526
527 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
528 return -ETIMEDOUT;
529 } else {
530 return 0;
531 }
532 }
533 /*
534 * If the user does not want a response than return success otherwise
535 * return pending
536 */
537 if (reply)
538 return -EINPROGRESS;
539 else
540 return 0;
541 }
542
543 /**
544 * aac_consumer_get - get the top of the queue
545 * @dev: Adapter
546 * @q: Queue
547 * @entry: Return entry
548 *
549 * Will return a pointer to the entry on the top of the queue requested that
550 * we are a consumer of, and return the address of the queue entry. It does
551 * not change the state of the queue.
552 */
553
554 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
555 {
556 u32 index;
557 int status;
558 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
559 status = 0;
560 } else {
561 /*
562 * The consumer index must be wrapped if we have reached
563 * the end of the queue, else we just use the entry
564 * pointed to by the header index
565 */
566 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
567 index = 0;
568 else
569 index = le32_to_cpu(*q->headers.consumer);
570 *entry = q->base + index;
571 status = 1;
572 }
573 return(status);
574 }
575
576 /**
577 * aac_consumer_free - free consumer entry
578 * @dev: Adapter
579 * @q: Queue
580 * @qid: Queue ident
581 *
582 * Frees up the current top of the queue we are a consumer of. If the
583 * queue was full notify the producer that the queue is no longer full.
584 */
585
586 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
587 {
588 int wasfull = 0;
589 u32 notify;
590
591 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
592 wasfull = 1;
593
594 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
595 *q->headers.consumer = cpu_to_le32(1);
596 else
597 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
598
599 if (wasfull) {
600 switch (qid) {
601
602 case HostNormCmdQueue:
603 notify = HostNormCmdNotFull;
604 break;
605 case HostNormRespQueue:
606 notify = HostNormRespNotFull;
607 break;
608 default:
609 BUG();
610 return;
611 }
612 aac_adapter_notify(dev, notify);
613 }
614 }
615
616 /**
617 * aac_fib_adapter_complete - complete adapter issued fib
618 * @fibptr: fib to complete
619 * @size: size of fib
620 *
621 * Will do all necessary work to complete a FIB that was sent from
622 * the adapter.
623 */
624
625 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
626 {
627 struct hw_fib * hw_fib = fibptr->hw_fib;
628 struct aac_dev * dev = fibptr->dev;
629 struct aac_queue * q;
630 unsigned long nointr = 0;
631 unsigned long qflags;
632
633 if (hw_fib->header.XferState == 0) {
634 if (dev->comm_interface == AAC_COMM_MESSAGE)
635 kfree (hw_fib);
636 return 0;
637 }
638 /*
639 * If we plan to do anything check the structure type first.
640 */
641 if ( hw_fib->header.StructType != FIB_MAGIC ) {
642 if (dev->comm_interface == AAC_COMM_MESSAGE)
643 kfree (hw_fib);
644 return -EINVAL;
645 }
646 /*
647 * This block handles the case where the adapter had sent us a
648 * command and we have finished processing the command. We
649 * call completeFib when we are done processing the command
650 * and want to send a response back to the adapter. This will
651 * send the completed cdb to the adapter.
652 */
653 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
654 if (dev->comm_interface == AAC_COMM_MESSAGE) {
655 kfree (hw_fib);
656 } else {
657 u32 index;
658 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
659 if (size) {
660 size += sizeof(struct aac_fibhdr);
661 if (size > le16_to_cpu(hw_fib->header.SenderSize))
662 return -EMSGSIZE;
663 hw_fib->header.Size = cpu_to_le16(size);
664 }
665 q = &dev->queues->queue[AdapNormRespQueue];
666 spin_lock_irqsave(q->lock, qflags);
667 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
668 *(q->headers.producer) = cpu_to_le32(index + 1);
669 spin_unlock_irqrestore(q->lock, qflags);
670 if (!(nointr & (int)aac_config.irq_mod))
671 aac_adapter_notify(dev, AdapNormRespQueue);
672 }
673 }
674 else
675 {
676 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
677 BUG();
678 }
679 return 0;
680 }
681
682 /**
683 * aac_fib_complete - fib completion handler
684 * @fib: FIB to complete
685 *
686 * Will do all necessary work to complete a FIB.
687 */
688
689 int aac_fib_complete(struct fib *fibptr)
690 {
691 struct hw_fib * hw_fib = fibptr->hw_fib;
692
693 /*
694 * Check for a fib which has already been completed
695 */
696
697 if (hw_fib->header.XferState == 0)
698 return 0;
699 /*
700 * If we plan to do anything check the structure type first.
701 */
702
703 if (hw_fib->header.StructType != FIB_MAGIC)
704 return -EINVAL;
705 /*
706 * This block completes a cdb which orginated on the host and we
707 * just need to deallocate the cdb or reinit it. At this point the
708 * command is complete that we had sent to the adapter and this
709 * cdb could be reused.
710 */
711 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
712 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
713 {
714 fib_dealloc(fibptr);
715 }
716 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
717 {
718 /*
719 * This handles the case when the host has aborted the I/O
720 * to the adapter because the adapter is not responding
721 */
722 fib_dealloc(fibptr);
723 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
724 fib_dealloc(fibptr);
725 } else {
726 BUG();
727 }
728 return 0;
729 }
730
731 /**
732 * aac_printf - handle printf from firmware
733 * @dev: Adapter
734 * @val: Message info
735 *
736 * Print a message passed to us by the controller firmware on the
737 * Adaptec board
738 */
739
740 void aac_printf(struct aac_dev *dev, u32 val)
741 {
742 char *cp = dev->printfbuf;
743 if (dev->printf_enabled)
744 {
745 int length = val & 0xffff;
746 int level = (val >> 16) & 0xffff;
747
748 /*
749 * The size of the printfbuf is set in port.c
750 * There is no variable or define for it
751 */
752 if (length > 255)
753 length = 255;
754 if (cp[length] != 0)
755 cp[length] = 0;
756 if (level == LOG_AAC_HIGH_ERROR)
757 printk(KERN_WARNING "%s:%s", dev->name, cp);
758 else
759 printk(KERN_INFO "%s:%s", dev->name, cp);
760 }
761 memset(cp, 0, 256);
762 }
763
764
765 /**
766 * aac_handle_aif - Handle a message from the firmware
767 * @dev: Which adapter this fib is from
768 * @fibptr: Pointer to fibptr from adapter
769 *
770 * This routine handles a driver notify fib from the adapter and
771 * dispatches it to the appropriate routine for handling.
772 */
773
774 #define AIF_SNIFF_TIMEOUT (30*HZ)
775 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
776 {
777 struct hw_fib * hw_fib = fibptr->hw_fib;
778 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
779 int busy;
780 u32 container;
781 struct scsi_device *device;
782 enum {
783 NOTHING,
784 DELETE,
785 ADD,
786 CHANGE
787 } device_config_needed;
788
789 /* Sniff for container changes */
790
791 if (!dev || !dev->fsa_dev)
792 return;
793 container = (u32)-1;
794
795 /*
796 * We have set this up to try and minimize the number of
797 * re-configures that take place. As a result of this when
798 * certain AIF's come in we will set a flag waiting for another
799 * type of AIF before setting the re-config flag.
800 */
801 switch (le32_to_cpu(aifcmd->command)) {
802 case AifCmdDriverNotify:
803 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
804 /*
805 * Morph or Expand complete
806 */
807 case AifDenMorphComplete:
808 case AifDenVolumeExtendComplete:
809 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
810 if (container >= dev->maximum_num_containers)
811 break;
812
813 /*
814 * Find the scsi_device associated with the SCSI
815 * address. Make sure we have the right array, and if
816 * so set the flag to initiate a new re-config once we
817 * see an AifEnConfigChange AIF come through.
818 */
819
820 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
821 device = scsi_device_lookup(dev->scsi_host_ptr,
822 CONTAINER_TO_CHANNEL(container),
823 CONTAINER_TO_ID(container),
824 CONTAINER_TO_LUN(container));
825 if (device) {
826 dev->fsa_dev[container].config_needed = CHANGE;
827 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
828 dev->fsa_dev[container].config_waiting_stamp = jiffies;
829 scsi_device_put(device);
830 }
831 }
832 }
833
834 /*
835 * If we are waiting on something and this happens to be
836 * that thing then set the re-configure flag.
837 */
838 if (container != (u32)-1) {
839 if (container >= dev->maximum_num_containers)
840 break;
841 if ((dev->fsa_dev[container].config_waiting_on ==
842 le32_to_cpu(*(u32 *)aifcmd->data)) &&
843 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
844 dev->fsa_dev[container].config_waiting_on = 0;
845 } else for (container = 0;
846 container < dev->maximum_num_containers; ++container) {
847 if ((dev->fsa_dev[container].config_waiting_on ==
848 le32_to_cpu(*(u32 *)aifcmd->data)) &&
849 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
850 dev->fsa_dev[container].config_waiting_on = 0;
851 }
852 break;
853
854 case AifCmdEventNotify:
855 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
856 /*
857 * Add an Array.
858 */
859 case AifEnAddContainer:
860 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
861 if (container >= dev->maximum_num_containers)
862 break;
863 dev->fsa_dev[container].config_needed = ADD;
864 dev->fsa_dev[container].config_waiting_on =
865 AifEnConfigChange;
866 dev->fsa_dev[container].config_waiting_stamp = jiffies;
867 break;
868
869 /*
870 * Delete an Array.
871 */
872 case AifEnDeleteContainer:
873 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
874 if (container >= dev->maximum_num_containers)
875 break;
876 dev->fsa_dev[container].config_needed = DELETE;
877 dev->fsa_dev[container].config_waiting_on =
878 AifEnConfigChange;
879 dev->fsa_dev[container].config_waiting_stamp = jiffies;
880 break;
881
882 /*
883 * Container change detected. If we currently are not
884 * waiting on something else, setup to wait on a Config Change.
885 */
886 case AifEnContainerChange:
887 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
888 if (container >= dev->maximum_num_containers)
889 break;
890 if (dev->fsa_dev[container].config_waiting_on &&
891 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
892 break;
893 dev->fsa_dev[container].config_needed = CHANGE;
894 dev->fsa_dev[container].config_waiting_on =
895 AifEnConfigChange;
896 dev->fsa_dev[container].config_waiting_stamp = jiffies;
897 break;
898
899 case AifEnConfigChange:
900 break;
901
902 }
903
904 /*
905 * If we are waiting on something and this happens to be
906 * that thing then set the re-configure flag.
907 */
908 if (container != (u32)-1) {
909 if (container >= dev->maximum_num_containers)
910 break;
911 if ((dev->fsa_dev[container].config_waiting_on ==
912 le32_to_cpu(*(u32 *)aifcmd->data)) &&
913 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
914 dev->fsa_dev[container].config_waiting_on = 0;
915 } else for (container = 0;
916 container < dev->maximum_num_containers; ++container) {
917 if ((dev->fsa_dev[container].config_waiting_on ==
918 le32_to_cpu(*(u32 *)aifcmd->data)) &&
919 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
920 dev->fsa_dev[container].config_waiting_on = 0;
921 }
922 break;
923
924 case AifCmdJobProgress:
925 /*
926 * These are job progress AIF's. When a Clear is being
927 * done on a container it is initially created then hidden from
928 * the OS. When the clear completes we don't get a config
929 * change so we monitor the job status complete on a clear then
930 * wait for a container change.
931 */
932
933 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
934 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
935 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
936 for (container = 0;
937 container < dev->maximum_num_containers;
938 ++container) {
939 /*
940 * Stomp on all config sequencing for all
941 * containers?
942 */
943 dev->fsa_dev[container].config_waiting_on =
944 AifEnContainerChange;
945 dev->fsa_dev[container].config_needed = ADD;
946 dev->fsa_dev[container].config_waiting_stamp =
947 jiffies;
948 }
949 }
950 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
951 && (((u32 *)aifcmd->data)[6] == 0)
952 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
953 for (container = 0;
954 container < dev->maximum_num_containers;
955 ++container) {
956 /*
957 * Stomp on all config sequencing for all
958 * containers?
959 */
960 dev->fsa_dev[container].config_waiting_on =
961 AifEnContainerChange;
962 dev->fsa_dev[container].config_needed = DELETE;
963 dev->fsa_dev[container].config_waiting_stamp =
964 jiffies;
965 }
966 }
967 break;
968 }
969
970 device_config_needed = NOTHING;
971 for (container = 0; container < dev->maximum_num_containers;
972 ++container) {
973 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
974 (dev->fsa_dev[container].config_needed != NOTHING) &&
975 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
976 device_config_needed =
977 dev->fsa_dev[container].config_needed;
978 dev->fsa_dev[container].config_needed = NOTHING;
979 break;
980 }
981 }
982 if (device_config_needed == NOTHING)
983 return;
984
985 /*
986 * If we decided that a re-configuration needs to be done,
987 * schedule it here on the way out the door, please close the door
988 * behind you.
989 */
990
991 busy = 0;
992
993
994 /*
995 * Find the scsi_device associated with the SCSI address,
996 * and mark it as changed, invalidating the cache. This deals
997 * with changes to existing device IDs.
998 */
999
1000 if (!dev || !dev->scsi_host_ptr)
1001 return;
1002 /*
1003 * force reload of disk info via aac_probe_container
1004 */
1005 if ((device_config_needed == CHANGE)
1006 && (dev->fsa_dev[container].valid == 1))
1007 dev->fsa_dev[container].valid = 2;
1008 if ((device_config_needed == CHANGE) ||
1009 (device_config_needed == ADD))
1010 aac_probe_container(dev, container);
1011 device = scsi_device_lookup(dev->scsi_host_ptr,
1012 CONTAINER_TO_CHANNEL(container),
1013 CONTAINER_TO_ID(container),
1014 CONTAINER_TO_LUN(container));
1015 if (device) {
1016 switch (device_config_needed) {
1017 case DELETE:
1018 case CHANGE:
1019 scsi_rescan_device(&device->sdev_gendev);
1020
1021 default:
1022 break;
1023 }
1024 scsi_device_put(device);
1025 }
1026 if (device_config_needed == ADD) {
1027 scsi_add_device(dev->scsi_host_ptr,
1028 CONTAINER_TO_CHANNEL(container),
1029 CONTAINER_TO_ID(container),
1030 CONTAINER_TO_LUN(container));
1031 }
1032
1033 }
1034
1035 static int _aac_reset_adapter(struct aac_dev *aac)
1036 {
1037 int index, quirks;
1038 u32 ret;
1039 int retval;
1040 struct Scsi_Host *host;
1041 struct scsi_device *dev;
1042 struct scsi_cmnd *command;
1043 struct scsi_cmnd *command_list;
1044
1045 /*
1046 * Assumptions:
1047 * - host is locked.
1048 * - in_reset is asserted, so no new i/o is getting to the
1049 * card.
1050 * - The card is dead.
1051 */
1052 host = aac->scsi_host_ptr;
1053 scsi_block_requests(host);
1054 aac_adapter_disable_int(aac);
1055 spin_unlock_irq(host->host_lock);
1056 kthread_stop(aac->thread);
1057
1058 /*
1059 * If a positive health, means in a known DEAD PANIC
1060 * state and the adapter could be reset to `try again'.
1061 */
1062 retval = aac_adapter_check_health(aac);
1063 if (retval == 0)
1064 retval = aac_adapter_sync_cmd(aac, IOP_RESET_ALWAYS,
1065 0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
1066 if (retval)
1067 retval = aac_adapter_sync_cmd(aac, IOP_RESET,
1068 0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
1069
1070 if (retval)
1071 goto out;
1072 if (ret != 0x00000001) {
1073 retval = -ENODEV;
1074 goto out;
1075 }
1076
1077 /*
1078 * Loop through the fibs, close the synchronous FIBS
1079 */
1080 for (index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1081 struct fib *fib = &aac->fibs[index];
1082 if (!(fib->hw_fib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1083 (fib->hw_fib->header.XferState & cpu_to_le32(ResponseExpected))) {
1084 unsigned long flagv;
1085 spin_lock_irqsave(&fib->event_lock, flagv);
1086 up(&fib->event_wait);
1087 spin_unlock_irqrestore(&fib->event_lock, flagv);
1088 schedule();
1089 }
1090 }
1091 index = aac->cardtype;
1092
1093 /*
1094 * Re-initialize the adapter, first free resources, then carefully
1095 * apply the initialization sequence to come back again. Only risk
1096 * is a change in Firmware dropping cache, it is assumed the caller
1097 * will ensure that i/o is queisced and the card is flushed in that
1098 * case.
1099 */
1100 aac_fib_map_free(aac);
1101 aac->hw_fib_va = NULL;
1102 aac->hw_fib_pa = 0;
1103 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1104 aac->comm_addr = NULL;
1105 aac->comm_phys = 0;
1106 kfree(aac->queues);
1107 aac->queues = NULL;
1108 free_irq(aac->pdev->irq, aac);
1109 kfree(aac->fsa_dev);
1110 aac->fsa_dev = NULL;
1111 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
1112 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1113 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1114 goto out;
1115 } else {
1116 if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) ||
1117 ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL))))
1118 goto out;
1119 }
1120 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1121 goto out;
1122 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
1123 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1124 goto out;
1125 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1126 if (IS_ERR(aac->thread)) {
1127 retval = PTR_ERR(aac->thread);
1128 goto out;
1129 }
1130 (void)aac_get_adapter_info(aac);
1131 quirks = aac_get_driver_ident(index)->quirks;
1132 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1133 host->sg_tablesize = 34;
1134 host->max_sectors = (host->sg_tablesize * 8) + 112;
1135 }
1136 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1137 host->sg_tablesize = 17;
1138 host->max_sectors = (host->sg_tablesize * 8) + 112;
1139 }
1140 aac_get_config_status(aac, 1);
1141 aac_get_containers(aac);
1142 /*
1143 * This is where the assumption that the Adapter is quiesced
1144 * is important.
1145 */
1146 command_list = NULL;
1147 __shost_for_each_device(dev, host) {
1148 unsigned long flags;
1149 spin_lock_irqsave(&dev->list_lock, flags);
1150 list_for_each_entry(command, &dev->cmd_list, list)
1151 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1152 command->SCp.buffer = (struct scatterlist *)command_list;
1153 command_list = command;
1154 }
1155 spin_unlock_irqrestore(&dev->list_lock, flags);
1156 }
1157 while ((command = command_list)) {
1158 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1159 command->SCp.buffer = NULL;
1160 command->result = DID_OK << 16
1161 | COMMAND_COMPLETE << 8
1162 | SAM_STAT_TASK_SET_FULL;
1163 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1164 command->scsi_done(command);
1165 }
1166 retval = 0;
1167
1168 out:
1169 aac->in_reset = 0;
1170 scsi_unblock_requests(host);
1171 spin_lock_irq(host->host_lock);
1172 return retval;
1173 }
1174
1175 int aac_check_health(struct aac_dev * aac)
1176 {
1177 int BlinkLED;
1178 unsigned long time_now, flagv = 0;
1179 struct list_head * entry;
1180 struct Scsi_Host * host;
1181
1182 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1183 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1184 return 0;
1185
1186 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1187 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1188 return 0; /* OK */
1189 }
1190
1191 aac->in_reset = 1;
1192
1193 /* Fake up an AIF:
1194 * aac_aifcmd.command = AifCmdEventNotify = 1
1195 * aac_aifcmd.seqnum = 0xFFFFFFFF
1196 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1197 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1198 * aac.aifcmd.data[2] = AifHighPriority = 3
1199 * aac.aifcmd.data[3] = BlinkLED
1200 */
1201
1202 time_now = jiffies/HZ;
1203 entry = aac->fib_list.next;
1204
1205 /*
1206 * For each Context that is on the
1207 * fibctxList, make a copy of the
1208 * fib, and then set the event to wake up the
1209 * thread that is waiting for it.
1210 */
1211 while (entry != &aac->fib_list) {
1212 /*
1213 * Extract the fibctx
1214 */
1215 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1216 struct hw_fib * hw_fib;
1217 struct fib * fib;
1218 /*
1219 * Check if the queue is getting
1220 * backlogged
1221 */
1222 if (fibctx->count > 20) {
1223 /*
1224 * It's *not* jiffies folks,
1225 * but jiffies / HZ, so do not
1226 * panic ...
1227 */
1228 u32 time_last = fibctx->jiffies;
1229 /*
1230 * Has it been > 2 minutes
1231 * since the last read off
1232 * the queue?
1233 */
1234 if ((time_now - time_last) > aif_timeout) {
1235 entry = entry->next;
1236 aac_close_fib_context(aac, fibctx);
1237 continue;
1238 }
1239 }
1240 /*
1241 * Warning: no sleep allowed while
1242 * holding spinlock
1243 */
1244 hw_fib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1245 fib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
1246 if (fib && hw_fib) {
1247 struct aac_aifcmd * aif;
1248
1249 memset(hw_fib, 0, sizeof(struct hw_fib));
1250 memset(fib, 0, sizeof(struct fib));
1251 fib->hw_fib = hw_fib;
1252 fib->dev = aac;
1253 aac_fib_init(fib);
1254 fib->type = FSAFS_NTC_FIB_CONTEXT;
1255 fib->size = sizeof (struct fib);
1256 fib->data = hw_fib->data;
1257 aif = (struct aac_aifcmd *)hw_fib->data;
1258 aif->command = cpu_to_le32(AifCmdEventNotify);
1259 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1260 aif->data[0] = cpu_to_le32(AifEnExpEvent);
1261 aif->data[1] = cpu_to_le32(AifExeFirmwarePanic);
1262 aif->data[2] = cpu_to_le32(AifHighPriority);
1263 aif->data[3] = cpu_to_le32(BlinkLED);
1264
1265 /*
1266 * Put the FIB onto the
1267 * fibctx's fibs
1268 */
1269 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1270 fibctx->count++;
1271 /*
1272 * Set the event to wake up the
1273 * thread that will waiting.
1274 */
1275 up(&fibctx->wait_sem);
1276 } else {
1277 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1278 kfree(fib);
1279 kfree(hw_fib);
1280 }
1281 entry = entry->next;
1282 }
1283
1284 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1285
1286 if (BlinkLED < 0) {
1287 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1288 goto out;
1289 }
1290
1291 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1292
1293 host = aac->scsi_host_ptr;
1294 spin_lock_irqsave(host->host_lock, flagv);
1295 BlinkLED = _aac_reset_adapter(aac);
1296 spin_unlock_irqrestore(host->host_lock, flagv);
1297 return BlinkLED;
1298
1299 out:
1300 aac->in_reset = 0;
1301 return BlinkLED;
1302 }
1303
1304
1305 /**
1306 * aac_command_thread - command processing thread
1307 * @dev: Adapter to monitor
1308 *
1309 * Waits on the commandready event in it's queue. When the event gets set
1310 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1311 * until the queue is empty. When the queue is empty it will wait for
1312 * more FIBs.
1313 */
1314
1315 int aac_command_thread(void *data)
1316 {
1317 struct aac_dev *dev = data;
1318 struct hw_fib *hw_fib, *hw_newfib;
1319 struct fib *fib, *newfib;
1320 struct aac_fib_context *fibctx;
1321 unsigned long flags;
1322 DECLARE_WAITQUEUE(wait, current);
1323
1324 /*
1325 * We can only have one thread per adapter for AIF's.
1326 */
1327 if (dev->aif_thread)
1328 return -EINVAL;
1329
1330 /*
1331 * Let the DPC know it has a place to send the AIF's to.
1332 */
1333 dev->aif_thread = 1;
1334 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1335 set_current_state(TASK_INTERRUPTIBLE);
1336 dprintk ((KERN_INFO "aac_command_thread start\n"));
1337 while(1)
1338 {
1339 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1340 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1341 struct list_head *entry;
1342 struct aac_aifcmd * aifcmd;
1343
1344 set_current_state(TASK_RUNNING);
1345
1346 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1347 list_del(entry);
1348
1349 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1350 fib = list_entry(entry, struct fib, fiblink);
1351 /*
1352 * We will process the FIB here or pass it to a
1353 * worker thread that is TBD. We Really can't
1354 * do anything at this point since we don't have
1355 * anything defined for this thread to do.
1356 */
1357 hw_fib = fib->hw_fib;
1358 memset(fib, 0, sizeof(struct fib));
1359 fib->type = FSAFS_NTC_FIB_CONTEXT;
1360 fib->size = sizeof( struct fib );
1361 fib->hw_fib = hw_fib;
1362 fib->data = hw_fib->data;
1363 fib->dev = dev;
1364 /*
1365 * We only handle AifRequest fibs from the adapter.
1366 */
1367 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1368 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1369 /* Handle Driver Notify Events */
1370 aac_handle_aif(dev, fib);
1371 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1372 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1373 } else {
1374 struct list_head *entry;
1375 /* The u32 here is important and intended. We are using
1376 32bit wrapping time to fit the adapter field */
1377
1378 u32 time_now, time_last;
1379 unsigned long flagv;
1380 unsigned num;
1381 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1382 struct fib ** fib_pool, ** fib_p;
1383
1384 /* Sniff events */
1385 if ((aifcmd->command ==
1386 cpu_to_le32(AifCmdEventNotify)) ||
1387 (aifcmd->command ==
1388 cpu_to_le32(AifCmdJobProgress))) {
1389 aac_handle_aif(dev, fib);
1390 }
1391
1392 time_now = jiffies/HZ;
1393
1394 /*
1395 * Warning: no sleep allowed while
1396 * holding spinlock. We take the estimate
1397 * and pre-allocate a set of fibs outside the
1398 * lock.
1399 */
1400 num = le32_to_cpu(dev->init->AdapterFibsSize)
1401 / sizeof(struct hw_fib); /* some extra */
1402 spin_lock_irqsave(&dev->fib_lock, flagv);
1403 entry = dev->fib_list.next;
1404 while (entry != &dev->fib_list) {
1405 entry = entry->next;
1406 ++num;
1407 }
1408 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1409 hw_fib_pool = NULL;
1410 fib_pool = NULL;
1411 if (num
1412 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1413 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1414 hw_fib_p = hw_fib_pool;
1415 fib_p = fib_pool;
1416 while (hw_fib_p < &hw_fib_pool[num]) {
1417 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1418 --hw_fib_p;
1419 break;
1420 }
1421 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1422 kfree(*(--hw_fib_p));
1423 break;
1424 }
1425 }
1426 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1427 kfree(fib_pool);
1428 fib_pool = NULL;
1429 kfree(hw_fib_pool);
1430 hw_fib_pool = NULL;
1431 }
1432 } else {
1433 kfree(hw_fib_pool);
1434 hw_fib_pool = NULL;
1435 }
1436 spin_lock_irqsave(&dev->fib_lock, flagv);
1437 entry = dev->fib_list.next;
1438 /*
1439 * For each Context that is on the
1440 * fibctxList, make a copy of the
1441 * fib, and then set the event to wake up the
1442 * thread that is waiting for it.
1443 */
1444 hw_fib_p = hw_fib_pool;
1445 fib_p = fib_pool;
1446 while (entry != &dev->fib_list) {
1447 /*
1448 * Extract the fibctx
1449 */
1450 fibctx = list_entry(entry, struct aac_fib_context, next);
1451 /*
1452 * Check if the queue is getting
1453 * backlogged
1454 */
1455 if (fibctx->count > 20)
1456 {
1457 /*
1458 * It's *not* jiffies folks,
1459 * but jiffies / HZ so do not
1460 * panic ...
1461 */
1462 time_last = fibctx->jiffies;
1463 /*
1464 * Has it been > 2 minutes
1465 * since the last read off
1466 * the queue?
1467 */
1468 if ((time_now - time_last) > aif_timeout) {
1469 entry = entry->next;
1470 aac_close_fib_context(dev, fibctx);
1471 continue;
1472 }
1473 }
1474 /*
1475 * Warning: no sleep allowed while
1476 * holding spinlock
1477 */
1478 if (hw_fib_p < &hw_fib_pool[num]) {
1479 hw_newfib = *hw_fib_p;
1480 *(hw_fib_p++) = NULL;
1481 newfib = *fib_p;
1482 *(fib_p++) = NULL;
1483 /*
1484 * Make the copy of the FIB
1485 */
1486 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1487 memcpy(newfib, fib, sizeof(struct fib));
1488 newfib->hw_fib = hw_newfib;
1489 /*
1490 * Put the FIB onto the
1491 * fibctx's fibs
1492 */
1493 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1494 fibctx->count++;
1495 /*
1496 * Set the event to wake up the
1497 * thread that is waiting.
1498 */
1499 up(&fibctx->wait_sem);
1500 } else {
1501 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1502 }
1503 entry = entry->next;
1504 }
1505 /*
1506 * Set the status of this FIB
1507 */
1508 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1509 aac_fib_adapter_complete(fib, sizeof(u32));
1510 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1511 /* Free up the remaining resources */
1512 hw_fib_p = hw_fib_pool;
1513 fib_p = fib_pool;
1514 while (hw_fib_p < &hw_fib_pool[num]) {
1515 kfree(*hw_fib_p);
1516 kfree(*fib_p);
1517 ++fib_p;
1518 ++hw_fib_p;
1519 }
1520 kfree(hw_fib_pool);
1521 kfree(fib_pool);
1522 }
1523 kfree(fib);
1524 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1525 }
1526 /*
1527 * There are no more AIF's
1528 */
1529 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1530 schedule();
1531
1532 if (kthread_should_stop())
1533 break;
1534 set_current_state(TASK_INTERRUPTIBLE);
1535 }
1536 if (dev->queues)
1537 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1538 dev->aif_thread = 0;
1539 return 0;
1540 }