]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/scsi/aacraid/commsup.c
Merge branch 'mailbox-for-next' of git://git.linaro.org/landing-teams/working/fujitsu...
[mirror_ubuntu-artful-kernel.git] / drivers / scsi / aacraid / commsup.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING. If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Module Name:
26 * commsup.c
27 *
28 * Abstract: Contain all routines that are required for FSA host/adapter
29 * communication.
30 *
31 */
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/interrupt.h>
45 #include <linux/semaphore.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_cmnd.h>
50
51 #include "aacraid.h"
52
53 /**
54 * fib_map_alloc - allocate the fib objects
55 * @dev: Adapter to allocate for
56 *
57 * Allocate and map the shared PCI space for the FIB blocks used to
58 * talk to the Adaptec firmware.
59 */
60
61 static int fib_map_alloc(struct aac_dev *dev)
62 {
63 dprintk((KERN_INFO
64 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67 dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70 &dev->hw_fib_pa);
71 if (dev->hw_fib_va == NULL)
72 return -ENOMEM;
73 return 0;
74 }
75
76 /**
77 * aac_fib_map_free - free the fib objects
78 * @dev: Adapter to free
79 *
80 * Free the PCI mappings and the memory allocated for FIB blocks
81 * on this adapter.
82 */
83
84 void aac_fib_map_free(struct aac_dev *dev)
85 {
86 if (dev->hw_fib_va && dev->max_fib_size) {
87 pci_free_consistent(dev->pdev,
88 (dev->max_fib_size *
89 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)),
90 dev->hw_fib_va, dev->hw_fib_pa);
91 }
92 dev->hw_fib_va = NULL;
93 dev->hw_fib_pa = 0;
94 }
95
96 void aac_fib_vector_assign(struct aac_dev *dev)
97 {
98 u32 i = 0;
99 u32 vector = 1;
100 struct fib *fibptr = NULL;
101
102 for (i = 0, fibptr = &dev->fibs[i];
103 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
104 i++, fibptr++) {
105 if ((dev->max_msix == 1) ||
106 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
107 - dev->vector_cap))) {
108 fibptr->vector_no = 0;
109 } else {
110 fibptr->vector_no = vector;
111 vector++;
112 if (vector == dev->max_msix)
113 vector = 1;
114 }
115 }
116 }
117
118 /**
119 * aac_fib_setup - setup the fibs
120 * @dev: Adapter to set up
121 *
122 * Allocate the PCI space for the fibs, map it and then initialise the
123 * fib area, the unmapped fib data and also the free list
124 */
125
126 int aac_fib_setup(struct aac_dev * dev)
127 {
128 struct fib *fibptr;
129 struct hw_fib *hw_fib;
130 dma_addr_t hw_fib_pa;
131 int i;
132
133 while (((i = fib_map_alloc(dev)) == -ENOMEM)
134 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
135 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
136 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
137 }
138 if (i<0)
139 return -ENOMEM;
140
141 /* 32 byte alignment for PMC */
142 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
143 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
144 (hw_fib_pa - dev->hw_fib_pa));
145 dev->hw_fib_pa = hw_fib_pa;
146 memset(dev->hw_fib_va, 0,
147 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
148 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
149
150 /* add Xport header */
151 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
152 sizeof(struct aac_fib_xporthdr));
153 dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
154
155 hw_fib = dev->hw_fib_va;
156 hw_fib_pa = dev->hw_fib_pa;
157 /*
158 * Initialise the fibs
159 */
160 for (i = 0, fibptr = &dev->fibs[i];
161 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
162 i++, fibptr++)
163 {
164 fibptr->flags = 0;
165 fibptr->size = sizeof(struct fib);
166 fibptr->dev = dev;
167 fibptr->hw_fib_va = hw_fib;
168 fibptr->data = (void *) fibptr->hw_fib_va->data;
169 fibptr->next = fibptr+1; /* Forward chain the fibs */
170 sema_init(&fibptr->event_wait, 0);
171 spin_lock_init(&fibptr->event_lock);
172 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
173 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
174 fibptr->hw_fib_pa = hw_fib_pa;
175 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
176 dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
177 hw_fib_pa = hw_fib_pa +
178 dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
179 }
180
181 /*
182 *Assign vector numbers to fibs
183 */
184 aac_fib_vector_assign(dev);
185
186 /*
187 * Add the fib chain to the free list
188 */
189 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
190 /*
191 * Set 8 fibs aside for management tools
192 */
193 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
194 return 0;
195 }
196
197 /**
198 * aac_fib_alloc_tag-allocate a fib using tags
199 * @dev: Adapter to allocate the fib for
200 *
201 * Allocate a fib from the adapter fib pool using tags
202 * from the blk layer.
203 */
204
205 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
206 {
207 struct fib *fibptr;
208
209 fibptr = &dev->fibs[scmd->request->tag];
210 /*
211 * Null out fields that depend on being zero at the start of
212 * each I/O
213 */
214 fibptr->hw_fib_va->header.XferState = 0;
215 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
216 fibptr->callback_data = NULL;
217 fibptr->callback = NULL;
218
219 return fibptr;
220 }
221
222 /**
223 * aac_fib_alloc - allocate a fib
224 * @dev: Adapter to allocate the fib for
225 *
226 * Allocate a fib from the adapter fib pool. If the pool is empty we
227 * return NULL.
228 */
229
230 struct fib *aac_fib_alloc(struct aac_dev *dev)
231 {
232 struct fib * fibptr;
233 unsigned long flags;
234 spin_lock_irqsave(&dev->fib_lock, flags);
235 fibptr = dev->free_fib;
236 if(!fibptr){
237 spin_unlock_irqrestore(&dev->fib_lock, flags);
238 return fibptr;
239 }
240 dev->free_fib = fibptr->next;
241 spin_unlock_irqrestore(&dev->fib_lock, flags);
242 /*
243 * Set the proper node type code and node byte size
244 */
245 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
246 fibptr->size = sizeof(struct fib);
247 /*
248 * Null out fields that depend on being zero at the start of
249 * each I/O
250 */
251 fibptr->hw_fib_va->header.XferState = 0;
252 fibptr->flags = 0;
253 fibptr->callback = NULL;
254 fibptr->callback_data = NULL;
255
256 return fibptr;
257 }
258
259 /**
260 * aac_fib_free - free a fib
261 * @fibptr: fib to free up
262 *
263 * Frees up a fib and places it on the appropriate queue
264 */
265
266 void aac_fib_free(struct fib *fibptr)
267 {
268 unsigned long flags;
269
270 if (fibptr->done == 2)
271 return;
272
273 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
274 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
275 aac_config.fib_timeouts++;
276 if (fibptr->hw_fib_va->header.XferState != 0) {
277 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
278 (void*)fibptr,
279 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
280 }
281 fibptr->next = fibptr->dev->free_fib;
282 fibptr->dev->free_fib = fibptr;
283 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
284 }
285
286 /**
287 * aac_fib_init - initialise a fib
288 * @fibptr: The fib to initialize
289 *
290 * Set up the generic fib fields ready for use
291 */
292
293 void aac_fib_init(struct fib *fibptr)
294 {
295 struct hw_fib *hw_fib = fibptr->hw_fib_va;
296
297 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
298 hw_fib->header.StructType = FIB_MAGIC;
299 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
300 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
301 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
302 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
303 }
304
305 /**
306 * fib_deallocate - deallocate a fib
307 * @fibptr: fib to deallocate
308 *
309 * Will deallocate and return to the free pool the FIB pointed to by the
310 * caller.
311 */
312
313 static void fib_dealloc(struct fib * fibptr)
314 {
315 struct hw_fib *hw_fib = fibptr->hw_fib_va;
316 hw_fib->header.XferState = 0;
317 }
318
319 /*
320 * Commuication primitives define and support the queuing method we use to
321 * support host to adapter commuication. All queue accesses happen through
322 * these routines and are the only routines which have a knowledge of the
323 * how these queues are implemented.
324 */
325
326 /**
327 * aac_get_entry - get a queue entry
328 * @dev: Adapter
329 * @qid: Queue Number
330 * @entry: Entry return
331 * @index: Index return
332 * @nonotify: notification control
333 *
334 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
335 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
336 * returned.
337 */
338
339 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
340 {
341 struct aac_queue * q;
342 unsigned long idx;
343
344 /*
345 * All of the queues wrap when they reach the end, so we check
346 * to see if they have reached the end and if they have we just
347 * set the index back to zero. This is a wrap. You could or off
348 * the high bits in all updates but this is a bit faster I think.
349 */
350
351 q = &dev->queues->queue[qid];
352
353 idx = *index = le32_to_cpu(*(q->headers.producer));
354 /* Interrupt Moderation, only interrupt for first two entries */
355 if (idx != le32_to_cpu(*(q->headers.consumer))) {
356 if (--idx == 0) {
357 if (qid == AdapNormCmdQueue)
358 idx = ADAP_NORM_CMD_ENTRIES;
359 else
360 idx = ADAP_NORM_RESP_ENTRIES;
361 }
362 if (idx != le32_to_cpu(*(q->headers.consumer)))
363 *nonotify = 1;
364 }
365
366 if (qid == AdapNormCmdQueue) {
367 if (*index >= ADAP_NORM_CMD_ENTRIES)
368 *index = 0; /* Wrap to front of the Producer Queue. */
369 } else {
370 if (*index >= ADAP_NORM_RESP_ENTRIES)
371 *index = 0; /* Wrap to front of the Producer Queue. */
372 }
373
374 /* Queue is full */
375 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
376 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
377 qid, atomic_read(&q->numpending));
378 return 0;
379 } else {
380 *entry = q->base + *index;
381 return 1;
382 }
383 }
384
385 /**
386 * aac_queue_get - get the next free QE
387 * @dev: Adapter
388 * @index: Returned index
389 * @priority: Priority of fib
390 * @fib: Fib to associate with the queue entry
391 * @wait: Wait if queue full
392 * @fibptr: Driver fib object to go with fib
393 * @nonotify: Don't notify the adapter
394 *
395 * Gets the next free QE off the requested priorty adapter command
396 * queue and associates the Fib with the QE. The QE represented by
397 * index is ready to insert on the queue when this routine returns
398 * success.
399 */
400
401 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
402 {
403 struct aac_entry * entry = NULL;
404 int map = 0;
405
406 if (qid == AdapNormCmdQueue) {
407 /* if no entries wait for some if caller wants to */
408 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
409 printk(KERN_ERR "GetEntries failed\n");
410 }
411 /*
412 * Setup queue entry with a command, status and fib mapped
413 */
414 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
415 map = 1;
416 } else {
417 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
418 /* if no entries wait for some if caller wants to */
419 }
420 /*
421 * Setup queue entry with command, status and fib mapped
422 */
423 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
424 entry->addr = hw_fib->header.SenderFibAddress;
425 /* Restore adapters pointer to the FIB */
426 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
427 map = 0;
428 }
429 /*
430 * If MapFib is true than we need to map the Fib and put pointers
431 * in the queue entry.
432 */
433 if (map)
434 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
435 return 0;
436 }
437
438 /*
439 * Define the highest level of host to adapter communication routines.
440 * These routines will support host to adapter FS commuication. These
441 * routines have no knowledge of the commuication method used. This level
442 * sends and receives FIBs. This level has no knowledge of how these FIBs
443 * get passed back and forth.
444 */
445
446 /**
447 * aac_fib_send - send a fib to the adapter
448 * @command: Command to send
449 * @fibptr: The fib
450 * @size: Size of fib data area
451 * @priority: Priority of Fib
452 * @wait: Async/sync select
453 * @reply: True if a reply is wanted
454 * @callback: Called with reply
455 * @callback_data: Passed to callback
456 *
457 * Sends the requested FIB to the adapter and optionally will wait for a
458 * response FIB. If the caller does not wish to wait for a response than
459 * an event to wait on must be supplied. This event will be set when a
460 * response FIB is received from the adapter.
461 */
462
463 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
464 int priority, int wait, int reply, fib_callback callback,
465 void *callback_data)
466 {
467 struct aac_dev * dev = fibptr->dev;
468 struct hw_fib * hw_fib = fibptr->hw_fib_va;
469 unsigned long flags = 0;
470 unsigned long mflags = 0;
471 unsigned long sflags = 0;
472
473
474 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
475 return -EBUSY;
476 /*
477 * There are 5 cases with the wait and response requested flags.
478 * The only invalid cases are if the caller requests to wait and
479 * does not request a response and if the caller does not want a
480 * response and the Fib is not allocated from pool. If a response
481 * is not requesed the Fib will just be deallocaed by the DPC
482 * routine when the response comes back from the adapter. No
483 * further processing will be done besides deleting the Fib. We
484 * will have a debug mode where the adapter can notify the host
485 * it had a problem and the host can log that fact.
486 */
487 fibptr->flags = 0;
488 if (wait && !reply) {
489 return -EINVAL;
490 } else if (!wait && reply) {
491 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
492 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
493 } else if (!wait && !reply) {
494 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
495 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
496 } else if (wait && reply) {
497 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
498 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
499 }
500 /*
501 * Map the fib into 32bits by using the fib number
502 */
503
504 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
505 hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1;
506 /*
507 * Set FIB state to indicate where it came from and if we want a
508 * response from the adapter. Also load the command from the
509 * caller.
510 *
511 * Map the hw fib pointer as a 32bit value
512 */
513 hw_fib->header.Command = cpu_to_le16(command);
514 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
515 /*
516 * Set the size of the Fib we want to send to the adapter
517 */
518 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
519 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
520 return -EMSGSIZE;
521 }
522 /*
523 * Get a queue entry connect the FIB to it and send an notify
524 * the adapter a command is ready.
525 */
526 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
527
528 /*
529 * Fill in the Callback and CallbackContext if we are not
530 * going to wait.
531 */
532 if (!wait) {
533 fibptr->callback = callback;
534 fibptr->callback_data = callback_data;
535 fibptr->flags = FIB_CONTEXT_FLAG;
536 }
537
538 fibptr->done = 0;
539
540 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
541
542 dprintk((KERN_DEBUG "Fib contents:.\n"));
543 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
544 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
545 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
546 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
547 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
548 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
549
550 if (!dev->queues)
551 return -EBUSY;
552
553 if (wait) {
554
555 spin_lock_irqsave(&dev->manage_lock, mflags);
556 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
557 printk(KERN_INFO "No management Fibs Available:%d\n",
558 dev->management_fib_count);
559 spin_unlock_irqrestore(&dev->manage_lock, mflags);
560 return -EBUSY;
561 }
562 dev->management_fib_count++;
563 spin_unlock_irqrestore(&dev->manage_lock, mflags);
564 spin_lock_irqsave(&fibptr->event_lock, flags);
565 }
566
567 if (dev->sync_mode) {
568 if (wait)
569 spin_unlock_irqrestore(&fibptr->event_lock, flags);
570 spin_lock_irqsave(&dev->sync_lock, sflags);
571 if (dev->sync_fib) {
572 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
573 spin_unlock_irqrestore(&dev->sync_lock, sflags);
574 } else {
575 dev->sync_fib = fibptr;
576 spin_unlock_irqrestore(&dev->sync_lock, sflags);
577 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
578 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
579 NULL, NULL, NULL, NULL, NULL);
580 }
581 if (wait) {
582 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
583 if (down_interruptible(&fibptr->event_wait)) {
584 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
585 return -EFAULT;
586 }
587 return 0;
588 }
589 return -EINPROGRESS;
590 }
591
592 if (aac_adapter_deliver(fibptr) != 0) {
593 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
594 if (wait) {
595 spin_unlock_irqrestore(&fibptr->event_lock, flags);
596 spin_lock_irqsave(&dev->manage_lock, mflags);
597 dev->management_fib_count--;
598 spin_unlock_irqrestore(&dev->manage_lock, mflags);
599 }
600 return -EBUSY;
601 }
602
603
604 /*
605 * If the caller wanted us to wait for response wait now.
606 */
607
608 if (wait) {
609 spin_unlock_irqrestore(&fibptr->event_lock, flags);
610 /* Only set for first known interruptable command */
611 if (wait < 0) {
612 /*
613 * *VERY* Dangerous to time out a command, the
614 * assumption is made that we have no hope of
615 * functioning because an interrupt routing or other
616 * hardware failure has occurred.
617 */
618 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
619 while (down_trylock(&fibptr->event_wait)) {
620 int blink;
621 if (time_is_before_eq_jiffies(timeout)) {
622 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
623 atomic_dec(&q->numpending);
624 if (wait == -1) {
625 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
626 "Usually a result of a PCI interrupt routing problem;\n"
627 "update mother board BIOS or consider utilizing one of\n"
628 "the SAFE mode kernel options (acpi, apic etc)\n");
629 }
630 return -ETIMEDOUT;
631 }
632 if ((blink = aac_adapter_check_health(dev)) > 0) {
633 if (wait == -1) {
634 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
635 "Usually a result of a serious unrecoverable hardware problem\n",
636 blink);
637 }
638 return -EFAULT;
639 }
640 /*
641 * Allow other processes / CPUS to use core
642 */
643 schedule();
644 }
645 } else if (down_interruptible(&fibptr->event_wait)) {
646 /* Do nothing ... satisfy
647 * down_interruptible must_check */
648 }
649
650 spin_lock_irqsave(&fibptr->event_lock, flags);
651 if (fibptr->done == 0) {
652 fibptr->done = 2; /* Tell interrupt we aborted */
653 spin_unlock_irqrestore(&fibptr->event_lock, flags);
654 return -ERESTARTSYS;
655 }
656 spin_unlock_irqrestore(&fibptr->event_lock, flags);
657 BUG_ON(fibptr->done == 0);
658
659 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
660 return -ETIMEDOUT;
661 return 0;
662 }
663 /*
664 * If the user does not want a response than return success otherwise
665 * return pending
666 */
667 if (reply)
668 return -EINPROGRESS;
669 else
670 return 0;
671 }
672
673 /**
674 * aac_consumer_get - get the top of the queue
675 * @dev: Adapter
676 * @q: Queue
677 * @entry: Return entry
678 *
679 * Will return a pointer to the entry on the top of the queue requested that
680 * we are a consumer of, and return the address of the queue entry. It does
681 * not change the state of the queue.
682 */
683
684 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
685 {
686 u32 index;
687 int status;
688 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
689 status = 0;
690 } else {
691 /*
692 * The consumer index must be wrapped if we have reached
693 * the end of the queue, else we just use the entry
694 * pointed to by the header index
695 */
696 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
697 index = 0;
698 else
699 index = le32_to_cpu(*q->headers.consumer);
700 *entry = q->base + index;
701 status = 1;
702 }
703 return(status);
704 }
705
706 /**
707 * aac_consumer_free - free consumer entry
708 * @dev: Adapter
709 * @q: Queue
710 * @qid: Queue ident
711 *
712 * Frees up the current top of the queue we are a consumer of. If the
713 * queue was full notify the producer that the queue is no longer full.
714 */
715
716 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
717 {
718 int wasfull = 0;
719 u32 notify;
720
721 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
722 wasfull = 1;
723
724 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
725 *q->headers.consumer = cpu_to_le32(1);
726 else
727 le32_add_cpu(q->headers.consumer, 1);
728
729 if (wasfull) {
730 switch (qid) {
731
732 case HostNormCmdQueue:
733 notify = HostNormCmdNotFull;
734 break;
735 case HostNormRespQueue:
736 notify = HostNormRespNotFull;
737 break;
738 default:
739 BUG();
740 return;
741 }
742 aac_adapter_notify(dev, notify);
743 }
744 }
745
746 /**
747 * aac_fib_adapter_complete - complete adapter issued fib
748 * @fibptr: fib to complete
749 * @size: size of fib
750 *
751 * Will do all necessary work to complete a FIB that was sent from
752 * the adapter.
753 */
754
755 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
756 {
757 struct hw_fib * hw_fib = fibptr->hw_fib_va;
758 struct aac_dev * dev = fibptr->dev;
759 struct aac_queue * q;
760 unsigned long nointr = 0;
761 unsigned long qflags;
762
763 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
764 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
765 kfree(hw_fib);
766 return 0;
767 }
768
769 if (hw_fib->header.XferState == 0) {
770 if (dev->comm_interface == AAC_COMM_MESSAGE)
771 kfree(hw_fib);
772 return 0;
773 }
774 /*
775 * If we plan to do anything check the structure type first.
776 */
777 if (hw_fib->header.StructType != FIB_MAGIC &&
778 hw_fib->header.StructType != FIB_MAGIC2 &&
779 hw_fib->header.StructType != FIB_MAGIC2_64) {
780 if (dev->comm_interface == AAC_COMM_MESSAGE)
781 kfree(hw_fib);
782 return -EINVAL;
783 }
784 /*
785 * This block handles the case where the adapter had sent us a
786 * command and we have finished processing the command. We
787 * call completeFib when we are done processing the command
788 * and want to send a response back to the adapter. This will
789 * send the completed cdb to the adapter.
790 */
791 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
792 if (dev->comm_interface == AAC_COMM_MESSAGE) {
793 kfree (hw_fib);
794 } else {
795 u32 index;
796 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
797 if (size) {
798 size += sizeof(struct aac_fibhdr);
799 if (size > le16_to_cpu(hw_fib->header.SenderSize))
800 return -EMSGSIZE;
801 hw_fib->header.Size = cpu_to_le16(size);
802 }
803 q = &dev->queues->queue[AdapNormRespQueue];
804 spin_lock_irqsave(q->lock, qflags);
805 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
806 *(q->headers.producer) = cpu_to_le32(index + 1);
807 spin_unlock_irqrestore(q->lock, qflags);
808 if (!(nointr & (int)aac_config.irq_mod))
809 aac_adapter_notify(dev, AdapNormRespQueue);
810 }
811 } else {
812 printk(KERN_WARNING "aac_fib_adapter_complete: "
813 "Unknown xferstate detected.\n");
814 BUG();
815 }
816 return 0;
817 }
818
819 /**
820 * aac_fib_complete - fib completion handler
821 * @fib: FIB to complete
822 *
823 * Will do all necessary work to complete a FIB.
824 */
825
826 int aac_fib_complete(struct fib *fibptr)
827 {
828 struct hw_fib * hw_fib = fibptr->hw_fib_va;
829
830 /*
831 * Check for a fib which has already been completed
832 */
833
834 if (hw_fib->header.XferState == 0)
835 return 0;
836 /*
837 * If we plan to do anything check the structure type first.
838 */
839
840 if (hw_fib->header.StructType != FIB_MAGIC &&
841 hw_fib->header.StructType != FIB_MAGIC2 &&
842 hw_fib->header.StructType != FIB_MAGIC2_64)
843 return -EINVAL;
844 /*
845 * This block completes a cdb which orginated on the host and we
846 * just need to deallocate the cdb or reinit it. At this point the
847 * command is complete that we had sent to the adapter and this
848 * cdb could be reused.
849 */
850
851 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
852 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
853 {
854 fib_dealloc(fibptr);
855 }
856 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
857 {
858 /*
859 * This handles the case when the host has aborted the I/O
860 * to the adapter because the adapter is not responding
861 */
862 fib_dealloc(fibptr);
863 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
864 fib_dealloc(fibptr);
865 } else {
866 BUG();
867 }
868 return 0;
869 }
870
871 /**
872 * aac_printf - handle printf from firmware
873 * @dev: Adapter
874 * @val: Message info
875 *
876 * Print a message passed to us by the controller firmware on the
877 * Adaptec board
878 */
879
880 void aac_printf(struct aac_dev *dev, u32 val)
881 {
882 char *cp = dev->printfbuf;
883 if (dev->printf_enabled)
884 {
885 int length = val & 0xffff;
886 int level = (val >> 16) & 0xffff;
887
888 /*
889 * The size of the printfbuf is set in port.c
890 * There is no variable or define for it
891 */
892 if (length > 255)
893 length = 255;
894 if (cp[length] != 0)
895 cp[length] = 0;
896 if (level == LOG_AAC_HIGH_ERROR)
897 printk(KERN_WARNING "%s:%s", dev->name, cp);
898 else
899 printk(KERN_INFO "%s:%s", dev->name, cp);
900 }
901 memset(cp, 0, 256);
902 }
903
904 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
905 {
906 return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
907 }
908
909
910 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
911 {
912 switch (aac_aif_data(aifcmd, 1)) {
913 case AifBuCacheDataLoss:
914 if (aac_aif_data(aifcmd, 2))
915 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
916 aac_aif_data(aifcmd, 2));
917 else
918 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
919 break;
920 case AifBuCacheDataRecover:
921 if (aac_aif_data(aifcmd, 2))
922 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
923 aac_aif_data(aifcmd, 2));
924 else
925 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
926 break;
927 }
928 }
929
930 /**
931 * aac_handle_aif - Handle a message from the firmware
932 * @dev: Which adapter this fib is from
933 * @fibptr: Pointer to fibptr from adapter
934 *
935 * This routine handles a driver notify fib from the adapter and
936 * dispatches it to the appropriate routine for handling.
937 */
938
939 #define AIF_SNIFF_TIMEOUT (500*HZ)
940 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
941 {
942 struct hw_fib * hw_fib = fibptr->hw_fib_va;
943 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
944 u32 channel, id, lun, container;
945 struct scsi_device *device;
946 enum {
947 NOTHING,
948 DELETE,
949 ADD,
950 CHANGE
951 } device_config_needed = NOTHING;
952
953 /* Sniff for container changes */
954
955 if (!dev || !dev->fsa_dev)
956 return;
957 container = channel = id = lun = (u32)-1;
958
959 /*
960 * We have set this up to try and minimize the number of
961 * re-configures that take place. As a result of this when
962 * certain AIF's come in we will set a flag waiting for another
963 * type of AIF before setting the re-config flag.
964 */
965 switch (le32_to_cpu(aifcmd->command)) {
966 case AifCmdDriverNotify:
967 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
968 case AifRawDeviceRemove:
969 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
970 if ((container >> 28)) {
971 container = (u32)-1;
972 break;
973 }
974 channel = (container >> 24) & 0xF;
975 if (channel >= dev->maximum_num_channels) {
976 container = (u32)-1;
977 break;
978 }
979 id = container & 0xFFFF;
980 if (id >= dev->maximum_num_physicals) {
981 container = (u32)-1;
982 break;
983 }
984 lun = (container >> 16) & 0xFF;
985 container = (u32)-1;
986 channel = aac_phys_to_logical(channel);
987 device_config_needed =
988 (((__le32 *)aifcmd->data)[0] ==
989 cpu_to_le32(AifRawDeviceRemove)) ? DELETE : ADD;
990
991 if (device_config_needed == ADD) {
992 device = scsi_device_lookup(
993 dev->scsi_host_ptr,
994 channel, id, lun);
995 if (device) {
996 scsi_remove_device(device);
997 scsi_device_put(device);
998 }
999 }
1000 break;
1001 /*
1002 * Morph or Expand complete
1003 */
1004 case AifDenMorphComplete:
1005 case AifDenVolumeExtendComplete:
1006 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1007 if (container >= dev->maximum_num_containers)
1008 break;
1009
1010 /*
1011 * Find the scsi_device associated with the SCSI
1012 * address. Make sure we have the right array, and if
1013 * so set the flag to initiate a new re-config once we
1014 * see an AifEnConfigChange AIF come through.
1015 */
1016
1017 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1018 device = scsi_device_lookup(dev->scsi_host_ptr,
1019 CONTAINER_TO_CHANNEL(container),
1020 CONTAINER_TO_ID(container),
1021 CONTAINER_TO_LUN(container));
1022 if (device) {
1023 dev->fsa_dev[container].config_needed = CHANGE;
1024 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1025 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1026 scsi_device_put(device);
1027 }
1028 }
1029 }
1030
1031 /*
1032 * If we are waiting on something and this happens to be
1033 * that thing then set the re-configure flag.
1034 */
1035 if (container != (u32)-1) {
1036 if (container >= dev->maximum_num_containers)
1037 break;
1038 if ((dev->fsa_dev[container].config_waiting_on ==
1039 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1040 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1041 dev->fsa_dev[container].config_waiting_on = 0;
1042 } else for (container = 0;
1043 container < dev->maximum_num_containers; ++container) {
1044 if ((dev->fsa_dev[container].config_waiting_on ==
1045 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1046 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1047 dev->fsa_dev[container].config_waiting_on = 0;
1048 }
1049 break;
1050
1051 case AifCmdEventNotify:
1052 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1053 case AifEnBatteryEvent:
1054 dev->cache_protected =
1055 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1056 break;
1057 /*
1058 * Add an Array.
1059 */
1060 case AifEnAddContainer:
1061 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1062 if (container >= dev->maximum_num_containers)
1063 break;
1064 dev->fsa_dev[container].config_needed = ADD;
1065 dev->fsa_dev[container].config_waiting_on =
1066 AifEnConfigChange;
1067 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1068 break;
1069
1070 /*
1071 * Delete an Array.
1072 */
1073 case AifEnDeleteContainer:
1074 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1075 if (container >= dev->maximum_num_containers)
1076 break;
1077 dev->fsa_dev[container].config_needed = DELETE;
1078 dev->fsa_dev[container].config_waiting_on =
1079 AifEnConfigChange;
1080 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1081 break;
1082
1083 /*
1084 * Container change detected. If we currently are not
1085 * waiting on something else, setup to wait on a Config Change.
1086 */
1087 case AifEnContainerChange:
1088 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1089 if (container >= dev->maximum_num_containers)
1090 break;
1091 if (dev->fsa_dev[container].config_waiting_on &&
1092 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1093 break;
1094 dev->fsa_dev[container].config_needed = CHANGE;
1095 dev->fsa_dev[container].config_waiting_on =
1096 AifEnConfigChange;
1097 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1098 break;
1099
1100 case AifEnConfigChange:
1101 break;
1102
1103 case AifEnAddJBOD:
1104 case AifEnDeleteJBOD:
1105 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1106 if ((container >> 28)) {
1107 container = (u32)-1;
1108 break;
1109 }
1110 channel = (container >> 24) & 0xF;
1111 if (channel >= dev->maximum_num_channels) {
1112 container = (u32)-1;
1113 break;
1114 }
1115 id = container & 0xFFFF;
1116 if (id >= dev->maximum_num_physicals) {
1117 container = (u32)-1;
1118 break;
1119 }
1120 lun = (container >> 16) & 0xFF;
1121 container = (u32)-1;
1122 channel = aac_phys_to_logical(channel);
1123 device_config_needed =
1124 (((__le32 *)aifcmd->data)[0] ==
1125 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1126 if (device_config_needed == ADD) {
1127 device = scsi_device_lookup(dev->scsi_host_ptr,
1128 channel,
1129 id,
1130 lun);
1131 if (device) {
1132 scsi_remove_device(device);
1133 scsi_device_put(device);
1134 }
1135 }
1136 break;
1137
1138 case AifEnEnclosureManagement:
1139 /*
1140 * If in JBOD mode, automatic exposure of new
1141 * physical target to be suppressed until configured.
1142 */
1143 if (dev->jbod)
1144 break;
1145 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1146 case EM_DRIVE_INSERTION:
1147 case EM_DRIVE_REMOVAL:
1148 case EM_SES_DRIVE_INSERTION:
1149 case EM_SES_DRIVE_REMOVAL:
1150 container = le32_to_cpu(
1151 ((__le32 *)aifcmd->data)[2]);
1152 if ((container >> 28)) {
1153 container = (u32)-1;
1154 break;
1155 }
1156 channel = (container >> 24) & 0xF;
1157 if (channel >= dev->maximum_num_channels) {
1158 container = (u32)-1;
1159 break;
1160 }
1161 id = container & 0xFFFF;
1162 lun = (container >> 16) & 0xFF;
1163 container = (u32)-1;
1164 if (id >= dev->maximum_num_physicals) {
1165 /* legacy dev_t ? */
1166 if ((0x2000 <= id) || lun || channel ||
1167 ((channel = (id >> 7) & 0x3F) >=
1168 dev->maximum_num_channels))
1169 break;
1170 lun = (id >> 4) & 7;
1171 id &= 0xF;
1172 }
1173 channel = aac_phys_to_logical(channel);
1174 device_config_needed =
1175 ((((__le32 *)aifcmd->data)[3]
1176 == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1177 (((__le32 *)aifcmd->data)[3]
1178 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1179 ADD : DELETE;
1180 break;
1181 }
1182 case AifBuManagerEvent:
1183 aac_handle_aif_bu(dev, aifcmd);
1184 break;
1185 }
1186
1187 /*
1188 * If we are waiting on something and this happens to be
1189 * that thing then set the re-configure flag.
1190 */
1191 if (container != (u32)-1) {
1192 if (container >= dev->maximum_num_containers)
1193 break;
1194 if ((dev->fsa_dev[container].config_waiting_on ==
1195 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1196 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1197 dev->fsa_dev[container].config_waiting_on = 0;
1198 } else for (container = 0;
1199 container < dev->maximum_num_containers; ++container) {
1200 if ((dev->fsa_dev[container].config_waiting_on ==
1201 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1202 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1203 dev->fsa_dev[container].config_waiting_on = 0;
1204 }
1205 break;
1206
1207 case AifCmdJobProgress:
1208 /*
1209 * These are job progress AIF's. When a Clear is being
1210 * done on a container it is initially created then hidden from
1211 * the OS. When the clear completes we don't get a config
1212 * change so we monitor the job status complete on a clear then
1213 * wait for a container change.
1214 */
1215
1216 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1217 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1218 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1219 for (container = 0;
1220 container < dev->maximum_num_containers;
1221 ++container) {
1222 /*
1223 * Stomp on all config sequencing for all
1224 * containers?
1225 */
1226 dev->fsa_dev[container].config_waiting_on =
1227 AifEnContainerChange;
1228 dev->fsa_dev[container].config_needed = ADD;
1229 dev->fsa_dev[container].config_waiting_stamp =
1230 jiffies;
1231 }
1232 }
1233 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1234 ((__le32 *)aifcmd->data)[6] == 0 &&
1235 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1236 for (container = 0;
1237 container < dev->maximum_num_containers;
1238 ++container) {
1239 /*
1240 * Stomp on all config sequencing for all
1241 * containers?
1242 */
1243 dev->fsa_dev[container].config_waiting_on =
1244 AifEnContainerChange;
1245 dev->fsa_dev[container].config_needed = DELETE;
1246 dev->fsa_dev[container].config_waiting_stamp =
1247 jiffies;
1248 }
1249 }
1250 break;
1251 }
1252
1253 container = 0;
1254 retry_next:
1255 if (device_config_needed == NOTHING)
1256 for (; container < dev->maximum_num_containers; ++container) {
1257 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1258 (dev->fsa_dev[container].config_needed != NOTHING) &&
1259 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1260 device_config_needed =
1261 dev->fsa_dev[container].config_needed;
1262 dev->fsa_dev[container].config_needed = NOTHING;
1263 channel = CONTAINER_TO_CHANNEL(container);
1264 id = CONTAINER_TO_ID(container);
1265 lun = CONTAINER_TO_LUN(container);
1266 break;
1267 }
1268 }
1269 if (device_config_needed == NOTHING)
1270 return;
1271
1272 /*
1273 * If we decided that a re-configuration needs to be done,
1274 * schedule it here on the way out the door, please close the door
1275 * behind you.
1276 */
1277
1278 /*
1279 * Find the scsi_device associated with the SCSI address,
1280 * and mark it as changed, invalidating the cache. This deals
1281 * with changes to existing device IDs.
1282 */
1283
1284 if (!dev || !dev->scsi_host_ptr)
1285 return;
1286 /*
1287 * force reload of disk info via aac_probe_container
1288 */
1289 if ((channel == CONTAINER_CHANNEL) &&
1290 (device_config_needed != NOTHING)) {
1291 if (dev->fsa_dev[container].valid == 1)
1292 dev->fsa_dev[container].valid = 2;
1293 aac_probe_container(dev, container);
1294 }
1295 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1296 if (device) {
1297 switch (device_config_needed) {
1298 case DELETE:
1299 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1300 scsi_remove_device(device);
1301 #else
1302 if (scsi_device_online(device)) {
1303 scsi_device_set_state(device, SDEV_OFFLINE);
1304 sdev_printk(KERN_INFO, device,
1305 "Device offlined - %s\n",
1306 (channel == CONTAINER_CHANNEL) ?
1307 "array deleted" :
1308 "enclosure services event");
1309 }
1310 #endif
1311 break;
1312 case ADD:
1313 if (!scsi_device_online(device)) {
1314 sdev_printk(KERN_INFO, device,
1315 "Device online - %s\n",
1316 (channel == CONTAINER_CHANNEL) ?
1317 "array created" :
1318 "enclosure services event");
1319 scsi_device_set_state(device, SDEV_RUNNING);
1320 }
1321 /* FALLTHRU */
1322 case CHANGE:
1323 if ((channel == CONTAINER_CHANNEL)
1324 && (!dev->fsa_dev[container].valid)) {
1325 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1326 scsi_remove_device(device);
1327 #else
1328 if (!scsi_device_online(device))
1329 break;
1330 scsi_device_set_state(device, SDEV_OFFLINE);
1331 sdev_printk(KERN_INFO, device,
1332 "Device offlined - %s\n",
1333 "array failed");
1334 #endif
1335 break;
1336 }
1337 scsi_rescan_device(&device->sdev_gendev);
1338
1339 default:
1340 break;
1341 }
1342 scsi_device_put(device);
1343 device_config_needed = NOTHING;
1344 }
1345 if (device_config_needed == ADD)
1346 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1347 if (channel == CONTAINER_CHANNEL) {
1348 container++;
1349 device_config_needed = NOTHING;
1350 goto retry_next;
1351 }
1352 }
1353
1354 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1355 {
1356 int index, quirks;
1357 int retval;
1358 struct Scsi_Host *host;
1359 struct scsi_device *dev;
1360 struct scsi_cmnd *command;
1361 struct scsi_cmnd *command_list;
1362 int jafo = 0;
1363
1364 /*
1365 * Assumptions:
1366 * - host is locked, unless called by the aacraid thread.
1367 * (a matter of convenience, due to legacy issues surrounding
1368 * eh_host_adapter_reset).
1369 * - in_reset is asserted, so no new i/o is getting to the
1370 * card.
1371 * - The card is dead, or will be very shortly ;-/ so no new
1372 * commands are completing in the interrupt service.
1373 */
1374 host = aac->scsi_host_ptr;
1375 scsi_block_requests(host);
1376 aac_adapter_disable_int(aac);
1377 if (aac->thread->pid != current->pid) {
1378 spin_unlock_irq(host->host_lock);
1379 kthread_stop(aac->thread);
1380 jafo = 1;
1381 }
1382
1383 /*
1384 * If a positive health, means in a known DEAD PANIC
1385 * state and the adapter could be reset to `try again'.
1386 */
1387 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1388
1389 if (retval)
1390 goto out;
1391
1392 /*
1393 * Loop through the fibs, close the synchronous FIBS
1394 */
1395 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1396 struct fib *fib = &aac->fibs[index];
1397 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1398 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1399 unsigned long flagv;
1400 spin_lock_irqsave(&fib->event_lock, flagv);
1401 up(&fib->event_wait);
1402 spin_unlock_irqrestore(&fib->event_lock, flagv);
1403 schedule();
1404 retval = 0;
1405 }
1406 }
1407 /* Give some extra time for ioctls to complete. */
1408 if (retval == 0)
1409 ssleep(2);
1410 index = aac->cardtype;
1411
1412 /*
1413 * Re-initialize the adapter, first free resources, then carefully
1414 * apply the initialization sequence to come back again. Only risk
1415 * is a change in Firmware dropping cache, it is assumed the caller
1416 * will ensure that i/o is queisced and the card is flushed in that
1417 * case.
1418 */
1419 aac_fib_map_free(aac);
1420 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1421 aac->comm_addr = NULL;
1422 aac->comm_phys = 0;
1423 kfree(aac->queues);
1424 aac->queues = NULL;
1425 aac_free_irq(aac);
1426 kfree(aac->fsa_dev);
1427 aac->fsa_dev = NULL;
1428 quirks = aac_get_driver_ident(index)->quirks;
1429 if (quirks & AAC_QUIRK_31BIT) {
1430 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1431 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1432 goto out;
1433 } else {
1434 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1435 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1436 goto out;
1437 }
1438 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1439 goto out;
1440 if (quirks & AAC_QUIRK_31BIT)
1441 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1442 goto out;
1443 if (jafo) {
1444 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1445 aac->name);
1446 if (IS_ERR(aac->thread)) {
1447 retval = PTR_ERR(aac->thread);
1448 goto out;
1449 }
1450 }
1451 (void)aac_get_adapter_info(aac);
1452 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1453 host->sg_tablesize = 34;
1454 host->max_sectors = (host->sg_tablesize * 8) + 112;
1455 }
1456 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1457 host->sg_tablesize = 17;
1458 host->max_sectors = (host->sg_tablesize * 8) + 112;
1459 }
1460 aac_get_config_status(aac, 1);
1461 aac_get_containers(aac);
1462 /*
1463 * This is where the assumption that the Adapter is quiesced
1464 * is important.
1465 */
1466 command_list = NULL;
1467 __shost_for_each_device(dev, host) {
1468 unsigned long flags;
1469 spin_lock_irqsave(&dev->list_lock, flags);
1470 list_for_each_entry(command, &dev->cmd_list, list)
1471 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1472 command->SCp.buffer = (struct scatterlist *)command_list;
1473 command_list = command;
1474 }
1475 spin_unlock_irqrestore(&dev->list_lock, flags);
1476 }
1477 while ((command = command_list)) {
1478 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1479 command->SCp.buffer = NULL;
1480 command->result = DID_OK << 16
1481 | COMMAND_COMPLETE << 8
1482 | SAM_STAT_TASK_SET_FULL;
1483 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1484 command->scsi_done(command);
1485 }
1486 retval = 0;
1487
1488 out:
1489 aac->in_reset = 0;
1490 scsi_unblock_requests(host);
1491 if (jafo) {
1492 spin_lock_irq(host->host_lock);
1493 }
1494 return retval;
1495 }
1496
1497 int aac_reset_adapter(struct aac_dev * aac, int forced)
1498 {
1499 unsigned long flagv = 0;
1500 int retval;
1501 struct Scsi_Host * host;
1502
1503 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1504 return -EBUSY;
1505
1506 if (aac->in_reset) {
1507 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1508 return -EBUSY;
1509 }
1510 aac->in_reset = 1;
1511 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1512
1513 /*
1514 * Wait for all commands to complete to this specific
1515 * target (block maximum 60 seconds). Although not necessary,
1516 * it does make us a good storage citizen.
1517 */
1518 host = aac->scsi_host_ptr;
1519 scsi_block_requests(host);
1520 if (forced < 2) for (retval = 60; retval; --retval) {
1521 struct scsi_device * dev;
1522 struct scsi_cmnd * command;
1523 int active = 0;
1524
1525 __shost_for_each_device(dev, host) {
1526 spin_lock_irqsave(&dev->list_lock, flagv);
1527 list_for_each_entry(command, &dev->cmd_list, list) {
1528 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1529 active++;
1530 break;
1531 }
1532 }
1533 spin_unlock_irqrestore(&dev->list_lock, flagv);
1534 if (active)
1535 break;
1536
1537 }
1538 /*
1539 * We can exit If all the commands are complete
1540 */
1541 if (active == 0)
1542 break;
1543 ssleep(1);
1544 }
1545
1546 /* Quiesce build, flush cache, write through mode */
1547 if (forced < 2)
1548 aac_send_shutdown(aac);
1549 spin_lock_irqsave(host->host_lock, flagv);
1550 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1551 spin_unlock_irqrestore(host->host_lock, flagv);
1552
1553 if ((forced < 2) && (retval == -ENODEV)) {
1554 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1555 struct fib * fibctx = aac_fib_alloc(aac);
1556 if (fibctx) {
1557 struct aac_pause *cmd;
1558 int status;
1559
1560 aac_fib_init(fibctx);
1561
1562 cmd = (struct aac_pause *) fib_data(fibctx);
1563
1564 cmd->command = cpu_to_le32(VM_ContainerConfig);
1565 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1566 cmd->timeout = cpu_to_le32(1);
1567 cmd->min = cpu_to_le32(1);
1568 cmd->noRescan = cpu_to_le32(1);
1569 cmd->count = cpu_to_le32(0);
1570
1571 status = aac_fib_send(ContainerCommand,
1572 fibctx,
1573 sizeof(struct aac_pause),
1574 FsaNormal,
1575 -2 /* Timeout silently */, 1,
1576 NULL, NULL);
1577
1578 if (status >= 0)
1579 aac_fib_complete(fibctx);
1580 /* FIB should be freed only after getting
1581 * the response from the F/W */
1582 if (status != -ERESTARTSYS)
1583 aac_fib_free(fibctx);
1584 }
1585 }
1586
1587 return retval;
1588 }
1589
1590 int aac_check_health(struct aac_dev * aac)
1591 {
1592 int BlinkLED;
1593 unsigned long time_now, flagv = 0;
1594 struct list_head * entry;
1595 struct Scsi_Host * host;
1596
1597 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1598 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1599 return 0;
1600
1601 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1602 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1603 return 0; /* OK */
1604 }
1605
1606 aac->in_reset = 1;
1607
1608 /* Fake up an AIF:
1609 * aac_aifcmd.command = AifCmdEventNotify = 1
1610 * aac_aifcmd.seqnum = 0xFFFFFFFF
1611 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1612 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1613 * aac.aifcmd.data[2] = AifHighPriority = 3
1614 * aac.aifcmd.data[3] = BlinkLED
1615 */
1616
1617 time_now = jiffies/HZ;
1618 entry = aac->fib_list.next;
1619
1620 /*
1621 * For each Context that is on the
1622 * fibctxList, make a copy of the
1623 * fib, and then set the event to wake up the
1624 * thread that is waiting for it.
1625 */
1626 while (entry != &aac->fib_list) {
1627 /*
1628 * Extract the fibctx
1629 */
1630 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1631 struct hw_fib * hw_fib;
1632 struct fib * fib;
1633 /*
1634 * Check if the queue is getting
1635 * backlogged
1636 */
1637 if (fibctx->count > 20) {
1638 /*
1639 * It's *not* jiffies folks,
1640 * but jiffies / HZ, so do not
1641 * panic ...
1642 */
1643 u32 time_last = fibctx->jiffies;
1644 /*
1645 * Has it been > 2 minutes
1646 * since the last read off
1647 * the queue?
1648 */
1649 if ((time_now - time_last) > aif_timeout) {
1650 entry = entry->next;
1651 aac_close_fib_context(aac, fibctx);
1652 continue;
1653 }
1654 }
1655 /*
1656 * Warning: no sleep allowed while
1657 * holding spinlock
1658 */
1659 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1660 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1661 if (fib && hw_fib) {
1662 struct aac_aifcmd * aif;
1663
1664 fib->hw_fib_va = hw_fib;
1665 fib->dev = aac;
1666 aac_fib_init(fib);
1667 fib->type = FSAFS_NTC_FIB_CONTEXT;
1668 fib->size = sizeof (struct fib);
1669 fib->data = hw_fib->data;
1670 aif = (struct aac_aifcmd *)hw_fib->data;
1671 aif->command = cpu_to_le32(AifCmdEventNotify);
1672 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1673 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1674 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1675 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1676 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1677
1678 /*
1679 * Put the FIB onto the
1680 * fibctx's fibs
1681 */
1682 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1683 fibctx->count++;
1684 /*
1685 * Set the event to wake up the
1686 * thread that will waiting.
1687 */
1688 up(&fibctx->wait_sem);
1689 } else {
1690 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1691 kfree(fib);
1692 kfree(hw_fib);
1693 }
1694 entry = entry->next;
1695 }
1696
1697 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1698
1699 if (BlinkLED < 0) {
1700 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1701 goto out;
1702 }
1703
1704 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1705
1706 if (!aac_check_reset || ((aac_check_reset == 1) &&
1707 (aac->supplement_adapter_info.SupportedOptions2 &
1708 AAC_OPTION_IGNORE_RESET)))
1709 goto out;
1710 host = aac->scsi_host_ptr;
1711 if (aac->thread->pid != current->pid)
1712 spin_lock_irqsave(host->host_lock, flagv);
1713 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1714 if (aac->thread->pid != current->pid)
1715 spin_unlock_irqrestore(host->host_lock, flagv);
1716 return BlinkLED;
1717
1718 out:
1719 aac->in_reset = 0;
1720 return BlinkLED;
1721 }
1722
1723
1724 /**
1725 * aac_command_thread - command processing thread
1726 * @dev: Adapter to monitor
1727 *
1728 * Waits on the commandready event in it's queue. When the event gets set
1729 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1730 * until the queue is empty. When the queue is empty it will wait for
1731 * more FIBs.
1732 */
1733
1734 int aac_command_thread(void *data)
1735 {
1736 struct aac_dev *dev = data;
1737 struct hw_fib *hw_fib, *hw_newfib;
1738 struct fib *fib, *newfib;
1739 struct aac_fib_context *fibctx;
1740 unsigned long flags;
1741 DECLARE_WAITQUEUE(wait, current);
1742 unsigned long next_jiffies = jiffies + HZ;
1743 unsigned long next_check_jiffies = next_jiffies;
1744 long difference = HZ;
1745
1746 /*
1747 * We can only have one thread per adapter for AIF's.
1748 */
1749 if (dev->aif_thread)
1750 return -EINVAL;
1751
1752 /*
1753 * Let the DPC know it has a place to send the AIF's to.
1754 */
1755 dev->aif_thread = 1;
1756 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1757 set_current_state(TASK_INTERRUPTIBLE);
1758 dprintk ((KERN_INFO "aac_command_thread start\n"));
1759 while (1) {
1760 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1761 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1762 struct list_head *entry;
1763 struct aac_aifcmd * aifcmd;
1764
1765 set_current_state(TASK_RUNNING);
1766
1767 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1768 list_del(entry);
1769
1770 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1771 fib = list_entry(entry, struct fib, fiblink);
1772 /*
1773 * We will process the FIB here or pass it to a
1774 * worker thread that is TBD. We Really can't
1775 * do anything at this point since we don't have
1776 * anything defined for this thread to do.
1777 */
1778 hw_fib = fib->hw_fib_va;
1779 memset(fib, 0, sizeof(struct fib));
1780 fib->type = FSAFS_NTC_FIB_CONTEXT;
1781 fib->size = sizeof(struct fib);
1782 fib->hw_fib_va = hw_fib;
1783 fib->data = hw_fib->data;
1784 fib->dev = dev;
1785 /*
1786 * We only handle AifRequest fibs from the adapter.
1787 */
1788 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1789 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1790 /* Handle Driver Notify Events */
1791 aac_handle_aif(dev, fib);
1792 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1793 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1794 } else {
1795 /* The u32 here is important and intended. We are using
1796 32bit wrapping time to fit the adapter field */
1797
1798 u32 time_now, time_last;
1799 unsigned long flagv;
1800 unsigned num;
1801 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1802 struct fib ** fib_pool, ** fib_p;
1803
1804 /* Sniff events */
1805 if ((aifcmd->command ==
1806 cpu_to_le32(AifCmdEventNotify)) ||
1807 (aifcmd->command ==
1808 cpu_to_le32(AifCmdJobProgress))) {
1809 aac_handle_aif(dev, fib);
1810 }
1811
1812 time_now = jiffies/HZ;
1813
1814 /*
1815 * Warning: no sleep allowed while
1816 * holding spinlock. We take the estimate
1817 * and pre-allocate a set of fibs outside the
1818 * lock.
1819 */
1820 num = le32_to_cpu(dev->init->AdapterFibsSize)
1821 / sizeof(struct hw_fib); /* some extra */
1822 spin_lock_irqsave(&dev->fib_lock, flagv);
1823 entry = dev->fib_list.next;
1824 while (entry != &dev->fib_list) {
1825 entry = entry->next;
1826 ++num;
1827 }
1828 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1829 hw_fib_pool = NULL;
1830 fib_pool = NULL;
1831 if (num
1832 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1833 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1834 hw_fib_p = hw_fib_pool;
1835 fib_p = fib_pool;
1836 while (hw_fib_p < &hw_fib_pool[num]) {
1837 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1838 --hw_fib_p;
1839 break;
1840 }
1841 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1842 kfree(*(--hw_fib_p));
1843 break;
1844 }
1845 }
1846 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1847 kfree(fib_pool);
1848 fib_pool = NULL;
1849 kfree(hw_fib_pool);
1850 hw_fib_pool = NULL;
1851 }
1852 } else {
1853 kfree(hw_fib_pool);
1854 hw_fib_pool = NULL;
1855 }
1856 spin_lock_irqsave(&dev->fib_lock, flagv);
1857 entry = dev->fib_list.next;
1858 /*
1859 * For each Context that is on the
1860 * fibctxList, make a copy of the
1861 * fib, and then set the event to wake up the
1862 * thread that is waiting for it.
1863 */
1864 hw_fib_p = hw_fib_pool;
1865 fib_p = fib_pool;
1866 while (entry != &dev->fib_list) {
1867 /*
1868 * Extract the fibctx
1869 */
1870 fibctx = list_entry(entry, struct aac_fib_context, next);
1871 /*
1872 * Check if the queue is getting
1873 * backlogged
1874 */
1875 if (fibctx->count > 20)
1876 {
1877 /*
1878 * It's *not* jiffies folks,
1879 * but jiffies / HZ so do not
1880 * panic ...
1881 */
1882 time_last = fibctx->jiffies;
1883 /*
1884 * Has it been > 2 minutes
1885 * since the last read off
1886 * the queue?
1887 */
1888 if ((time_now - time_last) > aif_timeout) {
1889 entry = entry->next;
1890 aac_close_fib_context(dev, fibctx);
1891 continue;
1892 }
1893 }
1894 /*
1895 * Warning: no sleep allowed while
1896 * holding spinlock
1897 */
1898 if (hw_fib_p < &hw_fib_pool[num]) {
1899 hw_newfib = *hw_fib_p;
1900 *(hw_fib_p++) = NULL;
1901 newfib = *fib_p;
1902 *(fib_p++) = NULL;
1903 /*
1904 * Make the copy of the FIB
1905 */
1906 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1907 memcpy(newfib, fib, sizeof(struct fib));
1908 newfib->hw_fib_va = hw_newfib;
1909 /*
1910 * Put the FIB onto the
1911 * fibctx's fibs
1912 */
1913 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1914 fibctx->count++;
1915 /*
1916 * Set the event to wake up the
1917 * thread that is waiting.
1918 */
1919 up(&fibctx->wait_sem);
1920 } else {
1921 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1922 }
1923 entry = entry->next;
1924 }
1925 /*
1926 * Set the status of this FIB
1927 */
1928 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1929 aac_fib_adapter_complete(fib, sizeof(u32));
1930 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1931 /* Free up the remaining resources */
1932 hw_fib_p = hw_fib_pool;
1933 fib_p = fib_pool;
1934 while (hw_fib_p < &hw_fib_pool[num]) {
1935 kfree(*hw_fib_p);
1936 kfree(*fib_p);
1937 ++fib_p;
1938 ++hw_fib_p;
1939 }
1940 kfree(hw_fib_pool);
1941 kfree(fib_pool);
1942 }
1943 kfree(fib);
1944 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1945 }
1946 /*
1947 * There are no more AIF's
1948 */
1949 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1950
1951 /*
1952 * Background activity
1953 */
1954 if ((time_before(next_check_jiffies,next_jiffies))
1955 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1956 next_check_jiffies = next_jiffies;
1957 if (aac_check_health(dev) == 0) {
1958 difference = ((long)(unsigned)check_interval)
1959 * HZ;
1960 next_check_jiffies = jiffies + difference;
1961 } else if (!dev->queues)
1962 break;
1963 }
1964 if (!time_before(next_check_jiffies,next_jiffies)
1965 && ((difference = next_jiffies - jiffies) <= 0)) {
1966 struct timeval now;
1967 int ret;
1968
1969 /* Don't even try to talk to adapter if its sick */
1970 ret = aac_check_health(dev);
1971 if (!ret && !dev->queues)
1972 break;
1973 next_check_jiffies = jiffies
1974 + ((long)(unsigned)check_interval)
1975 * HZ;
1976 do_gettimeofday(&now);
1977
1978 /* Synchronize our watches */
1979 if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1980 && (now.tv_usec > (1000000 / HZ)))
1981 difference = (((1000000 - now.tv_usec) * HZ)
1982 + 500000) / 1000000;
1983 else if (ret == 0) {
1984 struct fib *fibptr;
1985
1986 if ((fibptr = aac_fib_alloc(dev))) {
1987 int status;
1988 __le32 *info;
1989
1990 aac_fib_init(fibptr);
1991
1992 info = (__le32 *) fib_data(fibptr);
1993 if (now.tv_usec > 500000)
1994 ++now.tv_sec;
1995
1996 *info = cpu_to_le32(now.tv_sec);
1997
1998 status = aac_fib_send(SendHostTime,
1999 fibptr,
2000 sizeof(*info),
2001 FsaNormal,
2002 1, 1,
2003 NULL,
2004 NULL);
2005 /* Do not set XferState to zero unless
2006 * receives a response from F/W */
2007 if (status >= 0)
2008 aac_fib_complete(fibptr);
2009 /* FIB should be freed only after
2010 * getting the response from the F/W */
2011 if (status != -ERESTARTSYS)
2012 aac_fib_free(fibptr);
2013 }
2014 difference = (long)(unsigned)update_interval*HZ;
2015 } else {
2016 /* retry shortly */
2017 difference = 10 * HZ;
2018 }
2019 next_jiffies = jiffies + difference;
2020 if (time_before(next_check_jiffies,next_jiffies))
2021 difference = next_check_jiffies - jiffies;
2022 }
2023 if (difference <= 0)
2024 difference = 1;
2025 set_current_state(TASK_INTERRUPTIBLE);
2026
2027 if (kthread_should_stop())
2028 break;
2029
2030 schedule_timeout(difference);
2031
2032 if (kthread_should_stop())
2033 break;
2034 }
2035 if (dev->queues)
2036 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2037 dev->aif_thread = 0;
2038 return 0;
2039 }
2040
2041 int aac_acquire_irq(struct aac_dev *dev)
2042 {
2043 int i;
2044 int j;
2045 int ret = 0;
2046
2047 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2048 for (i = 0; i < dev->max_msix; i++) {
2049 dev->aac_msix[i].vector_no = i;
2050 dev->aac_msix[i].dev = dev;
2051 if (request_irq(pci_irq_vector(dev->pdev, i),
2052 dev->a_ops.adapter_intr,
2053 0, "aacraid", &(dev->aac_msix[i]))) {
2054 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2055 dev->name, dev->id, i);
2056 for (j = 0 ; j < i ; j++)
2057 free_irq(pci_irq_vector(dev->pdev, j),
2058 &(dev->aac_msix[j]));
2059 pci_disable_msix(dev->pdev);
2060 ret = -1;
2061 }
2062 }
2063 } else {
2064 dev->aac_msix[0].vector_no = 0;
2065 dev->aac_msix[0].dev = dev;
2066
2067 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2068 IRQF_SHARED, "aacraid",
2069 &(dev->aac_msix[0])) < 0) {
2070 if (dev->msi)
2071 pci_disable_msi(dev->pdev);
2072 printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2073 dev->name, dev->id);
2074 ret = -1;
2075 }
2076 }
2077 return ret;
2078 }
2079
2080 void aac_free_irq(struct aac_dev *dev)
2081 {
2082 int i;
2083 int cpu;
2084
2085 cpu = cpumask_first(cpu_online_mask);
2086 if (dev->pdev->device == PMC_DEVICE_S6 ||
2087 dev->pdev->device == PMC_DEVICE_S7 ||
2088 dev->pdev->device == PMC_DEVICE_S8 ||
2089 dev->pdev->device == PMC_DEVICE_S9) {
2090 if (dev->max_msix > 1) {
2091 for (i = 0; i < dev->max_msix; i++)
2092 free_irq(pci_irq_vector(dev->pdev, i),
2093 &(dev->aac_msix[i]));
2094 } else {
2095 free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2096 }
2097 } else {
2098 free_irq(dev->pdev->irq, dev);
2099 }
2100 if (dev->msi)
2101 pci_disable_msi(dev->pdev);
2102 else if (dev->max_msix > 1)
2103 pci_disable_msix(dev->pdev);
2104 }