]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/aacraid/commsup.c
scsi: aacraid: Add target setup helper function
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / aacraid / commsup.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 * Module Name:
27 * commsup.c
28 *
29 * Abstract: Contain all routines that are required for FSA host/adapter
30 * communication.
31 *
32 */
33
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/sched.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/slab.h>
41 #include <linux/completion.h>
42 #include <linux/blkdev.h>
43 #include <linux/delay.h>
44 #include <linux/kthread.h>
45 #include <linux/interrupt.h>
46 #include <linux/semaphore.h>
47 #include <linux/bcd.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_host.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_cmnd.h>
52
53 #include "aacraid.h"
54
55 /**
56 * fib_map_alloc - allocate the fib objects
57 * @dev: Adapter to allocate for
58 *
59 * Allocate and map the shared PCI space for the FIB blocks used to
60 * talk to the Adaptec firmware.
61 */
62
63 static int fib_map_alloc(struct aac_dev *dev)
64 {
65 if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
66 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
67 else
68 dev->max_cmd_size = dev->max_fib_size;
69 if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
70 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
71 } else {
72 dev->max_cmd_size = dev->max_fib_size;
73 }
74
75 dprintk((KERN_INFO
76 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
77 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
78 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
79 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
80 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
81 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
82 &dev->hw_fib_pa, GFP_KERNEL);
83 if (dev->hw_fib_va == NULL)
84 return -ENOMEM;
85 return 0;
86 }
87
88 /**
89 * aac_fib_map_free - free the fib objects
90 * @dev: Adapter to free
91 *
92 * Free the PCI mappings and the memory allocated for FIB blocks
93 * on this adapter.
94 */
95
96 void aac_fib_map_free(struct aac_dev *dev)
97 {
98 size_t alloc_size;
99 size_t fib_size;
100 int num_fibs;
101
102 if(!dev->hw_fib_va || !dev->max_cmd_size)
103 return;
104
105 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
106 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
107 alloc_size = fib_size * num_fibs + ALIGN32 - 1;
108
109 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
110 dev->hw_fib_pa);
111
112 dev->hw_fib_va = NULL;
113 dev->hw_fib_pa = 0;
114 }
115
116 void aac_fib_vector_assign(struct aac_dev *dev)
117 {
118 u32 i = 0;
119 u32 vector = 1;
120 struct fib *fibptr = NULL;
121
122 for (i = 0, fibptr = &dev->fibs[i];
123 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
124 i++, fibptr++) {
125 if ((dev->max_msix == 1) ||
126 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
127 - dev->vector_cap))) {
128 fibptr->vector_no = 0;
129 } else {
130 fibptr->vector_no = vector;
131 vector++;
132 if (vector == dev->max_msix)
133 vector = 1;
134 }
135 }
136 }
137
138 /**
139 * aac_fib_setup - setup the fibs
140 * @dev: Adapter to set up
141 *
142 * Allocate the PCI space for the fibs, map it and then initialise the
143 * fib area, the unmapped fib data and also the free list
144 */
145
146 int aac_fib_setup(struct aac_dev * dev)
147 {
148 struct fib *fibptr;
149 struct hw_fib *hw_fib;
150 dma_addr_t hw_fib_pa;
151 int i;
152 u32 max_cmds;
153
154 while (((i = fib_map_alloc(dev)) == -ENOMEM)
155 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
156 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
157 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
158 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
159 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
160 }
161 if (i<0)
162 return -ENOMEM;
163
164 memset(dev->hw_fib_va, 0,
165 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
166 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
167
168 /* 32 byte alignment for PMC */
169 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
170 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
171 (hw_fib_pa - dev->hw_fib_pa));
172
173 /* add Xport header */
174 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
175 sizeof(struct aac_fib_xporthdr));
176 hw_fib_pa += sizeof(struct aac_fib_xporthdr);
177
178 /*
179 * Initialise the fibs
180 */
181 for (i = 0, fibptr = &dev->fibs[i];
182 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
183 i++, fibptr++)
184 {
185 fibptr->flags = 0;
186 fibptr->size = sizeof(struct fib);
187 fibptr->dev = dev;
188 fibptr->hw_fib_va = hw_fib;
189 fibptr->data = (void *) fibptr->hw_fib_va->data;
190 fibptr->next = fibptr+1; /* Forward chain the fibs */
191 sema_init(&fibptr->event_wait, 0);
192 spin_lock_init(&fibptr->event_lock);
193 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
194 hw_fib->header.SenderSize =
195 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
196 fibptr->hw_fib_pa = hw_fib_pa;
197 fibptr->hw_sgl_pa = hw_fib_pa +
198 offsetof(struct aac_hba_cmd_req, sge[2]);
199 /*
200 * one element is for the ptr to the separate sg list,
201 * second element for 32 byte alignment
202 */
203 fibptr->hw_error_pa = hw_fib_pa +
204 offsetof(struct aac_native_hba, resp.resp_bytes[0]);
205
206 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
207 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
208 hw_fib_pa = hw_fib_pa +
209 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
210 }
211
212 /*
213 *Assign vector numbers to fibs
214 */
215 aac_fib_vector_assign(dev);
216
217 /*
218 * Add the fib chain to the free list
219 */
220 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
221 /*
222 * Set 8 fibs aside for management tools
223 */
224 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
225 return 0;
226 }
227
228 /**
229 * aac_fib_alloc_tag-allocate a fib using tags
230 * @dev: Adapter to allocate the fib for
231 *
232 * Allocate a fib from the adapter fib pool using tags
233 * from the blk layer.
234 */
235
236 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
237 {
238 struct fib *fibptr;
239
240 fibptr = &dev->fibs[scmd->request->tag];
241 /*
242 * Null out fields that depend on being zero at the start of
243 * each I/O
244 */
245 fibptr->hw_fib_va->header.XferState = 0;
246 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
247 fibptr->callback_data = NULL;
248 fibptr->callback = NULL;
249
250 return fibptr;
251 }
252
253 /**
254 * aac_fib_alloc - allocate a fib
255 * @dev: Adapter to allocate the fib for
256 *
257 * Allocate a fib from the adapter fib pool. If the pool is empty we
258 * return NULL.
259 */
260
261 struct fib *aac_fib_alloc(struct aac_dev *dev)
262 {
263 struct fib * fibptr;
264 unsigned long flags;
265 spin_lock_irqsave(&dev->fib_lock, flags);
266 fibptr = dev->free_fib;
267 if(!fibptr){
268 spin_unlock_irqrestore(&dev->fib_lock, flags);
269 return fibptr;
270 }
271 dev->free_fib = fibptr->next;
272 spin_unlock_irqrestore(&dev->fib_lock, flags);
273 /*
274 * Set the proper node type code and node byte size
275 */
276 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
277 fibptr->size = sizeof(struct fib);
278 /*
279 * Null out fields that depend on being zero at the start of
280 * each I/O
281 */
282 fibptr->hw_fib_va->header.XferState = 0;
283 fibptr->flags = 0;
284 fibptr->callback = NULL;
285 fibptr->callback_data = NULL;
286
287 return fibptr;
288 }
289
290 /**
291 * aac_fib_free - free a fib
292 * @fibptr: fib to free up
293 *
294 * Frees up a fib and places it on the appropriate queue
295 */
296
297 void aac_fib_free(struct fib *fibptr)
298 {
299 unsigned long flags;
300
301 if (fibptr->done == 2)
302 return;
303
304 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
305 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
306 aac_config.fib_timeouts++;
307 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
308 fibptr->hw_fib_va->header.XferState != 0) {
309 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
310 (void*)fibptr,
311 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
312 }
313 fibptr->next = fibptr->dev->free_fib;
314 fibptr->dev->free_fib = fibptr;
315 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
316 }
317
318 /**
319 * aac_fib_init - initialise a fib
320 * @fibptr: The fib to initialize
321 *
322 * Set up the generic fib fields ready for use
323 */
324
325 void aac_fib_init(struct fib *fibptr)
326 {
327 struct hw_fib *hw_fib = fibptr->hw_fib_va;
328
329 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
330 hw_fib->header.StructType = FIB_MAGIC;
331 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
332 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
333 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
334 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
335 }
336
337 /**
338 * fib_deallocate - deallocate a fib
339 * @fibptr: fib to deallocate
340 *
341 * Will deallocate and return to the free pool the FIB pointed to by the
342 * caller.
343 */
344
345 static void fib_dealloc(struct fib * fibptr)
346 {
347 struct hw_fib *hw_fib = fibptr->hw_fib_va;
348 hw_fib->header.XferState = 0;
349 }
350
351 /*
352 * Commuication primitives define and support the queuing method we use to
353 * support host to adapter commuication. All queue accesses happen through
354 * these routines and are the only routines which have a knowledge of the
355 * how these queues are implemented.
356 */
357
358 /**
359 * aac_get_entry - get a queue entry
360 * @dev: Adapter
361 * @qid: Queue Number
362 * @entry: Entry return
363 * @index: Index return
364 * @nonotify: notification control
365 *
366 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
367 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
368 * returned.
369 */
370
371 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
372 {
373 struct aac_queue * q;
374 unsigned long idx;
375
376 /*
377 * All of the queues wrap when they reach the end, so we check
378 * to see if they have reached the end and if they have we just
379 * set the index back to zero. This is a wrap. You could or off
380 * the high bits in all updates but this is a bit faster I think.
381 */
382
383 q = &dev->queues->queue[qid];
384
385 idx = *index = le32_to_cpu(*(q->headers.producer));
386 /* Interrupt Moderation, only interrupt for first two entries */
387 if (idx != le32_to_cpu(*(q->headers.consumer))) {
388 if (--idx == 0) {
389 if (qid == AdapNormCmdQueue)
390 idx = ADAP_NORM_CMD_ENTRIES;
391 else
392 idx = ADAP_NORM_RESP_ENTRIES;
393 }
394 if (idx != le32_to_cpu(*(q->headers.consumer)))
395 *nonotify = 1;
396 }
397
398 if (qid == AdapNormCmdQueue) {
399 if (*index >= ADAP_NORM_CMD_ENTRIES)
400 *index = 0; /* Wrap to front of the Producer Queue. */
401 } else {
402 if (*index >= ADAP_NORM_RESP_ENTRIES)
403 *index = 0; /* Wrap to front of the Producer Queue. */
404 }
405
406 /* Queue is full */
407 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
408 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
409 qid, atomic_read(&q->numpending));
410 return 0;
411 } else {
412 *entry = q->base + *index;
413 return 1;
414 }
415 }
416
417 /**
418 * aac_queue_get - get the next free QE
419 * @dev: Adapter
420 * @index: Returned index
421 * @priority: Priority of fib
422 * @fib: Fib to associate with the queue entry
423 * @wait: Wait if queue full
424 * @fibptr: Driver fib object to go with fib
425 * @nonotify: Don't notify the adapter
426 *
427 * Gets the next free QE off the requested priorty adapter command
428 * queue and associates the Fib with the QE. The QE represented by
429 * index is ready to insert on the queue when this routine returns
430 * success.
431 */
432
433 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
434 {
435 struct aac_entry * entry = NULL;
436 int map = 0;
437
438 if (qid == AdapNormCmdQueue) {
439 /* if no entries wait for some if caller wants to */
440 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
441 printk(KERN_ERR "GetEntries failed\n");
442 }
443 /*
444 * Setup queue entry with a command, status and fib mapped
445 */
446 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
447 map = 1;
448 } else {
449 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
450 /* if no entries wait for some if caller wants to */
451 }
452 /*
453 * Setup queue entry with command, status and fib mapped
454 */
455 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
456 entry->addr = hw_fib->header.SenderFibAddress;
457 /* Restore adapters pointer to the FIB */
458 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
459 map = 0;
460 }
461 /*
462 * If MapFib is true than we need to map the Fib and put pointers
463 * in the queue entry.
464 */
465 if (map)
466 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
467 return 0;
468 }
469
470 /*
471 * Define the highest level of host to adapter communication routines.
472 * These routines will support host to adapter FS commuication. These
473 * routines have no knowledge of the commuication method used. This level
474 * sends and receives FIBs. This level has no knowledge of how these FIBs
475 * get passed back and forth.
476 */
477
478 /**
479 * aac_fib_send - send a fib to the adapter
480 * @command: Command to send
481 * @fibptr: The fib
482 * @size: Size of fib data area
483 * @priority: Priority of Fib
484 * @wait: Async/sync select
485 * @reply: True if a reply is wanted
486 * @callback: Called with reply
487 * @callback_data: Passed to callback
488 *
489 * Sends the requested FIB to the adapter and optionally will wait for a
490 * response FIB. If the caller does not wish to wait for a response than
491 * an event to wait on must be supplied. This event will be set when a
492 * response FIB is received from the adapter.
493 */
494
495 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
496 int priority, int wait, int reply, fib_callback callback,
497 void *callback_data)
498 {
499 struct aac_dev * dev = fibptr->dev;
500 struct hw_fib * hw_fib = fibptr->hw_fib_va;
501 unsigned long flags = 0;
502 unsigned long mflags = 0;
503 unsigned long sflags = 0;
504
505 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
506 return -EBUSY;
507
508 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
509 return -EINVAL;
510
511 /*
512 * There are 5 cases with the wait and response requested flags.
513 * The only invalid cases are if the caller requests to wait and
514 * does not request a response and if the caller does not want a
515 * response and the Fib is not allocated from pool. If a response
516 * is not requesed the Fib will just be deallocaed by the DPC
517 * routine when the response comes back from the adapter. No
518 * further processing will be done besides deleting the Fib. We
519 * will have a debug mode where the adapter can notify the host
520 * it had a problem and the host can log that fact.
521 */
522 fibptr->flags = 0;
523 if (wait && !reply) {
524 return -EINVAL;
525 } else if (!wait && reply) {
526 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
527 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
528 } else if (!wait && !reply) {
529 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
530 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
531 } else if (wait && reply) {
532 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
533 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
534 }
535 /*
536 * Map the fib into 32bits by using the fib number
537 */
538
539 hw_fib->header.SenderFibAddress =
540 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
541
542 /* use the same shifted value for handle to be compatible
543 * with the new native hba command handle
544 */
545 hw_fib->header.Handle =
546 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
547
548 /*
549 * Set FIB state to indicate where it came from and if we want a
550 * response from the adapter. Also load the command from the
551 * caller.
552 *
553 * Map the hw fib pointer as a 32bit value
554 */
555 hw_fib->header.Command = cpu_to_le16(command);
556 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
557 /*
558 * Set the size of the Fib we want to send to the adapter
559 */
560 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
561 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
562 return -EMSGSIZE;
563 }
564 /*
565 * Get a queue entry connect the FIB to it and send an notify
566 * the adapter a command is ready.
567 */
568 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
569
570 /*
571 * Fill in the Callback and CallbackContext if we are not
572 * going to wait.
573 */
574 if (!wait) {
575 fibptr->callback = callback;
576 fibptr->callback_data = callback_data;
577 fibptr->flags = FIB_CONTEXT_FLAG;
578 }
579
580 fibptr->done = 0;
581
582 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
583
584 dprintk((KERN_DEBUG "Fib contents:.\n"));
585 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
586 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
587 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
588 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
589 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
590 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
591
592 if (!dev->queues)
593 return -EBUSY;
594
595 if (wait) {
596
597 spin_lock_irqsave(&dev->manage_lock, mflags);
598 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
599 printk(KERN_INFO "No management Fibs Available:%d\n",
600 dev->management_fib_count);
601 spin_unlock_irqrestore(&dev->manage_lock, mflags);
602 return -EBUSY;
603 }
604 dev->management_fib_count++;
605 spin_unlock_irqrestore(&dev->manage_lock, mflags);
606 spin_lock_irqsave(&fibptr->event_lock, flags);
607 }
608
609 if (dev->sync_mode) {
610 if (wait)
611 spin_unlock_irqrestore(&fibptr->event_lock, flags);
612 spin_lock_irqsave(&dev->sync_lock, sflags);
613 if (dev->sync_fib) {
614 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
615 spin_unlock_irqrestore(&dev->sync_lock, sflags);
616 } else {
617 dev->sync_fib = fibptr;
618 spin_unlock_irqrestore(&dev->sync_lock, sflags);
619 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
620 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
621 NULL, NULL, NULL, NULL, NULL);
622 }
623 if (wait) {
624 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
625 if (down_interruptible(&fibptr->event_wait)) {
626 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
627 return -EFAULT;
628 }
629 return 0;
630 }
631 return -EINPROGRESS;
632 }
633
634 if (aac_adapter_deliver(fibptr) != 0) {
635 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
636 if (wait) {
637 spin_unlock_irqrestore(&fibptr->event_lock, flags);
638 spin_lock_irqsave(&dev->manage_lock, mflags);
639 dev->management_fib_count--;
640 spin_unlock_irqrestore(&dev->manage_lock, mflags);
641 }
642 return -EBUSY;
643 }
644
645
646 /*
647 * If the caller wanted us to wait for response wait now.
648 */
649
650 if (wait) {
651 spin_unlock_irqrestore(&fibptr->event_lock, flags);
652 /* Only set for first known interruptable command */
653 if (wait < 0) {
654 /*
655 * *VERY* Dangerous to time out a command, the
656 * assumption is made that we have no hope of
657 * functioning because an interrupt routing or other
658 * hardware failure has occurred.
659 */
660 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
661 while (down_trylock(&fibptr->event_wait)) {
662 int blink;
663 if (time_is_before_eq_jiffies(timeout)) {
664 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
665 atomic_dec(&q->numpending);
666 if (wait == -1) {
667 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
668 "Usually a result of a PCI interrupt routing problem;\n"
669 "update mother board BIOS or consider utilizing one of\n"
670 "the SAFE mode kernel options (acpi, apic etc)\n");
671 }
672 return -ETIMEDOUT;
673 }
674
675 if (unlikely(pci_channel_offline(dev->pdev)))
676 return -EFAULT;
677
678 if ((blink = aac_adapter_check_health(dev)) > 0) {
679 if (wait == -1) {
680 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
681 "Usually a result of a serious unrecoverable hardware problem\n",
682 blink);
683 }
684 return -EFAULT;
685 }
686 /*
687 * Allow other processes / CPUS to use core
688 */
689 schedule();
690 }
691 } else if (down_interruptible(&fibptr->event_wait)) {
692 /* Do nothing ... satisfy
693 * down_interruptible must_check */
694 }
695
696 spin_lock_irqsave(&fibptr->event_lock, flags);
697 if (fibptr->done == 0) {
698 fibptr->done = 2; /* Tell interrupt we aborted */
699 spin_unlock_irqrestore(&fibptr->event_lock, flags);
700 return -ERESTARTSYS;
701 }
702 spin_unlock_irqrestore(&fibptr->event_lock, flags);
703 BUG_ON(fibptr->done == 0);
704
705 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
706 return -ETIMEDOUT;
707 return 0;
708 }
709 /*
710 * If the user does not want a response than return success otherwise
711 * return pending
712 */
713 if (reply)
714 return -EINPROGRESS;
715 else
716 return 0;
717 }
718
719 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
720 void *callback_data)
721 {
722 struct aac_dev *dev = fibptr->dev;
723 int wait;
724 unsigned long flags = 0;
725 unsigned long mflags = 0;
726
727 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
728 if (callback) {
729 wait = 0;
730 fibptr->callback = callback;
731 fibptr->callback_data = callback_data;
732 } else
733 wait = 1;
734
735
736 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
737 struct aac_hba_cmd_req *hbacmd =
738 (struct aac_hba_cmd_req *)fibptr->hw_fib_va;
739
740 hbacmd->iu_type = command;
741 /* bit1 of request_id must be 0 */
742 hbacmd->request_id =
743 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
744 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
745 } else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
746 return -EINVAL;
747
748
749 if (wait) {
750 spin_lock_irqsave(&dev->manage_lock, mflags);
751 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
752 spin_unlock_irqrestore(&dev->manage_lock, mflags);
753 return -EBUSY;
754 }
755 dev->management_fib_count++;
756 spin_unlock_irqrestore(&dev->manage_lock, mflags);
757 spin_lock_irqsave(&fibptr->event_lock, flags);
758 }
759
760 if (aac_adapter_deliver(fibptr) != 0) {
761 if (wait) {
762 spin_unlock_irqrestore(&fibptr->event_lock, flags);
763 spin_lock_irqsave(&dev->manage_lock, mflags);
764 dev->management_fib_count--;
765 spin_unlock_irqrestore(&dev->manage_lock, mflags);
766 }
767 return -EBUSY;
768 }
769 FIB_COUNTER_INCREMENT(aac_config.NativeSent);
770
771 if (wait) {
772
773 spin_unlock_irqrestore(&fibptr->event_lock, flags);
774
775 if (unlikely(pci_channel_offline(dev->pdev)))
776 return -EFAULT;
777
778 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
779 if (down_interruptible(&fibptr->event_wait))
780 fibptr->done = 2;
781 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
782
783 spin_lock_irqsave(&fibptr->event_lock, flags);
784 if ((fibptr->done == 0) || (fibptr->done == 2)) {
785 fibptr->done = 2; /* Tell interrupt we aborted */
786 spin_unlock_irqrestore(&fibptr->event_lock, flags);
787 return -ERESTARTSYS;
788 }
789 spin_unlock_irqrestore(&fibptr->event_lock, flags);
790 WARN_ON(fibptr->done == 0);
791
792 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
793 return -ETIMEDOUT;
794
795 return 0;
796 }
797
798 return -EINPROGRESS;
799 }
800
801 /**
802 * aac_consumer_get - get the top of the queue
803 * @dev: Adapter
804 * @q: Queue
805 * @entry: Return entry
806 *
807 * Will return a pointer to the entry on the top of the queue requested that
808 * we are a consumer of, and return the address of the queue entry. It does
809 * not change the state of the queue.
810 */
811
812 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
813 {
814 u32 index;
815 int status;
816 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
817 status = 0;
818 } else {
819 /*
820 * The consumer index must be wrapped if we have reached
821 * the end of the queue, else we just use the entry
822 * pointed to by the header index
823 */
824 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
825 index = 0;
826 else
827 index = le32_to_cpu(*q->headers.consumer);
828 *entry = q->base + index;
829 status = 1;
830 }
831 return(status);
832 }
833
834 /**
835 * aac_consumer_free - free consumer entry
836 * @dev: Adapter
837 * @q: Queue
838 * @qid: Queue ident
839 *
840 * Frees up the current top of the queue we are a consumer of. If the
841 * queue was full notify the producer that the queue is no longer full.
842 */
843
844 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
845 {
846 int wasfull = 0;
847 u32 notify;
848
849 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
850 wasfull = 1;
851
852 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
853 *q->headers.consumer = cpu_to_le32(1);
854 else
855 le32_add_cpu(q->headers.consumer, 1);
856
857 if (wasfull) {
858 switch (qid) {
859
860 case HostNormCmdQueue:
861 notify = HostNormCmdNotFull;
862 break;
863 case HostNormRespQueue:
864 notify = HostNormRespNotFull;
865 break;
866 default:
867 BUG();
868 return;
869 }
870 aac_adapter_notify(dev, notify);
871 }
872 }
873
874 /**
875 * aac_fib_adapter_complete - complete adapter issued fib
876 * @fibptr: fib to complete
877 * @size: size of fib
878 *
879 * Will do all necessary work to complete a FIB that was sent from
880 * the adapter.
881 */
882
883 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
884 {
885 struct hw_fib * hw_fib = fibptr->hw_fib_va;
886 struct aac_dev * dev = fibptr->dev;
887 struct aac_queue * q;
888 unsigned long nointr = 0;
889 unsigned long qflags;
890
891 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
892 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
893 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
894 kfree(hw_fib);
895 return 0;
896 }
897
898 if (hw_fib->header.XferState == 0) {
899 if (dev->comm_interface == AAC_COMM_MESSAGE)
900 kfree(hw_fib);
901 return 0;
902 }
903 /*
904 * If we plan to do anything check the structure type first.
905 */
906 if (hw_fib->header.StructType != FIB_MAGIC &&
907 hw_fib->header.StructType != FIB_MAGIC2 &&
908 hw_fib->header.StructType != FIB_MAGIC2_64) {
909 if (dev->comm_interface == AAC_COMM_MESSAGE)
910 kfree(hw_fib);
911 return -EINVAL;
912 }
913 /*
914 * This block handles the case where the adapter had sent us a
915 * command and we have finished processing the command. We
916 * call completeFib when we are done processing the command
917 * and want to send a response back to the adapter. This will
918 * send the completed cdb to the adapter.
919 */
920 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
921 if (dev->comm_interface == AAC_COMM_MESSAGE) {
922 kfree (hw_fib);
923 } else {
924 u32 index;
925 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
926 if (size) {
927 size += sizeof(struct aac_fibhdr);
928 if (size > le16_to_cpu(hw_fib->header.SenderSize))
929 return -EMSGSIZE;
930 hw_fib->header.Size = cpu_to_le16(size);
931 }
932 q = &dev->queues->queue[AdapNormRespQueue];
933 spin_lock_irqsave(q->lock, qflags);
934 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
935 *(q->headers.producer) = cpu_to_le32(index + 1);
936 spin_unlock_irqrestore(q->lock, qflags);
937 if (!(nointr & (int)aac_config.irq_mod))
938 aac_adapter_notify(dev, AdapNormRespQueue);
939 }
940 } else {
941 printk(KERN_WARNING "aac_fib_adapter_complete: "
942 "Unknown xferstate detected.\n");
943 BUG();
944 }
945 return 0;
946 }
947
948 /**
949 * aac_fib_complete - fib completion handler
950 * @fib: FIB to complete
951 *
952 * Will do all necessary work to complete a FIB.
953 */
954
955 int aac_fib_complete(struct fib *fibptr)
956 {
957 struct hw_fib * hw_fib = fibptr->hw_fib_va;
958
959 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
960 fib_dealloc(fibptr);
961 return 0;
962 }
963
964 /*
965 * Check for a fib which has already been completed or with a
966 * status wait timeout
967 */
968
969 if (hw_fib->header.XferState == 0 || fibptr->done == 2)
970 return 0;
971 /*
972 * If we plan to do anything check the structure type first.
973 */
974
975 if (hw_fib->header.StructType != FIB_MAGIC &&
976 hw_fib->header.StructType != FIB_MAGIC2 &&
977 hw_fib->header.StructType != FIB_MAGIC2_64)
978 return -EINVAL;
979 /*
980 * This block completes a cdb which orginated on the host and we
981 * just need to deallocate the cdb or reinit it. At this point the
982 * command is complete that we had sent to the adapter and this
983 * cdb could be reused.
984 */
985
986 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
987 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
988 {
989 fib_dealloc(fibptr);
990 }
991 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
992 {
993 /*
994 * This handles the case when the host has aborted the I/O
995 * to the adapter because the adapter is not responding
996 */
997 fib_dealloc(fibptr);
998 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
999 fib_dealloc(fibptr);
1000 } else {
1001 BUG();
1002 }
1003 return 0;
1004 }
1005
1006 /**
1007 * aac_printf - handle printf from firmware
1008 * @dev: Adapter
1009 * @val: Message info
1010 *
1011 * Print a message passed to us by the controller firmware on the
1012 * Adaptec board
1013 */
1014
1015 void aac_printf(struct aac_dev *dev, u32 val)
1016 {
1017 char *cp = dev->printfbuf;
1018 if (dev->printf_enabled)
1019 {
1020 int length = val & 0xffff;
1021 int level = (val >> 16) & 0xffff;
1022
1023 /*
1024 * The size of the printfbuf is set in port.c
1025 * There is no variable or define for it
1026 */
1027 if (length > 255)
1028 length = 255;
1029 if (cp[length] != 0)
1030 cp[length] = 0;
1031 if (level == LOG_AAC_HIGH_ERROR)
1032 printk(KERN_WARNING "%s:%s", dev->name, cp);
1033 else
1034 printk(KERN_INFO "%s:%s", dev->name, cp);
1035 }
1036 memset(cp, 0, 256);
1037 }
1038
1039 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1040 {
1041 return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1042 }
1043
1044
1045 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1046 {
1047 switch (aac_aif_data(aifcmd, 1)) {
1048 case AifBuCacheDataLoss:
1049 if (aac_aif_data(aifcmd, 2))
1050 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1051 aac_aif_data(aifcmd, 2));
1052 else
1053 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1054 break;
1055 case AifBuCacheDataRecover:
1056 if (aac_aif_data(aifcmd, 2))
1057 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1058 aac_aif_data(aifcmd, 2));
1059 else
1060 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1061 break;
1062 }
1063 }
1064
1065 /**
1066 * aac_handle_aif - Handle a message from the firmware
1067 * @dev: Which adapter this fib is from
1068 * @fibptr: Pointer to fibptr from adapter
1069 *
1070 * This routine handles a driver notify fib from the adapter and
1071 * dispatches it to the appropriate routine for handling.
1072 */
1073
1074 #define AIF_SNIFF_TIMEOUT (500*HZ)
1075 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1076 {
1077 struct hw_fib * hw_fib = fibptr->hw_fib_va;
1078 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1079 u32 channel, id, lun, container;
1080 struct scsi_device *device;
1081 enum {
1082 NOTHING,
1083 DELETE,
1084 ADD,
1085 CHANGE
1086 } device_config_needed = NOTHING;
1087
1088 /* Sniff for container changes */
1089
1090 if (!dev || !dev->fsa_dev)
1091 return;
1092 container = channel = id = lun = (u32)-1;
1093
1094 /*
1095 * We have set this up to try and minimize the number of
1096 * re-configures that take place. As a result of this when
1097 * certain AIF's come in we will set a flag waiting for another
1098 * type of AIF before setting the re-config flag.
1099 */
1100 switch (le32_to_cpu(aifcmd->command)) {
1101 case AifCmdDriverNotify:
1102 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1103 case AifRawDeviceRemove:
1104 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1105 if ((container >> 28)) {
1106 container = (u32)-1;
1107 break;
1108 }
1109 channel = (container >> 24) & 0xF;
1110 if (channel >= dev->maximum_num_channels) {
1111 container = (u32)-1;
1112 break;
1113 }
1114 id = container & 0xFFFF;
1115 if (id >= dev->maximum_num_physicals) {
1116 container = (u32)-1;
1117 break;
1118 }
1119 lun = (container >> 16) & 0xFF;
1120 container = (u32)-1;
1121 channel = aac_phys_to_logical(channel);
1122 device_config_needed = DELETE;
1123 break;
1124
1125 /*
1126 * Morph or Expand complete
1127 */
1128 case AifDenMorphComplete:
1129 case AifDenVolumeExtendComplete:
1130 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1131 if (container >= dev->maximum_num_containers)
1132 break;
1133
1134 /*
1135 * Find the scsi_device associated with the SCSI
1136 * address. Make sure we have the right array, and if
1137 * so set the flag to initiate a new re-config once we
1138 * see an AifEnConfigChange AIF come through.
1139 */
1140
1141 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1142 device = scsi_device_lookup(dev->scsi_host_ptr,
1143 CONTAINER_TO_CHANNEL(container),
1144 CONTAINER_TO_ID(container),
1145 CONTAINER_TO_LUN(container));
1146 if (device) {
1147 dev->fsa_dev[container].config_needed = CHANGE;
1148 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1149 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1150 scsi_device_put(device);
1151 }
1152 }
1153 }
1154
1155 /*
1156 * If we are waiting on something and this happens to be
1157 * that thing then set the re-configure flag.
1158 */
1159 if (container != (u32)-1) {
1160 if (container >= dev->maximum_num_containers)
1161 break;
1162 if ((dev->fsa_dev[container].config_waiting_on ==
1163 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1164 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1165 dev->fsa_dev[container].config_waiting_on = 0;
1166 } else for (container = 0;
1167 container < dev->maximum_num_containers; ++container) {
1168 if ((dev->fsa_dev[container].config_waiting_on ==
1169 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1170 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1171 dev->fsa_dev[container].config_waiting_on = 0;
1172 }
1173 break;
1174
1175 case AifCmdEventNotify:
1176 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1177 case AifEnBatteryEvent:
1178 dev->cache_protected =
1179 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1180 break;
1181 /*
1182 * Add an Array.
1183 */
1184 case AifEnAddContainer:
1185 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186 if (container >= dev->maximum_num_containers)
1187 break;
1188 dev->fsa_dev[container].config_needed = ADD;
1189 dev->fsa_dev[container].config_waiting_on =
1190 AifEnConfigChange;
1191 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192 break;
1193
1194 /*
1195 * Delete an Array.
1196 */
1197 case AifEnDeleteContainer:
1198 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1199 if (container >= dev->maximum_num_containers)
1200 break;
1201 dev->fsa_dev[container].config_needed = DELETE;
1202 dev->fsa_dev[container].config_waiting_on =
1203 AifEnConfigChange;
1204 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1205 break;
1206
1207 /*
1208 * Container change detected. If we currently are not
1209 * waiting on something else, setup to wait on a Config Change.
1210 */
1211 case AifEnContainerChange:
1212 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1213 if (container >= dev->maximum_num_containers)
1214 break;
1215 if (dev->fsa_dev[container].config_waiting_on &&
1216 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1217 break;
1218 dev->fsa_dev[container].config_needed = CHANGE;
1219 dev->fsa_dev[container].config_waiting_on =
1220 AifEnConfigChange;
1221 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1222 break;
1223
1224 case AifEnConfigChange:
1225 break;
1226
1227 case AifEnAddJBOD:
1228 case AifEnDeleteJBOD:
1229 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1230 if ((container >> 28)) {
1231 container = (u32)-1;
1232 break;
1233 }
1234 channel = (container >> 24) & 0xF;
1235 if (channel >= dev->maximum_num_channels) {
1236 container = (u32)-1;
1237 break;
1238 }
1239 id = container & 0xFFFF;
1240 if (id >= dev->maximum_num_physicals) {
1241 container = (u32)-1;
1242 break;
1243 }
1244 lun = (container >> 16) & 0xFF;
1245 container = (u32)-1;
1246 channel = aac_phys_to_logical(channel);
1247 device_config_needed =
1248 (((__le32 *)aifcmd->data)[0] ==
1249 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1250 if (device_config_needed == ADD) {
1251 device = scsi_device_lookup(dev->scsi_host_ptr,
1252 channel,
1253 id,
1254 lun);
1255 if (device) {
1256 scsi_remove_device(device);
1257 scsi_device_put(device);
1258 }
1259 }
1260 break;
1261
1262 case AifEnEnclosureManagement:
1263 /*
1264 * If in JBOD mode, automatic exposure of new
1265 * physical target to be suppressed until configured.
1266 */
1267 if (dev->jbod)
1268 break;
1269 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1270 case EM_DRIVE_INSERTION:
1271 case EM_DRIVE_REMOVAL:
1272 case EM_SES_DRIVE_INSERTION:
1273 case EM_SES_DRIVE_REMOVAL:
1274 container = le32_to_cpu(
1275 ((__le32 *)aifcmd->data)[2]);
1276 if ((container >> 28)) {
1277 container = (u32)-1;
1278 break;
1279 }
1280 channel = (container >> 24) & 0xF;
1281 if (channel >= dev->maximum_num_channels) {
1282 container = (u32)-1;
1283 break;
1284 }
1285 id = container & 0xFFFF;
1286 lun = (container >> 16) & 0xFF;
1287 container = (u32)-1;
1288 if (id >= dev->maximum_num_physicals) {
1289 /* legacy dev_t ? */
1290 if ((0x2000 <= id) || lun || channel ||
1291 ((channel = (id >> 7) & 0x3F) >=
1292 dev->maximum_num_channels))
1293 break;
1294 lun = (id >> 4) & 7;
1295 id &= 0xF;
1296 }
1297 channel = aac_phys_to_logical(channel);
1298 device_config_needed =
1299 ((((__le32 *)aifcmd->data)[3]
1300 == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1301 (((__le32 *)aifcmd->data)[3]
1302 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1303 ADD : DELETE;
1304 break;
1305 }
1306 case AifBuManagerEvent:
1307 aac_handle_aif_bu(dev, aifcmd);
1308 break;
1309 }
1310
1311 /*
1312 * If we are waiting on something and this happens to be
1313 * that thing then set the re-configure flag.
1314 */
1315 if (container != (u32)-1) {
1316 if (container >= dev->maximum_num_containers)
1317 break;
1318 if ((dev->fsa_dev[container].config_waiting_on ==
1319 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1320 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1321 dev->fsa_dev[container].config_waiting_on = 0;
1322 } else for (container = 0;
1323 container < dev->maximum_num_containers; ++container) {
1324 if ((dev->fsa_dev[container].config_waiting_on ==
1325 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1326 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1327 dev->fsa_dev[container].config_waiting_on = 0;
1328 }
1329 break;
1330
1331 case AifCmdJobProgress:
1332 /*
1333 * These are job progress AIF's. When a Clear is being
1334 * done on a container it is initially created then hidden from
1335 * the OS. When the clear completes we don't get a config
1336 * change so we monitor the job status complete on a clear then
1337 * wait for a container change.
1338 */
1339
1340 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1341 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1342 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1343 for (container = 0;
1344 container < dev->maximum_num_containers;
1345 ++container) {
1346 /*
1347 * Stomp on all config sequencing for all
1348 * containers?
1349 */
1350 dev->fsa_dev[container].config_waiting_on =
1351 AifEnContainerChange;
1352 dev->fsa_dev[container].config_needed = ADD;
1353 dev->fsa_dev[container].config_waiting_stamp =
1354 jiffies;
1355 }
1356 }
1357 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1358 ((__le32 *)aifcmd->data)[6] == 0 &&
1359 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1360 for (container = 0;
1361 container < dev->maximum_num_containers;
1362 ++container) {
1363 /*
1364 * Stomp on all config sequencing for all
1365 * containers?
1366 */
1367 dev->fsa_dev[container].config_waiting_on =
1368 AifEnContainerChange;
1369 dev->fsa_dev[container].config_needed = DELETE;
1370 dev->fsa_dev[container].config_waiting_stamp =
1371 jiffies;
1372 }
1373 }
1374 break;
1375 }
1376
1377 container = 0;
1378 retry_next:
1379 if (device_config_needed == NOTHING)
1380 for (; container < dev->maximum_num_containers; ++container) {
1381 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1382 (dev->fsa_dev[container].config_needed != NOTHING) &&
1383 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1384 device_config_needed =
1385 dev->fsa_dev[container].config_needed;
1386 dev->fsa_dev[container].config_needed = NOTHING;
1387 channel = CONTAINER_TO_CHANNEL(container);
1388 id = CONTAINER_TO_ID(container);
1389 lun = CONTAINER_TO_LUN(container);
1390 break;
1391 }
1392 }
1393 if (device_config_needed == NOTHING)
1394 return;
1395
1396 /*
1397 * If we decided that a re-configuration needs to be done,
1398 * schedule it here on the way out the door, please close the door
1399 * behind you.
1400 */
1401
1402 /*
1403 * Find the scsi_device associated with the SCSI address,
1404 * and mark it as changed, invalidating the cache. This deals
1405 * with changes to existing device IDs.
1406 */
1407
1408 if (!dev || !dev->scsi_host_ptr)
1409 return;
1410 /*
1411 * force reload of disk info via aac_probe_container
1412 */
1413 if ((channel == CONTAINER_CHANNEL) &&
1414 (device_config_needed != NOTHING)) {
1415 if (dev->fsa_dev[container].valid == 1)
1416 dev->fsa_dev[container].valid = 2;
1417 aac_probe_container(dev, container);
1418 }
1419 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1420 if (device) {
1421 switch (device_config_needed) {
1422 case DELETE:
1423 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1424 scsi_remove_device(device);
1425 #else
1426 if (scsi_device_online(device)) {
1427 scsi_device_set_state(device, SDEV_OFFLINE);
1428 sdev_printk(KERN_INFO, device,
1429 "Device offlined - %s\n",
1430 (channel == CONTAINER_CHANNEL) ?
1431 "array deleted" :
1432 "enclosure services event");
1433 }
1434 #endif
1435 break;
1436 case ADD:
1437 if (!scsi_device_online(device)) {
1438 sdev_printk(KERN_INFO, device,
1439 "Device online - %s\n",
1440 (channel == CONTAINER_CHANNEL) ?
1441 "array created" :
1442 "enclosure services event");
1443 scsi_device_set_state(device, SDEV_RUNNING);
1444 }
1445 /* FALLTHRU */
1446 case CHANGE:
1447 if ((channel == CONTAINER_CHANNEL)
1448 && (!dev->fsa_dev[container].valid)) {
1449 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1450 scsi_remove_device(device);
1451 #else
1452 if (!scsi_device_online(device))
1453 break;
1454 scsi_device_set_state(device, SDEV_OFFLINE);
1455 sdev_printk(KERN_INFO, device,
1456 "Device offlined - %s\n",
1457 "array failed");
1458 #endif
1459 break;
1460 }
1461 scsi_rescan_device(&device->sdev_gendev);
1462
1463 default:
1464 break;
1465 }
1466 scsi_device_put(device);
1467 device_config_needed = NOTHING;
1468 }
1469 if (device_config_needed == ADD)
1470 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1471 if (channel == CONTAINER_CHANNEL) {
1472 container++;
1473 device_config_needed = NOTHING;
1474 goto retry_next;
1475 }
1476 }
1477
1478 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1479 {
1480 int index, quirks;
1481 int retval;
1482 struct Scsi_Host *host;
1483 struct scsi_device *dev;
1484 struct scsi_cmnd *command;
1485 struct scsi_cmnd *command_list;
1486 int jafo = 0;
1487 int bled;
1488 u64 dmamask;
1489 int num_of_fibs = 0;
1490
1491 /*
1492 * Assumptions:
1493 * - host is locked, unless called by the aacraid thread.
1494 * (a matter of convenience, due to legacy issues surrounding
1495 * eh_host_adapter_reset).
1496 * - in_reset is asserted, so no new i/o is getting to the
1497 * card.
1498 * - The card is dead, or will be very shortly ;-/ so no new
1499 * commands are completing in the interrupt service.
1500 */
1501 host = aac->scsi_host_ptr;
1502 scsi_block_requests(host);
1503 aac_adapter_disable_int(aac);
1504 if (aac->thread->pid != current->pid) {
1505 spin_unlock_irq(host->host_lock);
1506 kthread_stop(aac->thread);
1507 jafo = 1;
1508 }
1509
1510 /*
1511 * If a positive health, means in a known DEAD PANIC
1512 * state and the adapter could be reset to `try again'.
1513 */
1514 bled = forced ? 0 : aac_adapter_check_health(aac);
1515 retval = aac_adapter_restart(aac, bled, reset_type);
1516
1517 if (retval)
1518 goto out;
1519
1520 /*
1521 * Loop through the fibs, close the synchronous FIBS
1522 */
1523 retval = 1;
1524 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1525 for (index = 0; index < num_of_fibs; index++) {
1526
1527 struct fib *fib = &aac->fibs[index];
1528 __le32 XferState = fib->hw_fib_va->header.XferState;
1529 bool is_response_expected = false;
1530
1531 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1532 (XferState & cpu_to_le32(ResponseExpected)))
1533 is_response_expected = true;
1534
1535 if (is_response_expected
1536 || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1537 unsigned long flagv;
1538 spin_lock_irqsave(&fib->event_lock, flagv);
1539 up(&fib->event_wait);
1540 spin_unlock_irqrestore(&fib->event_lock, flagv);
1541 schedule();
1542 retval = 0;
1543 }
1544 }
1545 /* Give some extra time for ioctls to complete. */
1546 if (retval == 0)
1547 ssleep(2);
1548 index = aac->cardtype;
1549
1550 /*
1551 * Re-initialize the adapter, first free resources, then carefully
1552 * apply the initialization sequence to come back again. Only risk
1553 * is a change in Firmware dropping cache, it is assumed the caller
1554 * will ensure that i/o is queisced and the card is flushed in that
1555 * case.
1556 */
1557 aac_free_irq(aac);
1558 aac_fib_map_free(aac);
1559 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1560 aac->comm_phys);
1561 aac->comm_addr = NULL;
1562 aac->comm_phys = 0;
1563 kfree(aac->queues);
1564 aac->queues = NULL;
1565 kfree(aac->fsa_dev);
1566 aac->fsa_dev = NULL;
1567
1568 dmamask = DMA_BIT_MASK(32);
1569 quirks = aac_get_driver_ident(index)->quirks;
1570 if (quirks & AAC_QUIRK_31BIT)
1571 retval = pci_set_dma_mask(aac->pdev, dmamask);
1572 else if (!(quirks & AAC_QUIRK_SRC))
1573 retval = pci_set_dma_mask(aac->pdev, dmamask);
1574 else
1575 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1576
1577 if (quirks & AAC_QUIRK_31BIT && !retval) {
1578 dmamask = DMA_BIT_MASK(31);
1579 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1580 }
1581
1582 if (retval)
1583 goto out;
1584
1585 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1586 goto out;
1587
1588 if (jafo) {
1589 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1590 aac->name);
1591 if (IS_ERR(aac->thread)) {
1592 retval = PTR_ERR(aac->thread);
1593 goto out;
1594 }
1595 }
1596 (void)aac_get_adapter_info(aac);
1597 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1598 host->sg_tablesize = 34;
1599 host->max_sectors = (host->sg_tablesize * 8) + 112;
1600 }
1601 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1602 host->sg_tablesize = 17;
1603 host->max_sectors = (host->sg_tablesize * 8) + 112;
1604 }
1605 aac_get_config_status(aac, 1);
1606 aac_get_containers(aac);
1607 /*
1608 * This is where the assumption that the Adapter is quiesced
1609 * is important.
1610 */
1611 command_list = NULL;
1612 __shost_for_each_device(dev, host) {
1613 unsigned long flags;
1614 spin_lock_irqsave(&dev->list_lock, flags);
1615 list_for_each_entry(command, &dev->cmd_list, list)
1616 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1617 command->SCp.buffer = (struct scatterlist *)command_list;
1618 command_list = command;
1619 }
1620 spin_unlock_irqrestore(&dev->list_lock, flags);
1621 }
1622 while ((command = command_list)) {
1623 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1624 command->SCp.buffer = NULL;
1625 command->result = DID_OK << 16
1626 | COMMAND_COMPLETE << 8
1627 | SAM_STAT_TASK_SET_FULL;
1628 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1629 command->scsi_done(command);
1630 }
1631 /*
1632 * Any Device that was already marked offline needs to be marked
1633 * running
1634 */
1635 __shost_for_each_device(dev, host) {
1636 if (!scsi_device_online(dev))
1637 scsi_device_set_state(dev, SDEV_RUNNING);
1638 }
1639 retval = 0;
1640
1641 out:
1642 aac->in_reset = 0;
1643 scsi_unblock_requests(host);
1644
1645 if (jafo) {
1646 spin_lock_irq(host->host_lock);
1647 }
1648 return retval;
1649 }
1650
1651 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1652 {
1653 unsigned long flagv = 0;
1654 int retval;
1655 struct Scsi_Host * host;
1656 int bled;
1657
1658 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1659 return -EBUSY;
1660
1661 if (aac->in_reset) {
1662 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1663 return -EBUSY;
1664 }
1665 aac->in_reset = 1;
1666 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1667
1668 /*
1669 * Wait for all commands to complete to this specific
1670 * target (block maximum 60 seconds). Although not necessary,
1671 * it does make us a good storage citizen.
1672 */
1673 host = aac->scsi_host_ptr;
1674 scsi_block_requests(host);
1675
1676 /* Quiesce build, flush cache, write through mode */
1677 if (forced < 2)
1678 aac_send_shutdown(aac);
1679 spin_lock_irqsave(host->host_lock, flagv);
1680 bled = forced ? forced :
1681 (aac_check_reset != 0 && aac_check_reset != 1);
1682 retval = _aac_reset_adapter(aac, bled, reset_type);
1683 spin_unlock_irqrestore(host->host_lock, flagv);
1684
1685 if ((forced < 2) && (retval == -ENODEV)) {
1686 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1687 struct fib * fibctx = aac_fib_alloc(aac);
1688 if (fibctx) {
1689 struct aac_pause *cmd;
1690 int status;
1691
1692 aac_fib_init(fibctx);
1693
1694 cmd = (struct aac_pause *) fib_data(fibctx);
1695
1696 cmd->command = cpu_to_le32(VM_ContainerConfig);
1697 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1698 cmd->timeout = cpu_to_le32(1);
1699 cmd->min = cpu_to_le32(1);
1700 cmd->noRescan = cpu_to_le32(1);
1701 cmd->count = cpu_to_le32(0);
1702
1703 status = aac_fib_send(ContainerCommand,
1704 fibctx,
1705 sizeof(struct aac_pause),
1706 FsaNormal,
1707 -2 /* Timeout silently */, 1,
1708 NULL, NULL);
1709
1710 if (status >= 0)
1711 aac_fib_complete(fibctx);
1712 /* FIB should be freed only after getting
1713 * the response from the F/W */
1714 if (status != -ERESTARTSYS)
1715 aac_fib_free(fibctx);
1716 }
1717 }
1718
1719 return retval;
1720 }
1721
1722 int aac_check_health(struct aac_dev * aac)
1723 {
1724 int BlinkLED;
1725 unsigned long time_now, flagv = 0;
1726 struct list_head * entry;
1727
1728 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1729 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1730 return 0;
1731
1732 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1733 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1734 return 0; /* OK */
1735 }
1736
1737 aac->in_reset = 1;
1738
1739 /* Fake up an AIF:
1740 * aac_aifcmd.command = AifCmdEventNotify = 1
1741 * aac_aifcmd.seqnum = 0xFFFFFFFF
1742 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1743 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1744 * aac.aifcmd.data[2] = AifHighPriority = 3
1745 * aac.aifcmd.data[3] = BlinkLED
1746 */
1747
1748 time_now = jiffies/HZ;
1749 entry = aac->fib_list.next;
1750
1751 /*
1752 * For each Context that is on the
1753 * fibctxList, make a copy of the
1754 * fib, and then set the event to wake up the
1755 * thread that is waiting for it.
1756 */
1757 while (entry != &aac->fib_list) {
1758 /*
1759 * Extract the fibctx
1760 */
1761 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1762 struct hw_fib * hw_fib;
1763 struct fib * fib;
1764 /*
1765 * Check if the queue is getting
1766 * backlogged
1767 */
1768 if (fibctx->count > 20) {
1769 /*
1770 * It's *not* jiffies folks,
1771 * but jiffies / HZ, so do not
1772 * panic ...
1773 */
1774 u32 time_last = fibctx->jiffies;
1775 /*
1776 * Has it been > 2 minutes
1777 * since the last read off
1778 * the queue?
1779 */
1780 if ((time_now - time_last) > aif_timeout) {
1781 entry = entry->next;
1782 aac_close_fib_context(aac, fibctx);
1783 continue;
1784 }
1785 }
1786 /*
1787 * Warning: no sleep allowed while
1788 * holding spinlock
1789 */
1790 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1791 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1792 if (fib && hw_fib) {
1793 struct aac_aifcmd * aif;
1794
1795 fib->hw_fib_va = hw_fib;
1796 fib->dev = aac;
1797 aac_fib_init(fib);
1798 fib->type = FSAFS_NTC_FIB_CONTEXT;
1799 fib->size = sizeof (struct fib);
1800 fib->data = hw_fib->data;
1801 aif = (struct aac_aifcmd *)hw_fib->data;
1802 aif->command = cpu_to_le32(AifCmdEventNotify);
1803 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1804 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1805 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1806 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1807 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1808
1809 /*
1810 * Put the FIB onto the
1811 * fibctx's fibs
1812 */
1813 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1814 fibctx->count++;
1815 /*
1816 * Set the event to wake up the
1817 * thread that will waiting.
1818 */
1819 up(&fibctx->wait_sem);
1820 } else {
1821 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1822 kfree(fib);
1823 kfree(hw_fib);
1824 }
1825 entry = entry->next;
1826 }
1827
1828 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1829
1830 if (BlinkLED < 0) {
1831 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1832 aac->name, BlinkLED);
1833 goto out;
1834 }
1835
1836 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1837
1838 out:
1839 aac->in_reset = 0;
1840 return BlinkLED;
1841 }
1842
1843
1844 static void aac_resolve_luns(struct aac_dev *dev)
1845 {
1846 int bus, target, channel;
1847 struct scsi_device *sdev;
1848 u8 devtype;
1849 u8 new_devtype;
1850
1851 for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
1852 for (target = 0; target < AAC_MAX_TARGETS; target++) {
1853
1854 if (bus == CONTAINER_CHANNEL)
1855 channel = CONTAINER_CHANNEL;
1856 else
1857 channel = aac_phys_to_logical(bus);
1858
1859 devtype = dev->hba_map[bus][target].devtype;
1860 new_devtype = dev->hba_map[bus][target].new_devtype;
1861
1862 sdev = scsi_device_lookup(dev->scsi_host_ptr, channel,
1863 target, 0);
1864
1865 if (!sdev && new_devtype)
1866 scsi_add_device(dev->scsi_host_ptr, channel,
1867 target, 0);
1868 else if (sdev && new_devtype != devtype)
1869 scsi_remove_device(sdev);
1870 else if (sdev && new_devtype == devtype)
1871 scsi_rescan_device(&sdev->sdev_gendev);
1872
1873 if (sdev)
1874 scsi_device_put(sdev);
1875
1876 dev->hba_map[bus][target].devtype = new_devtype;
1877 }
1878 }
1879 }
1880
1881 /**
1882 * aac_handle_sa_aif Handle a message from the firmware
1883 * @dev: Which adapter this fib is from
1884 * @fibptr: Pointer to fibptr from adapter
1885 *
1886 * This routine handles a driver notify fib from the adapter and
1887 * dispatches it to the appropriate routine for handling.
1888 */
1889 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1890 {
1891 int i, bus, target, container, rcode = 0;
1892 u32 events = 0;
1893 struct scsi_device *sdev;
1894
1895 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1896 events = SA_AIF_HOTPLUG;
1897 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1898 events = SA_AIF_HARDWARE;
1899 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1900 events = SA_AIF_PDEV_CHANGE;
1901 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1902 events = SA_AIF_LDEV_CHANGE;
1903 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1904 events = SA_AIF_BPSTAT_CHANGE;
1905 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1906 events = SA_AIF_BPCFG_CHANGE;
1907
1908 switch (events) {
1909 case SA_AIF_HOTPLUG:
1910 case SA_AIF_HARDWARE:
1911 case SA_AIF_PDEV_CHANGE:
1912 case SA_AIF_LDEV_CHANGE:
1913 case SA_AIF_BPCFG_CHANGE:
1914
1915 for (bus = 0; bus < AAC_MAX_BUSES; bus++)
1916 for (target = 0; target < AAC_MAX_TARGETS; target++)
1917 dev->hba_map[bus][target].new_devtype = 0;
1918
1919 rcode = aac_setup_safw_adapter(dev, AAC_RESCAN);
1920
1921 aac_resolve_luns(dev);
1922
1923 if (events == SA_AIF_LDEV_CHANGE ||
1924 events == SA_AIF_BPCFG_CHANGE) {
1925 aac_get_containers(dev);
1926 for (container = 0; container <
1927 dev->maximum_num_containers; ++container) {
1928 sdev = scsi_device_lookup(dev->scsi_host_ptr,
1929 CONTAINER_CHANNEL,
1930 container, 0);
1931 if (dev->fsa_dev[container].valid && !sdev) {
1932 scsi_add_device(dev->scsi_host_ptr,
1933 CONTAINER_CHANNEL,
1934 container, 0);
1935 } else if (!dev->fsa_dev[container].valid &&
1936 sdev) {
1937 scsi_remove_device(sdev);
1938 scsi_device_put(sdev);
1939 } else if (sdev) {
1940 scsi_rescan_device(&sdev->sdev_gendev);
1941 scsi_device_put(sdev);
1942 }
1943 }
1944 }
1945 break;
1946
1947 case SA_AIF_BPSTAT_CHANGE:
1948 /* currently do nothing */
1949 break;
1950 }
1951
1952 for (i = 1; i <= 10; ++i) {
1953 events = src_readl(dev, MUnit.IDR);
1954 if (events & (1<<23)) {
1955 pr_warn(" AIF not cleared by firmware - %d/%d)\n",
1956 i, 10);
1957 ssleep(1);
1958 }
1959 }
1960 }
1961
1962 static int get_fib_count(struct aac_dev *dev)
1963 {
1964 unsigned int num = 0;
1965 struct list_head *entry;
1966 unsigned long flagv;
1967
1968 /*
1969 * Warning: no sleep allowed while
1970 * holding spinlock. We take the estimate
1971 * and pre-allocate a set of fibs outside the
1972 * lock.
1973 */
1974 num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
1975 / sizeof(struct hw_fib); /* some extra */
1976 spin_lock_irqsave(&dev->fib_lock, flagv);
1977 entry = dev->fib_list.next;
1978 while (entry != &dev->fib_list) {
1979 entry = entry->next;
1980 ++num;
1981 }
1982 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1983
1984 return num;
1985 }
1986
1987 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
1988 struct fib **fib_pool,
1989 unsigned int num)
1990 {
1991 struct hw_fib **hw_fib_p;
1992 struct fib **fib_p;
1993
1994 hw_fib_p = hw_fib_pool;
1995 fib_p = fib_pool;
1996 while (hw_fib_p < &hw_fib_pool[num]) {
1997 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
1998 if (!(*(hw_fib_p++))) {
1999 --hw_fib_p;
2000 break;
2001 }
2002
2003 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2004 if (!(*(fib_p++))) {
2005 kfree(*(--hw_fib_p));
2006 break;
2007 }
2008 }
2009
2010 /*
2011 * Get the actual number of allocated fibs
2012 */
2013 num = hw_fib_p - hw_fib_pool;
2014 return num;
2015 }
2016
2017 static void wakeup_fibctx_threads(struct aac_dev *dev,
2018 struct hw_fib **hw_fib_pool,
2019 struct fib **fib_pool,
2020 struct fib *fib,
2021 struct hw_fib *hw_fib,
2022 unsigned int num)
2023 {
2024 unsigned long flagv;
2025 struct list_head *entry;
2026 struct hw_fib **hw_fib_p;
2027 struct fib **fib_p;
2028 u32 time_now, time_last;
2029 struct hw_fib *hw_newfib;
2030 struct fib *newfib;
2031 struct aac_fib_context *fibctx;
2032
2033 time_now = jiffies/HZ;
2034 spin_lock_irqsave(&dev->fib_lock, flagv);
2035 entry = dev->fib_list.next;
2036 /*
2037 * For each Context that is on the
2038 * fibctxList, make a copy of the
2039 * fib, and then set the event to wake up the
2040 * thread that is waiting for it.
2041 */
2042
2043 hw_fib_p = hw_fib_pool;
2044 fib_p = fib_pool;
2045 while (entry != &dev->fib_list) {
2046 /*
2047 * Extract the fibctx
2048 */
2049 fibctx = list_entry(entry, struct aac_fib_context,
2050 next);
2051 /*
2052 * Check if the queue is getting
2053 * backlogged
2054 */
2055 if (fibctx->count > 20) {
2056 /*
2057 * It's *not* jiffies folks,
2058 * but jiffies / HZ so do not
2059 * panic ...
2060 */
2061 time_last = fibctx->jiffies;
2062 /*
2063 * Has it been > 2 minutes
2064 * since the last read off
2065 * the queue?
2066 */
2067 if ((time_now - time_last) > aif_timeout) {
2068 entry = entry->next;
2069 aac_close_fib_context(dev, fibctx);
2070 continue;
2071 }
2072 }
2073 /*
2074 * Warning: no sleep allowed while
2075 * holding spinlock
2076 */
2077 if (hw_fib_p >= &hw_fib_pool[num]) {
2078 pr_warn("aifd: didn't allocate NewFib\n");
2079 entry = entry->next;
2080 continue;
2081 }
2082
2083 hw_newfib = *hw_fib_p;
2084 *(hw_fib_p++) = NULL;
2085 newfib = *fib_p;
2086 *(fib_p++) = NULL;
2087 /*
2088 * Make the copy of the FIB
2089 */
2090 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2091 memcpy(newfib, fib, sizeof(struct fib));
2092 newfib->hw_fib_va = hw_newfib;
2093 /*
2094 * Put the FIB onto the
2095 * fibctx's fibs
2096 */
2097 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2098 fibctx->count++;
2099 /*
2100 * Set the event to wake up the
2101 * thread that is waiting.
2102 */
2103 up(&fibctx->wait_sem);
2104
2105 entry = entry->next;
2106 }
2107 /*
2108 * Set the status of this FIB
2109 */
2110 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2111 aac_fib_adapter_complete(fib, sizeof(u32));
2112 spin_unlock_irqrestore(&dev->fib_lock, flagv);
2113
2114 }
2115
2116 static void aac_process_events(struct aac_dev *dev)
2117 {
2118 struct hw_fib *hw_fib;
2119 struct fib *fib;
2120 unsigned long flags;
2121 spinlock_t *t_lock;
2122
2123 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2124 spin_lock_irqsave(t_lock, flags);
2125
2126 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2127 struct list_head *entry;
2128 struct aac_aifcmd *aifcmd;
2129 unsigned int num;
2130 struct hw_fib **hw_fib_pool, **hw_fib_p;
2131 struct fib **fib_pool, **fib_p;
2132
2133 set_current_state(TASK_RUNNING);
2134
2135 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2136 list_del(entry);
2137
2138 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2139 spin_unlock_irqrestore(t_lock, flags);
2140
2141 fib = list_entry(entry, struct fib, fiblink);
2142 hw_fib = fib->hw_fib_va;
2143 if (dev->sa_firmware) {
2144 /* Thor AIF */
2145 aac_handle_sa_aif(dev, fib);
2146 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2147 goto free_fib;
2148 }
2149 /*
2150 * We will process the FIB here or pass it to a
2151 * worker thread that is TBD. We Really can't
2152 * do anything at this point since we don't have
2153 * anything defined for this thread to do.
2154 */
2155 memset(fib, 0, sizeof(struct fib));
2156 fib->type = FSAFS_NTC_FIB_CONTEXT;
2157 fib->size = sizeof(struct fib);
2158 fib->hw_fib_va = hw_fib;
2159 fib->data = hw_fib->data;
2160 fib->dev = dev;
2161 /*
2162 * We only handle AifRequest fibs from the adapter.
2163 */
2164
2165 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2166 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2167 /* Handle Driver Notify Events */
2168 aac_handle_aif(dev, fib);
2169 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2170 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2171 goto free_fib;
2172 }
2173 /*
2174 * The u32 here is important and intended. We are using
2175 * 32bit wrapping time to fit the adapter field
2176 */
2177
2178 /* Sniff events */
2179 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2180 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2181 aac_handle_aif(dev, fib);
2182 }
2183
2184 /*
2185 * get number of fibs to process
2186 */
2187 num = get_fib_count(dev);
2188 if (!num)
2189 goto free_fib;
2190
2191 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2192 GFP_KERNEL);
2193 if (!hw_fib_pool)
2194 goto free_fib;
2195
2196 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2197 if (!fib_pool)
2198 goto free_hw_fib_pool;
2199
2200 /*
2201 * Fill up fib pointer pools with actual fibs
2202 * and hw_fibs
2203 */
2204 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2205 if (!num)
2206 goto free_mem;
2207
2208 /*
2209 * wakeup the thread that is waiting for
2210 * the response from fw (ioctl)
2211 */
2212 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2213 fib, hw_fib, num);
2214
2215 free_mem:
2216 /* Free up the remaining resources */
2217 hw_fib_p = hw_fib_pool;
2218 fib_p = fib_pool;
2219 while (hw_fib_p < &hw_fib_pool[num]) {
2220 kfree(*hw_fib_p);
2221 kfree(*fib_p);
2222 ++fib_p;
2223 ++hw_fib_p;
2224 }
2225 kfree(fib_pool);
2226 free_hw_fib_pool:
2227 kfree(hw_fib_pool);
2228 free_fib:
2229 kfree(fib);
2230 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2231 spin_lock_irqsave(t_lock, flags);
2232 }
2233 /*
2234 * There are no more AIF's
2235 */
2236 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2237 spin_unlock_irqrestore(t_lock, flags);
2238 }
2239
2240 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2241 u32 datasize)
2242 {
2243 struct aac_srb *srbcmd;
2244 struct sgmap64 *sg64;
2245 dma_addr_t addr;
2246 char *dma_buf;
2247 struct fib *fibptr;
2248 int ret = -ENOMEM;
2249 u32 vbus, vid;
2250
2251 fibptr = aac_fib_alloc(dev);
2252 if (!fibptr)
2253 goto out;
2254
2255 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2256 GFP_KERNEL);
2257 if (!dma_buf)
2258 goto fib_free_out;
2259
2260 aac_fib_init(fibptr);
2261
2262 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2263 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2264
2265 srbcmd = (struct aac_srb *)fib_data(fibptr);
2266
2267 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2268 srbcmd->channel = cpu_to_le32(vbus);
2269 srbcmd->id = cpu_to_le32(vid);
2270 srbcmd->lun = 0;
2271 srbcmd->flags = cpu_to_le32(SRB_DataOut);
2272 srbcmd->timeout = cpu_to_le32(10);
2273 srbcmd->retry_limit = 0;
2274 srbcmd->cdb_size = cpu_to_le32(12);
2275 srbcmd->count = cpu_to_le32(datasize);
2276
2277 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2278 srbcmd->cdb[0] = BMIC_OUT;
2279 srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2280 memcpy(dma_buf, (char *)wellness_str, datasize);
2281
2282 sg64 = (struct sgmap64 *)&srbcmd->sg;
2283 sg64->count = cpu_to_le32(1);
2284 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2285 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2286 sg64->sg[0].count = cpu_to_le32(datasize);
2287
2288 ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2289 FsaNormal, 1, 1, NULL, NULL);
2290
2291 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2292
2293 /*
2294 * Do not set XferState to zero unless
2295 * receives a response from F/W
2296 */
2297 if (ret >= 0)
2298 aac_fib_complete(fibptr);
2299
2300 /*
2301 * FIB should be freed only after
2302 * getting the response from the F/W
2303 */
2304 if (ret != -ERESTARTSYS)
2305 goto fib_free_out;
2306
2307 out:
2308 return ret;
2309 fib_free_out:
2310 aac_fib_free(fibptr);
2311 goto out;
2312 }
2313
2314 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2315 {
2316 struct tm cur_tm;
2317 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2318 u32 datasize = sizeof(wellness_str);
2319 time64_t local_time;
2320 int ret = -ENODEV;
2321
2322 if (!dev->sa_firmware)
2323 goto out;
2324
2325 local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2326 time64_to_tm(local_time, 0, &cur_tm);
2327 cur_tm.tm_mon += 1;
2328 cur_tm.tm_year += 1900;
2329 wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2330 wellness_str[9] = bin2bcd(cur_tm.tm_min);
2331 wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2332 wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2333 wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2334 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2335 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2336
2337 ret = aac_send_wellness_command(dev, wellness_str, datasize);
2338
2339 out:
2340 return ret;
2341 }
2342
2343 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2344 {
2345 int ret = -ENOMEM;
2346 struct fib *fibptr;
2347 __le32 *info;
2348
2349 fibptr = aac_fib_alloc(dev);
2350 if (!fibptr)
2351 goto out;
2352
2353 aac_fib_init(fibptr);
2354 info = (__le32 *)fib_data(fibptr);
2355 *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2356 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2357 1, 1, NULL, NULL);
2358
2359 /*
2360 * Do not set XferState to zero unless
2361 * receives a response from F/W
2362 */
2363 if (ret >= 0)
2364 aac_fib_complete(fibptr);
2365
2366 /*
2367 * FIB should be freed only after
2368 * getting the response from the F/W
2369 */
2370 if (ret != -ERESTARTSYS)
2371 aac_fib_free(fibptr);
2372
2373 out:
2374 return ret;
2375 }
2376
2377 /**
2378 * aac_command_thread - command processing thread
2379 * @dev: Adapter to monitor
2380 *
2381 * Waits on the commandready event in it's queue. When the event gets set
2382 * it will pull FIBs off it's queue. It will continue to pull FIBs off
2383 * until the queue is empty. When the queue is empty it will wait for
2384 * more FIBs.
2385 */
2386
2387 int aac_command_thread(void *data)
2388 {
2389 struct aac_dev *dev = data;
2390 DECLARE_WAITQUEUE(wait, current);
2391 unsigned long next_jiffies = jiffies + HZ;
2392 unsigned long next_check_jiffies = next_jiffies;
2393 long difference = HZ;
2394
2395 /*
2396 * We can only have one thread per adapter for AIF's.
2397 */
2398 if (dev->aif_thread)
2399 return -EINVAL;
2400
2401 /*
2402 * Let the DPC know it has a place to send the AIF's to.
2403 */
2404 dev->aif_thread = 1;
2405 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2406 set_current_state(TASK_INTERRUPTIBLE);
2407 dprintk ((KERN_INFO "aac_command_thread start\n"));
2408 while (1) {
2409
2410 aac_process_events(dev);
2411
2412 /*
2413 * Background activity
2414 */
2415 if ((time_before(next_check_jiffies,next_jiffies))
2416 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2417 next_check_jiffies = next_jiffies;
2418 if (aac_adapter_check_health(dev) == 0) {
2419 difference = ((long)(unsigned)check_interval)
2420 * HZ;
2421 next_check_jiffies = jiffies + difference;
2422 } else if (!dev->queues)
2423 break;
2424 }
2425 if (!time_before(next_check_jiffies,next_jiffies)
2426 && ((difference = next_jiffies - jiffies) <= 0)) {
2427 struct timespec64 now;
2428 int ret;
2429
2430 /* Don't even try to talk to adapter if its sick */
2431 ret = aac_adapter_check_health(dev);
2432 if (ret || !dev->queues)
2433 break;
2434 next_check_jiffies = jiffies
2435 + ((long)(unsigned)check_interval)
2436 * HZ;
2437 ktime_get_real_ts64(&now);
2438
2439 /* Synchronize our watches */
2440 if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2441 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2442 difference = HZ + HZ / 2 -
2443 now.tv_nsec / (NSEC_PER_SEC / HZ);
2444 else {
2445 if (now.tv_nsec > NSEC_PER_SEC / 2)
2446 ++now.tv_sec;
2447
2448 if (dev->sa_firmware)
2449 ret =
2450 aac_send_safw_hostttime(dev, &now);
2451 else
2452 ret = aac_send_hosttime(dev, &now);
2453
2454 difference = (long)(unsigned)update_interval*HZ;
2455 }
2456 next_jiffies = jiffies + difference;
2457 if (time_before(next_check_jiffies,next_jiffies))
2458 difference = next_check_jiffies - jiffies;
2459 }
2460 if (difference <= 0)
2461 difference = 1;
2462 set_current_state(TASK_INTERRUPTIBLE);
2463
2464 if (kthread_should_stop())
2465 break;
2466
2467 /*
2468 * we probably want usleep_range() here instead of the
2469 * jiffies computation
2470 */
2471 schedule_timeout(difference);
2472
2473 if (kthread_should_stop())
2474 break;
2475 }
2476 if (dev->queues)
2477 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2478 dev->aif_thread = 0;
2479 return 0;
2480 }
2481
2482 int aac_acquire_irq(struct aac_dev *dev)
2483 {
2484 int i;
2485 int j;
2486 int ret = 0;
2487
2488 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2489 for (i = 0; i < dev->max_msix; i++) {
2490 dev->aac_msix[i].vector_no = i;
2491 dev->aac_msix[i].dev = dev;
2492 if (request_irq(pci_irq_vector(dev->pdev, i),
2493 dev->a_ops.adapter_intr,
2494 0, "aacraid", &(dev->aac_msix[i]))) {
2495 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2496 dev->name, dev->id, i);
2497 for (j = 0 ; j < i ; j++)
2498 free_irq(pci_irq_vector(dev->pdev, j),
2499 &(dev->aac_msix[j]));
2500 pci_disable_msix(dev->pdev);
2501 ret = -1;
2502 }
2503 }
2504 } else {
2505 dev->aac_msix[0].vector_no = 0;
2506 dev->aac_msix[0].dev = dev;
2507
2508 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2509 IRQF_SHARED, "aacraid",
2510 &(dev->aac_msix[0])) < 0) {
2511 if (dev->msi)
2512 pci_disable_msi(dev->pdev);
2513 printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2514 dev->name, dev->id);
2515 ret = -1;
2516 }
2517 }
2518 return ret;
2519 }
2520
2521 void aac_free_irq(struct aac_dev *dev)
2522 {
2523 int i;
2524 int cpu;
2525
2526 cpu = cpumask_first(cpu_online_mask);
2527 if (aac_is_src(dev)) {
2528 if (dev->max_msix > 1) {
2529 for (i = 0; i < dev->max_msix; i++)
2530 free_irq(pci_irq_vector(dev->pdev, i),
2531 &(dev->aac_msix[i]));
2532 } else {
2533 free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2534 }
2535 } else {
2536 free_irq(dev->pdev->irq, dev);
2537 }
2538 if (dev->msi)
2539 pci_disable_msi(dev->pdev);
2540 else if (dev->max_msix > 1)
2541 pci_disable_msix(dev->pdev);
2542 }