]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/scsi/advansys.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[mirror_ubuntu-eoan-kernel.git] / drivers / scsi / advansys.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
4 *
5 * Copyright (c) 1995-2000 Advanced System Products, Inc.
6 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
7 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
8 * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
9 * All Rights Reserved.
10 */
11
12 /*
13 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
14 * changed its name to ConnectCom Solutions, Inc.
15 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
16 */
17
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/kernel.h>
21 #include <linux/types.h>
22 #include <linux/ioport.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/proc_fs.h>
28 #include <linux/init.h>
29 #include <linux/blkdev.h>
30 #include <linux/isa.h>
31 #include <linux/eisa.h>
32 #include <linux/pci.h>
33 #include <linux/spinlock.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/firmware.h>
36 #include <linux/dmapool.h>
37
38 #include <asm/io.h>
39 #include <asm/dma.h>
40
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_device.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46
47 #define DRV_NAME "advansys"
48 #define ASC_VERSION "3.5" /* AdvanSys Driver Version */
49
50 /* FIXME:
51 *
52 * 1. Use scsi_transport_spi
53 * 2. advansys_info is not safe against multiple simultaneous callers
54 * 3. Add module_param to override ISA/VLB ioport array
55 */
56
57 /* Enable driver /proc statistics. */
58 #define ADVANSYS_STATS
59
60 /* Enable driver tracing. */
61 #undef ADVANSYS_DEBUG
62
63 typedef unsigned char uchar;
64
65 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
66
67 #define PCI_VENDOR_ID_ASP 0x10cd
68 #define PCI_DEVICE_ID_ASP_1200A 0x1100
69 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
70 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
71 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
72 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
73 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
74
75 #define PortAddr unsigned int /* port address size */
76 #define inp(port) inb(port)
77 #define outp(port, byte) outb((byte), (port))
78
79 #define inpw(port) inw(port)
80 #define outpw(port, word) outw((word), (port))
81
82 #define ASC_MAX_SG_QUEUE 7
83 #define ASC_MAX_SG_LIST 255
84
85 #define ASC_CS_TYPE unsigned short
86
87 #define ASC_IS_ISA (0x0001)
88 #define ASC_IS_ISAPNP (0x0081)
89 #define ASC_IS_EISA (0x0002)
90 #define ASC_IS_PCI (0x0004)
91 #define ASC_IS_PCI_ULTRA (0x0104)
92 #define ASC_IS_PCMCIA (0x0008)
93 #define ASC_IS_MCA (0x0020)
94 #define ASC_IS_VL (0x0040)
95 #define ASC_IS_WIDESCSI_16 (0x0100)
96 #define ASC_IS_WIDESCSI_32 (0x0200)
97 #define ASC_IS_BIG_ENDIAN (0x8000)
98
99 #define ASC_CHIP_MIN_VER_VL (0x01)
100 #define ASC_CHIP_MAX_VER_VL (0x07)
101 #define ASC_CHIP_MIN_VER_PCI (0x09)
102 #define ASC_CHIP_MAX_VER_PCI (0x0F)
103 #define ASC_CHIP_VER_PCI_BIT (0x08)
104 #define ASC_CHIP_MIN_VER_ISA (0x11)
105 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
106 #define ASC_CHIP_MAX_VER_ISA (0x27)
107 #define ASC_CHIP_VER_ISA_BIT (0x30)
108 #define ASC_CHIP_VER_ISAPNP_BIT (0x20)
109 #define ASC_CHIP_VER_ASYN_BUG (0x21)
110 #define ASC_CHIP_VER_PCI 0x08
111 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
112 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
113 #define ASC_CHIP_MIN_VER_EISA (0x41)
114 #define ASC_CHIP_MAX_VER_EISA (0x47)
115 #define ASC_CHIP_VER_EISA_BIT (0x40)
116 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
117 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
118 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
119 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
120
121 #define ASC_SCSI_ID_BITS 3
122 #define ASC_SCSI_TIX_TYPE uchar
123 #define ASC_ALL_DEVICE_BIT_SET 0xFF
124 #define ASC_SCSI_BIT_ID_TYPE uchar
125 #define ASC_MAX_TID 7
126 #define ASC_MAX_LUN 7
127 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
128 #define ASC_MAX_SENSE_LEN 32
129 #define ASC_MIN_SENSE_LEN 14
130 #define ASC_SCSI_RESET_HOLD_TIME_US 60
131
132 /*
133 * Narrow boards only support 12-byte commands, while wide boards
134 * extend to 16-byte commands.
135 */
136 #define ASC_MAX_CDB_LEN 12
137 #define ADV_MAX_CDB_LEN 16
138
139 #define MS_SDTR_LEN 0x03
140 #define MS_WDTR_LEN 0x02
141
142 #define ASC_SG_LIST_PER_Q 7
143 #define QS_FREE 0x00
144 #define QS_READY 0x01
145 #define QS_DISC1 0x02
146 #define QS_DISC2 0x04
147 #define QS_BUSY 0x08
148 #define QS_ABORTED 0x40
149 #define QS_DONE 0x80
150 #define QC_NO_CALLBACK 0x01
151 #define QC_SG_SWAP_QUEUE 0x02
152 #define QC_SG_HEAD 0x04
153 #define QC_DATA_IN 0x08
154 #define QC_DATA_OUT 0x10
155 #define QC_URGENT 0x20
156 #define QC_MSG_OUT 0x40
157 #define QC_REQ_SENSE 0x80
158 #define QCSG_SG_XFER_LIST 0x02
159 #define QCSG_SG_XFER_MORE 0x04
160 #define QCSG_SG_XFER_END 0x08
161 #define QD_IN_PROGRESS 0x00
162 #define QD_NO_ERROR 0x01
163 #define QD_ABORTED_BY_HOST 0x02
164 #define QD_WITH_ERROR 0x04
165 #define QD_INVALID_REQUEST 0x80
166 #define QD_INVALID_HOST_NUM 0x81
167 #define QD_INVALID_DEVICE 0x82
168 #define QD_ERR_INTERNAL 0xFF
169 #define QHSTA_NO_ERROR 0x00
170 #define QHSTA_M_SEL_TIMEOUT 0x11
171 #define QHSTA_M_DATA_OVER_RUN 0x12
172 #define QHSTA_M_DATA_UNDER_RUN 0x12
173 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
174 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
175 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
176 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
177 #define QHSTA_D_HOST_ABORT_FAILED 0x23
178 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
179 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
180 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
181 #define QHSTA_M_WTM_TIMEOUT 0x41
182 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
183 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
184 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
185 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
186 #define QHSTA_M_BAD_TAG_CODE 0x46
187 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
188 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
189 #define QHSTA_D_LRAM_CMP_ERROR 0x81
190 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
191 #define ASC_FLAG_SCSIQ_REQ 0x01
192 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
193 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
194 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
195 #define ASC_FLAG_WIN16 0x10
196 #define ASC_FLAG_WIN32 0x20
197 #define ASC_FLAG_ISA_OVER_16MB 0x40
198 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
199 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
200 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
201 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
202 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
203 #define ASC_SCSIQ_CPY_BEG 4
204 #define ASC_SCSIQ_SGHD_CPY_BEG 2
205 #define ASC_SCSIQ_B_FWD 0
206 #define ASC_SCSIQ_B_BWD 1
207 #define ASC_SCSIQ_B_STATUS 2
208 #define ASC_SCSIQ_B_QNO 3
209 #define ASC_SCSIQ_B_CNTL 4
210 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
211 #define ASC_SCSIQ_D_DATA_ADDR 8
212 #define ASC_SCSIQ_D_DATA_CNT 12
213 #define ASC_SCSIQ_B_SENSE_LEN 20
214 #define ASC_SCSIQ_DONE_INFO_BEG 22
215 #define ASC_SCSIQ_D_SRBPTR 22
216 #define ASC_SCSIQ_B_TARGET_IX 26
217 #define ASC_SCSIQ_B_CDB_LEN 28
218 #define ASC_SCSIQ_B_TAG_CODE 29
219 #define ASC_SCSIQ_W_VM_ID 30
220 #define ASC_SCSIQ_DONE_STATUS 32
221 #define ASC_SCSIQ_HOST_STATUS 33
222 #define ASC_SCSIQ_SCSI_STATUS 34
223 #define ASC_SCSIQ_CDB_BEG 36
224 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
225 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
226 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
227 #define ASC_SCSIQ_B_SG_WK_QP 49
228 #define ASC_SCSIQ_B_SG_WK_IX 50
229 #define ASC_SCSIQ_W_ALT_DC1 52
230 #define ASC_SCSIQ_B_LIST_CNT 6
231 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
232 #define ASC_SGQ_B_SG_CNTL 4
233 #define ASC_SGQ_B_SG_HEAD_QP 5
234 #define ASC_SGQ_B_SG_LIST_CNT 6
235 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
236 #define ASC_SGQ_LIST_BEG 8
237 #define ASC_DEF_SCSI1_QNG 4
238 #define ASC_MAX_SCSI1_QNG 4
239 #define ASC_DEF_SCSI2_QNG 16
240 #define ASC_MAX_SCSI2_QNG 32
241 #define ASC_TAG_CODE_MASK 0x23
242 #define ASC_STOP_REQ_RISC_STOP 0x01
243 #define ASC_STOP_ACK_RISC_STOP 0x03
244 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
245 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
246 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
247 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
248 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
249 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
250 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
251 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
252 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
253 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
254
255 typedef struct asc_scsiq_1 {
256 uchar status;
257 uchar q_no;
258 uchar cntl;
259 uchar sg_queue_cnt;
260 uchar target_id;
261 uchar target_lun;
262 __le32 data_addr;
263 __le32 data_cnt;
264 __le32 sense_addr;
265 uchar sense_len;
266 uchar extra_bytes;
267 } ASC_SCSIQ_1;
268
269 typedef struct asc_scsiq_2 {
270 u32 srb_tag;
271 uchar target_ix;
272 uchar flag;
273 uchar cdb_len;
274 uchar tag_code;
275 ushort vm_id;
276 } ASC_SCSIQ_2;
277
278 typedef struct asc_scsiq_3 {
279 uchar done_stat;
280 uchar host_stat;
281 uchar scsi_stat;
282 uchar scsi_msg;
283 } ASC_SCSIQ_3;
284
285 typedef struct asc_scsiq_4 {
286 uchar cdb[ASC_MAX_CDB_LEN];
287 uchar y_first_sg_list_qp;
288 uchar y_working_sg_qp;
289 uchar y_working_sg_ix;
290 uchar y_res;
291 ushort x_req_count;
292 ushort x_reconnect_rtn;
293 __le32 x_saved_data_addr;
294 __le32 x_saved_data_cnt;
295 } ASC_SCSIQ_4;
296
297 typedef struct asc_q_done_info {
298 ASC_SCSIQ_2 d2;
299 ASC_SCSIQ_3 d3;
300 uchar q_status;
301 uchar q_no;
302 uchar cntl;
303 uchar sense_len;
304 uchar extra_bytes;
305 uchar res;
306 u32 remain_bytes;
307 } ASC_QDONE_INFO;
308
309 typedef struct asc_sg_list {
310 __le32 addr;
311 __le32 bytes;
312 } ASC_SG_LIST;
313
314 typedef struct asc_sg_head {
315 ushort entry_cnt;
316 ushort queue_cnt;
317 ushort entry_to_copy;
318 ushort res;
319 ASC_SG_LIST sg_list[0];
320 } ASC_SG_HEAD;
321
322 typedef struct asc_scsi_q {
323 ASC_SCSIQ_1 q1;
324 ASC_SCSIQ_2 q2;
325 uchar *cdbptr;
326 ASC_SG_HEAD *sg_head;
327 ushort remain_sg_entry_cnt;
328 ushort next_sg_index;
329 } ASC_SCSI_Q;
330
331 typedef struct asc_scsi_bios_req_q {
332 ASC_SCSIQ_1 r1;
333 ASC_SCSIQ_2 r2;
334 uchar *cdbptr;
335 ASC_SG_HEAD *sg_head;
336 uchar *sense_ptr;
337 ASC_SCSIQ_3 r3;
338 uchar cdb[ASC_MAX_CDB_LEN];
339 uchar sense[ASC_MIN_SENSE_LEN];
340 } ASC_SCSI_BIOS_REQ_Q;
341
342 typedef struct asc_risc_q {
343 uchar fwd;
344 uchar bwd;
345 ASC_SCSIQ_1 i1;
346 ASC_SCSIQ_2 i2;
347 ASC_SCSIQ_3 i3;
348 ASC_SCSIQ_4 i4;
349 } ASC_RISC_Q;
350
351 typedef struct asc_sg_list_q {
352 uchar seq_no;
353 uchar q_no;
354 uchar cntl;
355 uchar sg_head_qp;
356 uchar sg_list_cnt;
357 uchar sg_cur_list_cnt;
358 } ASC_SG_LIST_Q;
359
360 typedef struct asc_risc_sg_list_q {
361 uchar fwd;
362 uchar bwd;
363 ASC_SG_LIST_Q sg;
364 ASC_SG_LIST sg_list[7];
365 } ASC_RISC_SG_LIST_Q;
366
367 #define ASCQ_ERR_Q_STATUS 0x0D
368 #define ASCQ_ERR_CUR_QNG 0x17
369 #define ASCQ_ERR_SG_Q_LINKS 0x18
370 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
371 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
372 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
373
374 /*
375 * Warning code values are set in ASC_DVC_VAR 'warn_code'.
376 */
377 #define ASC_WARN_NO_ERROR 0x0000
378 #define ASC_WARN_IO_PORT_ROTATE 0x0001
379 #define ASC_WARN_EEPROM_CHKSUM 0x0002
380 #define ASC_WARN_IRQ_MODIFIED 0x0004
381 #define ASC_WARN_AUTO_CONFIG 0x0008
382 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
383 #define ASC_WARN_EEPROM_RECOVER 0x0020
384 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
385
386 /*
387 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
388 */
389 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
390 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
391 #define ASC_IERR_SET_PC_ADDR 0x0004
392 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
393 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
394 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
395 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
396 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
397 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
398 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
399 #define ASC_IERR_NO_BUS_TYPE 0x0400
400 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
401 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
402 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
403
404 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
405 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
406 #define ASC_MIN_FREE_Q (0x02)
407 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
408 #define ASC_MAX_TOTAL_QNG 240
409 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
410 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
411 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
412 #define ASC_MAX_INRAM_TAG_QNG 16
413 #define ASC_IOADR_GAP 0x10
414 #define ASC_SYN_MAX_OFFSET 0x0F
415 #define ASC_DEF_SDTR_OFFSET 0x0F
416 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
417 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
418
419 /* The narrow chip only supports a limited selection of transfer rates.
420 * These are encoded in the range 0..7 or 0..15 depending whether the chip
421 * is Ultra-capable or not. These tables let us convert from one to the other.
422 */
423 static const unsigned char asc_syn_xfer_period[8] = {
424 25, 30, 35, 40, 50, 60, 70, 85
425 };
426
427 static const unsigned char asc_syn_ultra_xfer_period[16] = {
428 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
429 };
430
431 typedef struct ext_msg {
432 uchar msg_type;
433 uchar msg_len;
434 uchar msg_req;
435 union {
436 struct {
437 uchar sdtr_xfer_period;
438 uchar sdtr_req_ack_offset;
439 } sdtr;
440 struct {
441 uchar wdtr_width;
442 } wdtr;
443 struct {
444 uchar mdp_b3;
445 uchar mdp_b2;
446 uchar mdp_b1;
447 uchar mdp_b0;
448 } mdp;
449 } u_ext_msg;
450 uchar res;
451 } EXT_MSG;
452
453 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
454 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
455 #define wdtr_width u_ext_msg.wdtr.wdtr_width
456 #define mdp_b3 u_ext_msg.mdp_b3
457 #define mdp_b2 u_ext_msg.mdp_b2
458 #define mdp_b1 u_ext_msg.mdp_b1
459 #define mdp_b0 u_ext_msg.mdp_b0
460
461 typedef struct asc_dvc_cfg {
462 ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
463 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
464 ASC_SCSI_BIT_ID_TYPE disc_enable;
465 ASC_SCSI_BIT_ID_TYPE sdtr_enable;
466 uchar chip_scsi_id;
467 uchar isa_dma_speed;
468 uchar isa_dma_channel;
469 uchar chip_version;
470 ushort mcode_date;
471 ushort mcode_version;
472 uchar max_tag_qng[ASC_MAX_TID + 1];
473 uchar sdtr_period_offset[ASC_MAX_TID + 1];
474 uchar adapter_info[6];
475 } ASC_DVC_CFG;
476
477 #define ASC_DEF_DVC_CNTL 0xFFFF
478 #define ASC_DEF_CHIP_SCSI_ID 7
479 #define ASC_DEF_ISA_DMA_SPEED 4
480 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
481 #define ASC_INIT_STATE_END_GET_CFG 0x0002
482 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
483 #define ASC_INIT_STATE_END_SET_CFG 0x0008
484 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
485 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
486 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
487 #define ASC_INIT_STATE_END_INQUIRY 0x0080
488 #define ASC_INIT_RESET_SCSI_DONE 0x0100
489 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
490 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
491 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
492 #define ASC_MIN_TAGGED_CMD 7
493 #define ASC_MAX_SCSI_RESET_WAIT 30
494 #define ASC_OVERRUN_BSIZE 64
495
496 struct asc_dvc_var; /* Forward Declaration. */
497
498 typedef struct asc_dvc_var {
499 PortAddr iop_base;
500 ushort err_code;
501 ushort dvc_cntl;
502 ushort bug_fix_cntl;
503 ushort bus_type;
504 ASC_SCSI_BIT_ID_TYPE init_sdtr;
505 ASC_SCSI_BIT_ID_TYPE sdtr_done;
506 ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
507 ASC_SCSI_BIT_ID_TYPE unit_not_ready;
508 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
509 ASC_SCSI_BIT_ID_TYPE start_motor;
510 uchar *overrun_buf;
511 dma_addr_t overrun_dma;
512 uchar scsi_reset_wait;
513 uchar chip_no;
514 bool is_in_int;
515 uchar max_total_qng;
516 uchar cur_total_qng;
517 uchar in_critical_cnt;
518 uchar last_q_shortage;
519 ushort init_state;
520 uchar cur_dvc_qng[ASC_MAX_TID + 1];
521 uchar max_dvc_qng[ASC_MAX_TID + 1];
522 ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
523 ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
524 const uchar *sdtr_period_tbl;
525 ASC_DVC_CFG *cfg;
526 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
527 char redo_scam;
528 ushort res2;
529 uchar dos_int13_table[ASC_MAX_TID + 1];
530 unsigned int max_dma_count;
531 ASC_SCSI_BIT_ID_TYPE no_scam;
532 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
533 uchar min_sdtr_index;
534 uchar max_sdtr_index;
535 struct asc_board *drv_ptr;
536 unsigned int uc_break;
537 } ASC_DVC_VAR;
538
539 typedef struct asc_dvc_inq_info {
540 uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
541 } ASC_DVC_INQ_INFO;
542
543 typedef struct asc_cap_info {
544 u32 lba;
545 u32 blk_size;
546 } ASC_CAP_INFO;
547
548 typedef struct asc_cap_info_array {
549 ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
550 } ASC_CAP_INFO_ARRAY;
551
552 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
553 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
554 #define ASC_CNTL_INITIATOR (ushort)0x0001
555 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
556 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
557 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
558 #define ASC_CNTL_NO_SCAM (ushort)0x0010
559 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
560 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
561 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
562 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
563 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
564 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
565 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
566 #define ASC_CNTL_BURST_MODE (ushort)0x2000
567 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
568 #define ASC_EEP_DVC_CFG_BEG_VL 2
569 #define ASC_EEP_MAX_DVC_ADDR_VL 15
570 #define ASC_EEP_DVC_CFG_BEG 32
571 #define ASC_EEP_MAX_DVC_ADDR 45
572 #define ASC_EEP_MAX_RETRY 20
573
574 /*
575 * These macros keep the chip SCSI id and ISA DMA speed
576 * bitfields in board order. C bitfields aren't portable
577 * between big and little-endian platforms so they are
578 * not used.
579 */
580
581 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
582 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
583 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
584 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
585 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
586 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
587
588 typedef struct asceep_config {
589 ushort cfg_lsw;
590 ushort cfg_msw;
591 uchar init_sdtr;
592 uchar disc_enable;
593 uchar use_cmd_qng;
594 uchar start_motor;
595 uchar max_total_qng;
596 uchar max_tag_qng;
597 uchar bios_scan;
598 uchar power_up_wait;
599 uchar no_scam;
600 uchar id_speed; /* low order 4 bits is chip scsi id */
601 /* high order 4 bits is isa dma speed */
602 uchar dos_int13_table[ASC_MAX_TID + 1];
603 uchar adapter_info[6];
604 ushort cntl;
605 ushort chksum;
606 } ASCEEP_CONFIG;
607
608 #define ASC_EEP_CMD_READ 0x80
609 #define ASC_EEP_CMD_WRITE 0x40
610 #define ASC_EEP_CMD_WRITE_ABLE 0x30
611 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
612 #define ASCV_MSGOUT_BEG 0x0000
613 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
614 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
615 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
616 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
617 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
618 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
619 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
620 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
621 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
622 #define ASCV_BREAK_ADDR (ushort)0x0028
623 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
624 #define ASCV_BREAK_CONTROL (ushort)0x002C
625 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
626
627 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
628 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
629 #define ASCV_MCODE_SIZE_W (ushort)0x0034
630 #define ASCV_STOP_CODE_B (ushort)0x0036
631 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
632 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
633 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
634 #define ASCV_HALTCODE_W (ushort)0x0040
635 #define ASCV_CHKSUM_W (ushort)0x0042
636 #define ASCV_MC_DATE_W (ushort)0x0044
637 #define ASCV_MC_VER_W (ushort)0x0046
638 #define ASCV_NEXTRDY_B (ushort)0x0048
639 #define ASCV_DONENEXT_B (ushort)0x0049
640 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
641 #define ASCV_SCSIBUSY_B (ushort)0x004B
642 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
643 #define ASCV_CURCDB_B (ushort)0x004D
644 #define ASCV_RCLUN_B (ushort)0x004E
645 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
646 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
647 #define ASCV_DISC_ENABLE_B (ushort)0x0052
648 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
649 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
650 #define ASCV_MCODE_CNTL_B (ushort)0x0056
651 #define ASCV_NULL_TARGET_B (ushort)0x0057
652 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
653 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
654 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
655 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
656 #define ASCV_HOST_FLAG_B (ushort)0x005D
657 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
658 #define ASCV_VER_SERIAL_B (ushort)0x0065
659 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
660 #define ASCV_WTM_FLAG_B (ushort)0x0068
661 #define ASCV_RISC_FLAG_B (ushort)0x006A
662 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
663 #define ASC_HOST_FLAG_IN_ISR 0x01
664 #define ASC_HOST_FLAG_ACK_INT 0x02
665 #define ASC_RISC_FLAG_GEN_INT 0x01
666 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
667 #define IOP_CTRL (0x0F)
668 #define IOP_STATUS (0x0E)
669 #define IOP_INT_ACK IOP_STATUS
670 #define IOP_REG_IFC (0x0D)
671 #define IOP_SYN_OFFSET (0x0B)
672 #define IOP_EXTRA_CONTROL (0x0D)
673 #define IOP_REG_PC (0x0C)
674 #define IOP_RAM_ADDR (0x0A)
675 #define IOP_RAM_DATA (0x08)
676 #define IOP_EEP_DATA (0x06)
677 #define IOP_EEP_CMD (0x07)
678 #define IOP_VERSION (0x03)
679 #define IOP_CONFIG_HIGH (0x04)
680 #define IOP_CONFIG_LOW (0x02)
681 #define IOP_SIG_BYTE (0x01)
682 #define IOP_SIG_WORD (0x00)
683 #define IOP_REG_DC1 (0x0E)
684 #define IOP_REG_DC0 (0x0C)
685 #define IOP_REG_SB (0x0B)
686 #define IOP_REG_DA1 (0x0A)
687 #define IOP_REG_DA0 (0x08)
688 #define IOP_REG_SC (0x09)
689 #define IOP_DMA_SPEED (0x07)
690 #define IOP_REG_FLAG (0x07)
691 #define IOP_FIFO_H (0x06)
692 #define IOP_FIFO_L (0x04)
693 #define IOP_REG_ID (0x05)
694 #define IOP_REG_QP (0x03)
695 #define IOP_REG_IH (0x02)
696 #define IOP_REG_IX (0x01)
697 #define IOP_REG_AX (0x00)
698 #define IFC_REG_LOCK (0x00)
699 #define IFC_REG_UNLOCK (0x09)
700 #define IFC_WR_EN_FILTER (0x10)
701 #define IFC_RD_NO_EEPROM (0x10)
702 #define IFC_SLEW_RATE (0x20)
703 #define IFC_ACT_NEG (0x40)
704 #define IFC_INP_FILTER (0x80)
705 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
706 #define SC_SEL (uchar)(0x80)
707 #define SC_BSY (uchar)(0x40)
708 #define SC_ACK (uchar)(0x20)
709 #define SC_REQ (uchar)(0x10)
710 #define SC_ATN (uchar)(0x08)
711 #define SC_IO (uchar)(0x04)
712 #define SC_CD (uchar)(0x02)
713 #define SC_MSG (uchar)(0x01)
714 #define SEC_SCSI_CTL (uchar)(0x80)
715 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
716 #define SEC_SLEW_RATE (uchar)(0x20)
717 #define SEC_ENABLE_FILTER (uchar)(0x10)
718 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
719 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
720 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
721 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
722 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
723 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
724 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
725 #define ASC_MAX_QNO 0xF8
726 #define ASC_DATA_SEC_BEG (ushort)0x0080
727 #define ASC_DATA_SEC_END (ushort)0x0080
728 #define ASC_CODE_SEC_BEG (ushort)0x0080
729 #define ASC_CODE_SEC_END (ushort)0x0080
730 #define ASC_QADR_BEG (0x4000)
731 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
732 #define ASC_QADR_END (ushort)0x7FFF
733 #define ASC_QLAST_ADR (ushort)0x7FC0
734 #define ASC_QBLK_SIZE 0x40
735 #define ASC_BIOS_DATA_QBEG 0xF8
736 #define ASC_MIN_ACTIVE_QNO 0x01
737 #define ASC_QLINK_END 0xFF
738 #define ASC_EEPROM_WORDS 0x10
739 #define ASC_MAX_MGS_LEN 0x10
740 #define ASC_BIOS_ADDR_DEF 0xDC00
741 #define ASC_BIOS_SIZE 0x3800
742 #define ASC_BIOS_RAM_OFF 0x3800
743 #define ASC_BIOS_RAM_SIZE 0x800
744 #define ASC_BIOS_MIN_ADDR 0xC000
745 #define ASC_BIOS_MAX_ADDR 0xEC00
746 #define ASC_BIOS_BANK_SIZE 0x0400
747 #define ASC_MCODE_START_ADDR 0x0080
748 #define ASC_CFG0_HOST_INT_ON 0x0020
749 #define ASC_CFG0_BIOS_ON 0x0040
750 #define ASC_CFG0_VERA_BURST_ON 0x0080
751 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
752 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
753 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
754 #define ASC_CFG_MSW_CLR_MASK 0x3080
755 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
756 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
757 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
758 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
759 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
760 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
761 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
762 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
763 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
764 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
765 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
766 #define CSW_HALTED (ASC_CS_TYPE)0x0010
767 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
768 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
769 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
770 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
771 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
772 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
773 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
774 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
775 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
776 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
777 #define CC_CHIP_RESET (uchar)0x80
778 #define CC_SCSI_RESET (uchar)0x40
779 #define CC_HALT (uchar)0x20
780 #define CC_SINGLE_STEP (uchar)0x10
781 #define CC_DMA_ABLE (uchar)0x08
782 #define CC_TEST (uchar)0x04
783 #define CC_BANK_ONE (uchar)0x02
784 #define CC_DIAG (uchar)0x01
785 #define ASC_1000_ID0W 0x04C1
786 #define ASC_1000_ID0W_FIX 0x00C1
787 #define ASC_1000_ID1B 0x25
788 #define ASC_EISA_REV_IOP_MASK (0x0C83)
789 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
790 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
791 #define INS_HALTINT (ushort)0x6281
792 #define INS_HALT (ushort)0x6280
793 #define INS_SINT (ushort)0x6200
794 #define INS_RFLAG_WTM (ushort)0x7380
795 #define ASC_MC_SAVE_CODE_WSIZE 0x500
796 #define ASC_MC_SAVE_DATA_WSIZE 0x40
797
798 typedef struct asc_mc_saved {
799 ushort data[ASC_MC_SAVE_DATA_WSIZE];
800 ushort code[ASC_MC_SAVE_CODE_WSIZE];
801 } ASC_MC_SAVED;
802
803 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
804 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
805 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
806 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
807 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
808 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
809 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
810 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
811 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
812 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
813 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
814 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
815 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
816 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
817 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
818 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
819 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
820 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
821 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
822 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
823 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
824 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
825 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
826 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
827 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
828 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
829 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
830 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
831 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
832 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
833 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
834 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
835 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
836 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
837 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
838 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
839 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
840 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
841 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
842 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
843 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
844 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
845 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
846 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
847 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
848 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
849 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
850 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
851 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
852 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
853 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
854 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
855 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
856 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
857 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
858 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
859 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
860 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
861 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
862 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
863 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
864 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
865 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
866 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
867 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
868 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
869 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
870
871 #define AdvPortAddr void __iomem * /* Virtual memory address size */
872
873 /*
874 * Define Adv Library required memory access macros.
875 */
876 #define ADV_MEM_READB(addr) readb(addr)
877 #define ADV_MEM_READW(addr) readw(addr)
878 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
879 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
880 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
881
882 /*
883 * Define total number of simultaneous maximum element scatter-gather
884 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
885 * maximum number of outstanding commands per wide host adapter. Each
886 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
887 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
888 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
889 * structures or 255 scatter-gather elements.
890 */
891 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
892
893 /*
894 * Define maximum number of scatter-gather elements per request.
895 */
896 #define ADV_MAX_SG_LIST 255
897 #define NO_OF_SG_PER_BLOCK 15
898
899 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
900 #define ADV_EEP_DVC_CFG_END (0x15)
901 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
902 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
903
904 #define ADV_EEP_DELAY_MS 100
905
906 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
907 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
908 /*
909 * For the ASC3550 Bit 13 is Termination Polarity control bit.
910 * For later ICs Bit 13 controls whether the CIS (Card Information
911 * Service Section) is loaded from EEPROM.
912 */
913 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
914 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
915 /*
916 * ASC38C1600 Bit 11
917 *
918 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
919 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
920 * Function 0 will specify INT B.
921 *
922 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
923 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
924 * Function 1 will specify INT A.
925 */
926 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
927
928 typedef struct adveep_3550_config {
929 /* Word Offset, Description */
930
931 ushort cfg_lsw; /* 00 power up initialization */
932 /* bit 13 set - Term Polarity Control */
933 /* bit 14 set - BIOS Enable */
934 /* bit 15 set - Big Endian Mode */
935 ushort cfg_msw; /* 01 unused */
936 ushort disc_enable; /* 02 disconnect enable */
937 ushort wdtr_able; /* 03 Wide DTR able */
938 ushort sdtr_able; /* 04 Synchronous DTR able */
939 ushort start_motor; /* 05 send start up motor */
940 ushort tagqng_able; /* 06 tag queuing able */
941 ushort bios_scan; /* 07 BIOS device control */
942 ushort scam_tolerant; /* 08 no scam */
943
944 uchar adapter_scsi_id; /* 09 Host Adapter ID */
945 uchar bios_boot_delay; /* power up wait */
946
947 uchar scsi_reset_delay; /* 10 reset delay */
948 uchar bios_id_lun; /* first boot device scsi id & lun */
949 /* high nibble is lun */
950 /* low nibble is scsi id */
951
952 uchar termination; /* 11 0 - automatic */
953 /* 1 - low off / high off */
954 /* 2 - low off / high on */
955 /* 3 - low on / high on */
956 /* There is no low on / high off */
957
958 uchar reserved1; /* reserved byte (not used) */
959
960 ushort bios_ctrl; /* 12 BIOS control bits */
961 /* bit 0 BIOS don't act as initiator. */
962 /* bit 1 BIOS > 1 GB support */
963 /* bit 2 BIOS > 2 Disk Support */
964 /* bit 3 BIOS don't support removables */
965 /* bit 4 BIOS support bootable CD */
966 /* bit 5 BIOS scan enabled */
967 /* bit 6 BIOS support multiple LUNs */
968 /* bit 7 BIOS display of message */
969 /* bit 8 SCAM disabled */
970 /* bit 9 Reset SCSI bus during init. */
971 /* bit 10 */
972 /* bit 11 No verbose initialization. */
973 /* bit 12 SCSI parity enabled */
974 /* bit 13 */
975 /* bit 14 */
976 /* bit 15 */
977 ushort ultra_able; /* 13 ULTRA speed able */
978 ushort reserved2; /* 14 reserved */
979 uchar max_host_qng; /* 15 maximum host queuing */
980 uchar max_dvc_qng; /* maximum per device queuing */
981 ushort dvc_cntl; /* 16 control bit for driver */
982 ushort bug_fix; /* 17 control bit for bug fix */
983 ushort serial_number_word1; /* 18 Board serial number word 1 */
984 ushort serial_number_word2; /* 19 Board serial number word 2 */
985 ushort serial_number_word3; /* 20 Board serial number word 3 */
986 ushort check_sum; /* 21 EEP check sum */
987 uchar oem_name[16]; /* 22 OEM name */
988 ushort dvc_err_code; /* 30 last device driver error code */
989 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
990 ushort adv_err_addr; /* 32 last uc error address */
991 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
992 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
993 ushort saved_adv_err_addr; /* 35 saved last uc error address */
994 ushort num_of_err; /* 36 number of error */
995 } ADVEEP_3550_CONFIG;
996
997 typedef struct adveep_38C0800_config {
998 /* Word Offset, Description */
999
1000 ushort cfg_lsw; /* 00 power up initialization */
1001 /* bit 13 set - Load CIS */
1002 /* bit 14 set - BIOS Enable */
1003 /* bit 15 set - Big Endian Mode */
1004 ushort cfg_msw; /* 01 unused */
1005 ushort disc_enable; /* 02 disconnect enable */
1006 ushort wdtr_able; /* 03 Wide DTR able */
1007 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1008 ushort start_motor; /* 05 send start up motor */
1009 ushort tagqng_able; /* 06 tag queuing able */
1010 ushort bios_scan; /* 07 BIOS device control */
1011 ushort scam_tolerant; /* 08 no scam */
1012
1013 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1014 uchar bios_boot_delay; /* power up wait */
1015
1016 uchar scsi_reset_delay; /* 10 reset delay */
1017 uchar bios_id_lun; /* first boot device scsi id & lun */
1018 /* high nibble is lun */
1019 /* low nibble is scsi id */
1020
1021 uchar termination_se; /* 11 0 - automatic */
1022 /* 1 - low off / high off */
1023 /* 2 - low off / high on */
1024 /* 3 - low on / high on */
1025 /* There is no low on / high off */
1026
1027 uchar termination_lvd; /* 11 0 - automatic */
1028 /* 1 - low off / high off */
1029 /* 2 - low off / high on */
1030 /* 3 - low on / high on */
1031 /* There is no low on / high off */
1032
1033 ushort bios_ctrl; /* 12 BIOS control bits */
1034 /* bit 0 BIOS don't act as initiator. */
1035 /* bit 1 BIOS > 1 GB support */
1036 /* bit 2 BIOS > 2 Disk Support */
1037 /* bit 3 BIOS don't support removables */
1038 /* bit 4 BIOS support bootable CD */
1039 /* bit 5 BIOS scan enabled */
1040 /* bit 6 BIOS support multiple LUNs */
1041 /* bit 7 BIOS display of message */
1042 /* bit 8 SCAM disabled */
1043 /* bit 9 Reset SCSI bus during init. */
1044 /* bit 10 */
1045 /* bit 11 No verbose initialization. */
1046 /* bit 12 SCSI parity enabled */
1047 /* bit 13 */
1048 /* bit 14 */
1049 /* bit 15 */
1050 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1051 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1052 uchar max_host_qng; /* 15 maximum host queueing */
1053 uchar max_dvc_qng; /* maximum per device queuing */
1054 ushort dvc_cntl; /* 16 control bit for driver */
1055 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1056 ushort serial_number_word1; /* 18 Board serial number word 1 */
1057 ushort serial_number_word2; /* 19 Board serial number word 2 */
1058 ushort serial_number_word3; /* 20 Board serial number word 3 */
1059 ushort check_sum; /* 21 EEP check sum */
1060 uchar oem_name[16]; /* 22 OEM name */
1061 ushort dvc_err_code; /* 30 last device driver error code */
1062 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1063 ushort adv_err_addr; /* 32 last uc error address */
1064 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1065 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1066 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1067 ushort reserved36; /* 36 reserved */
1068 ushort reserved37; /* 37 reserved */
1069 ushort reserved38; /* 38 reserved */
1070 ushort reserved39; /* 39 reserved */
1071 ushort reserved40; /* 40 reserved */
1072 ushort reserved41; /* 41 reserved */
1073 ushort reserved42; /* 42 reserved */
1074 ushort reserved43; /* 43 reserved */
1075 ushort reserved44; /* 44 reserved */
1076 ushort reserved45; /* 45 reserved */
1077 ushort reserved46; /* 46 reserved */
1078 ushort reserved47; /* 47 reserved */
1079 ushort reserved48; /* 48 reserved */
1080 ushort reserved49; /* 49 reserved */
1081 ushort reserved50; /* 50 reserved */
1082 ushort reserved51; /* 51 reserved */
1083 ushort reserved52; /* 52 reserved */
1084 ushort reserved53; /* 53 reserved */
1085 ushort reserved54; /* 54 reserved */
1086 ushort reserved55; /* 55 reserved */
1087 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1088 ushort cisprt_msw; /* 57 CIS PTR MSW */
1089 ushort subsysvid; /* 58 SubSystem Vendor ID */
1090 ushort subsysid; /* 59 SubSystem ID */
1091 ushort reserved60; /* 60 reserved */
1092 ushort reserved61; /* 61 reserved */
1093 ushort reserved62; /* 62 reserved */
1094 ushort reserved63; /* 63 reserved */
1095 } ADVEEP_38C0800_CONFIG;
1096
1097 typedef struct adveep_38C1600_config {
1098 /* Word Offset, Description */
1099
1100 ushort cfg_lsw; /* 00 power up initialization */
1101 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1102 /* clear - Func. 0 INTA, Func. 1 INTB */
1103 /* bit 13 set - Load CIS */
1104 /* bit 14 set - BIOS Enable */
1105 /* bit 15 set - Big Endian Mode */
1106 ushort cfg_msw; /* 01 unused */
1107 ushort disc_enable; /* 02 disconnect enable */
1108 ushort wdtr_able; /* 03 Wide DTR able */
1109 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1110 ushort start_motor; /* 05 send start up motor */
1111 ushort tagqng_able; /* 06 tag queuing able */
1112 ushort bios_scan; /* 07 BIOS device control */
1113 ushort scam_tolerant; /* 08 no scam */
1114
1115 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1116 uchar bios_boot_delay; /* power up wait */
1117
1118 uchar scsi_reset_delay; /* 10 reset delay */
1119 uchar bios_id_lun; /* first boot device scsi id & lun */
1120 /* high nibble is lun */
1121 /* low nibble is scsi id */
1122
1123 uchar termination_se; /* 11 0 - automatic */
1124 /* 1 - low off / high off */
1125 /* 2 - low off / high on */
1126 /* 3 - low on / high on */
1127 /* There is no low on / high off */
1128
1129 uchar termination_lvd; /* 11 0 - automatic */
1130 /* 1 - low off / high off */
1131 /* 2 - low off / high on */
1132 /* 3 - low on / high on */
1133 /* There is no low on / high off */
1134
1135 ushort bios_ctrl; /* 12 BIOS control bits */
1136 /* bit 0 BIOS don't act as initiator. */
1137 /* bit 1 BIOS > 1 GB support */
1138 /* bit 2 BIOS > 2 Disk Support */
1139 /* bit 3 BIOS don't support removables */
1140 /* bit 4 BIOS support bootable CD */
1141 /* bit 5 BIOS scan enabled */
1142 /* bit 6 BIOS support multiple LUNs */
1143 /* bit 7 BIOS display of message */
1144 /* bit 8 SCAM disabled */
1145 /* bit 9 Reset SCSI bus during init. */
1146 /* bit 10 Basic Integrity Checking disabled */
1147 /* bit 11 No verbose initialization. */
1148 /* bit 12 SCSI parity enabled */
1149 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1150 /* bit 14 */
1151 /* bit 15 */
1152 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1153 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1154 uchar max_host_qng; /* 15 maximum host queueing */
1155 uchar max_dvc_qng; /* maximum per device queuing */
1156 ushort dvc_cntl; /* 16 control bit for driver */
1157 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1158 ushort serial_number_word1; /* 18 Board serial number word 1 */
1159 ushort serial_number_word2; /* 19 Board serial number word 2 */
1160 ushort serial_number_word3; /* 20 Board serial number word 3 */
1161 ushort check_sum; /* 21 EEP check sum */
1162 uchar oem_name[16]; /* 22 OEM name */
1163 ushort dvc_err_code; /* 30 last device driver error code */
1164 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1165 ushort adv_err_addr; /* 32 last uc error address */
1166 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1167 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1168 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1169 ushort reserved36; /* 36 reserved */
1170 ushort reserved37; /* 37 reserved */
1171 ushort reserved38; /* 38 reserved */
1172 ushort reserved39; /* 39 reserved */
1173 ushort reserved40; /* 40 reserved */
1174 ushort reserved41; /* 41 reserved */
1175 ushort reserved42; /* 42 reserved */
1176 ushort reserved43; /* 43 reserved */
1177 ushort reserved44; /* 44 reserved */
1178 ushort reserved45; /* 45 reserved */
1179 ushort reserved46; /* 46 reserved */
1180 ushort reserved47; /* 47 reserved */
1181 ushort reserved48; /* 48 reserved */
1182 ushort reserved49; /* 49 reserved */
1183 ushort reserved50; /* 50 reserved */
1184 ushort reserved51; /* 51 reserved */
1185 ushort reserved52; /* 52 reserved */
1186 ushort reserved53; /* 53 reserved */
1187 ushort reserved54; /* 54 reserved */
1188 ushort reserved55; /* 55 reserved */
1189 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1190 ushort cisprt_msw; /* 57 CIS PTR MSW */
1191 ushort subsysvid; /* 58 SubSystem Vendor ID */
1192 ushort subsysid; /* 59 SubSystem ID */
1193 ushort reserved60; /* 60 reserved */
1194 ushort reserved61; /* 61 reserved */
1195 ushort reserved62; /* 62 reserved */
1196 ushort reserved63; /* 63 reserved */
1197 } ADVEEP_38C1600_CONFIG;
1198
1199 /*
1200 * EEPROM Commands
1201 */
1202 #define ASC_EEP_CMD_DONE 0x0200
1203
1204 /* bios_ctrl */
1205 #define BIOS_CTRL_BIOS 0x0001
1206 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1207 #define BIOS_CTRL_GT_2_DISK 0x0004
1208 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1209 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1210 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1211 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1212 #define BIOS_CTRL_NO_SCAM 0x0100
1213 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1214 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1215 #define BIOS_CTRL_SCSI_PARITY 0x1000
1216 #define BIOS_CTRL_AIPP_DIS 0x2000
1217
1218 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1219
1220 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1221
1222 /*
1223 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1224 * a special 16K Adv Library and Microcode version. After the issue is
1225 * resolved, should restore 32K support.
1226 *
1227 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1228 */
1229 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1230
1231 /*
1232 * Byte I/O register address from base of 'iop_base'.
1233 */
1234 #define IOPB_INTR_STATUS_REG 0x00
1235 #define IOPB_CHIP_ID_1 0x01
1236 #define IOPB_INTR_ENABLES 0x02
1237 #define IOPB_CHIP_TYPE_REV 0x03
1238 #define IOPB_RES_ADDR_4 0x04
1239 #define IOPB_RES_ADDR_5 0x05
1240 #define IOPB_RAM_DATA 0x06
1241 #define IOPB_RES_ADDR_7 0x07
1242 #define IOPB_FLAG_REG 0x08
1243 #define IOPB_RES_ADDR_9 0x09
1244 #define IOPB_RISC_CSR 0x0A
1245 #define IOPB_RES_ADDR_B 0x0B
1246 #define IOPB_RES_ADDR_C 0x0C
1247 #define IOPB_RES_ADDR_D 0x0D
1248 #define IOPB_SOFT_OVER_WR 0x0E
1249 #define IOPB_RES_ADDR_F 0x0F
1250 #define IOPB_MEM_CFG 0x10
1251 #define IOPB_RES_ADDR_11 0x11
1252 #define IOPB_GPIO_DATA 0x12
1253 #define IOPB_RES_ADDR_13 0x13
1254 #define IOPB_FLASH_PAGE 0x14
1255 #define IOPB_RES_ADDR_15 0x15
1256 #define IOPB_GPIO_CNTL 0x16
1257 #define IOPB_RES_ADDR_17 0x17
1258 #define IOPB_FLASH_DATA 0x18
1259 #define IOPB_RES_ADDR_19 0x19
1260 #define IOPB_RES_ADDR_1A 0x1A
1261 #define IOPB_RES_ADDR_1B 0x1B
1262 #define IOPB_RES_ADDR_1C 0x1C
1263 #define IOPB_RES_ADDR_1D 0x1D
1264 #define IOPB_RES_ADDR_1E 0x1E
1265 #define IOPB_RES_ADDR_1F 0x1F
1266 #define IOPB_DMA_CFG0 0x20
1267 #define IOPB_DMA_CFG1 0x21
1268 #define IOPB_TICKLE 0x22
1269 #define IOPB_DMA_REG_WR 0x23
1270 #define IOPB_SDMA_STATUS 0x24
1271 #define IOPB_SCSI_BYTE_CNT 0x25
1272 #define IOPB_HOST_BYTE_CNT 0x26
1273 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1274 #define IOPB_BYTE_TO_XFER_0 0x28
1275 #define IOPB_BYTE_TO_XFER_1 0x29
1276 #define IOPB_BYTE_TO_XFER_2 0x2A
1277 #define IOPB_BYTE_TO_XFER_3 0x2B
1278 #define IOPB_ACC_GRP 0x2C
1279 #define IOPB_RES_ADDR_2D 0x2D
1280 #define IOPB_DEV_ID 0x2E
1281 #define IOPB_RES_ADDR_2F 0x2F
1282 #define IOPB_SCSI_DATA 0x30
1283 #define IOPB_RES_ADDR_31 0x31
1284 #define IOPB_RES_ADDR_32 0x32
1285 #define IOPB_SCSI_DATA_HSHK 0x33
1286 #define IOPB_SCSI_CTRL 0x34
1287 #define IOPB_RES_ADDR_35 0x35
1288 #define IOPB_RES_ADDR_36 0x36
1289 #define IOPB_RES_ADDR_37 0x37
1290 #define IOPB_RAM_BIST 0x38
1291 #define IOPB_PLL_TEST 0x39
1292 #define IOPB_PCI_INT_CFG 0x3A
1293 #define IOPB_RES_ADDR_3B 0x3B
1294 #define IOPB_RFIFO_CNT 0x3C
1295 #define IOPB_RES_ADDR_3D 0x3D
1296 #define IOPB_RES_ADDR_3E 0x3E
1297 #define IOPB_RES_ADDR_3F 0x3F
1298
1299 /*
1300 * Word I/O register address from base of 'iop_base'.
1301 */
1302 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1303 #define IOPW_CTRL_REG 0x02 /* CC */
1304 #define IOPW_RAM_ADDR 0x04 /* LA */
1305 #define IOPW_RAM_DATA 0x06 /* LD */
1306 #define IOPW_RES_ADDR_08 0x08
1307 #define IOPW_RISC_CSR 0x0A /* CSR */
1308 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1309 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1310 #define IOPW_RES_ADDR_10 0x10
1311 #define IOPW_SEL_MASK 0x12 /* SM */
1312 #define IOPW_RES_ADDR_14 0x14
1313 #define IOPW_FLASH_ADDR 0x16 /* FA */
1314 #define IOPW_RES_ADDR_18 0x18
1315 #define IOPW_EE_CMD 0x1A /* EC */
1316 #define IOPW_EE_DATA 0x1C /* ED */
1317 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1318 #define IOPW_RES_ADDR_20 0x20
1319 #define IOPW_Q_BASE 0x22 /* QB */
1320 #define IOPW_QP 0x24 /* QP */
1321 #define IOPW_IX 0x26 /* IX */
1322 #define IOPW_SP 0x28 /* SP */
1323 #define IOPW_PC 0x2A /* PC */
1324 #define IOPW_RES_ADDR_2C 0x2C
1325 #define IOPW_RES_ADDR_2E 0x2E
1326 #define IOPW_SCSI_DATA 0x30 /* SD */
1327 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1328 #define IOPW_SCSI_CTRL 0x34 /* SC */
1329 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1330 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1331 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1332 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1333 #define IOPW_RES_ADDR_3C 0x3C
1334 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1335
1336 /*
1337 * Doubleword I/O register address from base of 'iop_base'.
1338 */
1339 #define IOPDW_RES_ADDR_0 0x00
1340 #define IOPDW_RAM_DATA 0x04
1341 #define IOPDW_RES_ADDR_8 0x08
1342 #define IOPDW_RES_ADDR_C 0x0C
1343 #define IOPDW_RES_ADDR_10 0x10
1344 #define IOPDW_COMMA 0x14
1345 #define IOPDW_COMMB 0x18
1346 #define IOPDW_RES_ADDR_1C 0x1C
1347 #define IOPDW_SDMA_ADDR0 0x20
1348 #define IOPDW_SDMA_ADDR1 0x24
1349 #define IOPDW_SDMA_COUNT 0x28
1350 #define IOPDW_SDMA_ERROR 0x2C
1351 #define IOPDW_RDMA_ADDR0 0x30
1352 #define IOPDW_RDMA_ADDR1 0x34
1353 #define IOPDW_RDMA_COUNT 0x38
1354 #define IOPDW_RDMA_ERROR 0x3C
1355
1356 #define ADV_CHIP_ID_BYTE 0x25
1357 #define ADV_CHIP_ID_WORD 0x04C1
1358
1359 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1360 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1361 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1362 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1363 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1364 #define ADV_INTR_ENABLE_RST_INTR 0x20
1365 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1366 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1367
1368 #define ADV_INTR_STATUS_INTRA 0x01
1369 #define ADV_INTR_STATUS_INTRB 0x02
1370 #define ADV_INTR_STATUS_INTRC 0x04
1371
1372 #define ADV_RISC_CSR_STOP (0x0000)
1373 #define ADV_RISC_TEST_COND (0x2000)
1374 #define ADV_RISC_CSR_RUN (0x4000)
1375 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1376
1377 #define ADV_CTRL_REG_HOST_INTR 0x0100
1378 #define ADV_CTRL_REG_SEL_INTR 0x0200
1379 #define ADV_CTRL_REG_DPR_INTR 0x0400
1380 #define ADV_CTRL_REG_RTA_INTR 0x0800
1381 #define ADV_CTRL_REG_RMA_INTR 0x1000
1382 #define ADV_CTRL_REG_RES_BIT14 0x2000
1383 #define ADV_CTRL_REG_DPE_INTR 0x4000
1384 #define ADV_CTRL_REG_POWER_DONE 0x8000
1385 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1386
1387 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1388 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1389 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1390 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1391 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1392
1393 #define ADV_TICKLE_NOP 0x00
1394 #define ADV_TICKLE_A 0x01
1395 #define ADV_TICKLE_B 0x02
1396 #define ADV_TICKLE_C 0x03
1397
1398 #define AdvIsIntPending(port) \
1399 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1400
1401 /*
1402 * SCSI_CFG0 Register bit definitions
1403 */
1404 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1405 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1406 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1407 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1408 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1409 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1410 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1411 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1412 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1413 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1414 #define OUR_ID 0x000F /* SCSI ID */
1415
1416 /*
1417 * SCSI_CFG1 Register bit definitions
1418 */
1419 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1420 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1421 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1422 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1423 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1424 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1425 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1426 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1427 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1428 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1429 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1430 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1431 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1432 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1433 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1434
1435 /*
1436 * Addendum for ASC-38C0800 Chip
1437 *
1438 * The ASC-38C1600 Chip uses the same definitions except that the
1439 * bus mode override bits [12:10] have been moved to byte register
1440 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1441 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1442 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1443 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1444 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1445 */
1446 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1447 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1448 #define HVD 0x1000 /* HVD Device Detect */
1449 #define LVD 0x0800 /* LVD Device Detect */
1450 #define SE 0x0400 /* SE Device Detect */
1451 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1452 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1453 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1454 #define TERM_SE 0x0030 /* SE Termination Bits */
1455 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1456 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1457 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1458 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1459 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1460 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1461 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1462 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1463
1464 #define CABLE_ILLEGAL_A 0x7
1465 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1466
1467 #define CABLE_ILLEGAL_B 0xB
1468 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1469
1470 /*
1471 * MEM_CFG Register bit definitions
1472 */
1473 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1474 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1475 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1476 #define RAM_SZ_2KB 0x00 /* 2 KB */
1477 #define RAM_SZ_4KB 0x04 /* 4 KB */
1478 #define RAM_SZ_8KB 0x08 /* 8 KB */
1479 #define RAM_SZ_16KB 0x0C /* 16 KB */
1480 #define RAM_SZ_32KB 0x10 /* 32 KB */
1481 #define RAM_SZ_64KB 0x14 /* 64 KB */
1482
1483 /*
1484 * DMA_CFG0 Register bit definitions
1485 *
1486 * This register is only accessible to the host.
1487 */
1488 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1489 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1490 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1491 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1492 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1493 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1494 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1495 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1496 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1497 #define START_CTL 0x0C /* DMA start conditions */
1498 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1499 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1500 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1501 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1502 #define READ_CMD 0x03 /* Memory Read Method */
1503 #define READ_CMD_MR 0x00 /* Memory Read */
1504 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1505 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1506
1507 /*
1508 * ASC-38C0800 RAM BIST Register bit definitions
1509 */
1510 #define RAM_TEST_MODE 0x80
1511 #define PRE_TEST_MODE 0x40
1512 #define NORMAL_MODE 0x00
1513 #define RAM_TEST_DONE 0x10
1514 #define RAM_TEST_STATUS 0x0F
1515 #define RAM_TEST_HOST_ERROR 0x08
1516 #define RAM_TEST_INTRAM_ERROR 0x04
1517 #define RAM_TEST_RISC_ERROR 0x02
1518 #define RAM_TEST_SCSI_ERROR 0x01
1519 #define RAM_TEST_SUCCESS 0x00
1520 #define PRE_TEST_VALUE 0x05
1521 #define NORMAL_VALUE 0x00
1522
1523 /*
1524 * ASC38C1600 Definitions
1525 *
1526 * IOPB_PCI_INT_CFG Bit Field Definitions
1527 */
1528
1529 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1530
1531 /*
1532 * Bit 1 can be set to change the interrupt for the Function to operate in
1533 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1534 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1535 * mode, otherwise the operating mode is undefined.
1536 */
1537 #define TOTEMPOLE 0x02
1538
1539 /*
1540 * Bit 0 can be used to change the Int Pin for the Function. The value is
1541 * 0 by default for both Functions with Function 0 using INT A and Function
1542 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1543 * INT A is used.
1544 *
1545 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1546 * value specified in the PCI Configuration Space.
1547 */
1548 #define INTAB 0x01
1549
1550 /*
1551 * Adv Library Status Definitions
1552 */
1553 #define ADV_TRUE 1
1554 #define ADV_FALSE 0
1555 #define ADV_SUCCESS 1
1556 #define ADV_BUSY 0
1557 #define ADV_ERROR (-1)
1558
1559 /*
1560 * ADV_DVC_VAR 'warn_code' values
1561 */
1562 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1563 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1564 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1565 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1566
1567 #define ADV_MAX_TID 15 /* max. target identifier */
1568 #define ADV_MAX_LUN 7 /* max. logical unit number */
1569
1570 /*
1571 * Fixed locations of microcode operating variables.
1572 */
1573 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1574 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1575 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1576 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1577 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1578 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1579 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1580 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1581 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1582 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1583 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1584 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1585 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1586 #define ASC_MC_CHIP_TYPE 0x009A
1587 #define ASC_MC_INTRB_CODE 0x009B
1588 #define ASC_MC_WDTR_ABLE 0x009C
1589 #define ASC_MC_SDTR_ABLE 0x009E
1590 #define ASC_MC_TAGQNG_ABLE 0x00A0
1591 #define ASC_MC_DISC_ENABLE 0x00A2
1592 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1593 #define ASC_MC_IDLE_CMD 0x00A6
1594 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1595 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1596 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1597 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1598 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1599 #define ASC_MC_SDTR_DONE 0x00B6
1600 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1601 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1602 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1603 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1604 #define ASC_MC_WDTR_DONE 0x0124
1605 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1606 #define ASC_MC_ICQ 0x0160
1607 #define ASC_MC_IRQ 0x0164
1608 #define ASC_MC_PPR_ABLE 0x017A
1609
1610 /*
1611 * BIOS LRAM variable absolute offsets.
1612 */
1613 #define BIOS_CODESEG 0x54
1614 #define BIOS_CODELEN 0x56
1615 #define BIOS_SIGNATURE 0x58
1616 #define BIOS_VERSION 0x5A
1617
1618 /*
1619 * Microcode Control Flags
1620 *
1621 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1622 * and handled by the microcode.
1623 */
1624 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1625 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1626
1627 /*
1628 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1629 */
1630 #define HSHK_CFG_WIDE_XFR 0x8000
1631 #define HSHK_CFG_RATE 0x0F00
1632 #define HSHK_CFG_OFFSET 0x001F
1633
1634 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1635 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1636 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1637 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1638
1639 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1640 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1641 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1642 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1643 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1644
1645 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1646 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1647 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1648 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1649 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1650 /*
1651 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1652 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1653 */
1654 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1655 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1656
1657 /*
1658 * All fields here are accessed by the board microcode and need to be
1659 * little-endian.
1660 */
1661 typedef struct adv_carr_t {
1662 __le32 carr_va; /* Carrier Virtual Address */
1663 __le32 carr_pa; /* Carrier Physical Address */
1664 __le32 areq_vpa; /* ADV_SCSI_REQ_Q Virtual or Physical Address */
1665 /*
1666 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1667 *
1668 * next_vpa [3:1] Reserved Bits
1669 * next_vpa [0] Done Flag set in Response Queue.
1670 */
1671 __le32 next_vpa;
1672 } ADV_CARR_T;
1673
1674 /*
1675 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1676 */
1677 #define ADV_NEXT_VPA_MASK 0xFFFFFFF0
1678
1679 #define ADV_RQ_DONE 0x00000001
1680 #define ADV_RQ_GOOD 0x00000002
1681 #define ADV_CQ_STOPPER 0x00000000
1682
1683 #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1684
1685 /*
1686 * Each carrier is 64 bytes, and we need three additional
1687 * carrier for icq, irq, and the termination carrier.
1688 */
1689 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1690
1691 #define ADV_CARRIER_BUFSIZE \
1692 (ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1693
1694 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1695 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1696 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1697
1698 /*
1699 * Adapter temporary configuration structure
1700 *
1701 * This structure can be discarded after initialization. Don't add
1702 * fields here needed after initialization.
1703 *
1704 * Field naming convention:
1705 *
1706 * *_enable indicates the field enables or disables a feature. The
1707 * value of the field is never reset.
1708 */
1709 typedef struct adv_dvc_cfg {
1710 ushort disc_enable; /* enable disconnection */
1711 uchar chip_version; /* chip version */
1712 uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1713 ushort control_flag; /* Microcode Control Flag */
1714 ushort mcode_date; /* Microcode date */
1715 ushort mcode_version; /* Microcode version */
1716 ushort serial1; /* EEPROM serial number word 1 */
1717 ushort serial2; /* EEPROM serial number word 2 */
1718 ushort serial3; /* EEPROM serial number word 3 */
1719 } ADV_DVC_CFG;
1720
1721 struct adv_dvc_var;
1722 struct adv_scsi_req_q;
1723
1724 typedef struct adv_sg_block {
1725 uchar reserved1;
1726 uchar reserved2;
1727 uchar reserved3;
1728 uchar sg_cnt; /* Valid entries in block. */
1729 __le32 sg_ptr; /* Pointer to next sg block. */
1730 struct {
1731 __le32 sg_addr; /* SG element address. */
1732 __le32 sg_count; /* SG element count. */
1733 } sg_list[NO_OF_SG_PER_BLOCK];
1734 } ADV_SG_BLOCK;
1735
1736 /*
1737 * ADV_SCSI_REQ_Q - microcode request structure
1738 *
1739 * All fields in this structure up to byte 60 are used by the microcode.
1740 * The microcode makes assumptions about the size and ordering of fields
1741 * in this structure. Do not change the structure definition here without
1742 * coordinating the change with the microcode.
1743 *
1744 * All fields accessed by microcode must be maintained in little_endian
1745 * order.
1746 */
1747 typedef struct adv_scsi_req_q {
1748 uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */
1749 uchar target_cmd;
1750 uchar target_id; /* Device target identifier. */
1751 uchar target_lun; /* Device target logical unit number. */
1752 __le32 data_addr; /* Data buffer physical address. */
1753 __le32 data_cnt; /* Data count. Ucode sets to residual. */
1754 __le32 sense_addr;
1755 __le32 carr_pa;
1756 uchar mflag;
1757 uchar sense_len;
1758 uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */
1759 uchar scsi_cntl;
1760 uchar done_status; /* Completion status. */
1761 uchar scsi_status; /* SCSI status byte. */
1762 uchar host_status; /* Ucode host status. */
1763 uchar sg_working_ix;
1764 uchar cdb[12]; /* SCSI CDB bytes 0-11. */
1765 __le32 sg_real_addr; /* SG list physical address. */
1766 __le32 scsiq_rptr;
1767 uchar cdb16[4]; /* SCSI CDB bytes 12-15. */
1768 __le32 scsiq_ptr;
1769 __le32 carr_va;
1770 /*
1771 * End of microcode structure - 60 bytes. The rest of the structure
1772 * is used by the Adv Library and ignored by the microcode.
1773 */
1774 u32 srb_tag;
1775 ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */
1776 } ADV_SCSI_REQ_Q;
1777
1778 /*
1779 * The following two structures are used to process Wide Board requests.
1780 *
1781 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1782 * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1783 * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1784 * to the Mid-Level SCSI request structure.
1785 *
1786 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1787 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1788 * up to 255 scatter-gather elements may be used per request or
1789 * ADV_SCSI_REQ_Q.
1790 *
1791 * Both structures must be 32 byte aligned.
1792 */
1793 typedef struct adv_sgblk {
1794 ADV_SG_BLOCK sg_block; /* Sgblock structure. */
1795 dma_addr_t sg_addr; /* Physical address */
1796 struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */
1797 } adv_sgblk_t;
1798
1799 typedef struct adv_req {
1800 ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */
1801 uchar align[24]; /* Request structure padding. */
1802 struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */
1803 dma_addr_t req_addr;
1804 adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */
1805 } adv_req_t __aligned(32);
1806
1807 /*
1808 * Adapter operation variable structure.
1809 *
1810 * One structure is required per host adapter.
1811 *
1812 * Field naming convention:
1813 *
1814 * *_able indicates both whether a feature should be enabled or disabled
1815 * and whether a device isi capable of the feature. At initialization
1816 * this field may be set, but later if a device is found to be incapable
1817 * of the feature, the field is cleared.
1818 */
1819 typedef struct adv_dvc_var {
1820 AdvPortAddr iop_base; /* I/O port address */
1821 ushort err_code; /* fatal error code */
1822 ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */
1823 ushort wdtr_able; /* try WDTR for a device */
1824 ushort sdtr_able; /* try SDTR for a device */
1825 ushort ultra_able; /* try SDTR Ultra speed for a device */
1826 ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */
1827 ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */
1828 ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */
1829 ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */
1830 ushort tagqng_able; /* try tagged queuing with a device */
1831 ushort ppr_able; /* PPR message capable per TID bitmask. */
1832 uchar max_dvc_qng; /* maximum number of tagged commands per device */
1833 ushort start_motor; /* start motor command allowed */
1834 uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */
1835 uchar chip_no; /* should be assigned by caller */
1836 uchar max_host_qng; /* maximum number of Q'ed command allowed */
1837 ushort no_scam; /* scam_tolerant of EEPROM */
1838 struct asc_board *drv_ptr; /* driver pointer to private structure */
1839 uchar chip_scsi_id; /* chip SCSI target ID */
1840 uchar chip_type;
1841 uchar bist_err_code;
1842 ADV_CARR_T *carrier;
1843 ADV_CARR_T *carr_freelist; /* Carrier free list. */
1844 dma_addr_t carrier_addr;
1845 ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */
1846 ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */
1847 ushort carr_pending_cnt; /* Count of pending carriers. */
1848 /*
1849 * Note: The following fields will not be used after initialization. The
1850 * driver may discard the buffer after initialization is done.
1851 */
1852 ADV_DVC_CFG *cfg; /* temporary configuration structure */
1853 } ADV_DVC_VAR;
1854
1855 /*
1856 * Microcode idle loop commands
1857 */
1858 #define IDLE_CMD_COMPLETED 0
1859 #define IDLE_CMD_STOP_CHIP 0x0001
1860 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1861 #define IDLE_CMD_SEND_INT 0x0004
1862 #define IDLE_CMD_ABORT 0x0008
1863 #define IDLE_CMD_DEVICE_RESET 0x0010
1864 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1865 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1866 #define IDLE_CMD_SCSIREQ 0x0080
1867
1868 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1869 #define IDLE_CMD_STATUS_FAILURE 0x0002
1870
1871 /*
1872 * AdvSendIdleCmd() flag definitions.
1873 */
1874 #define ADV_NOWAIT 0x01
1875
1876 /*
1877 * Wait loop time out values.
1878 */
1879 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1880 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1881 #define SCSI_MAX_RETRY 10 /* retry count */
1882
1883 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1884 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1885 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1886 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1887
1888 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1889
1890 /* Read byte from a register. */
1891 #define AdvReadByteRegister(iop_base, reg_off) \
1892 (ADV_MEM_READB((iop_base) + (reg_off)))
1893
1894 /* Write byte to a register. */
1895 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1896 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1897
1898 /* Read word (2 bytes) from a register. */
1899 #define AdvReadWordRegister(iop_base, reg_off) \
1900 (ADV_MEM_READW((iop_base) + (reg_off)))
1901
1902 /* Write word (2 bytes) to a register. */
1903 #define AdvWriteWordRegister(iop_base, reg_off, word) \
1904 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1905
1906 /* Write dword (4 bytes) to a register. */
1907 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1908 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1909
1910 /* Read byte from LRAM. */
1911 #define AdvReadByteLram(iop_base, addr, byte) \
1912 do { \
1913 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1914 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1915 } while (0)
1916
1917 /* Write byte to LRAM. */
1918 #define AdvWriteByteLram(iop_base, addr, byte) \
1919 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1920 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1921
1922 /* Read word (2 bytes) from LRAM. */
1923 #define AdvReadWordLram(iop_base, addr, word) \
1924 do { \
1925 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1926 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1927 } while (0)
1928
1929 /* Write word (2 bytes) to LRAM. */
1930 #define AdvWriteWordLram(iop_base, addr, word) \
1931 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1932 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1933
1934 /* Write little-endian double word (4 bytes) to LRAM */
1935 /* Because of unspecified C language ordering don't use auto-increment. */
1936 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1937 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1938 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1939 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1940 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1941 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1942 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1943
1944 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
1945 #define AdvReadWordAutoIncLram(iop_base) \
1946 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1947
1948 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
1949 #define AdvWriteWordAutoIncLram(iop_base, word) \
1950 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1951
1952 /*
1953 * Define macro to check for Condor signature.
1954 *
1955 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1956 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1957 */
1958 #define AdvFindSignature(iop_base) \
1959 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1960 ADV_CHIP_ID_BYTE) && \
1961 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1962 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
1963
1964 /*
1965 * Define macro to Return the version number of the chip at 'iop_base'.
1966 *
1967 * The second parameter 'bus_type' is currently unused.
1968 */
1969 #define AdvGetChipVersion(iop_base, bus_type) \
1970 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1971
1972 /*
1973 * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1974 * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1975 *
1976 * If the request has not yet been sent to the device it will simply be
1977 * aborted from RISC memory. If the request is disconnected it will be
1978 * aborted on reselection by sending an Abort Message to the target ID.
1979 *
1980 * Return value:
1981 * ADV_TRUE(1) - Queue was successfully aborted.
1982 * ADV_FALSE(0) - Queue was not found on the active queue list.
1983 */
1984 #define AdvAbortQueue(asc_dvc, srb_tag) \
1985 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1986 (ADV_DCNT) (srb_tag))
1987
1988 /*
1989 * Send a Bus Device Reset Message to the specified target ID.
1990 *
1991 * All outstanding commands will be purged if sending the
1992 * Bus Device Reset Message is successful.
1993 *
1994 * Return Value:
1995 * ADV_TRUE(1) - All requests on the target are purged.
1996 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
1997 * are not purged.
1998 */
1999 #define AdvResetDevice(asc_dvc, target_id) \
2000 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2001 (ADV_DCNT) (target_id))
2002
2003 /*
2004 * SCSI Wide Type definition.
2005 */
2006 #define ADV_SCSI_BIT_ID_TYPE ushort
2007
2008 /*
2009 * AdvInitScsiTarget() 'cntl_flag' options.
2010 */
2011 #define ADV_SCAN_LUN 0x01
2012 #define ADV_CAPINFO_NOLUN 0x02
2013
2014 /*
2015 * Convert target id to target id bit mask.
2016 */
2017 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2018
2019 /*
2020 * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2021 */
2022
2023 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2024 #define QD_NO_ERROR 0x01
2025 #define QD_ABORTED_BY_HOST 0x02
2026 #define QD_WITH_ERROR 0x04
2027
2028 #define QHSTA_NO_ERROR 0x00
2029 #define QHSTA_M_SEL_TIMEOUT 0x11
2030 #define QHSTA_M_DATA_OVER_RUN 0x12
2031 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2032 #define QHSTA_M_QUEUE_ABORTED 0x15
2033 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2034 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2035 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2036 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2037 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2038 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2039 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2040 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2041 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2042 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2043 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2044 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2045 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2046 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2047 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2048 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2049 #define QHSTA_M_WTM_TIMEOUT 0x41
2050 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2051 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2052 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2053 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2054 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2055 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2056
2057 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2058 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2059
2060 /*
2061 * Total contiguous memory needed for driver SG blocks.
2062 *
2063 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2064 * number of scatter-gather elements the driver supports in a
2065 * single request.
2066 */
2067
2068 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2069 (sizeof(ADV_SG_BLOCK) * \
2070 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2071
2072 /* struct asc_board flags */
2073 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2074
2075 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2076
2077 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2078
2079 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2080
2081 /* Asc Library return codes */
2082 #define ASC_TRUE 1
2083 #define ASC_FALSE 0
2084 #define ASC_NOERROR 1
2085 #define ASC_BUSY 0
2086 #define ASC_ERROR (-1)
2087
2088 /* struct scsi_cmnd function return codes */
2089 #define STATUS_BYTE(byte) (byte)
2090 #define MSG_BYTE(byte) ((byte) << 8)
2091 #define HOST_BYTE(byte) ((byte) << 16)
2092 #define DRIVER_BYTE(byte) ((byte) << 24)
2093
2094 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2095 #ifndef ADVANSYS_STATS
2096 #define ASC_STATS_ADD(shost, counter, count)
2097 #else /* ADVANSYS_STATS */
2098 #define ASC_STATS_ADD(shost, counter, count) \
2099 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2100 #endif /* ADVANSYS_STATS */
2101
2102 /* If the result wraps when calculating tenths, return 0. */
2103 #define ASC_TENTHS(num, den) \
2104 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2105 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2106
2107 /*
2108 * Display a message to the console.
2109 */
2110 #define ASC_PRINT(s) \
2111 { \
2112 printk("advansys: "); \
2113 printk(s); \
2114 }
2115
2116 #define ASC_PRINT1(s, a1) \
2117 { \
2118 printk("advansys: "); \
2119 printk((s), (a1)); \
2120 }
2121
2122 #define ASC_PRINT2(s, a1, a2) \
2123 { \
2124 printk("advansys: "); \
2125 printk((s), (a1), (a2)); \
2126 }
2127
2128 #define ASC_PRINT3(s, a1, a2, a3) \
2129 { \
2130 printk("advansys: "); \
2131 printk((s), (a1), (a2), (a3)); \
2132 }
2133
2134 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2135 { \
2136 printk("advansys: "); \
2137 printk((s), (a1), (a2), (a3), (a4)); \
2138 }
2139
2140 #ifndef ADVANSYS_DEBUG
2141
2142 #define ASC_DBG(lvl, s...)
2143 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2144 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2145 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2146 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2147 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2148 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2149 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2150 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2151 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2152
2153 #else /* ADVANSYS_DEBUG */
2154
2155 /*
2156 * Debugging Message Levels:
2157 * 0: Errors Only
2158 * 1: High-Level Tracing
2159 * 2-N: Verbose Tracing
2160 */
2161
2162 #define ASC_DBG(lvl, format, arg...) { \
2163 if (asc_dbglvl >= (lvl)) \
2164 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2165 __func__ , ## arg); \
2166 }
2167
2168 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2169 { \
2170 if (asc_dbglvl >= (lvl)) { \
2171 asc_prt_scsi_host(s); \
2172 } \
2173 }
2174
2175 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2176 { \
2177 if (asc_dbglvl >= (lvl)) { \
2178 asc_prt_asc_scsi_q(scsiqp); \
2179 } \
2180 }
2181
2182 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2183 { \
2184 if (asc_dbglvl >= (lvl)) { \
2185 asc_prt_asc_qdone_info(qdone); \
2186 } \
2187 }
2188
2189 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2190 { \
2191 if (asc_dbglvl >= (lvl)) { \
2192 asc_prt_adv_scsi_req_q(scsiqp); \
2193 } \
2194 }
2195
2196 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2197 { \
2198 if (asc_dbglvl >= (lvl)) { \
2199 asc_prt_hex((name), (start), (length)); \
2200 } \
2201 }
2202
2203 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2204 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2205
2206 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2207 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2208
2209 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2210 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2211 #endif /* ADVANSYS_DEBUG */
2212
2213 #ifdef ADVANSYS_STATS
2214
2215 /* Per board statistics structure */
2216 struct asc_stats {
2217 /* Driver Entrypoint Statistics */
2218 unsigned int queuecommand; /* # calls to advansys_queuecommand() */
2219 unsigned int reset; /* # calls to advansys_eh_bus_reset() */
2220 unsigned int biosparam; /* # calls to advansys_biosparam() */
2221 unsigned int interrupt; /* # advansys_interrupt() calls */
2222 unsigned int callback; /* # calls to asc/adv_isr_callback() */
2223 unsigned int done; /* # calls to request's scsi_done function */
2224 unsigned int build_error; /* # asc/adv_build_req() ASC_ERROR returns. */
2225 unsigned int adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */
2226 unsigned int adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2227 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2228 unsigned int exe_noerror; /* # ASC_NOERROR returns. */
2229 unsigned int exe_busy; /* # ASC_BUSY returns. */
2230 unsigned int exe_error; /* # ASC_ERROR returns. */
2231 unsigned int exe_unknown; /* # unknown returns. */
2232 /* Data Transfer Statistics */
2233 unsigned int xfer_cnt; /* # I/O requests received */
2234 unsigned int xfer_elem; /* # scatter-gather elements */
2235 unsigned int xfer_sect; /* # 512-byte blocks */
2236 };
2237 #endif /* ADVANSYS_STATS */
2238
2239 /*
2240 * Structure allocated for each board.
2241 *
2242 * This structure is allocated by scsi_host_alloc() at the end
2243 * of the 'Scsi_Host' structure starting at the 'hostdata'
2244 * field. It is guaranteed to be allocated from DMA-able memory.
2245 */
2246 struct asc_board {
2247 struct device *dev;
2248 struct Scsi_Host *shost;
2249 uint flags; /* Board flags */
2250 unsigned int irq;
2251 union {
2252 ASC_DVC_VAR asc_dvc_var; /* Narrow board */
2253 ADV_DVC_VAR adv_dvc_var; /* Wide board */
2254 } dvc_var;
2255 union {
2256 ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */
2257 ADV_DVC_CFG adv_dvc_cfg; /* Wide board */
2258 } dvc_cfg;
2259 ushort asc_n_io_port; /* Number I/O ports. */
2260 ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */
2261 ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2262 ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */
2263 ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2264 union {
2265 ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */
2266 ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */
2267 ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */
2268 ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */
2269 } eep_config;
2270 /* /proc/scsi/advansys/[0...] */
2271 #ifdef ADVANSYS_STATS
2272 struct asc_stats asc_stats; /* Board statistics */
2273 #endif /* ADVANSYS_STATS */
2274 /*
2275 * The following fields are used only for Narrow Boards.
2276 */
2277 uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */
2278 /*
2279 * The following fields are used only for Wide Boards.
2280 */
2281 void __iomem *ioremap_addr; /* I/O Memory remap address. */
2282 ushort ioport; /* I/O Port address. */
2283 adv_req_t *adv_reqp; /* Request structures. */
2284 dma_addr_t adv_reqp_addr;
2285 size_t adv_reqp_size;
2286 struct dma_pool *adv_sgblk_pool; /* Scatter-gather structures. */
2287 ushort bios_signature; /* BIOS Signature. */
2288 ushort bios_version; /* BIOS Version. */
2289 ushort bios_codeseg; /* BIOS Code Segment. */
2290 ushort bios_codelen; /* BIOS Code Segment Length. */
2291 };
2292
2293 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2294 dvc_var.asc_dvc_var)
2295 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2296 dvc_var.adv_dvc_var)
2297 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2298
2299 #ifdef ADVANSYS_DEBUG
2300 static int asc_dbglvl = 3;
2301
2302 /*
2303 * asc_prt_asc_dvc_var()
2304 */
2305 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2306 {
2307 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2308
2309 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2310 "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2311
2312 printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2313 (unsigned)h->init_sdtr);
2314
2315 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2316 "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2317 (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2318 (unsigned)h->chip_no);
2319
2320 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2321 "%u,\n", (unsigned)h->queue_full_or_busy,
2322 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2323
2324 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2325 "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2326 (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2327 (unsigned)h->in_critical_cnt);
2328
2329 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2330 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2331 (unsigned)h->init_state, (unsigned)h->no_scam,
2332 (unsigned)h->pci_fix_asyn_xfer);
2333
2334 printk(" cfg 0x%lx\n", (ulong)h->cfg);
2335 }
2336
2337 /*
2338 * asc_prt_asc_dvc_cfg()
2339 */
2340 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2341 {
2342 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2343
2344 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2345 h->can_tagged_qng, h->cmd_qng_enabled);
2346 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2347 h->disc_enable, h->sdtr_enable);
2348
2349 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2350 "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2351 h->isa_dma_channel, h->chip_version);
2352
2353 printk(" mcode_date 0x%x, mcode_version %d\n",
2354 h->mcode_date, h->mcode_version);
2355 }
2356
2357 /*
2358 * asc_prt_adv_dvc_var()
2359 *
2360 * Display an ADV_DVC_VAR structure.
2361 */
2362 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2363 {
2364 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2365
2366 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2367 (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2368
2369 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2370 (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2371
2372 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2373 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2374
2375 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2376 (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2377 h->carr_freelist);
2378
2379 printk(" icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
2380
2381 printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2382 (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2383
2384 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2385 (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2386 }
2387
2388 /*
2389 * asc_prt_adv_dvc_cfg()
2390 *
2391 * Display an ADV_DVC_CFG structure.
2392 */
2393 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2394 {
2395 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2396
2397 printk(" disc_enable 0x%x, termination 0x%x\n",
2398 h->disc_enable, h->termination);
2399
2400 printk(" chip_version 0x%x, mcode_date 0x%x\n",
2401 h->chip_version, h->mcode_date);
2402
2403 printk(" mcode_version 0x%x, control_flag 0x%x\n",
2404 h->mcode_version, h->control_flag);
2405 }
2406
2407 /*
2408 * asc_prt_scsi_host()
2409 */
2410 static void asc_prt_scsi_host(struct Scsi_Host *s)
2411 {
2412 struct asc_board *boardp = shost_priv(s);
2413
2414 printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2415 printk(" host_busy %d, host_no %d,\n",
2416 scsi_host_busy(s), s->host_no);
2417
2418 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2419 (ulong)s->base, (ulong)s->io_port, boardp->irq);
2420
2421 printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2422 s->dma_channel, s->this_id, s->can_queue);
2423
2424 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2425 s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2426
2427 if (ASC_NARROW_BOARD(boardp)) {
2428 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2429 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2430 } else {
2431 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2432 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2433 }
2434 }
2435
2436 /*
2437 * asc_prt_hex()
2438 *
2439 * Print hexadecimal output in 4 byte groupings 32 bytes
2440 * or 8 double-words per line.
2441 */
2442 static void asc_prt_hex(char *f, uchar *s, int l)
2443 {
2444 int i;
2445 int j;
2446 int k;
2447 int m;
2448
2449 printk("%s: (%d bytes)\n", f, l);
2450
2451 for (i = 0; i < l; i += 32) {
2452
2453 /* Display a maximum of 8 double-words per line. */
2454 if ((k = (l - i) / 4) >= 8) {
2455 k = 8;
2456 m = 0;
2457 } else {
2458 m = (l - i) % 4;
2459 }
2460
2461 for (j = 0; j < k; j++) {
2462 printk(" %2.2X%2.2X%2.2X%2.2X",
2463 (unsigned)s[i + (j * 4)],
2464 (unsigned)s[i + (j * 4) + 1],
2465 (unsigned)s[i + (j * 4) + 2],
2466 (unsigned)s[i + (j * 4) + 3]);
2467 }
2468
2469 switch (m) {
2470 case 0:
2471 default:
2472 break;
2473 case 1:
2474 printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2475 break;
2476 case 2:
2477 printk(" %2.2X%2.2X",
2478 (unsigned)s[i + (j * 4)],
2479 (unsigned)s[i + (j * 4) + 1]);
2480 break;
2481 case 3:
2482 printk(" %2.2X%2.2X%2.2X",
2483 (unsigned)s[i + (j * 4) + 1],
2484 (unsigned)s[i + (j * 4) + 2],
2485 (unsigned)s[i + (j * 4) + 3]);
2486 break;
2487 }
2488
2489 printk("\n");
2490 }
2491 }
2492
2493 /*
2494 * asc_prt_asc_scsi_q()
2495 */
2496 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2497 {
2498 ASC_SG_HEAD *sgp;
2499 int i;
2500
2501 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2502
2503 printk
2504 (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2505 q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
2506 q->q2.tag_code);
2507
2508 printk
2509 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2510 (ulong)le32_to_cpu(q->q1.data_addr),
2511 (ulong)le32_to_cpu(q->q1.data_cnt),
2512 (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2513
2514 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2515 (ulong)q->cdbptr, q->q2.cdb_len,
2516 (ulong)q->sg_head, q->q1.sg_queue_cnt);
2517
2518 if (q->sg_head) {
2519 sgp = q->sg_head;
2520 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2521 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2522 sgp->queue_cnt);
2523 for (i = 0; i < sgp->entry_cnt; i++) {
2524 printk(" [%u]: addr 0x%lx, bytes %lu\n",
2525 i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2526 (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2527 }
2528
2529 }
2530 }
2531
2532 /*
2533 * asc_prt_asc_qdone_info()
2534 */
2535 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2536 {
2537 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2538 printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2539 q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
2540 q->d2.tag_code);
2541 printk
2542 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2543 q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2544 }
2545
2546 /*
2547 * asc_prt_adv_sgblock()
2548 *
2549 * Display an ADV_SG_BLOCK structure.
2550 */
2551 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2552 {
2553 int i;
2554
2555 printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2556 (ulong)b, sgblockno);
2557 printk(" sg_cnt %u, sg_ptr 0x%x\n",
2558 b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
2559 BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2560 if (b->sg_ptr != 0)
2561 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2562 for (i = 0; i < b->sg_cnt; i++) {
2563 printk(" [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2564 i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
2565 (u32)le32_to_cpu(b->sg_list[i].sg_count));
2566 }
2567 }
2568
2569 /*
2570 * asc_prt_adv_scsi_req_q()
2571 *
2572 * Display an ADV_SCSI_REQ_Q structure.
2573 */
2574 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2575 {
2576 int sg_blk_cnt;
2577 struct adv_sg_block *sg_ptr;
2578 adv_sgblk_t *sgblkp;
2579
2580 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2581
2582 printk(" target_id %u, target_lun %u, srb_tag 0x%x\n",
2583 q->target_id, q->target_lun, q->srb_tag);
2584
2585 printk(" cntl 0x%x, data_addr 0x%lx\n",
2586 q->cntl, (ulong)le32_to_cpu(q->data_addr));
2587
2588 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2589 (ulong)le32_to_cpu(q->data_cnt),
2590 (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2591
2592 printk
2593 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2594 q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2595
2596 printk(" sg_working_ix 0x%x, target_cmd %u\n",
2597 q->sg_working_ix, q->target_cmd);
2598
2599 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2600 (ulong)le32_to_cpu(q->scsiq_rptr),
2601 (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2602
2603 /* Display the request's ADV_SG_BLOCK structures. */
2604 if (q->sg_list_ptr != NULL) {
2605 sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
2606 sg_blk_cnt = 0;
2607 while (sgblkp) {
2608 sg_ptr = &sgblkp->sg_block;
2609 asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2610 if (sg_ptr->sg_ptr == 0) {
2611 break;
2612 }
2613 sgblkp = sgblkp->next_sgblkp;
2614 sg_blk_cnt++;
2615 }
2616 }
2617 }
2618 #endif /* ADVANSYS_DEBUG */
2619
2620 /*
2621 * advansys_info()
2622 *
2623 * Return suitable for printing on the console with the argument
2624 * adapter's configuration information.
2625 *
2626 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2627 * otherwise the static 'info' array will be overrun.
2628 */
2629 static const char *advansys_info(struct Scsi_Host *shost)
2630 {
2631 static char info[ASC_INFO_SIZE];
2632 struct asc_board *boardp = shost_priv(shost);
2633 ASC_DVC_VAR *asc_dvc_varp;
2634 ADV_DVC_VAR *adv_dvc_varp;
2635 char *busname;
2636 char *widename = NULL;
2637
2638 if (ASC_NARROW_BOARD(boardp)) {
2639 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2640 ASC_DBG(1, "begin\n");
2641 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2642 if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2643 ASC_IS_ISAPNP) {
2644 busname = "ISA PnP";
2645 } else {
2646 busname = "ISA";
2647 }
2648 sprintf(info,
2649 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2650 ASC_VERSION, busname,
2651 (ulong)shost->io_port,
2652 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2653 boardp->irq, shost->dma_channel);
2654 } else {
2655 if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2656 busname = "VL";
2657 } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2658 busname = "EISA";
2659 } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2660 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2661 == ASC_IS_PCI_ULTRA) {
2662 busname = "PCI Ultra";
2663 } else {
2664 busname = "PCI";
2665 }
2666 } else {
2667 busname = "?";
2668 shost_printk(KERN_ERR, shost, "unknown bus "
2669 "type %d\n", asc_dvc_varp->bus_type);
2670 }
2671 sprintf(info,
2672 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2673 ASC_VERSION, busname, (ulong)shost->io_port,
2674 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2675 boardp->irq);
2676 }
2677 } else {
2678 /*
2679 * Wide Adapter Information
2680 *
2681 * Memory-mapped I/O is used instead of I/O space to access
2682 * the adapter, but display the I/O Port range. The Memory
2683 * I/O address is displayed through the driver /proc file.
2684 */
2685 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2686 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2687 widename = "Ultra-Wide";
2688 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2689 widename = "Ultra2-Wide";
2690 } else {
2691 widename = "Ultra3-Wide";
2692 }
2693 sprintf(info,
2694 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2695 ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2696 (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2697 }
2698 BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2699 ASC_DBG(1, "end\n");
2700 return info;
2701 }
2702
2703 #ifdef CONFIG_PROC_FS
2704
2705 /*
2706 * asc_prt_board_devices()
2707 *
2708 * Print driver information for devices attached to the board.
2709 */
2710 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2711 {
2712 struct asc_board *boardp = shost_priv(shost);
2713 int chip_scsi_id;
2714 int i;
2715
2716 seq_printf(m,
2717 "\nDevice Information for AdvanSys SCSI Host %d:\n",
2718 shost->host_no);
2719
2720 if (ASC_NARROW_BOARD(boardp)) {
2721 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2722 } else {
2723 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2724 }
2725
2726 seq_puts(m, "Target IDs Detected:");
2727 for (i = 0; i <= ADV_MAX_TID; i++) {
2728 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2729 seq_printf(m, " %X,", i);
2730 }
2731 seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2732 }
2733
2734 /*
2735 * Display Wide Board BIOS Information.
2736 */
2737 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2738 {
2739 struct asc_board *boardp = shost_priv(shost);
2740 ushort major, minor, letter;
2741
2742 seq_puts(m, "\nROM BIOS Version: ");
2743
2744 /*
2745 * If the BIOS saved a valid signature, then fill in
2746 * the BIOS code segment base address.
2747 */
2748 if (boardp->bios_signature != 0x55AA) {
2749 seq_puts(m, "Disabled or Pre-3.1\n"
2750 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2751 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2752 } else {
2753 major = (boardp->bios_version >> 12) & 0xF;
2754 minor = (boardp->bios_version >> 8) & 0xF;
2755 letter = (boardp->bios_version & 0xFF);
2756
2757 seq_printf(m, "%d.%d%c\n",
2758 major, minor,
2759 letter >= 26 ? '?' : letter + 'A');
2760 /*
2761 * Current available ROM BIOS release is 3.1I for UW
2762 * and 3.2I for U2W. This code doesn't differentiate
2763 * UW and U2W boards.
2764 */
2765 if (major < 3 || (major <= 3 && minor < 1) ||
2766 (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2767 seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2768 "ftp://ftp.connectcom.net/pub\n");
2769 }
2770 }
2771 }
2772
2773 /*
2774 * Add serial number to information bar if signature AAh
2775 * is found in at bit 15-9 (7 bits) of word 1.
2776 *
2777 * Serial Number consists fo 12 alpha-numeric digits.
2778 *
2779 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
2780 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
2781 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
2782 * 5 - Product revision (A-J) Word0: " "
2783 *
2784 * Signature Word1: 15-9 (7 bits)
2785 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2786 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
2787 *
2788 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2789 *
2790 * Note 1: Only production cards will have a serial number.
2791 *
2792 * Note 2: Signature is most significant 7 bits (0xFE).
2793 *
2794 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2795 */
2796 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2797 {
2798 ushort w, num;
2799
2800 if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2801 return ASC_FALSE;
2802 } else {
2803 /*
2804 * First word - 6 digits.
2805 */
2806 w = serialnum[0];
2807
2808 /* Product type - 1st digit. */
2809 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2810 /* Product type is P=Prototype */
2811 *cp += 0x8;
2812 }
2813 cp++;
2814
2815 /* Manufacturing location - 2nd digit. */
2816 *cp++ = 'A' + ((w & 0x1C00) >> 10);
2817
2818 /* Product ID - 3rd, 4th digits. */
2819 num = w & 0x3FF;
2820 *cp++ = '0' + (num / 100);
2821 num %= 100;
2822 *cp++ = '0' + (num / 10);
2823
2824 /* Product revision - 5th digit. */
2825 *cp++ = 'A' + (num % 10);
2826
2827 /*
2828 * Second word
2829 */
2830 w = serialnum[1];
2831
2832 /*
2833 * Year - 6th digit.
2834 *
2835 * If bit 15 of third word is set, then the
2836 * last digit of the year is greater than 7.
2837 */
2838 if (serialnum[2] & 0x8000) {
2839 *cp++ = '8' + ((w & 0x1C0) >> 6);
2840 } else {
2841 *cp++ = '0' + ((w & 0x1C0) >> 6);
2842 }
2843
2844 /* Week of year - 7th, 8th digits. */
2845 num = w & 0x003F;
2846 *cp++ = '0' + num / 10;
2847 num %= 10;
2848 *cp++ = '0' + num;
2849
2850 /*
2851 * Third word
2852 */
2853 w = serialnum[2] & 0x7FFF;
2854
2855 /* Serial number - 9th digit. */
2856 *cp++ = 'A' + (w / 1000);
2857
2858 /* 10th, 11th, 12th digits. */
2859 num = w % 1000;
2860 *cp++ = '0' + num / 100;
2861 num %= 100;
2862 *cp++ = '0' + num / 10;
2863 num %= 10;
2864 *cp++ = '0' + num;
2865
2866 *cp = '\0'; /* Null Terminate the string. */
2867 return ASC_TRUE;
2868 }
2869 }
2870
2871 /*
2872 * asc_prt_asc_board_eeprom()
2873 *
2874 * Print board EEPROM configuration.
2875 */
2876 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2877 {
2878 struct asc_board *boardp = shost_priv(shost);
2879 ASC_DVC_VAR *asc_dvc_varp;
2880 ASCEEP_CONFIG *ep;
2881 int i;
2882 #ifdef CONFIG_ISA
2883 int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
2884 #endif /* CONFIG_ISA */
2885 uchar serialstr[13];
2886
2887 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2888 ep = &boardp->eep_config.asc_eep;
2889
2890 seq_printf(m,
2891 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2892 shost->host_no);
2893
2894 if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
2895 == ASC_TRUE)
2896 seq_printf(m, " Serial Number: %s\n", serialstr);
2897 else if (ep->adapter_info[5] == 0xBB)
2898 seq_puts(m,
2899 " Default Settings Used for EEPROM-less Adapter.\n");
2900 else
2901 seq_puts(m, " Serial Number Signature Not Present.\n");
2902
2903 seq_printf(m,
2904 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2905 ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
2906 ep->max_tag_qng);
2907
2908 seq_printf(m,
2909 " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
2910
2911 seq_puts(m, " Target ID: ");
2912 for (i = 0; i <= ASC_MAX_TID; i++)
2913 seq_printf(m, " %d", i);
2914
2915 seq_puts(m, "\n Disconnects: ");
2916 for (i = 0; i <= ASC_MAX_TID; i++)
2917 seq_printf(m, " %c",
2918 (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2919
2920 seq_puts(m, "\n Command Queuing: ");
2921 for (i = 0; i <= ASC_MAX_TID; i++)
2922 seq_printf(m, " %c",
2923 (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2924
2925 seq_puts(m, "\n Start Motor: ");
2926 for (i = 0; i <= ASC_MAX_TID; i++)
2927 seq_printf(m, " %c",
2928 (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2929
2930 seq_puts(m, "\n Synchronous Transfer:");
2931 for (i = 0; i <= ASC_MAX_TID; i++)
2932 seq_printf(m, " %c",
2933 (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2934 seq_putc(m, '\n');
2935
2936 #ifdef CONFIG_ISA
2937 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2938 seq_printf(m,
2939 " Host ISA DMA speed: %d MB/S\n",
2940 isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
2941 }
2942 #endif /* CONFIG_ISA */
2943 }
2944
2945 /*
2946 * asc_prt_adv_board_eeprom()
2947 *
2948 * Print board EEPROM configuration.
2949 */
2950 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2951 {
2952 struct asc_board *boardp = shost_priv(shost);
2953 ADV_DVC_VAR *adv_dvc_varp;
2954 int i;
2955 char *termstr;
2956 uchar serialstr[13];
2957 ADVEEP_3550_CONFIG *ep_3550 = NULL;
2958 ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
2959 ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
2960 ushort word;
2961 ushort *wordp;
2962 ushort sdtr_speed = 0;
2963
2964 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2965 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2966 ep_3550 = &boardp->eep_config.adv_3550_eep;
2967 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2968 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
2969 } else {
2970 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
2971 }
2972
2973 seq_printf(m,
2974 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2975 shost->host_no);
2976
2977 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2978 wordp = &ep_3550->serial_number_word1;
2979 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2980 wordp = &ep_38C0800->serial_number_word1;
2981 } else {
2982 wordp = &ep_38C1600->serial_number_word1;
2983 }
2984
2985 if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
2986 seq_printf(m, " Serial Number: %s\n", serialstr);
2987 else
2988 seq_puts(m, " Serial Number Signature Not Present.\n");
2989
2990 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2991 seq_printf(m,
2992 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2993 ep_3550->adapter_scsi_id,
2994 ep_3550->max_host_qng, ep_3550->max_dvc_qng);
2995 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2996 seq_printf(m,
2997 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2998 ep_38C0800->adapter_scsi_id,
2999 ep_38C0800->max_host_qng,
3000 ep_38C0800->max_dvc_qng);
3001 else
3002 seq_printf(m,
3003 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3004 ep_38C1600->adapter_scsi_id,
3005 ep_38C1600->max_host_qng,
3006 ep_38C1600->max_dvc_qng);
3007 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3008 word = ep_3550->termination;
3009 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3010 word = ep_38C0800->termination_lvd;
3011 } else {
3012 word = ep_38C1600->termination_lvd;
3013 }
3014 switch (word) {
3015 case 1:
3016 termstr = "Low Off/High Off";
3017 break;
3018 case 2:
3019 termstr = "Low Off/High On";
3020 break;
3021 case 3:
3022 termstr = "Low On/High On";
3023 break;
3024 default:
3025 case 0:
3026 termstr = "Automatic";
3027 break;
3028 }
3029
3030 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3031 seq_printf(m,
3032 " termination: %u (%s), bios_ctrl: 0x%x\n",
3033 ep_3550->termination, termstr,
3034 ep_3550->bios_ctrl);
3035 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3036 seq_printf(m,
3037 " termination: %u (%s), bios_ctrl: 0x%x\n",
3038 ep_38C0800->termination_lvd, termstr,
3039 ep_38C0800->bios_ctrl);
3040 else
3041 seq_printf(m,
3042 " termination: %u (%s), bios_ctrl: 0x%x\n",
3043 ep_38C1600->termination_lvd, termstr,
3044 ep_38C1600->bios_ctrl);
3045
3046 seq_puts(m, " Target ID: ");
3047 for (i = 0; i <= ADV_MAX_TID; i++)
3048 seq_printf(m, " %X", i);
3049 seq_putc(m, '\n');
3050
3051 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3052 word = ep_3550->disc_enable;
3053 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3054 word = ep_38C0800->disc_enable;
3055 } else {
3056 word = ep_38C1600->disc_enable;
3057 }
3058 seq_puts(m, " Disconnects: ");
3059 for (i = 0; i <= ADV_MAX_TID; i++)
3060 seq_printf(m, " %c",
3061 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3062 seq_putc(m, '\n');
3063
3064 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3065 word = ep_3550->tagqng_able;
3066 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3067 word = ep_38C0800->tagqng_able;
3068 } else {
3069 word = ep_38C1600->tagqng_able;
3070 }
3071 seq_puts(m, " Command Queuing: ");
3072 for (i = 0; i <= ADV_MAX_TID; i++)
3073 seq_printf(m, " %c",
3074 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3075 seq_putc(m, '\n');
3076
3077 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3078 word = ep_3550->start_motor;
3079 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3080 word = ep_38C0800->start_motor;
3081 } else {
3082 word = ep_38C1600->start_motor;
3083 }
3084 seq_puts(m, " Start Motor: ");
3085 for (i = 0; i <= ADV_MAX_TID; i++)
3086 seq_printf(m, " %c",
3087 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3088 seq_putc(m, '\n');
3089
3090 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3091 seq_puts(m, " Synchronous Transfer:");
3092 for (i = 0; i <= ADV_MAX_TID; i++)
3093 seq_printf(m, " %c",
3094 (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3095 'Y' : 'N');
3096 seq_putc(m, '\n');
3097 }
3098
3099 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3100 seq_puts(m, " Ultra Transfer: ");
3101 for (i = 0; i <= ADV_MAX_TID; i++)
3102 seq_printf(m, " %c",
3103 (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3104 ? 'Y' : 'N');
3105 seq_putc(m, '\n');
3106 }
3107
3108 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3109 word = ep_3550->wdtr_able;
3110 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3111 word = ep_38C0800->wdtr_able;
3112 } else {
3113 word = ep_38C1600->wdtr_able;
3114 }
3115 seq_puts(m, " Wide Transfer: ");
3116 for (i = 0; i <= ADV_MAX_TID; i++)
3117 seq_printf(m, " %c",
3118 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3119 seq_putc(m, '\n');
3120
3121 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3122 adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3123 seq_puts(m, " Synchronous Transfer Speed (Mhz):\n ");
3124 for (i = 0; i <= ADV_MAX_TID; i++) {
3125 char *speed_str;
3126
3127 if (i == 0) {
3128 sdtr_speed = adv_dvc_varp->sdtr_speed1;
3129 } else if (i == 4) {
3130 sdtr_speed = adv_dvc_varp->sdtr_speed2;
3131 } else if (i == 8) {
3132 sdtr_speed = adv_dvc_varp->sdtr_speed3;
3133 } else if (i == 12) {
3134 sdtr_speed = adv_dvc_varp->sdtr_speed4;
3135 }
3136 switch (sdtr_speed & ADV_MAX_TID) {
3137 case 0:
3138 speed_str = "Off";
3139 break;
3140 case 1:
3141 speed_str = " 5";
3142 break;
3143 case 2:
3144 speed_str = " 10";
3145 break;
3146 case 3:
3147 speed_str = " 20";
3148 break;
3149 case 4:
3150 speed_str = " 40";
3151 break;
3152 case 5:
3153 speed_str = " 80";
3154 break;
3155 default:
3156 speed_str = "Unk";
3157 break;
3158 }
3159 seq_printf(m, "%X:%s ", i, speed_str);
3160 if (i == 7)
3161 seq_puts(m, "\n ");
3162 sdtr_speed >>= 4;
3163 }
3164 seq_putc(m, '\n');
3165 }
3166 }
3167
3168 /*
3169 * asc_prt_driver_conf()
3170 */
3171 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3172 {
3173 struct asc_board *boardp = shost_priv(shost);
3174 int chip_scsi_id;
3175
3176 seq_printf(m,
3177 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3178 shost->host_no);
3179
3180 seq_printf(m,
3181 " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
3182 scsi_host_busy(shost), shost->max_id,
3183 shost->max_lun, shost->max_channel);
3184
3185 seq_printf(m,
3186 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3187 shost->unique_id, shost->can_queue, shost->this_id,
3188 shost->sg_tablesize, shost->cmd_per_lun);
3189
3190 seq_printf(m,
3191 " unchecked_isa_dma %d\n",
3192 shost->unchecked_isa_dma);
3193
3194 seq_printf(m,
3195 " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3196 boardp->flags, shost->last_reset, jiffies,
3197 boardp->asc_n_io_port);
3198
3199 seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3200
3201 if (ASC_NARROW_BOARD(boardp)) {
3202 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3203 } else {
3204 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3205 }
3206 }
3207
3208 /*
3209 * asc_prt_asc_board_info()
3210 *
3211 * Print dynamic board configuration information.
3212 */
3213 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3214 {
3215 struct asc_board *boardp = shost_priv(shost);
3216 int chip_scsi_id;
3217 ASC_DVC_VAR *v;
3218 ASC_DVC_CFG *c;
3219 int i;
3220 int renegotiate = 0;
3221
3222 v = &boardp->dvc_var.asc_dvc_var;
3223 c = &boardp->dvc_cfg.asc_dvc_cfg;
3224 chip_scsi_id = c->chip_scsi_id;
3225
3226 seq_printf(m,
3227 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3228 shost->host_no);
3229
3230 seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3231 "mcode_version 0x%x, err_code %u\n",
3232 c->chip_version, c->mcode_date, c->mcode_version,
3233 v->err_code);
3234
3235 /* Current number of commands waiting for the host. */
3236 seq_printf(m,
3237 " Total Command Pending: %d\n", v->cur_total_qng);
3238
3239 seq_puts(m, " Command Queuing:");
3240 for (i = 0; i <= ASC_MAX_TID; i++) {
3241 if ((chip_scsi_id == i) ||
3242 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3243 continue;
3244 }
3245 seq_printf(m, " %X:%c",
3246 i,
3247 (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3248 }
3249
3250 /* Current number of commands waiting for a device. */
3251 seq_puts(m, "\n Command Queue Pending:");
3252 for (i = 0; i <= ASC_MAX_TID; i++) {
3253 if ((chip_scsi_id == i) ||
3254 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3255 continue;
3256 }
3257 seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3258 }
3259
3260 /* Current limit on number of commands that can be sent to a device. */
3261 seq_puts(m, "\n Command Queue Limit:");
3262 for (i = 0; i <= ASC_MAX_TID; i++) {
3263 if ((chip_scsi_id == i) ||
3264 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3265 continue;
3266 }
3267 seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3268 }
3269
3270 /* Indicate whether the device has returned queue full status. */
3271 seq_puts(m, "\n Command Queue Full:");
3272 for (i = 0; i <= ASC_MAX_TID; i++) {
3273 if ((chip_scsi_id == i) ||
3274 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3275 continue;
3276 }
3277 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3278 seq_printf(m, " %X:Y-%d",
3279 i, boardp->queue_full_cnt[i]);
3280 else
3281 seq_printf(m, " %X:N", i);
3282 }
3283
3284 seq_puts(m, "\n Synchronous Transfer:");
3285 for (i = 0; i <= ASC_MAX_TID; i++) {
3286 if ((chip_scsi_id == i) ||
3287 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3288 continue;
3289 }
3290 seq_printf(m, " %X:%c",
3291 i,
3292 (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3293 }
3294 seq_putc(m, '\n');
3295
3296 for (i = 0; i <= ASC_MAX_TID; i++) {
3297 uchar syn_period_ix;
3298
3299 if ((chip_scsi_id == i) ||
3300 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3301 ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3302 continue;
3303 }
3304
3305 seq_printf(m, " %X:", i);
3306
3307 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3308 seq_puts(m, " Asynchronous");
3309 } else {
3310 syn_period_ix =
3311 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3312 1);
3313
3314 seq_printf(m,
3315 " Transfer Period Factor: %d (%d.%d Mhz),",
3316 v->sdtr_period_tbl[syn_period_ix],
3317 250 / v->sdtr_period_tbl[syn_period_ix],
3318 ASC_TENTHS(250,
3319 v->sdtr_period_tbl[syn_period_ix]));
3320
3321 seq_printf(m, " REQ/ACK Offset: %d",
3322 boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3323 }
3324
3325 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3326 seq_puts(m, "*\n");
3327 renegotiate = 1;
3328 } else {
3329 seq_putc(m, '\n');
3330 }
3331 }
3332
3333 if (renegotiate) {
3334 seq_puts(m, " * = Re-negotiation pending before next command.\n");
3335 }
3336 }
3337
3338 /*
3339 * asc_prt_adv_board_info()
3340 *
3341 * Print dynamic board configuration information.
3342 */
3343 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3344 {
3345 struct asc_board *boardp = shost_priv(shost);
3346 int i;
3347 ADV_DVC_VAR *v;
3348 ADV_DVC_CFG *c;
3349 AdvPortAddr iop_base;
3350 ushort chip_scsi_id;
3351 ushort lramword;
3352 uchar lrambyte;
3353 ushort tagqng_able;
3354 ushort sdtr_able, wdtr_able;
3355 ushort wdtr_done, sdtr_done;
3356 ushort period = 0;
3357 int renegotiate = 0;
3358
3359 v = &boardp->dvc_var.adv_dvc_var;
3360 c = &boardp->dvc_cfg.adv_dvc_cfg;
3361 iop_base = v->iop_base;
3362 chip_scsi_id = v->chip_scsi_id;
3363
3364 seq_printf(m,
3365 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3366 shost->host_no);
3367
3368 seq_printf(m,
3369 " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3370 (unsigned long)v->iop_base,
3371 AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3372 v->err_code);
3373
3374 seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3375 "mcode_version 0x%x\n", c->chip_version,
3376 c->mcode_date, c->mcode_version);
3377
3378 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3379 seq_puts(m, " Queuing Enabled:");
3380 for (i = 0; i <= ADV_MAX_TID; i++) {
3381 if ((chip_scsi_id == i) ||
3382 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3383 continue;
3384 }
3385
3386 seq_printf(m, " %X:%c",
3387 i,
3388 (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3389 }
3390
3391 seq_puts(m, "\n Queue Limit:");
3392 for (i = 0; i <= ADV_MAX_TID; i++) {
3393 if ((chip_scsi_id == i) ||
3394 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3395 continue;
3396 }
3397
3398 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3399 lrambyte);
3400
3401 seq_printf(m, " %X:%d", i, lrambyte);
3402 }
3403
3404 seq_puts(m, "\n Command Pending:");
3405 for (i = 0; i <= ADV_MAX_TID; i++) {
3406 if ((chip_scsi_id == i) ||
3407 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3408 continue;
3409 }
3410
3411 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3412 lrambyte);
3413
3414 seq_printf(m, " %X:%d", i, lrambyte);
3415 }
3416 seq_putc(m, '\n');
3417
3418 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3419 seq_puts(m, " Wide Enabled:");
3420 for (i = 0; i <= ADV_MAX_TID; i++) {
3421 if ((chip_scsi_id == i) ||
3422 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3423 continue;
3424 }
3425
3426 seq_printf(m, " %X:%c",
3427 i,
3428 (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3429 }
3430 seq_putc(m, '\n');
3431
3432 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3433 seq_puts(m, " Transfer Bit Width:");
3434 for (i = 0; i <= ADV_MAX_TID; i++) {
3435 if ((chip_scsi_id == i) ||
3436 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3437 continue;
3438 }
3439
3440 AdvReadWordLram(iop_base,
3441 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3442 lramword);
3443
3444 seq_printf(m, " %X:%d",
3445 i, (lramword & 0x8000) ? 16 : 8);
3446
3447 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3448 (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3449 seq_putc(m, '*');
3450 renegotiate = 1;
3451 }
3452 }
3453 seq_putc(m, '\n');
3454
3455 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3456 seq_puts(m, " Synchronous Enabled:");
3457 for (i = 0; i <= ADV_MAX_TID; i++) {
3458 if ((chip_scsi_id == i) ||
3459 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3460 continue;
3461 }
3462
3463 seq_printf(m, " %X:%c",
3464 i,
3465 (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3466 }
3467 seq_putc(m, '\n');
3468
3469 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3470 for (i = 0; i <= ADV_MAX_TID; i++) {
3471
3472 AdvReadWordLram(iop_base,
3473 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3474 lramword);
3475 lramword &= ~0x8000;
3476
3477 if ((chip_scsi_id == i) ||
3478 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3479 ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3480 continue;
3481 }
3482
3483 seq_printf(m, " %X:", i);
3484
3485 if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3486 seq_puts(m, " Asynchronous");
3487 } else {
3488 seq_puts(m, " Transfer Period Factor: ");
3489
3490 if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */
3491 seq_puts(m, "9 (80.0 Mhz),");
3492 } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */
3493 seq_puts(m, "10 (40.0 Mhz),");
3494 } else { /* 20 Mhz or below. */
3495
3496 period = (((lramword >> 8) * 25) + 50) / 4;
3497
3498 if (period == 0) { /* Should never happen. */
3499 seq_printf(m, "%d (? Mhz), ", period);
3500 } else {
3501 seq_printf(m,
3502 "%d (%d.%d Mhz),",
3503 period, 250 / period,
3504 ASC_TENTHS(250, period));
3505 }
3506 }
3507
3508 seq_printf(m, " REQ/ACK Offset: %d",
3509 lramword & 0x1F);
3510 }
3511
3512 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3513 seq_puts(m, "*\n");
3514 renegotiate = 1;
3515 } else {
3516 seq_putc(m, '\n');
3517 }
3518 }
3519
3520 if (renegotiate) {
3521 seq_puts(m, " * = Re-negotiation pending before next command.\n");
3522 }
3523 }
3524
3525 #ifdef ADVANSYS_STATS
3526 /*
3527 * asc_prt_board_stats()
3528 */
3529 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3530 {
3531 struct asc_board *boardp = shost_priv(shost);
3532 struct asc_stats *s = &boardp->asc_stats;
3533
3534 seq_printf(m,
3535 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3536 shost->host_no);
3537
3538 seq_printf(m,
3539 " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3540 s->queuecommand, s->reset, s->biosparam,
3541 s->interrupt);
3542
3543 seq_printf(m,
3544 " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3545 s->callback, s->done, s->build_error,
3546 s->adv_build_noreq, s->adv_build_nosg);
3547
3548 seq_printf(m,
3549 " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3550 s->exe_noerror, s->exe_busy, s->exe_error,
3551 s->exe_unknown);
3552
3553 /*
3554 * Display data transfer statistics.
3555 */
3556 if (s->xfer_cnt > 0) {
3557 seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3558 s->xfer_cnt, s->xfer_elem);
3559
3560 seq_printf(m, "xfer_bytes %u.%01u kb\n",
3561 s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3562
3563 /* Scatter gather transfer statistics */
3564 seq_printf(m, " avg_num_elem %u.%01u, ",
3565 s->xfer_elem / s->xfer_cnt,
3566 ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3567
3568 seq_printf(m, "avg_elem_size %u.%01u kb, ",
3569 (s->xfer_sect / 2) / s->xfer_elem,
3570 ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3571
3572 seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3573 (s->xfer_sect / 2) / s->xfer_cnt,
3574 ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3575 }
3576 }
3577 #endif /* ADVANSYS_STATS */
3578
3579 /*
3580 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3581 *
3582 * m: seq_file to print into
3583 * shost: Scsi_Host
3584 *
3585 * Return the number of bytes read from or written to a
3586 * /proc/scsi/advansys/[0...] file.
3587 */
3588 static int
3589 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3590 {
3591 struct asc_board *boardp = shost_priv(shost);
3592
3593 ASC_DBG(1, "begin\n");
3594
3595 /*
3596 * User read of /proc/scsi/advansys/[0...] file.
3597 */
3598
3599 /*
3600 * Get board configuration information.
3601 *
3602 * advansys_info() returns the board string from its own static buffer.
3603 */
3604 /* Copy board information. */
3605 seq_printf(m, "%s\n", (char *)advansys_info(shost));
3606 /*
3607 * Display Wide Board BIOS Information.
3608 */
3609 if (!ASC_NARROW_BOARD(boardp))
3610 asc_prt_adv_bios(m, shost);
3611
3612 /*
3613 * Display driver information for each device attached to the board.
3614 */
3615 asc_prt_board_devices(m, shost);
3616
3617 /*
3618 * Display EEPROM configuration for the board.
3619 */
3620 if (ASC_NARROW_BOARD(boardp))
3621 asc_prt_asc_board_eeprom(m, shost);
3622 else
3623 asc_prt_adv_board_eeprom(m, shost);
3624
3625 /*
3626 * Display driver configuration and information for the board.
3627 */
3628 asc_prt_driver_conf(m, shost);
3629
3630 #ifdef ADVANSYS_STATS
3631 /*
3632 * Display driver statistics for the board.
3633 */
3634 asc_prt_board_stats(m, shost);
3635 #endif /* ADVANSYS_STATS */
3636
3637 /*
3638 * Display Asc Library dynamic configuration information
3639 * for the board.
3640 */
3641 if (ASC_NARROW_BOARD(boardp))
3642 asc_prt_asc_board_info(m, shost);
3643 else
3644 asc_prt_adv_board_info(m, shost);
3645 return 0;
3646 }
3647 #endif /* CONFIG_PROC_FS */
3648
3649 static void asc_scsi_done(struct scsi_cmnd *scp)
3650 {
3651 scsi_dma_unmap(scp);
3652 ASC_STATS(scp->device->host, done);
3653 scp->scsi_done(scp);
3654 }
3655
3656 static void AscSetBank(PortAddr iop_base, uchar bank)
3657 {
3658 uchar val;
3659
3660 val = AscGetChipControl(iop_base) &
3661 (~
3662 (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3663 CC_CHIP_RESET));
3664 if (bank == 1) {
3665 val |= CC_BANK_ONE;
3666 } else if (bank == 2) {
3667 val |= CC_DIAG | CC_BANK_ONE;
3668 } else {
3669 val &= ~CC_BANK_ONE;
3670 }
3671 AscSetChipControl(iop_base, val);
3672 }
3673
3674 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3675 {
3676 AscSetBank(iop_base, 1);
3677 AscWriteChipIH(iop_base, ins_code);
3678 AscSetBank(iop_base, 0);
3679 }
3680
3681 static int AscStartChip(PortAddr iop_base)
3682 {
3683 AscSetChipControl(iop_base, 0);
3684 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3685 return (0);
3686 }
3687 return (1);
3688 }
3689
3690 static bool AscStopChip(PortAddr iop_base)
3691 {
3692 uchar cc_val;
3693
3694 cc_val =
3695 AscGetChipControl(iop_base) &
3696 (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3697 AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3698 AscSetChipIH(iop_base, INS_HALT);
3699 AscSetChipIH(iop_base, INS_RFLAG_WTM);
3700 if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3701 return false;
3702 }
3703 return true;
3704 }
3705
3706 static bool AscIsChipHalted(PortAddr iop_base)
3707 {
3708 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3709 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3710 return true;
3711 }
3712 }
3713 return false;
3714 }
3715
3716 static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3717 {
3718 PortAddr iop_base;
3719 int i = 10;
3720
3721 iop_base = asc_dvc->iop_base;
3722 while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3723 && (i-- > 0)) {
3724 mdelay(100);
3725 }
3726 AscStopChip(iop_base);
3727 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3728 udelay(60);
3729 AscSetChipIH(iop_base, INS_RFLAG_WTM);
3730 AscSetChipIH(iop_base, INS_HALT);
3731 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3732 AscSetChipControl(iop_base, CC_HALT);
3733 mdelay(200);
3734 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3735 AscSetChipStatus(iop_base, 0);
3736 return (AscIsChipHalted(iop_base));
3737 }
3738
3739 static int AscFindSignature(PortAddr iop_base)
3740 {
3741 ushort sig_word;
3742
3743 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3744 iop_base, AscGetChipSignatureByte(iop_base));
3745 if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3746 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3747 iop_base, AscGetChipSignatureWord(iop_base));
3748 sig_word = AscGetChipSignatureWord(iop_base);
3749 if ((sig_word == (ushort)ASC_1000_ID0W) ||
3750 (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3751 return (1);
3752 }
3753 }
3754 return (0);
3755 }
3756
3757 static void AscEnableInterrupt(PortAddr iop_base)
3758 {
3759 ushort cfg;
3760
3761 cfg = AscGetChipCfgLsw(iop_base);
3762 AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3763 }
3764
3765 static void AscDisableInterrupt(PortAddr iop_base)
3766 {
3767 ushort cfg;
3768
3769 cfg = AscGetChipCfgLsw(iop_base);
3770 AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3771 }
3772
3773 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3774 {
3775 unsigned char byte_data;
3776 unsigned short word_data;
3777
3778 if (isodd_word(addr)) {
3779 AscSetChipLramAddr(iop_base, addr - 1);
3780 word_data = AscGetChipLramData(iop_base);
3781 byte_data = (word_data >> 8) & 0xFF;
3782 } else {
3783 AscSetChipLramAddr(iop_base, addr);
3784 word_data = AscGetChipLramData(iop_base);
3785 byte_data = word_data & 0xFF;
3786 }
3787 return byte_data;
3788 }
3789
3790 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3791 {
3792 ushort word_data;
3793
3794 AscSetChipLramAddr(iop_base, addr);
3795 word_data = AscGetChipLramData(iop_base);
3796 return (word_data);
3797 }
3798
3799 static void
3800 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3801 {
3802 int i;
3803
3804 AscSetChipLramAddr(iop_base, s_addr);
3805 for (i = 0; i < words; i++) {
3806 AscSetChipLramData(iop_base, set_wval);
3807 }
3808 }
3809
3810 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3811 {
3812 AscSetChipLramAddr(iop_base, addr);
3813 AscSetChipLramData(iop_base, word_val);
3814 }
3815
3816 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3817 {
3818 ushort word_data;
3819
3820 if (isodd_word(addr)) {
3821 addr--;
3822 word_data = AscReadLramWord(iop_base, addr);
3823 word_data &= 0x00FF;
3824 word_data |= (((ushort)byte_val << 8) & 0xFF00);
3825 } else {
3826 word_data = AscReadLramWord(iop_base, addr);
3827 word_data &= 0xFF00;
3828 word_data |= ((ushort)byte_val & 0x00FF);
3829 }
3830 AscWriteLramWord(iop_base, addr, word_data);
3831 }
3832
3833 /*
3834 * Copy 2 bytes to LRAM.
3835 *
3836 * The source data is assumed to be in little-endian order in memory
3837 * and is maintained in little-endian order when written to LRAM.
3838 */
3839 static void
3840 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
3841 const uchar *s_buffer, int words)
3842 {
3843 int i;
3844
3845 AscSetChipLramAddr(iop_base, s_addr);
3846 for (i = 0; i < 2 * words; i += 2) {
3847 /*
3848 * On a little-endian system the second argument below
3849 * produces a little-endian ushort which is written to
3850 * LRAM in little-endian order. On a big-endian system
3851 * the second argument produces a big-endian ushort which
3852 * is "transparently" byte-swapped by outpw() and written
3853 * in little-endian order to LRAM.
3854 */
3855 outpw(iop_base + IOP_RAM_DATA,
3856 ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
3857 }
3858 }
3859
3860 /*
3861 * Copy 4 bytes to LRAM.
3862 *
3863 * The source data is assumed to be in little-endian order in memory
3864 * and is maintained in little-endian order when written to LRAM.
3865 */
3866 static void
3867 AscMemDWordCopyPtrToLram(PortAddr iop_base,
3868 ushort s_addr, uchar *s_buffer, int dwords)
3869 {
3870 int i;
3871
3872 AscSetChipLramAddr(iop_base, s_addr);
3873 for (i = 0; i < 4 * dwords; i += 4) {
3874 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */
3875 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */
3876 }
3877 }
3878
3879 /*
3880 * Copy 2 bytes from LRAM.
3881 *
3882 * The source data is assumed to be in little-endian order in LRAM
3883 * and is maintained in little-endian order when written to memory.
3884 */
3885 static void
3886 AscMemWordCopyPtrFromLram(PortAddr iop_base,
3887 ushort s_addr, uchar *d_buffer, int words)
3888 {
3889 int i;
3890 ushort word;
3891
3892 AscSetChipLramAddr(iop_base, s_addr);
3893 for (i = 0; i < 2 * words; i += 2) {
3894 word = inpw(iop_base + IOP_RAM_DATA);
3895 d_buffer[i] = word & 0xff;
3896 d_buffer[i + 1] = (word >> 8) & 0xff;
3897 }
3898 }
3899
3900 static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
3901 {
3902 u32 sum = 0;
3903 int i;
3904
3905 for (i = 0; i < words; i++, s_addr += 2) {
3906 sum += AscReadLramWord(iop_base, s_addr);
3907 }
3908 return (sum);
3909 }
3910
3911 static void AscInitLram(ASC_DVC_VAR *asc_dvc)
3912 {
3913 uchar i;
3914 ushort s_addr;
3915 PortAddr iop_base;
3916
3917 iop_base = asc_dvc->iop_base;
3918 AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
3919 (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
3920 64) >> 1));
3921 i = ASC_MIN_ACTIVE_QNO;
3922 s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
3923 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3924 (uchar)(i + 1));
3925 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3926 (uchar)(asc_dvc->max_total_qng));
3927 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3928 (uchar)i);
3929 i++;
3930 s_addr += ASC_QBLK_SIZE;
3931 for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
3932 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3933 (uchar)(i + 1));
3934 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3935 (uchar)(i - 1));
3936 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3937 (uchar)i);
3938 }
3939 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3940 (uchar)ASC_QLINK_END);
3941 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3942 (uchar)(asc_dvc->max_total_qng - 1));
3943 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3944 (uchar)asc_dvc->max_total_qng);
3945 i++;
3946 s_addr += ASC_QBLK_SIZE;
3947 for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
3948 i++, s_addr += ASC_QBLK_SIZE) {
3949 AscWriteLramByte(iop_base,
3950 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
3951 AscWriteLramByte(iop_base,
3952 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
3953 AscWriteLramByte(iop_base,
3954 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
3955 }
3956 }
3957
3958 static u32
3959 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
3960 const uchar *mcode_buf, ushort mcode_size)
3961 {
3962 u32 chksum;
3963 ushort mcode_word_size;
3964 ushort mcode_chksum;
3965
3966 /* Write the microcode buffer starting at LRAM address 0. */
3967 mcode_word_size = (ushort)(mcode_size >> 1);
3968 AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
3969 AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
3970
3971 chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
3972 ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
3973 mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
3974 (ushort)ASC_CODE_SEC_BEG,
3975 (ushort)((mcode_size -
3976 s_addr - (ushort)
3977 ASC_CODE_SEC_BEG) /
3978 2));
3979 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
3980 AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
3981 AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
3982 return chksum;
3983 }
3984
3985 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
3986 {
3987 PortAddr iop_base;
3988 int i;
3989 ushort lram_addr;
3990
3991 iop_base = asc_dvc->iop_base;
3992 AscPutRiscVarFreeQHead(iop_base, 1);
3993 AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3994 AscPutVarFreeQHead(iop_base, 1);
3995 AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3996 AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
3997 (uchar)((int)asc_dvc->max_total_qng + 1));
3998 AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
3999 (uchar)((int)asc_dvc->max_total_qng + 2));
4000 AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4001 asc_dvc->max_total_qng);
4002 AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4003 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4004 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4005 AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4006 AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4007 AscPutQDoneInProgress(iop_base, 0);
4008 lram_addr = ASC_QADR_BEG;
4009 for (i = 0; i < 32; i++, lram_addr += 2) {
4010 AscWriteLramWord(iop_base, lram_addr, 0);
4011 }
4012 }
4013
4014 static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4015 {
4016 int i;
4017 int warn_code;
4018 PortAddr iop_base;
4019 __le32 phy_addr;
4020 __le32 phy_size;
4021 struct asc_board *board = asc_dvc_to_board(asc_dvc);
4022
4023 iop_base = asc_dvc->iop_base;
4024 warn_code = 0;
4025 for (i = 0; i <= ASC_MAX_TID; i++) {
4026 AscPutMCodeInitSDTRAtID(iop_base, i,
4027 asc_dvc->cfg->sdtr_period_offset[i]);
4028 }
4029
4030 AscInitQLinkVar(asc_dvc);
4031 AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4032 asc_dvc->cfg->disc_enable);
4033 AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4034 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4035
4036 /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4037 BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4038 asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4039 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4040 if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4041 warn_code = -ENOMEM;
4042 goto err_dma_map;
4043 }
4044 phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4045 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4046 (uchar *)&phy_addr, 1);
4047 phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4048 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4049 (uchar *)&phy_size, 1);
4050
4051 asc_dvc->cfg->mcode_date =
4052 AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4053 asc_dvc->cfg->mcode_version =
4054 AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4055
4056 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4057 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4058 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4059 warn_code = -EINVAL;
4060 goto err_mcode_start;
4061 }
4062 if (AscStartChip(iop_base) != 1) {
4063 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4064 warn_code = -EIO;
4065 goto err_mcode_start;
4066 }
4067
4068 return warn_code;
4069
4070 err_mcode_start:
4071 dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4072 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4073 err_dma_map:
4074 asc_dvc->overrun_dma = 0;
4075 return warn_code;
4076 }
4077
4078 static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4079 {
4080 const struct firmware *fw;
4081 const char fwname[] = "advansys/mcode.bin";
4082 int err;
4083 unsigned long chksum;
4084 int warn_code;
4085 PortAddr iop_base;
4086
4087 iop_base = asc_dvc->iop_base;
4088 warn_code = 0;
4089 if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4090 !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4091 AscResetChipAndScsiBus(asc_dvc);
4092 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4093 }
4094 asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4095 if (asc_dvc->err_code != 0)
4096 return ASC_ERROR;
4097 if (!AscFindSignature(asc_dvc->iop_base)) {
4098 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4099 return warn_code;
4100 }
4101 AscDisableInterrupt(iop_base);
4102 AscInitLram(asc_dvc);
4103
4104 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4105 if (err) {
4106 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4107 fwname, err);
4108 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4109 return err;
4110 }
4111 if (fw->size < 4) {
4112 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4113 fw->size, fwname);
4114 release_firmware(fw);
4115 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4116 return -EINVAL;
4117 }
4118 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4119 (fw->data[1] << 8) | fw->data[0];
4120 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4121 if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4122 fw->size - 4) != chksum) {
4123 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4124 release_firmware(fw);
4125 return warn_code;
4126 }
4127 release_firmware(fw);
4128 warn_code |= AscInitMicroCodeVar(asc_dvc);
4129 if (!asc_dvc->overrun_dma)
4130 return warn_code;
4131 asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4132 AscEnableInterrupt(iop_base);
4133 return warn_code;
4134 }
4135
4136 /*
4137 * Load the Microcode
4138 *
4139 * Write the microcode image to RISC memory starting at address 0.
4140 *
4141 * The microcode is stored compressed in the following format:
4142 *
4143 * 254 word (508 byte) table indexed by byte code followed
4144 * by the following byte codes:
4145 *
4146 * 1-Byte Code:
4147 * 00: Emit word 0 in table.
4148 * 01: Emit word 1 in table.
4149 * .
4150 * FD: Emit word 253 in table.
4151 *
4152 * Multi-Byte Code:
4153 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4154 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4155 *
4156 * Returns 0 or an error if the checksum doesn't match
4157 */
4158 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4159 int size, int memsize, int chksum)
4160 {
4161 int i, j, end, len = 0;
4162 u32 sum;
4163
4164 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4165
4166 for (i = 253 * 2; i < size; i++) {
4167 if (buf[i] == 0xff) {
4168 unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4169 for (j = 0; j < buf[i + 1]; j++) {
4170 AdvWriteWordAutoIncLram(iop_base, word);
4171 len += 2;
4172 }
4173 i += 3;
4174 } else if (buf[i] == 0xfe) {
4175 unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4176 AdvWriteWordAutoIncLram(iop_base, word);
4177 i += 2;
4178 len += 2;
4179 } else {
4180 unsigned int off = buf[i] * 2;
4181 unsigned short word = (buf[off + 1] << 8) | buf[off];
4182 AdvWriteWordAutoIncLram(iop_base, word);
4183 len += 2;
4184 }
4185 }
4186
4187 end = len;
4188
4189 while (len < memsize) {
4190 AdvWriteWordAutoIncLram(iop_base, 0);
4191 len += 2;
4192 }
4193
4194 /* Verify the microcode checksum. */
4195 sum = 0;
4196 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4197
4198 for (len = 0; len < end; len += 2) {
4199 sum += AdvReadWordAutoIncLram(iop_base);
4200 }
4201
4202 if (sum != chksum)
4203 return ASC_IERR_MCODE_CHKSUM;
4204
4205 return 0;
4206 }
4207
4208 static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
4209 {
4210 off_t carr_offset = 0, next_offset;
4211 dma_addr_t carr_paddr;
4212 int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
4213
4214 for (i = 0; i < carr_num; i++) {
4215 carr_offset = i * sizeof(ADV_CARR_T);
4216 /* Get physical address of the carrier 'carrp'. */
4217 carr_paddr = adv_dvc->carrier_addr + carr_offset;
4218
4219 adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
4220 adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
4221 adv_dvc->carrier[i].areq_vpa = 0;
4222 next_offset = carr_offset + sizeof(ADV_CARR_T);
4223 if (i == carr_num)
4224 next_offset = ~0;
4225 adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
4226 }
4227 /*
4228 * We cannot have a carrier with 'carr_va' of '0', as
4229 * a reference to this carrier would be interpreted as
4230 * list termination.
4231 * So start at carrier 1 with the freelist.
4232 */
4233 adv_dvc->carr_freelist = &adv_dvc->carrier[1];
4234 }
4235
4236 static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
4237 {
4238 int index;
4239
4240 BUG_ON(offset > ADV_CARRIER_BUFSIZE);
4241
4242 index = offset / sizeof(ADV_CARR_T);
4243 return &adv_dvc->carrier[index];
4244 }
4245
4246 static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
4247 {
4248 ADV_CARR_T *carrp = adv_dvc->carr_freelist;
4249 u32 next_vpa = le32_to_cpu(carrp->next_vpa);
4250
4251 if (next_vpa == 0 || next_vpa == ~0) {
4252 ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
4253 return NULL;
4254 }
4255
4256 adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
4257 /*
4258 * insert stopper carrier to terminate list
4259 */
4260 carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
4261
4262 return carrp;
4263 }
4264
4265 /*
4266 * 'offset' is the index in the request pointer array
4267 */
4268 static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
4269 {
4270 struct asc_board *boardp = adv_dvc->drv_ptr;
4271
4272 BUG_ON(offset > adv_dvc->max_host_qng);
4273 return &boardp->adv_reqp[offset];
4274 }
4275
4276 /*
4277 * Send an idle command to the chip and wait for completion.
4278 *
4279 * Command completion is polled for once per microsecond.
4280 *
4281 * The function can be called from anywhere including an interrupt handler.
4282 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4283 * functions to prevent reentrancy.
4284 *
4285 * Return Values:
4286 * ADV_TRUE - command completed successfully
4287 * ADV_FALSE - command failed
4288 * ADV_ERROR - command timed out
4289 */
4290 static int
4291 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4292 ushort idle_cmd, u32 idle_cmd_parameter)
4293 {
4294 int result, i, j;
4295 AdvPortAddr iop_base;
4296
4297 iop_base = asc_dvc->iop_base;
4298
4299 /*
4300 * Clear the idle command status which is set by the microcode
4301 * to a non-zero value to indicate when the command is completed.
4302 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4303 */
4304 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4305
4306 /*
4307 * Write the idle command value after the idle command parameter
4308 * has been written to avoid a race condition. If the order is not
4309 * followed, the microcode may process the idle command before the
4310 * parameters have been written to LRAM.
4311 */
4312 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4313 cpu_to_le32(idle_cmd_parameter));
4314 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4315
4316 /*
4317 * Tickle the RISC to tell it to process the idle command.
4318 */
4319 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4320 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4321 /*
4322 * Clear the tickle value. In the ASC-3550 the RISC flag
4323 * command 'clr_tickle_b' does not work unless the host
4324 * value is cleared.
4325 */
4326 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4327 }
4328
4329 /* Wait for up to 100 millisecond for the idle command to timeout. */
4330 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4331 /* Poll once each microsecond for command completion. */
4332 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4333 AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4334 result);
4335 if (result != 0)
4336 return result;
4337 udelay(1);
4338 }
4339 }
4340
4341 BUG(); /* The idle command should never timeout. */
4342 return ADV_ERROR;
4343 }
4344
4345 /*
4346 * Reset SCSI Bus and purge all outstanding requests.
4347 *
4348 * Return Value:
4349 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
4350 * ADV_FALSE(0) - Microcode command failed.
4351 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4352 * may be hung which requires driver recovery.
4353 */
4354 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4355 {
4356 int status;
4357
4358 /*
4359 * Send the SCSI Bus Reset idle start idle command which asserts
4360 * the SCSI Bus Reset signal.
4361 */
4362 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4363 if (status != ADV_TRUE) {
4364 return status;
4365 }
4366
4367 /*
4368 * Delay for the specified SCSI Bus Reset hold time.
4369 *
4370 * The hold time delay is done on the host because the RISC has no
4371 * microsecond accurate timer.
4372 */
4373 udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4374
4375 /*
4376 * Send the SCSI Bus Reset end idle command which de-asserts
4377 * the SCSI Bus Reset signal and purges any pending requests.
4378 */
4379 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4380 if (status != ADV_TRUE) {
4381 return status;
4382 }
4383
4384 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4385
4386 return status;
4387 }
4388
4389 /*
4390 * Initialize the ASC-3550.
4391 *
4392 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4393 *
4394 * For a non-fatal error return a warning code. If there are no warnings
4395 * then 0 is returned.
4396 *
4397 * Needed after initialization for error recovery.
4398 */
4399 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4400 {
4401 const struct firmware *fw;
4402 const char fwname[] = "advansys/3550.bin";
4403 AdvPortAddr iop_base;
4404 ushort warn_code;
4405 int begin_addr;
4406 int end_addr;
4407 ushort code_sum;
4408 int word;
4409 int i;
4410 int err;
4411 unsigned long chksum;
4412 ushort scsi_cfg1;
4413 uchar tid;
4414 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
4415 ushort wdtr_able = 0, sdtr_able, tagqng_able;
4416 uchar max_cmd[ADV_MAX_TID + 1];
4417
4418 /* If there is already an error, don't continue. */
4419 if (asc_dvc->err_code != 0)
4420 return ADV_ERROR;
4421
4422 /*
4423 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4424 */
4425 if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4426 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4427 return ADV_ERROR;
4428 }
4429
4430 warn_code = 0;
4431 iop_base = asc_dvc->iop_base;
4432
4433 /*
4434 * Save the RISC memory BIOS region before writing the microcode.
4435 * The BIOS may already be loaded and using its RISC LRAM region
4436 * so its region must be saved and restored.
4437 *
4438 * Note: This code makes the assumption, which is currently true,
4439 * that a chip reset does not clear RISC LRAM.
4440 */
4441 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4442 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4443 bios_mem[i]);
4444 }
4445
4446 /*
4447 * Save current per TID negotiated values.
4448 */
4449 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4450 ushort bios_version, major, minor;
4451
4452 bios_version =
4453 bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4454 major = (bios_version >> 12) & 0xF;
4455 minor = (bios_version >> 8) & 0xF;
4456 if (major < 3 || (major == 3 && minor == 1)) {
4457 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4458 AdvReadWordLram(iop_base, 0x120, wdtr_able);
4459 } else {
4460 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4461 }
4462 }
4463 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4464 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4465 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4466 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4467 max_cmd[tid]);
4468 }
4469
4470 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4471 if (err) {
4472 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4473 fwname, err);
4474 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4475 return err;
4476 }
4477 if (fw->size < 4) {
4478 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4479 fw->size, fwname);
4480 release_firmware(fw);
4481 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4482 return -EINVAL;
4483 }
4484 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4485 (fw->data[1] << 8) | fw->data[0];
4486 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4487 fw->size - 4, ADV_3550_MEMSIZE,
4488 chksum);
4489 release_firmware(fw);
4490 if (asc_dvc->err_code)
4491 return ADV_ERROR;
4492
4493 /*
4494 * Restore the RISC memory BIOS region.
4495 */
4496 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4497 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4498 bios_mem[i]);
4499 }
4500
4501 /*
4502 * Calculate and write the microcode code checksum to the microcode
4503 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4504 */
4505 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4506 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4507 code_sum = 0;
4508 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4509 for (word = begin_addr; word < end_addr; word += 2) {
4510 code_sum += AdvReadWordAutoIncLram(iop_base);
4511 }
4512 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4513
4514 /*
4515 * Read and save microcode version and date.
4516 */
4517 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4518 asc_dvc->cfg->mcode_date);
4519 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4520 asc_dvc->cfg->mcode_version);
4521
4522 /*
4523 * Set the chip type to indicate the ASC3550.
4524 */
4525 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4526
4527 /*
4528 * If the PCI Configuration Command Register "Parity Error Response
4529 * Control" Bit was clear (0), then set the microcode variable
4530 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4531 * to ignore DMA parity errors.
4532 */
4533 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4534 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4535 word |= CONTROL_FLAG_IGNORE_PERR;
4536 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4537 }
4538
4539 /*
4540 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4541 * threshold of 128 bytes. This register is only accessible to the host.
4542 */
4543 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4544 START_CTL_EMFU | READ_CMD_MRM);
4545
4546 /*
4547 * Microcode operating variables for WDTR, SDTR, and command tag
4548 * queuing will be set in slave_configure() based on what a
4549 * device reports it is capable of in Inquiry byte 7.
4550 *
4551 * If SCSI Bus Resets have been disabled, then directly set
4552 * SDTR and WDTR from the EEPROM configuration. This will allow
4553 * the BIOS and warm boot to work without a SCSI bus hang on
4554 * the Inquiry caused by host and target mismatched DTR values.
4555 * Without the SCSI Bus Reset, before an Inquiry a device can't
4556 * be assumed to be in Asynchronous, Narrow mode.
4557 */
4558 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4559 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4560 asc_dvc->wdtr_able);
4561 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4562 asc_dvc->sdtr_able);
4563 }
4564
4565 /*
4566 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4567 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4568 * bitmask. These values determine the maximum SDTR speed negotiated
4569 * with a device.
4570 *
4571 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4572 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4573 * without determining here whether the device supports SDTR.
4574 *
4575 * 4-bit speed SDTR speed name
4576 * =========== ===============
4577 * 0000b (0x0) SDTR disabled
4578 * 0001b (0x1) 5 Mhz
4579 * 0010b (0x2) 10 Mhz
4580 * 0011b (0x3) 20 Mhz (Ultra)
4581 * 0100b (0x4) 40 Mhz (LVD/Ultra2)
4582 * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
4583 * 0110b (0x6) Undefined
4584 * .
4585 * 1111b (0xF) Undefined
4586 */
4587 word = 0;
4588 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4589 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4590 /* Set Ultra speed for TID 'tid'. */
4591 word |= (0x3 << (4 * (tid % 4)));
4592 } else {
4593 /* Set Fast speed for TID 'tid'. */
4594 word |= (0x2 << (4 * (tid % 4)));
4595 }
4596 if (tid == 3) { /* Check if done with sdtr_speed1. */
4597 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4598 word = 0;
4599 } else if (tid == 7) { /* Check if done with sdtr_speed2. */
4600 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4601 word = 0;
4602 } else if (tid == 11) { /* Check if done with sdtr_speed3. */
4603 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4604 word = 0;
4605 } else if (tid == 15) { /* Check if done with sdtr_speed4. */
4606 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4607 /* End of loop. */
4608 }
4609 }
4610
4611 /*
4612 * Set microcode operating variable for the disconnect per TID bitmask.
4613 */
4614 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4615 asc_dvc->cfg->disc_enable);
4616
4617 /*
4618 * Set SCSI_CFG0 Microcode Default Value.
4619 *
4620 * The microcode will set the SCSI_CFG0 register using this value
4621 * after it is started below.
4622 */
4623 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4624 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4625 asc_dvc->chip_scsi_id);
4626
4627 /*
4628 * Determine SCSI_CFG1 Microcode Default Value.
4629 *
4630 * The microcode will set the SCSI_CFG1 register using this value
4631 * after it is started below.
4632 */
4633
4634 /* Read current SCSI_CFG1 Register value. */
4635 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4636
4637 /*
4638 * If all three connectors are in use, return an error.
4639 */
4640 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4641 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4642 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4643 return ADV_ERROR;
4644 }
4645
4646 /*
4647 * If the internal narrow cable is reversed all of the SCSI_CTRL
4648 * register signals will be set. Check for and return an error if
4649 * this condition is found.
4650 */
4651 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4652 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4653 return ADV_ERROR;
4654 }
4655
4656 /*
4657 * If this is a differential board and a single-ended device
4658 * is attached to one of the connectors, return an error.
4659 */
4660 if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4661 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4662 return ADV_ERROR;
4663 }
4664
4665 /*
4666 * If automatic termination control is enabled, then set the
4667 * termination value based on a table listed in a_condor.h.
4668 *
4669 * If manual termination was specified with an EEPROM setting
4670 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4671 * is ready to be 'ored' into SCSI_CFG1.
4672 */
4673 if (asc_dvc->cfg->termination == 0) {
4674 /*
4675 * The software always controls termination by setting TERM_CTL_SEL.
4676 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4677 */
4678 asc_dvc->cfg->termination |= TERM_CTL_SEL;
4679
4680 switch (scsi_cfg1 & CABLE_DETECT) {
4681 /* TERM_CTL_H: on, TERM_CTL_L: on */
4682 case 0x3:
4683 case 0x7:
4684 case 0xB:
4685 case 0xD:
4686 case 0xE:
4687 case 0xF:
4688 asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4689 break;
4690
4691 /* TERM_CTL_H: on, TERM_CTL_L: off */
4692 case 0x1:
4693 case 0x5:
4694 case 0x9:
4695 case 0xA:
4696 case 0xC:
4697 asc_dvc->cfg->termination |= TERM_CTL_H;
4698 break;
4699
4700 /* TERM_CTL_H: off, TERM_CTL_L: off */
4701 case 0x2:
4702 case 0x6:
4703 break;
4704 }
4705 }
4706
4707 /*
4708 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4709 */
4710 scsi_cfg1 &= ~TERM_CTL;
4711
4712 /*
4713 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4714 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4715 * referenced, because the hardware internally inverts
4716 * the Termination High and Low bits if TERM_POL is set.
4717 */
4718 scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4719
4720 /*
4721 * Set SCSI_CFG1 Microcode Default Value
4722 *
4723 * Set filter value and possibly modified termination control
4724 * bits in the Microcode SCSI_CFG1 Register Value.
4725 *
4726 * The microcode will set the SCSI_CFG1 register using this value
4727 * after it is started below.
4728 */
4729 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4730 FLTR_DISABLE | scsi_cfg1);
4731
4732 /*
4733 * Set MEM_CFG Microcode Default Value
4734 *
4735 * The microcode will set the MEM_CFG register using this value
4736 * after it is started below.
4737 *
4738 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4739 * are defined.
4740 *
4741 * ASC-3550 has 8KB internal memory.
4742 */
4743 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4744 BIOS_EN | RAM_SZ_8KB);
4745
4746 /*
4747 * Set SEL_MASK Microcode Default Value
4748 *
4749 * The microcode will set the SEL_MASK register using this value
4750 * after it is started below.
4751 */
4752 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4753 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4754
4755 AdvBuildCarrierFreelist(asc_dvc);
4756
4757 /*
4758 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4759 */
4760
4761 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
4762 if (!asc_dvc->icq_sp) {
4763 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4764 return ADV_ERROR;
4765 }
4766
4767 /*
4768 * Set RISC ICQ physical address start value.
4769 */
4770 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4771
4772 /*
4773 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4774 */
4775 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
4776 if (!asc_dvc->irq_sp) {
4777 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4778 return ADV_ERROR;
4779 }
4780
4781 /*
4782 * Set RISC IRQ physical address start value.
4783 */
4784 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4785 asc_dvc->carr_pending_cnt = 0;
4786
4787 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4788 (ADV_INTR_ENABLE_HOST_INTR |
4789 ADV_INTR_ENABLE_GLOBAL_INTR));
4790
4791 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4792 AdvWriteWordRegister(iop_base, IOPW_PC, word);
4793
4794 /* finally, finally, gentlemen, start your engine */
4795 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4796
4797 /*
4798 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4799 * Resets should be performed. The RISC has to be running
4800 * to issue a SCSI Bus Reset.
4801 */
4802 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4803 /*
4804 * If the BIOS Signature is present in memory, restore the
4805 * BIOS Handshake Configuration Table and do not perform
4806 * a SCSI Bus Reset.
4807 */
4808 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4809 0x55AA) {
4810 /*
4811 * Restore per TID negotiated values.
4812 */
4813 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4814 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4815 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4816 tagqng_able);
4817 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4818 AdvWriteByteLram(iop_base,
4819 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4820 max_cmd[tid]);
4821 }
4822 } else {
4823 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4824 warn_code = ASC_WARN_BUSRESET_ERROR;
4825 }
4826 }
4827 }
4828
4829 return warn_code;
4830 }
4831
4832 /*
4833 * Initialize the ASC-38C0800.
4834 *
4835 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4836 *
4837 * For a non-fatal error return a warning code. If there are no warnings
4838 * then 0 is returned.
4839 *
4840 * Needed after initialization for error recovery.
4841 */
4842 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
4843 {
4844 const struct firmware *fw;
4845 const char fwname[] = "advansys/38C0800.bin";
4846 AdvPortAddr iop_base;
4847 ushort warn_code;
4848 int begin_addr;
4849 int end_addr;
4850 ushort code_sum;
4851 int word;
4852 int i;
4853 int err;
4854 unsigned long chksum;
4855 ushort scsi_cfg1;
4856 uchar byte;
4857 uchar tid;
4858 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
4859 ushort wdtr_able, sdtr_able, tagqng_able;
4860 uchar max_cmd[ADV_MAX_TID + 1];
4861
4862 /* If there is already an error, don't continue. */
4863 if (asc_dvc->err_code != 0)
4864 return ADV_ERROR;
4865
4866 /*
4867 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4868 */
4869 if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
4870 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4871 return ADV_ERROR;
4872 }
4873
4874 warn_code = 0;
4875 iop_base = asc_dvc->iop_base;
4876
4877 /*
4878 * Save the RISC memory BIOS region before writing the microcode.
4879 * The BIOS may already be loaded and using its RISC LRAM region
4880 * so its region must be saved and restored.
4881 *
4882 * Note: This code makes the assumption, which is currently true,
4883 * that a chip reset does not clear RISC LRAM.
4884 */
4885 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4886 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4887 bios_mem[i]);
4888 }
4889
4890 /*
4891 * Save current per TID negotiated values.
4892 */
4893 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4894 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4895 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4896 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4897 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4898 max_cmd[tid]);
4899 }
4900
4901 /*
4902 * RAM BIST (RAM Built-In Self Test)
4903 *
4904 * Address : I/O base + offset 0x38h register (byte).
4905 * Function: Bit 7-6(RW) : RAM mode
4906 * Normal Mode : 0x00
4907 * Pre-test Mode : 0x40
4908 * RAM Test Mode : 0x80
4909 * Bit 5 : unused
4910 * Bit 4(RO) : Done bit
4911 * Bit 3-0(RO) : Status
4912 * Host Error : 0x08
4913 * Int_RAM Error : 0x04
4914 * RISC Error : 0x02
4915 * SCSI Error : 0x01
4916 * No Error : 0x00
4917 *
4918 * Note: RAM BIST code should be put right here, before loading the
4919 * microcode and after saving the RISC memory BIOS region.
4920 */
4921
4922 /*
4923 * LRAM Pre-test
4924 *
4925 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4926 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4927 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4928 * to NORMAL_MODE, return an error too.
4929 */
4930 for (i = 0; i < 2; i++) {
4931 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
4932 mdelay(10); /* Wait for 10ms before reading back. */
4933 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4934 if ((byte & RAM_TEST_DONE) == 0
4935 || (byte & 0x0F) != PRE_TEST_VALUE) {
4936 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4937 return ADV_ERROR;
4938 }
4939
4940 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4941 mdelay(10); /* Wait for 10ms before reading back. */
4942 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
4943 != NORMAL_VALUE) {
4944 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4945 return ADV_ERROR;
4946 }
4947 }
4948
4949 /*
4950 * LRAM Test - It takes about 1.5 ms to run through the test.
4951 *
4952 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4953 * If Done bit not set or Status not 0, save register byte, set the
4954 * err_code, and return an error.
4955 */
4956 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
4957 mdelay(10); /* Wait for 10ms before checking status. */
4958
4959 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4960 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
4961 /* Get here if Done bit not set or Status not 0. */
4962 asc_dvc->bist_err_code = byte; /* for BIOS display message */
4963 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
4964 return ADV_ERROR;
4965 }
4966
4967 /* We need to reset back to normal mode after LRAM test passes. */
4968 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4969
4970 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4971 if (err) {
4972 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4973 fwname, err);
4974 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4975 return err;
4976 }
4977 if (fw->size < 4) {
4978 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4979 fw->size, fwname);
4980 release_firmware(fw);
4981 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4982 return -EINVAL;
4983 }
4984 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4985 (fw->data[1] << 8) | fw->data[0];
4986 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4987 fw->size - 4, ADV_38C0800_MEMSIZE,
4988 chksum);
4989 release_firmware(fw);
4990 if (asc_dvc->err_code)
4991 return ADV_ERROR;
4992
4993 /*
4994 * Restore the RISC memory BIOS region.
4995 */
4996 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4997 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4998 bios_mem[i]);
4999 }
5000
5001 /*
5002 * Calculate and write the microcode code checksum to the microcode
5003 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5004 */
5005 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5006 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5007 code_sum = 0;
5008 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5009 for (word = begin_addr; word < end_addr; word += 2) {
5010 code_sum += AdvReadWordAutoIncLram(iop_base);
5011 }
5012 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5013
5014 /*
5015 * Read microcode version and date.
5016 */
5017 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5018 asc_dvc->cfg->mcode_date);
5019 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5020 asc_dvc->cfg->mcode_version);
5021
5022 /*
5023 * Set the chip type to indicate the ASC38C0800.
5024 */
5025 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5026
5027 /*
5028 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5029 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5030 * cable detection and then we are able to read C_DET[3:0].
5031 *
5032 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5033 * Microcode Default Value' section below.
5034 */
5035 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5036 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5037 scsi_cfg1 | DIS_TERM_DRV);
5038
5039 /*
5040 * If the PCI Configuration Command Register "Parity Error Response
5041 * Control" Bit was clear (0), then set the microcode variable
5042 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5043 * to ignore DMA parity errors.
5044 */
5045 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5046 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5047 word |= CONTROL_FLAG_IGNORE_PERR;
5048 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5049 }
5050
5051 /*
5052 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5053 * bits for the default FIFO threshold.
5054 *
5055 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5056 *
5057 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5058 */
5059 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5060 BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5061 READ_CMD_MRM);
5062
5063 /*
5064 * Microcode operating variables for WDTR, SDTR, and command tag
5065 * queuing will be set in slave_configure() based on what a
5066 * device reports it is capable of in Inquiry byte 7.
5067 *
5068 * If SCSI Bus Resets have been disabled, then directly set
5069 * SDTR and WDTR from the EEPROM configuration. This will allow
5070 * the BIOS and warm boot to work without a SCSI bus hang on
5071 * the Inquiry caused by host and target mismatched DTR values.
5072 * Without the SCSI Bus Reset, before an Inquiry a device can't
5073 * be assumed to be in Asynchronous, Narrow mode.
5074 */
5075 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5076 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5077 asc_dvc->wdtr_able);
5078 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5079 asc_dvc->sdtr_able);
5080 }
5081
5082 /*
5083 * Set microcode operating variables for DISC and SDTR_SPEED1,
5084 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5085 * configuration values.
5086 *
5087 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5088 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5089 * without determining here whether the device supports SDTR.
5090 */
5091 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5092 asc_dvc->cfg->disc_enable);
5093 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5094 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5095 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5096 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5097
5098 /*
5099 * Set SCSI_CFG0 Microcode Default Value.
5100 *
5101 * The microcode will set the SCSI_CFG0 register using this value
5102 * after it is started below.
5103 */
5104 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5105 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5106 asc_dvc->chip_scsi_id);
5107
5108 /*
5109 * Determine SCSI_CFG1 Microcode Default Value.
5110 *
5111 * The microcode will set the SCSI_CFG1 register using this value
5112 * after it is started below.
5113 */
5114
5115 /* Read current SCSI_CFG1 Register value. */
5116 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5117
5118 /*
5119 * If the internal narrow cable is reversed all of the SCSI_CTRL
5120 * register signals will be set. Check for and return an error if
5121 * this condition is found.
5122 */
5123 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5124 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5125 return ADV_ERROR;
5126 }
5127
5128 /*
5129 * All kind of combinations of devices attached to one of four
5130 * connectors are acceptable except HVD device attached. For example,
5131 * LVD device can be attached to SE connector while SE device attached
5132 * to LVD connector. If LVD device attached to SE connector, it only
5133 * runs up to Ultra speed.
5134 *
5135 * If an HVD device is attached to one of LVD connectors, return an
5136 * error. However, there is no way to detect HVD device attached to
5137 * SE connectors.
5138 */
5139 if (scsi_cfg1 & HVD) {
5140 asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5141 return ADV_ERROR;
5142 }
5143
5144 /*
5145 * If either SE or LVD automatic termination control is enabled, then
5146 * set the termination value based on a table listed in a_condor.h.
5147 *
5148 * If manual termination was specified with an EEPROM setting then
5149 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5150 * to be 'ored' into SCSI_CFG1.
5151 */
5152 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5153 /* SE automatic termination control is enabled. */
5154 switch (scsi_cfg1 & C_DET_SE) {
5155 /* TERM_SE_HI: on, TERM_SE_LO: on */
5156 case 0x1:
5157 case 0x2:
5158 case 0x3:
5159 asc_dvc->cfg->termination |= TERM_SE;
5160 break;
5161
5162 /* TERM_SE_HI: on, TERM_SE_LO: off */
5163 case 0x0:
5164 asc_dvc->cfg->termination |= TERM_SE_HI;
5165 break;
5166 }
5167 }
5168
5169 if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5170 /* LVD automatic termination control is enabled. */
5171 switch (scsi_cfg1 & C_DET_LVD) {
5172 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5173 case 0x4:
5174 case 0x8:
5175 case 0xC:
5176 asc_dvc->cfg->termination |= TERM_LVD;
5177 break;
5178
5179 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5180 case 0x0:
5181 break;
5182 }
5183 }
5184
5185 /*
5186 * Clear any set TERM_SE and TERM_LVD bits.
5187 */
5188 scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5189
5190 /*
5191 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5192 */
5193 scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5194
5195 /*
5196 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5197 * bits and set possibly modified termination control bits in the
5198 * Microcode SCSI_CFG1 Register Value.
5199 */
5200 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5201
5202 /*
5203 * Set SCSI_CFG1 Microcode Default Value
5204 *
5205 * Set possibly modified termination control and reset DIS_TERM_DRV
5206 * bits in the Microcode SCSI_CFG1 Register Value.
5207 *
5208 * The microcode will set the SCSI_CFG1 register using this value
5209 * after it is started below.
5210 */
5211 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5212
5213 /*
5214 * Set MEM_CFG Microcode Default Value
5215 *
5216 * The microcode will set the MEM_CFG register using this value
5217 * after it is started below.
5218 *
5219 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5220 * are defined.
5221 *
5222 * ASC-38C0800 has 16KB internal memory.
5223 */
5224 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5225 BIOS_EN | RAM_SZ_16KB);
5226
5227 /*
5228 * Set SEL_MASK Microcode Default Value
5229 *
5230 * The microcode will set the SEL_MASK register using this value
5231 * after it is started below.
5232 */
5233 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5234 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5235
5236 AdvBuildCarrierFreelist(asc_dvc);
5237
5238 /*
5239 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5240 */
5241
5242 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5243 if (!asc_dvc->icq_sp) {
5244 ASC_DBG(0, "Failed to get ICQ carrier\n");
5245 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5246 return ADV_ERROR;
5247 }
5248
5249 /*
5250 * Set RISC ICQ physical address start value.
5251 * carr_pa is LE, must be native before write
5252 */
5253 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5254
5255 /*
5256 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5257 */
5258 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5259 if (!asc_dvc->irq_sp) {
5260 ASC_DBG(0, "Failed to get IRQ carrier\n");
5261 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5262 return ADV_ERROR;
5263 }
5264
5265 /*
5266 * Set RISC IRQ physical address start value.
5267 *
5268 * carr_pa is LE, must be native before write *
5269 */
5270 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5271 asc_dvc->carr_pending_cnt = 0;
5272
5273 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5274 (ADV_INTR_ENABLE_HOST_INTR |
5275 ADV_INTR_ENABLE_GLOBAL_INTR));
5276
5277 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5278 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5279
5280 /* finally, finally, gentlemen, start your engine */
5281 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5282
5283 /*
5284 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5285 * Resets should be performed. The RISC has to be running
5286 * to issue a SCSI Bus Reset.
5287 */
5288 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5289 /*
5290 * If the BIOS Signature is present in memory, restore the
5291 * BIOS Handshake Configuration Table and do not perform
5292 * a SCSI Bus Reset.
5293 */
5294 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5295 0x55AA) {
5296 /*
5297 * Restore per TID negotiated values.
5298 */
5299 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5300 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5301 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5302 tagqng_able);
5303 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5304 AdvWriteByteLram(iop_base,
5305 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5306 max_cmd[tid]);
5307 }
5308 } else {
5309 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5310 warn_code = ASC_WARN_BUSRESET_ERROR;
5311 }
5312 }
5313 }
5314
5315 return warn_code;
5316 }
5317
5318 /*
5319 * Initialize the ASC-38C1600.
5320 *
5321 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5322 *
5323 * For a non-fatal error return a warning code. If there are no warnings
5324 * then 0 is returned.
5325 *
5326 * Needed after initialization for error recovery.
5327 */
5328 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5329 {
5330 const struct firmware *fw;
5331 const char fwname[] = "advansys/38C1600.bin";
5332 AdvPortAddr iop_base;
5333 ushort warn_code;
5334 int begin_addr;
5335 int end_addr;
5336 ushort code_sum;
5337 long word;
5338 int i;
5339 int err;
5340 unsigned long chksum;
5341 ushort scsi_cfg1;
5342 uchar byte;
5343 uchar tid;
5344 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
5345 ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5346 uchar max_cmd[ASC_MAX_TID + 1];
5347
5348 /* If there is already an error, don't continue. */
5349 if (asc_dvc->err_code != 0) {
5350 return ADV_ERROR;
5351 }
5352
5353 /*
5354 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5355 */
5356 if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5357 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5358 return ADV_ERROR;
5359 }
5360
5361 warn_code = 0;
5362 iop_base = asc_dvc->iop_base;
5363
5364 /*
5365 * Save the RISC memory BIOS region before writing the microcode.
5366 * The BIOS may already be loaded and using its RISC LRAM region
5367 * so its region must be saved and restored.
5368 *
5369 * Note: This code makes the assumption, which is currently true,
5370 * that a chip reset does not clear RISC LRAM.
5371 */
5372 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5373 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5374 bios_mem[i]);
5375 }
5376
5377 /*
5378 * Save current per TID negotiated values.
5379 */
5380 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5381 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5382 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5383 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5384 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5385 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5386 max_cmd[tid]);
5387 }
5388
5389 /*
5390 * RAM BIST (Built-In Self Test)
5391 *
5392 * Address : I/O base + offset 0x38h register (byte).
5393 * Function: Bit 7-6(RW) : RAM mode
5394 * Normal Mode : 0x00
5395 * Pre-test Mode : 0x40
5396 * RAM Test Mode : 0x80
5397 * Bit 5 : unused
5398 * Bit 4(RO) : Done bit
5399 * Bit 3-0(RO) : Status
5400 * Host Error : 0x08
5401 * Int_RAM Error : 0x04
5402 * RISC Error : 0x02
5403 * SCSI Error : 0x01
5404 * No Error : 0x00
5405 *
5406 * Note: RAM BIST code should be put right here, before loading the
5407 * microcode and after saving the RISC memory BIOS region.
5408 */
5409
5410 /*
5411 * LRAM Pre-test
5412 *
5413 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5414 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5415 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5416 * to NORMAL_MODE, return an error too.
5417 */
5418 for (i = 0; i < 2; i++) {
5419 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5420 mdelay(10); /* Wait for 10ms before reading back. */
5421 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5422 if ((byte & RAM_TEST_DONE) == 0
5423 || (byte & 0x0F) != PRE_TEST_VALUE) {
5424 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5425 return ADV_ERROR;
5426 }
5427
5428 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5429 mdelay(10); /* Wait for 10ms before reading back. */
5430 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5431 != NORMAL_VALUE) {
5432 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5433 return ADV_ERROR;
5434 }
5435 }
5436
5437 /*
5438 * LRAM Test - It takes about 1.5 ms to run through the test.
5439 *
5440 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5441 * If Done bit not set or Status not 0, save register byte, set the
5442 * err_code, and return an error.
5443 */
5444 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5445 mdelay(10); /* Wait for 10ms before checking status. */
5446
5447 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5448 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5449 /* Get here if Done bit not set or Status not 0. */
5450 asc_dvc->bist_err_code = byte; /* for BIOS display message */
5451 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5452 return ADV_ERROR;
5453 }
5454
5455 /* We need to reset back to normal mode after LRAM test passes. */
5456 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5457
5458 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5459 if (err) {
5460 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5461 fwname, err);
5462 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5463 return err;
5464 }
5465 if (fw->size < 4) {
5466 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5467 fw->size, fwname);
5468 release_firmware(fw);
5469 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5470 return -EINVAL;
5471 }
5472 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5473 (fw->data[1] << 8) | fw->data[0];
5474 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5475 fw->size - 4, ADV_38C1600_MEMSIZE,
5476 chksum);
5477 release_firmware(fw);
5478 if (asc_dvc->err_code)
5479 return ADV_ERROR;
5480
5481 /*
5482 * Restore the RISC memory BIOS region.
5483 */
5484 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5485 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5486 bios_mem[i]);
5487 }
5488
5489 /*
5490 * Calculate and write the microcode code checksum to the microcode
5491 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5492 */
5493 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5494 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5495 code_sum = 0;
5496 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5497 for (word = begin_addr; word < end_addr; word += 2) {
5498 code_sum += AdvReadWordAutoIncLram(iop_base);
5499 }
5500 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5501
5502 /*
5503 * Read microcode version and date.
5504 */
5505 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5506 asc_dvc->cfg->mcode_date);
5507 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5508 asc_dvc->cfg->mcode_version);
5509
5510 /*
5511 * Set the chip type to indicate the ASC38C1600.
5512 */
5513 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5514
5515 /*
5516 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5517 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5518 * cable detection and then we are able to read C_DET[3:0].
5519 *
5520 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5521 * Microcode Default Value' section below.
5522 */
5523 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5524 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5525 scsi_cfg1 | DIS_TERM_DRV);
5526
5527 /*
5528 * If the PCI Configuration Command Register "Parity Error Response
5529 * Control" Bit was clear (0), then set the microcode variable
5530 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5531 * to ignore DMA parity errors.
5532 */
5533 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5534 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5535 word |= CONTROL_FLAG_IGNORE_PERR;
5536 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5537 }
5538
5539 /*
5540 * If the BIOS control flag AIPP (Asynchronous Information
5541 * Phase Protection) disable bit is not set, then set the firmware
5542 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5543 * AIPP checking and encoding.
5544 */
5545 if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5546 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5547 word |= CONTROL_FLAG_ENABLE_AIPP;
5548 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5549 }
5550
5551 /*
5552 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5553 * and START_CTL_TH [3:2].
5554 */
5555 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5556 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5557
5558 /*
5559 * Microcode operating variables for WDTR, SDTR, and command tag
5560 * queuing will be set in slave_configure() based on what a
5561 * device reports it is capable of in Inquiry byte 7.
5562 *
5563 * If SCSI Bus Resets have been disabled, then directly set
5564 * SDTR and WDTR from the EEPROM configuration. This will allow
5565 * the BIOS and warm boot to work without a SCSI bus hang on
5566 * the Inquiry caused by host and target mismatched DTR values.
5567 * Without the SCSI Bus Reset, before an Inquiry a device can't
5568 * be assumed to be in Asynchronous, Narrow mode.
5569 */
5570 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5571 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5572 asc_dvc->wdtr_able);
5573 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5574 asc_dvc->sdtr_able);
5575 }
5576
5577 /*
5578 * Set microcode operating variables for DISC and SDTR_SPEED1,
5579 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5580 * configuration values.
5581 *
5582 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5583 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5584 * without determining here whether the device supports SDTR.
5585 */
5586 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5587 asc_dvc->cfg->disc_enable);
5588 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5589 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5590 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5591 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5592
5593 /*
5594 * Set SCSI_CFG0 Microcode Default Value.
5595 *
5596 * The microcode will set the SCSI_CFG0 register using this value
5597 * after it is started below.
5598 */
5599 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5600 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5601 asc_dvc->chip_scsi_id);
5602
5603 /*
5604 * Calculate SCSI_CFG1 Microcode Default Value.
5605 *
5606 * The microcode will set the SCSI_CFG1 register using this value
5607 * after it is started below.
5608 *
5609 * Each ASC-38C1600 function has only two cable detect bits.
5610 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5611 */
5612 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5613
5614 /*
5615 * If the cable is reversed all of the SCSI_CTRL register signals
5616 * will be set. Check for and return an error if this condition is
5617 * found.
5618 */
5619 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5620 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5621 return ADV_ERROR;
5622 }
5623
5624 /*
5625 * Each ASC-38C1600 function has two connectors. Only an HVD device
5626 * can not be connected to either connector. An LVD device or SE device
5627 * may be connected to either connecor. If an SE device is connected,
5628 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5629 *
5630 * If an HVD device is attached, return an error.
5631 */
5632 if (scsi_cfg1 & HVD) {
5633 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5634 return ADV_ERROR;
5635 }
5636
5637 /*
5638 * Each function in the ASC-38C1600 uses only the SE cable detect and
5639 * termination because there are two connectors for each function. Each
5640 * function may use either LVD or SE mode. Corresponding the SE automatic
5641 * termination control EEPROM bits are used for each function. Each
5642 * function has its own EEPROM. If SE automatic control is enabled for
5643 * the function, then set the termination value based on a table listed
5644 * in a_condor.h.
5645 *
5646 * If manual termination is specified in the EEPROM for the function,
5647 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5648 * ready to be 'ored' into SCSI_CFG1.
5649 */
5650 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5651 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5652 /* SE automatic termination control is enabled. */
5653 switch (scsi_cfg1 & C_DET_SE) {
5654 /* TERM_SE_HI: on, TERM_SE_LO: on */
5655 case 0x1:
5656 case 0x2:
5657 case 0x3:
5658 asc_dvc->cfg->termination |= TERM_SE;
5659 break;
5660
5661 case 0x0:
5662 if (PCI_FUNC(pdev->devfn) == 0) {
5663 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5664 } else {
5665 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5666 asc_dvc->cfg->termination |= TERM_SE_HI;
5667 }
5668 break;
5669 }
5670 }
5671
5672 /*
5673 * Clear any set TERM_SE bits.
5674 */
5675 scsi_cfg1 &= ~TERM_SE;
5676
5677 /*
5678 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5679 */
5680 scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5681
5682 /*
5683 * Clear Big Endian and Terminator Polarity bits and set possibly
5684 * modified termination control bits in the Microcode SCSI_CFG1
5685 * Register Value.
5686 *
5687 * Big Endian bit is not used even on big endian machines.
5688 */
5689 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5690
5691 /*
5692 * Set SCSI_CFG1 Microcode Default Value
5693 *
5694 * Set possibly modified termination control bits in the Microcode
5695 * SCSI_CFG1 Register Value.
5696 *
5697 * The microcode will set the SCSI_CFG1 register using this value
5698 * after it is started below.
5699 */
5700 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5701
5702 /*
5703 * Set MEM_CFG Microcode Default Value
5704 *
5705 * The microcode will set the MEM_CFG register using this value
5706 * after it is started below.
5707 *
5708 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5709 * are defined.
5710 *
5711 * ASC-38C1600 has 32KB internal memory.
5712 *
5713 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5714 * out a special 16K Adv Library and Microcode version. After the issue
5715 * resolved, we should turn back to the 32K support. Both a_condor.h and
5716 * mcode.sas files also need to be updated.
5717 *
5718 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5719 * BIOS_EN | RAM_SZ_32KB);
5720 */
5721 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5722 BIOS_EN | RAM_SZ_16KB);
5723
5724 /*
5725 * Set SEL_MASK Microcode Default Value
5726 *
5727 * The microcode will set the SEL_MASK register using this value
5728 * after it is started below.
5729 */
5730 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5731 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5732
5733 AdvBuildCarrierFreelist(asc_dvc);
5734
5735 /*
5736 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5737 */
5738 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5739 if (!asc_dvc->icq_sp) {
5740 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5741 return ADV_ERROR;
5742 }
5743
5744 /*
5745 * Set RISC ICQ physical address start value. Initialize the
5746 * COMMA register to the same value otherwise the RISC will
5747 * prematurely detect a command is available.
5748 */
5749 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5750 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5751 le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5752
5753 /*
5754 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5755 */
5756 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5757 if (!asc_dvc->irq_sp) {
5758 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5759 return ADV_ERROR;
5760 }
5761
5762 /*
5763 * Set RISC IRQ physical address start value.
5764 */
5765 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5766 asc_dvc->carr_pending_cnt = 0;
5767
5768 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5769 (ADV_INTR_ENABLE_HOST_INTR |
5770 ADV_INTR_ENABLE_GLOBAL_INTR));
5771 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5772 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5773
5774 /* finally, finally, gentlemen, start your engine */
5775 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5776
5777 /*
5778 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5779 * Resets should be performed. The RISC has to be running
5780 * to issue a SCSI Bus Reset.
5781 */
5782 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5783 /*
5784 * If the BIOS Signature is present in memory, restore the
5785 * per TID microcode operating variables.
5786 */
5787 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5788 0x55AA) {
5789 /*
5790 * Restore per TID negotiated values.
5791 */
5792 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5793 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5794 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5795 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5796 tagqng_able);
5797 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5798 AdvWriteByteLram(iop_base,
5799 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5800 max_cmd[tid]);
5801 }
5802 } else {
5803 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5804 warn_code = ASC_WARN_BUSRESET_ERROR;
5805 }
5806 }
5807 }
5808
5809 return warn_code;
5810 }
5811
5812 /*
5813 * Reset chip and SCSI Bus.
5814 *
5815 * Return Value:
5816 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
5817 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
5818 */
5819 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
5820 {
5821 int status;
5822 ushort wdtr_able, sdtr_able, tagqng_able;
5823 ushort ppr_able = 0;
5824 uchar tid, max_cmd[ADV_MAX_TID + 1];
5825 AdvPortAddr iop_base;
5826 ushort bios_sig;
5827
5828 iop_base = asc_dvc->iop_base;
5829
5830 /*
5831 * Save current per TID negotiated values.
5832 */
5833 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5834 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5835 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5836 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5837 }
5838 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5839 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5840 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5841 max_cmd[tid]);
5842 }
5843
5844 /*
5845 * Force the AdvInitAsc3550/38C0800Driver() function to
5846 * perform a SCSI Bus Reset by clearing the BIOS signature word.
5847 * The initialization functions assumes a SCSI Bus Reset is not
5848 * needed if the BIOS signature word is present.
5849 */
5850 AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5851 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
5852
5853 /*
5854 * Stop chip and reset it.
5855 */
5856 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
5857 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
5858 mdelay(100);
5859 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
5860 ADV_CTRL_REG_CMD_WR_IO_REG);
5861
5862 /*
5863 * Reset Adv Library error code, if any, and try
5864 * re-initializing the chip.
5865 */
5866 asc_dvc->err_code = 0;
5867 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5868 status = AdvInitAsc38C1600Driver(asc_dvc);
5869 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
5870 status = AdvInitAsc38C0800Driver(asc_dvc);
5871 } else {
5872 status = AdvInitAsc3550Driver(asc_dvc);
5873 }
5874
5875 /* Translate initialization return value to status value. */
5876 if (status == 0) {
5877 status = ADV_TRUE;
5878 } else {
5879 status = ADV_FALSE;
5880 }
5881
5882 /*
5883 * Restore the BIOS signature word.
5884 */
5885 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5886
5887 /*
5888 * Restore per TID negotiated values.
5889 */
5890 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5891 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5892 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5893 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5894 }
5895 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5896 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5897 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5898 max_cmd[tid]);
5899 }
5900
5901 return status;
5902 }
5903
5904 /*
5905 * adv_async_callback() - Adv Library asynchronous event callback function.
5906 */
5907 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
5908 {
5909 switch (code) {
5910 case ADV_ASYNC_SCSI_BUS_RESET_DET:
5911 /*
5912 * The firmware detected a SCSI Bus reset.
5913 */
5914 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5915 break;
5916
5917 case ADV_ASYNC_RDMA_FAILURE:
5918 /*
5919 * Handle RDMA failure by resetting the SCSI Bus and
5920 * possibly the chip if it is unresponsive. Log the error
5921 * with a unique code.
5922 */
5923 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5924 AdvResetChipAndSB(adv_dvc_varp);
5925 break;
5926
5927 case ADV_HOST_SCSI_BUS_RESET:
5928 /*
5929 * Host generated SCSI bus reset occurred.
5930 */
5931 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5932 break;
5933
5934 default:
5935 ASC_DBG(0, "unknown code 0x%x\n", code);
5936 break;
5937 }
5938 }
5939
5940 /*
5941 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5942 *
5943 * Callback function for the Wide SCSI Adv Library.
5944 */
5945 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
5946 {
5947 struct asc_board *boardp = adv_dvc_varp->drv_ptr;
5948 adv_req_t *reqp;
5949 adv_sgblk_t *sgblkp;
5950 struct scsi_cmnd *scp;
5951 u32 resid_cnt;
5952 dma_addr_t sense_addr;
5953
5954 ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5955 adv_dvc_varp, scsiqp);
5956 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
5957
5958 /*
5959 * Get the adv_req_t structure for the command that has been
5960 * completed. The adv_req_t structure actually contains the
5961 * completed ADV_SCSI_REQ_Q structure.
5962 */
5963 scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
5964
5965 ASC_DBG(1, "scp 0x%p\n", scp);
5966 if (scp == NULL) {
5967 ASC_PRINT
5968 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5969 return;
5970 }
5971 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
5972
5973 reqp = (adv_req_t *)scp->host_scribble;
5974 ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
5975 if (reqp == NULL) {
5976 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5977 return;
5978 }
5979 /*
5980 * Remove backreferences to avoid duplicate
5981 * command completions.
5982 */
5983 scp->host_scribble = NULL;
5984 reqp->cmndp = NULL;
5985
5986 ASC_STATS(boardp->shost, callback);
5987 ASC_DBG(1, "shost 0x%p\n", boardp->shost);
5988
5989 sense_addr = le32_to_cpu(scsiqp->sense_addr);
5990 dma_unmap_single(boardp->dev, sense_addr,
5991 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
5992
5993 /*
5994 * 'done_status' contains the command's ending status.
5995 */
5996 switch (scsiqp->done_status) {
5997 case QD_NO_ERROR:
5998 ASC_DBG(2, "QD_NO_ERROR\n");
5999 scp->result = 0;
6000
6001 /*
6002 * Check for an underrun condition.
6003 *
6004 * If there was no error and an underrun condition, then
6005 * then return the number of underrun bytes.
6006 */
6007 resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6008 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6009 resid_cnt <= scsi_bufflen(scp)) {
6010 ASC_DBG(1, "underrun condition %lu bytes\n",
6011 (ulong)resid_cnt);
6012 scsi_set_resid(scp, resid_cnt);
6013 }
6014 break;
6015
6016 case QD_WITH_ERROR:
6017 ASC_DBG(2, "QD_WITH_ERROR\n");
6018 switch (scsiqp->host_status) {
6019 case QHSTA_NO_ERROR:
6020 if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6021 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6022 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6023 SCSI_SENSE_BUFFERSIZE);
6024 /*
6025 * Note: The 'status_byte()' macro used by
6026 * target drivers defined in scsi.h shifts the
6027 * status byte returned by host drivers right
6028 * by 1 bit. This is why target drivers also
6029 * use right shifted status byte definitions.
6030 * For instance target drivers use
6031 * CHECK_CONDITION, defined to 0x1, instead of
6032 * the SCSI defined check condition value of
6033 * 0x2. Host drivers are supposed to return
6034 * the status byte as it is defined by SCSI.
6035 */
6036 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6037 STATUS_BYTE(scsiqp->scsi_status);
6038 } else {
6039 scp->result = STATUS_BYTE(scsiqp->scsi_status);
6040 }
6041 break;
6042
6043 default:
6044 /* Some other QHSTA error occurred. */
6045 ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6046 scp->result = HOST_BYTE(DID_BAD_TARGET);
6047 break;
6048 }
6049 break;
6050
6051 case QD_ABORTED_BY_HOST:
6052 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6053 scp->result =
6054 HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6055 break;
6056
6057 default:
6058 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6059 scp->result =
6060 HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6061 break;
6062 }
6063
6064 /*
6065 * If the 'init_tidmask' bit isn't already set for the target and the
6066 * current request finished normally, then set the bit for the target
6067 * to indicate that a device is present.
6068 */
6069 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6070 scsiqp->done_status == QD_NO_ERROR &&
6071 scsiqp->host_status == QHSTA_NO_ERROR) {
6072 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6073 }
6074
6075 asc_scsi_done(scp);
6076
6077 /*
6078 * Free all 'adv_sgblk_t' structures allocated for the request.
6079 */
6080 while ((sgblkp = reqp->sgblkp) != NULL) {
6081 /* Remove 'sgblkp' from the request list. */
6082 reqp->sgblkp = sgblkp->next_sgblkp;
6083
6084 dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
6085 sgblkp->sg_addr);
6086 }
6087
6088 ASC_DBG(1, "done\n");
6089 }
6090
6091 /*
6092 * Adv Library Interrupt Service Routine
6093 *
6094 * This function is called by a driver's interrupt service routine.
6095 * The function disables and re-enables interrupts.
6096 *
6097 * When a microcode idle command is completed, the ADV_DVC_VAR
6098 * 'idle_cmd_done' field is set to ADV_TRUE.
6099 *
6100 * Note: AdvISR() can be called when interrupts are disabled or even
6101 * when there is no hardware interrupt condition present. It will
6102 * always check for completed idle commands and microcode requests.
6103 * This is an important feature that shouldn't be changed because it
6104 * allows commands to be completed from polling mode loops.
6105 *
6106 * Return:
6107 * ADV_TRUE(1) - interrupt was pending
6108 * ADV_FALSE(0) - no interrupt was pending
6109 */
6110 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6111 {
6112 AdvPortAddr iop_base;
6113 uchar int_stat;
6114 ushort target_bit;
6115 ADV_CARR_T *free_carrp;
6116 __le32 irq_next_vpa;
6117 ADV_SCSI_REQ_Q *scsiq;
6118 adv_req_t *reqp;
6119
6120 iop_base = asc_dvc->iop_base;
6121
6122 /* Reading the register clears the interrupt. */
6123 int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6124
6125 if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6126 ADV_INTR_STATUS_INTRC)) == 0) {
6127 return ADV_FALSE;
6128 }
6129
6130 /*
6131 * Notify the driver of an asynchronous microcode condition by
6132 * calling the adv_async_callback function. The function
6133 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6134 */
6135 if (int_stat & ADV_INTR_STATUS_INTRB) {
6136 uchar intrb_code;
6137
6138 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6139
6140 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6141 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6142 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6143 asc_dvc->carr_pending_cnt != 0) {
6144 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6145 ADV_TICKLE_A);
6146 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6147 AdvWriteByteRegister(iop_base,
6148 IOPB_TICKLE,
6149 ADV_TICKLE_NOP);
6150 }
6151 }
6152 }
6153
6154 adv_async_callback(asc_dvc, intrb_code);
6155 }
6156
6157 /*
6158 * Check if the IRQ stopper carrier contains a completed request.
6159 */
6160 while (((irq_next_vpa =
6161 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
6162 /*
6163 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6164 * The RISC will have set 'areq_vpa' to a virtual address.
6165 *
6166 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6167 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6168 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6169 * in AdvExeScsiQueue().
6170 */
6171 u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
6172 ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6173 asc_dvc->irq_sp, pa_offset);
6174 reqp = adv_get_reqp(asc_dvc, pa_offset);
6175 scsiq = &reqp->scsi_req_q;
6176
6177 /*
6178 * Request finished with good status and the queue was not
6179 * DMAed to host memory by the firmware. Set all status fields
6180 * to indicate good status.
6181 */
6182 if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
6183 scsiq->done_status = QD_NO_ERROR;
6184 scsiq->host_status = scsiq->scsi_status = 0;
6185 scsiq->data_cnt = 0L;
6186 }
6187
6188 /*
6189 * Advance the stopper pointer to the next carrier
6190 * ignoring the lower four bits. Free the previous
6191 * stopper carrier.
6192 */
6193 free_carrp = asc_dvc->irq_sp;
6194 asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
6195 ADV_GET_CARRP(irq_next_vpa));
6196
6197 free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
6198 asc_dvc->carr_freelist = free_carrp;
6199 asc_dvc->carr_pending_cnt--;
6200
6201 target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6202
6203 /*
6204 * Clear request microcode control flag.
6205 */
6206 scsiq->cntl = 0;
6207
6208 /*
6209 * Notify the driver of the completed request by passing
6210 * the ADV_SCSI_REQ_Q pointer to its callback function.
6211 */
6212 adv_isr_callback(asc_dvc, scsiq);
6213 /*
6214 * Note: After the driver callback function is called, 'scsiq'
6215 * can no longer be referenced.
6216 *
6217 * Fall through and continue processing other completed
6218 * requests...
6219 */
6220 }
6221 return ADV_TRUE;
6222 }
6223
6224 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6225 {
6226 if (asc_dvc->err_code == 0) {
6227 asc_dvc->err_code = err_code;
6228 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6229 err_code);
6230 }
6231 return err_code;
6232 }
6233
6234 static void AscAckInterrupt(PortAddr iop_base)
6235 {
6236 uchar host_flag;
6237 uchar risc_flag;
6238 ushort loop;
6239
6240 loop = 0;
6241 do {
6242 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6243 if (loop++ > 0x7FFF) {
6244 break;
6245 }
6246 } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6247 host_flag =
6248 AscReadLramByte(iop_base,
6249 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6250 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6251 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6252 AscSetChipStatus(iop_base, CIW_INT_ACK);
6253 loop = 0;
6254 while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6255 AscSetChipStatus(iop_base, CIW_INT_ACK);
6256 if (loop++ > 3) {
6257 break;
6258 }
6259 }
6260 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6261 }
6262
6263 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6264 {
6265 const uchar *period_table;
6266 int max_index;
6267 int min_index;
6268 int i;
6269
6270 period_table = asc_dvc->sdtr_period_tbl;
6271 max_index = (int)asc_dvc->max_sdtr_index;
6272 min_index = (int)asc_dvc->min_sdtr_index;
6273 if ((syn_time <= period_table[max_index])) {
6274 for (i = min_index; i < (max_index - 1); i++) {
6275 if (syn_time <= period_table[i]) {
6276 return (uchar)i;
6277 }
6278 }
6279 return (uchar)max_index;
6280 } else {
6281 return (uchar)(max_index + 1);
6282 }
6283 }
6284
6285 static uchar
6286 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6287 {
6288 PortAddr iop_base = asc_dvc->iop_base;
6289 uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6290 EXT_MSG sdtr_buf = {
6291 .msg_type = EXTENDED_MESSAGE,
6292 .msg_len = MS_SDTR_LEN,
6293 .msg_req = EXTENDED_SDTR,
6294 .xfer_period = sdtr_period,
6295 .req_ack_offset = sdtr_offset,
6296 };
6297 sdtr_offset &= ASC_SYN_MAX_OFFSET;
6298
6299 if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6300 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6301 (uchar *)&sdtr_buf,
6302 sizeof(EXT_MSG) >> 1);
6303 return ((sdtr_period_index << 4) | sdtr_offset);
6304 } else {
6305 sdtr_buf.req_ack_offset = 0;
6306 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6307 (uchar *)&sdtr_buf,
6308 sizeof(EXT_MSG) >> 1);
6309 return 0;
6310 }
6311 }
6312
6313 static uchar
6314 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6315 {
6316 uchar byte;
6317 uchar sdtr_period_ix;
6318
6319 sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6320 if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6321 return 0xFF;
6322 byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6323 return byte;
6324 }
6325
6326 static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6327 {
6328 ASC_SCSI_BIT_ID_TYPE org_id;
6329 int i;
6330 bool sta = true;
6331
6332 AscSetBank(iop_base, 1);
6333 org_id = AscReadChipDvcID(iop_base);
6334 for (i = 0; i <= ASC_MAX_TID; i++) {
6335 if (org_id == (0x01 << i))
6336 break;
6337 }
6338 org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6339 AscWriteChipDvcID(iop_base, id);
6340 if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6341 AscSetBank(iop_base, 0);
6342 AscSetChipSyn(iop_base, sdtr_data);
6343 if (AscGetChipSyn(iop_base) != sdtr_data) {
6344 sta = false;
6345 }
6346 } else {
6347 sta = false;
6348 }
6349 AscSetBank(iop_base, 1);
6350 AscWriteChipDvcID(iop_base, org_id);
6351 AscSetBank(iop_base, 0);
6352 return (sta);
6353 }
6354
6355 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6356 {
6357 AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6358 AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6359 }
6360
6361 static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6362 {
6363 EXT_MSG ext_msg;
6364 EXT_MSG out_msg;
6365 ushort halt_q_addr;
6366 bool sdtr_accept;
6367 ushort int_halt_code;
6368 ASC_SCSI_BIT_ID_TYPE scsi_busy;
6369 ASC_SCSI_BIT_ID_TYPE target_id;
6370 PortAddr iop_base;
6371 uchar tag_code;
6372 uchar q_status;
6373 uchar halt_qp;
6374 uchar sdtr_data;
6375 uchar target_ix;
6376 uchar q_cntl, tid_no;
6377 uchar cur_dvc_qng;
6378 uchar asyn_sdtr;
6379 uchar scsi_status;
6380 struct asc_board *boardp;
6381
6382 BUG_ON(!asc_dvc->drv_ptr);
6383 boardp = asc_dvc->drv_ptr;
6384
6385 iop_base = asc_dvc->iop_base;
6386 int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6387
6388 halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6389 halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6390 target_ix = AscReadLramByte(iop_base,
6391 (ushort)(halt_q_addr +
6392 (ushort)ASC_SCSIQ_B_TARGET_IX));
6393 q_cntl = AscReadLramByte(iop_base,
6394 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6395 tid_no = ASC_TIX_TO_TID(target_ix);
6396 target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6397 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6398 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6399 } else {
6400 asyn_sdtr = 0;
6401 }
6402 if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6403 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6404 AscSetChipSDTR(iop_base, 0, tid_no);
6405 boardp->sdtr_data[tid_no] = 0;
6406 }
6407 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6408 return;
6409 } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6410 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6411 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6412 boardp->sdtr_data[tid_no] = asyn_sdtr;
6413 }
6414 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6415 return;
6416 } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6417 AscMemWordCopyPtrFromLram(iop_base,
6418 ASCV_MSGIN_BEG,
6419 (uchar *)&ext_msg,
6420 sizeof(EXT_MSG) >> 1);
6421
6422 if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6423 ext_msg.msg_req == EXTENDED_SDTR &&
6424 ext_msg.msg_len == MS_SDTR_LEN) {
6425 sdtr_accept = true;
6426 if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6427
6428 sdtr_accept = false;
6429 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6430 }
6431 if ((ext_msg.xfer_period <
6432 asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6433 || (ext_msg.xfer_period >
6434 asc_dvc->sdtr_period_tbl[asc_dvc->
6435 max_sdtr_index])) {
6436 sdtr_accept = false;
6437 ext_msg.xfer_period =
6438 asc_dvc->sdtr_period_tbl[asc_dvc->
6439 min_sdtr_index];
6440 }
6441 if (sdtr_accept) {
6442 sdtr_data =
6443 AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6444 ext_msg.req_ack_offset);
6445 if (sdtr_data == 0xFF) {
6446
6447 q_cntl |= QC_MSG_OUT;
6448 asc_dvc->init_sdtr &= ~target_id;
6449 asc_dvc->sdtr_done &= ~target_id;
6450 AscSetChipSDTR(iop_base, asyn_sdtr,
6451 tid_no);
6452 boardp->sdtr_data[tid_no] = asyn_sdtr;
6453 }
6454 }
6455 if (ext_msg.req_ack_offset == 0) {
6456
6457 q_cntl &= ~QC_MSG_OUT;
6458 asc_dvc->init_sdtr &= ~target_id;
6459 asc_dvc->sdtr_done &= ~target_id;
6460 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6461 } else {
6462 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6463 q_cntl &= ~QC_MSG_OUT;
6464 asc_dvc->sdtr_done |= target_id;
6465 asc_dvc->init_sdtr |= target_id;
6466 asc_dvc->pci_fix_asyn_xfer &=
6467 ~target_id;
6468 sdtr_data =
6469 AscCalSDTRData(asc_dvc,
6470 ext_msg.xfer_period,
6471 ext_msg.
6472 req_ack_offset);
6473 AscSetChipSDTR(iop_base, sdtr_data,
6474 tid_no);
6475 boardp->sdtr_data[tid_no] = sdtr_data;
6476 } else {
6477 q_cntl |= QC_MSG_OUT;
6478 AscMsgOutSDTR(asc_dvc,
6479 ext_msg.xfer_period,
6480 ext_msg.req_ack_offset);
6481 asc_dvc->pci_fix_asyn_xfer &=
6482 ~target_id;
6483 sdtr_data =
6484 AscCalSDTRData(asc_dvc,
6485 ext_msg.xfer_period,
6486 ext_msg.
6487 req_ack_offset);
6488 AscSetChipSDTR(iop_base, sdtr_data,
6489 tid_no);
6490 boardp->sdtr_data[tid_no] = sdtr_data;
6491 asc_dvc->sdtr_done |= target_id;
6492 asc_dvc->init_sdtr |= target_id;
6493 }
6494 }
6495
6496 AscWriteLramByte(iop_base,
6497 (ushort)(halt_q_addr +
6498 (ushort)ASC_SCSIQ_B_CNTL),
6499 q_cntl);
6500 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6501 return;
6502 } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6503 ext_msg.msg_req == EXTENDED_WDTR &&
6504 ext_msg.msg_len == MS_WDTR_LEN) {
6505
6506 ext_msg.wdtr_width = 0;
6507 AscMemWordCopyPtrToLram(iop_base,
6508 ASCV_MSGOUT_BEG,
6509 (uchar *)&ext_msg,
6510 sizeof(EXT_MSG) >> 1);
6511 q_cntl |= QC_MSG_OUT;
6512 AscWriteLramByte(iop_base,
6513 (ushort)(halt_q_addr +
6514 (ushort)ASC_SCSIQ_B_CNTL),
6515 q_cntl);
6516 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6517 return;
6518 } else {
6519
6520 ext_msg.msg_type = MESSAGE_REJECT;
6521 AscMemWordCopyPtrToLram(iop_base,
6522 ASCV_MSGOUT_BEG,
6523 (uchar *)&ext_msg,
6524 sizeof(EXT_MSG) >> 1);
6525 q_cntl |= QC_MSG_OUT;
6526 AscWriteLramByte(iop_base,
6527 (ushort)(halt_q_addr +
6528 (ushort)ASC_SCSIQ_B_CNTL),
6529 q_cntl);
6530 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6531 return;
6532 }
6533 } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6534
6535 q_cntl |= QC_REQ_SENSE;
6536
6537 if ((asc_dvc->init_sdtr & target_id) != 0) {
6538
6539 asc_dvc->sdtr_done &= ~target_id;
6540
6541 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6542 q_cntl |= QC_MSG_OUT;
6543 AscMsgOutSDTR(asc_dvc,
6544 asc_dvc->
6545 sdtr_period_tbl[(sdtr_data >> 4) &
6546 (uchar)(asc_dvc->
6547 max_sdtr_index -
6548 1)],
6549 (uchar)(sdtr_data & (uchar)
6550 ASC_SYN_MAX_OFFSET));
6551 }
6552
6553 AscWriteLramByte(iop_base,
6554 (ushort)(halt_q_addr +
6555 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6556
6557 tag_code = AscReadLramByte(iop_base,
6558 (ushort)(halt_q_addr + (ushort)
6559 ASC_SCSIQ_B_TAG_CODE));
6560 tag_code &= 0xDC;
6561 if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6562 && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6563 ) {
6564
6565 tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6566 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6567
6568 }
6569 AscWriteLramByte(iop_base,
6570 (ushort)(halt_q_addr +
6571 (ushort)ASC_SCSIQ_B_TAG_CODE),
6572 tag_code);
6573
6574 q_status = AscReadLramByte(iop_base,
6575 (ushort)(halt_q_addr + (ushort)
6576 ASC_SCSIQ_B_STATUS));
6577 q_status |= (QS_READY | QS_BUSY);
6578 AscWriteLramByte(iop_base,
6579 (ushort)(halt_q_addr +
6580 (ushort)ASC_SCSIQ_B_STATUS),
6581 q_status);
6582
6583 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6584 scsi_busy &= ~target_id;
6585 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6586
6587 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6588 return;
6589 } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6590
6591 AscMemWordCopyPtrFromLram(iop_base,
6592 ASCV_MSGOUT_BEG,
6593 (uchar *)&out_msg,
6594 sizeof(EXT_MSG) >> 1);
6595
6596 if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6597 (out_msg.msg_len == MS_SDTR_LEN) &&
6598 (out_msg.msg_req == EXTENDED_SDTR)) {
6599
6600 asc_dvc->init_sdtr &= ~target_id;
6601 asc_dvc->sdtr_done &= ~target_id;
6602 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6603 boardp->sdtr_data[tid_no] = asyn_sdtr;
6604 }
6605 q_cntl &= ~QC_MSG_OUT;
6606 AscWriteLramByte(iop_base,
6607 (ushort)(halt_q_addr +
6608 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6609 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6610 return;
6611 } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6612
6613 scsi_status = AscReadLramByte(iop_base,
6614 (ushort)((ushort)halt_q_addr +
6615 (ushort)
6616 ASC_SCSIQ_SCSI_STATUS));
6617 cur_dvc_qng =
6618 AscReadLramByte(iop_base,
6619 (ushort)((ushort)ASC_QADR_BEG +
6620 (ushort)target_ix));
6621 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6622
6623 scsi_busy = AscReadLramByte(iop_base,
6624 (ushort)ASCV_SCSIBUSY_B);
6625 scsi_busy |= target_id;
6626 AscWriteLramByte(iop_base,
6627 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6628 asc_dvc->queue_full_or_busy |= target_id;
6629
6630 if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6631 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6632 cur_dvc_qng -= 1;
6633 asc_dvc->max_dvc_qng[tid_no] =
6634 cur_dvc_qng;
6635
6636 AscWriteLramByte(iop_base,
6637 (ushort)((ushort)
6638 ASCV_MAX_DVC_QNG_BEG
6639 + (ushort)
6640 tid_no),
6641 cur_dvc_qng);
6642
6643 /*
6644 * Set the device queue depth to the
6645 * number of active requests when the
6646 * QUEUE FULL condition was encountered.
6647 */
6648 boardp->queue_full |= target_id;
6649 boardp->queue_full_cnt[tid_no] =
6650 cur_dvc_qng;
6651 }
6652 }
6653 }
6654 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6655 return;
6656 }
6657 return;
6658 }
6659
6660 /*
6661 * void
6662 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6663 *
6664 * Calling/Exit State:
6665 * none
6666 *
6667 * Description:
6668 * Input an ASC_QDONE_INFO structure from the chip
6669 */
6670 static void
6671 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6672 {
6673 int i;
6674 ushort word;
6675
6676 AscSetChipLramAddr(iop_base, s_addr);
6677 for (i = 0; i < 2 * words; i += 2) {
6678 if (i == 10) {
6679 continue;
6680 }
6681 word = inpw(iop_base + IOP_RAM_DATA);
6682 inbuf[i] = word & 0xff;
6683 inbuf[i + 1] = (word >> 8) & 0xff;
6684 }
6685 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
6686 }
6687
6688 static uchar
6689 _AscCopyLramScsiDoneQ(PortAddr iop_base,
6690 ushort q_addr,
6691 ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
6692 {
6693 ushort _val;
6694 uchar sg_queue_cnt;
6695
6696 DvcGetQinfo(iop_base,
6697 q_addr + ASC_SCSIQ_DONE_INFO_BEG,
6698 (uchar *)scsiq,
6699 (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
6700
6701 _val = AscReadLramWord(iop_base,
6702 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
6703 scsiq->q_status = (uchar)_val;
6704 scsiq->q_no = (uchar)(_val >> 8);
6705 _val = AscReadLramWord(iop_base,
6706 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6707 scsiq->cntl = (uchar)_val;
6708 sg_queue_cnt = (uchar)(_val >> 8);
6709 _val = AscReadLramWord(iop_base,
6710 (ushort)(q_addr +
6711 (ushort)ASC_SCSIQ_B_SENSE_LEN));
6712 scsiq->sense_len = (uchar)_val;
6713 scsiq->extra_bytes = (uchar)(_val >> 8);
6714
6715 /*
6716 * Read high word of remain bytes from alternate location.
6717 */
6718 scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
6719 (ushort)(q_addr +
6720 (ushort)
6721 ASC_SCSIQ_W_ALT_DC1)))
6722 << 16);
6723 /*
6724 * Read low word of remain bytes from original location.
6725 */
6726 scsiq->remain_bytes += AscReadLramWord(iop_base,
6727 (ushort)(q_addr + (ushort)
6728 ASC_SCSIQ_DW_REMAIN_XFER_CNT));
6729
6730 scsiq->remain_bytes &= max_dma_count;
6731 return sg_queue_cnt;
6732 }
6733
6734 /*
6735 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6736 *
6737 * Interrupt callback function for the Narrow SCSI Asc Library.
6738 */
6739 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
6740 {
6741 struct asc_board *boardp = asc_dvc_varp->drv_ptr;
6742 u32 srb_tag;
6743 struct scsi_cmnd *scp;
6744
6745 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
6746 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
6747
6748 /*
6749 * Decrease the srb_tag by 1 to find the SCSI command
6750 */
6751 srb_tag = qdonep->d2.srb_tag - 1;
6752 scp = scsi_host_find_tag(boardp->shost, srb_tag);
6753 if (!scp)
6754 return;
6755
6756 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6757
6758 ASC_STATS(boardp->shost, callback);
6759
6760 dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
6761 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
6762 /*
6763 * 'qdonep' contains the command's ending status.
6764 */
6765 switch (qdonep->d3.done_stat) {
6766 case QD_NO_ERROR:
6767 ASC_DBG(2, "QD_NO_ERROR\n");
6768 scp->result = 0;
6769
6770 /*
6771 * Check for an underrun condition.
6772 *
6773 * If there was no error and an underrun condition, then
6774 * return the number of underrun bytes.
6775 */
6776 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
6777 qdonep->remain_bytes <= scsi_bufflen(scp)) {
6778 ASC_DBG(1, "underrun condition %u bytes\n",
6779 (unsigned)qdonep->remain_bytes);
6780 scsi_set_resid(scp, qdonep->remain_bytes);
6781 }
6782 break;
6783
6784 case QD_WITH_ERROR:
6785 ASC_DBG(2, "QD_WITH_ERROR\n");
6786 switch (qdonep->d3.host_stat) {
6787 case QHSTA_NO_ERROR:
6788 if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
6789 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6790 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6791 SCSI_SENSE_BUFFERSIZE);
6792 /*
6793 * Note: The 'status_byte()' macro used by
6794 * target drivers defined in scsi.h shifts the
6795 * status byte returned by host drivers right
6796 * by 1 bit. This is why target drivers also
6797 * use right shifted status byte definitions.
6798 * For instance target drivers use
6799 * CHECK_CONDITION, defined to 0x1, instead of
6800 * the SCSI defined check condition value of
6801 * 0x2. Host drivers are supposed to return
6802 * the status byte as it is defined by SCSI.
6803 */
6804 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6805 STATUS_BYTE(qdonep->d3.scsi_stat);
6806 } else {
6807 scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
6808 }
6809 break;
6810
6811 default:
6812 /* QHSTA error occurred */
6813 ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
6814 scp->result = HOST_BYTE(DID_BAD_TARGET);
6815 break;
6816 }
6817 break;
6818
6819 case QD_ABORTED_BY_HOST:
6820 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6821 scp->result =
6822 HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
6823 scsi_msg) |
6824 STATUS_BYTE(qdonep->d3.scsi_stat);
6825 break;
6826
6827 default:
6828 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
6829 scp->result =
6830 HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
6831 scsi_msg) |
6832 STATUS_BYTE(qdonep->d3.scsi_stat);
6833 break;
6834 }
6835
6836 /*
6837 * If the 'init_tidmask' bit isn't already set for the target and the
6838 * current request finished normally, then set the bit for the target
6839 * to indicate that a device is present.
6840 */
6841 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6842 qdonep->d3.done_stat == QD_NO_ERROR &&
6843 qdonep->d3.host_stat == QHSTA_NO_ERROR) {
6844 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6845 }
6846
6847 asc_scsi_done(scp);
6848 }
6849
6850 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
6851 {
6852 uchar next_qp;
6853 uchar n_q_used;
6854 uchar sg_list_qp;
6855 uchar sg_queue_cnt;
6856 uchar q_cnt;
6857 uchar done_q_tail;
6858 uchar tid_no;
6859 ASC_SCSI_BIT_ID_TYPE scsi_busy;
6860 ASC_SCSI_BIT_ID_TYPE target_id;
6861 PortAddr iop_base;
6862 ushort q_addr;
6863 ushort sg_q_addr;
6864 uchar cur_target_qng;
6865 ASC_QDONE_INFO scsiq_buf;
6866 ASC_QDONE_INFO *scsiq;
6867 bool false_overrun;
6868
6869 iop_base = asc_dvc->iop_base;
6870 n_q_used = 1;
6871 scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
6872 done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
6873 q_addr = ASC_QNO_TO_QADDR(done_q_tail);
6874 next_qp = AscReadLramByte(iop_base,
6875 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
6876 if (next_qp != ASC_QLINK_END) {
6877 AscPutVarDoneQTail(iop_base, next_qp);
6878 q_addr = ASC_QNO_TO_QADDR(next_qp);
6879 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
6880 asc_dvc->max_dma_count);
6881 AscWriteLramByte(iop_base,
6882 (ushort)(q_addr +
6883 (ushort)ASC_SCSIQ_B_STATUS),
6884 (uchar)(scsiq->
6885 q_status & (uchar)~(QS_READY |
6886 QS_ABORTED)));
6887 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
6888 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
6889 if ((scsiq->cntl & QC_SG_HEAD) != 0) {
6890 sg_q_addr = q_addr;
6891 sg_list_qp = next_qp;
6892 for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
6893 sg_list_qp = AscReadLramByte(iop_base,
6894 (ushort)(sg_q_addr
6895 + (ushort)
6896 ASC_SCSIQ_B_FWD));
6897 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
6898 if (sg_list_qp == ASC_QLINK_END) {
6899 AscSetLibErrorCode(asc_dvc,
6900 ASCQ_ERR_SG_Q_LINKS);
6901 scsiq->d3.done_stat = QD_WITH_ERROR;
6902 scsiq->d3.host_stat =
6903 QHSTA_D_QDONE_SG_LIST_CORRUPTED;
6904 goto FATAL_ERR_QDONE;
6905 }
6906 AscWriteLramByte(iop_base,
6907 (ushort)(sg_q_addr + (ushort)
6908 ASC_SCSIQ_B_STATUS),
6909 QS_FREE);
6910 }
6911 n_q_used = sg_queue_cnt + 1;
6912 AscPutVarDoneQTail(iop_base, sg_list_qp);
6913 }
6914 if (asc_dvc->queue_full_or_busy & target_id) {
6915 cur_target_qng = AscReadLramByte(iop_base,
6916 (ushort)((ushort)
6917 ASC_QADR_BEG
6918 + (ushort)
6919 scsiq->d2.
6920 target_ix));
6921 if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
6922 scsi_busy = AscReadLramByte(iop_base, (ushort)
6923 ASCV_SCSIBUSY_B);
6924 scsi_busy &= ~target_id;
6925 AscWriteLramByte(iop_base,
6926 (ushort)ASCV_SCSIBUSY_B,
6927 scsi_busy);
6928 asc_dvc->queue_full_or_busy &= ~target_id;
6929 }
6930 }
6931 if (asc_dvc->cur_total_qng >= n_q_used) {
6932 asc_dvc->cur_total_qng -= n_q_used;
6933 if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
6934 asc_dvc->cur_dvc_qng[tid_no]--;
6935 }
6936 } else {
6937 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
6938 scsiq->d3.done_stat = QD_WITH_ERROR;
6939 goto FATAL_ERR_QDONE;
6940 }
6941 if ((scsiq->d2.srb_tag == 0UL) ||
6942 ((scsiq->q_status & QS_ABORTED) != 0)) {
6943 return (0x11);
6944 } else if (scsiq->q_status == QS_DONE) {
6945 /*
6946 * This is also curious.
6947 * false_overrun will _always_ be set to 'false'
6948 */
6949 false_overrun = false;
6950 if (scsiq->extra_bytes != 0) {
6951 scsiq->remain_bytes += scsiq->extra_bytes;
6952 }
6953 if (scsiq->d3.done_stat == QD_WITH_ERROR) {
6954 if (scsiq->d3.host_stat ==
6955 QHSTA_M_DATA_OVER_RUN) {
6956 if ((scsiq->
6957 cntl & (QC_DATA_IN | QC_DATA_OUT))
6958 == 0) {
6959 scsiq->d3.done_stat =
6960 QD_NO_ERROR;
6961 scsiq->d3.host_stat =
6962 QHSTA_NO_ERROR;
6963 } else if (false_overrun) {
6964 scsiq->d3.done_stat =
6965 QD_NO_ERROR;
6966 scsiq->d3.host_stat =
6967 QHSTA_NO_ERROR;
6968 }
6969 } else if (scsiq->d3.host_stat ==
6970 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
6971 AscStopChip(iop_base);
6972 AscSetChipControl(iop_base,
6973 (uchar)(CC_SCSI_RESET
6974 | CC_HALT));
6975 udelay(60);
6976 AscSetChipControl(iop_base, CC_HALT);
6977 AscSetChipStatus(iop_base,
6978 CIW_CLR_SCSI_RESET_INT);
6979 AscSetChipStatus(iop_base, 0);
6980 AscSetChipControl(iop_base, 0);
6981 }
6982 }
6983 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6984 asc_isr_callback(asc_dvc, scsiq);
6985 } else {
6986 if ((AscReadLramByte(iop_base,
6987 (ushort)(q_addr + (ushort)
6988 ASC_SCSIQ_CDB_BEG))
6989 == START_STOP)) {
6990 asc_dvc->unit_not_ready &= ~target_id;
6991 if (scsiq->d3.done_stat != QD_NO_ERROR) {
6992 asc_dvc->start_motor &=
6993 ~target_id;
6994 }
6995 }
6996 }
6997 return (1);
6998 } else {
6999 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7000 FATAL_ERR_QDONE:
7001 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7002 asc_isr_callback(asc_dvc, scsiq);
7003 }
7004 return (0x80);
7005 }
7006 }
7007 return (0);
7008 }
7009
7010 static int AscISR(ASC_DVC_VAR *asc_dvc)
7011 {
7012 ASC_CS_TYPE chipstat;
7013 PortAddr iop_base;
7014 ushort saved_ram_addr;
7015 uchar ctrl_reg;
7016 uchar saved_ctrl_reg;
7017 int int_pending;
7018 int status;
7019 uchar host_flag;
7020
7021 iop_base = asc_dvc->iop_base;
7022 int_pending = ASC_FALSE;
7023
7024 if (AscIsIntPending(iop_base) == 0)
7025 return int_pending;
7026
7027 if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7028 return ASC_ERROR;
7029 }
7030 if (asc_dvc->in_critical_cnt != 0) {
7031 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7032 return ASC_ERROR;
7033 }
7034 if (asc_dvc->is_in_int) {
7035 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7036 return ASC_ERROR;
7037 }
7038 asc_dvc->is_in_int = true;
7039 ctrl_reg = AscGetChipControl(iop_base);
7040 saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7041 CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7042 chipstat = AscGetChipStatus(iop_base);
7043 if (chipstat & CSW_SCSI_RESET_LATCH) {
7044 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7045 int i = 10;
7046 int_pending = ASC_TRUE;
7047 asc_dvc->sdtr_done = 0;
7048 saved_ctrl_reg &= (uchar)(~CC_HALT);
7049 while ((AscGetChipStatus(iop_base) &
7050 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7051 mdelay(100);
7052 }
7053 AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7054 AscSetChipControl(iop_base, CC_HALT);
7055 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7056 AscSetChipStatus(iop_base, 0);
7057 chipstat = AscGetChipStatus(iop_base);
7058 }
7059 }
7060 saved_ram_addr = AscGetChipLramAddr(iop_base);
7061 host_flag = AscReadLramByte(iop_base,
7062 ASCV_HOST_FLAG_B) &
7063 (uchar)(~ASC_HOST_FLAG_IN_ISR);
7064 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7065 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7066 if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7067 AscAckInterrupt(iop_base);
7068 int_pending = ASC_TRUE;
7069 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7070 AscIsrChipHalted(asc_dvc);
7071 saved_ctrl_reg &= (uchar)(~CC_HALT);
7072 } else {
7073 if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7074 while (((status =
7075 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7076 }
7077 } else {
7078 do {
7079 if ((status =
7080 AscIsrQDone(asc_dvc)) == 1) {
7081 break;
7082 }
7083 } while (status == 0x11);
7084 }
7085 if ((status & 0x80) != 0)
7086 int_pending = ASC_ERROR;
7087 }
7088 }
7089 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7090 AscSetChipLramAddr(iop_base, saved_ram_addr);
7091 AscSetChipControl(iop_base, saved_ctrl_reg);
7092 asc_dvc->is_in_int = false;
7093 return int_pending;
7094 }
7095
7096 /*
7097 * advansys_reset()
7098 *
7099 * Reset the host associated with the command 'scp'.
7100 *
7101 * This function runs its own thread. Interrupts must be blocked but
7102 * sleeping is allowed and no locking other than for host structures is
7103 * required. Returns SUCCESS or FAILED.
7104 */
7105 static int advansys_reset(struct scsi_cmnd *scp)
7106 {
7107 struct Scsi_Host *shost = scp->device->host;
7108 struct asc_board *boardp = shost_priv(shost);
7109 unsigned long flags;
7110 int status;
7111 int ret = SUCCESS;
7112
7113 ASC_DBG(1, "0x%p\n", scp);
7114
7115 ASC_STATS(shost, reset);
7116
7117 scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
7118
7119 if (ASC_NARROW_BOARD(boardp)) {
7120 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7121
7122 /* Reset the chip and SCSI bus. */
7123 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7124 status = AscInitAsc1000Driver(asc_dvc);
7125
7126 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7127 if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7128 scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
7129 "0x%x, status: 0x%x\n", asc_dvc->err_code,
7130 status);
7131 ret = FAILED;
7132 } else if (status) {
7133 scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
7134 "0x%x\n", status);
7135 } else {
7136 scmd_printk(KERN_INFO, scp, "SCSI host reset "
7137 "successful\n");
7138 }
7139
7140 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7141 } else {
7142 /*
7143 * If the suggest reset bus flags are set, then reset the bus.
7144 * Otherwise only reset the device.
7145 */
7146 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7147
7148 /*
7149 * Reset the chip and SCSI bus.
7150 */
7151 ASC_DBG(1, "before AdvResetChipAndSB()\n");
7152 switch (AdvResetChipAndSB(adv_dvc)) {
7153 case ASC_TRUE:
7154 scmd_printk(KERN_INFO, scp, "SCSI host reset "
7155 "successful\n");
7156 break;
7157 case ASC_FALSE:
7158 default:
7159 scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
7160 ret = FAILED;
7161 break;
7162 }
7163 spin_lock_irqsave(shost->host_lock, flags);
7164 AdvISR(adv_dvc);
7165 spin_unlock_irqrestore(shost->host_lock, flags);
7166 }
7167
7168 ASC_DBG(1, "ret %d\n", ret);
7169
7170 return ret;
7171 }
7172
7173 /*
7174 * advansys_biosparam()
7175 *
7176 * Translate disk drive geometry if the "BIOS greater than 1 GB"
7177 * support is enabled for a drive.
7178 *
7179 * ip (information pointer) is an int array with the following definition:
7180 * ip[0]: heads
7181 * ip[1]: sectors
7182 * ip[2]: cylinders
7183 */
7184 static int
7185 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7186 sector_t capacity, int ip[])
7187 {
7188 struct asc_board *boardp = shost_priv(sdev->host);
7189
7190 ASC_DBG(1, "begin\n");
7191 ASC_STATS(sdev->host, biosparam);
7192 if (ASC_NARROW_BOARD(boardp)) {
7193 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7194 ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7195 ip[0] = 255;
7196 ip[1] = 63;
7197 } else {
7198 ip[0] = 64;
7199 ip[1] = 32;
7200 }
7201 } else {
7202 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7203 BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7204 ip[0] = 255;
7205 ip[1] = 63;
7206 } else {
7207 ip[0] = 64;
7208 ip[1] = 32;
7209 }
7210 }
7211 ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7212 ASC_DBG(1, "end\n");
7213 return 0;
7214 }
7215
7216 /*
7217 * First-level interrupt handler.
7218 *
7219 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7220 */
7221 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7222 {
7223 struct Scsi_Host *shost = dev_id;
7224 struct asc_board *boardp = shost_priv(shost);
7225 irqreturn_t result = IRQ_NONE;
7226 unsigned long flags;
7227
7228 ASC_DBG(2, "boardp 0x%p\n", boardp);
7229 spin_lock_irqsave(shost->host_lock, flags);
7230 if (ASC_NARROW_BOARD(boardp)) {
7231 if (AscIsIntPending(shost->io_port)) {
7232 result = IRQ_HANDLED;
7233 ASC_STATS(shost, interrupt);
7234 ASC_DBG(1, "before AscISR()\n");
7235 AscISR(&boardp->dvc_var.asc_dvc_var);
7236 }
7237 } else {
7238 ASC_DBG(1, "before AdvISR()\n");
7239 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7240 result = IRQ_HANDLED;
7241 ASC_STATS(shost, interrupt);
7242 }
7243 }
7244 spin_unlock_irqrestore(shost->host_lock, flags);
7245
7246 ASC_DBG(1, "end\n");
7247 return result;
7248 }
7249
7250 static bool AscHostReqRiscHalt(PortAddr iop_base)
7251 {
7252 int count = 0;
7253 bool sta = false;
7254 uchar saved_stop_code;
7255
7256 if (AscIsChipHalted(iop_base))
7257 return true;
7258 saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7259 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7260 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7261 do {
7262 if (AscIsChipHalted(iop_base)) {
7263 sta = true;
7264 break;
7265 }
7266 mdelay(100);
7267 } while (count++ < 20);
7268 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7269 return sta;
7270 }
7271
7272 static bool
7273 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7274 {
7275 bool sta = false;
7276
7277 if (AscHostReqRiscHalt(iop_base)) {
7278 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7279 AscStartChip(iop_base);
7280 }
7281 return sta;
7282 }
7283
7284 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7285 {
7286 char type = sdev->type;
7287 ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7288
7289 if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7290 return;
7291 if (asc_dvc->init_sdtr & tid_bits)
7292 return;
7293
7294 if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7295 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7296
7297 asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7298 if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7299 (type == TYPE_ROM) || (type == TYPE_TAPE))
7300 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7301
7302 if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7303 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7304 ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7305 }
7306
7307 static void
7308 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7309 {
7310 ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7311 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7312
7313 if (sdev->lun == 0) {
7314 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7315 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7316 asc_dvc->init_sdtr |= tid_bit;
7317 } else {
7318 asc_dvc->init_sdtr &= ~tid_bit;
7319 }
7320
7321 if (orig_init_sdtr != asc_dvc->init_sdtr)
7322 AscAsyncFix(asc_dvc, sdev);
7323 }
7324
7325 if (sdev->tagged_supported) {
7326 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7327 if (sdev->lun == 0) {
7328 asc_dvc->cfg->can_tagged_qng |= tid_bit;
7329 asc_dvc->use_tagged_qng |= tid_bit;
7330 }
7331 scsi_change_queue_depth(sdev,
7332 asc_dvc->max_dvc_qng[sdev->id]);
7333 }
7334 } else {
7335 if (sdev->lun == 0) {
7336 asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7337 asc_dvc->use_tagged_qng &= ~tid_bit;
7338 }
7339 }
7340
7341 if ((sdev->lun == 0) &&
7342 (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7343 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7344 asc_dvc->cfg->disc_enable);
7345 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7346 asc_dvc->use_tagged_qng);
7347 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7348 asc_dvc->cfg->can_tagged_qng);
7349
7350 asc_dvc->max_dvc_qng[sdev->id] =
7351 asc_dvc->cfg->max_tag_qng[sdev->id];
7352 AscWriteLramByte(asc_dvc->iop_base,
7353 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7354 asc_dvc->max_dvc_qng[sdev->id]);
7355 }
7356 }
7357
7358 /*
7359 * Wide Transfers
7360 *
7361 * If the EEPROM enabled WDTR for the device and the device supports wide
7362 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7363 * write the new value to the microcode.
7364 */
7365 static void
7366 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7367 {
7368 unsigned short cfg_word;
7369 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7370 if ((cfg_word & tidmask) != 0)
7371 return;
7372
7373 cfg_word |= tidmask;
7374 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7375
7376 /*
7377 * Clear the microcode SDTR and WDTR negotiation done indicators for
7378 * the target to cause it to negotiate with the new setting set above.
7379 * WDTR when accepted causes the target to enter asynchronous mode, so
7380 * SDTR must be negotiated.
7381 */
7382 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7383 cfg_word &= ~tidmask;
7384 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7385 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7386 cfg_word &= ~tidmask;
7387 AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7388 }
7389
7390 /*
7391 * Synchronous Transfers
7392 *
7393 * If the EEPROM enabled SDTR for the device and the device
7394 * supports synchronous transfers, then turn on the device's
7395 * 'sdtr_able' bit. Write the new value to the microcode.
7396 */
7397 static void
7398 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7399 {
7400 unsigned short cfg_word;
7401 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7402 if ((cfg_word & tidmask) != 0)
7403 return;
7404
7405 cfg_word |= tidmask;
7406 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7407
7408 /*
7409 * Clear the microcode "SDTR negotiation" done indicator for the
7410 * target to cause it to negotiate with the new setting set above.
7411 */
7412 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7413 cfg_word &= ~tidmask;
7414 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7415 }
7416
7417 /*
7418 * PPR (Parallel Protocol Request) Capable
7419 *
7420 * If the device supports DT mode, then it must be PPR capable.
7421 * The PPR message will be used in place of the SDTR and WDTR
7422 * messages to negotiate synchronous speed and offset, transfer
7423 * width, and protocol options.
7424 */
7425 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7426 AdvPortAddr iop_base, unsigned short tidmask)
7427 {
7428 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7429 adv_dvc->ppr_able |= tidmask;
7430 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7431 }
7432
7433 static void
7434 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7435 {
7436 AdvPortAddr iop_base = adv_dvc->iop_base;
7437 unsigned short tidmask = 1 << sdev->id;
7438
7439 if (sdev->lun == 0) {
7440 /*
7441 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7442 * is enabled in the EEPROM and the device supports the
7443 * feature, then enable it in the microcode.
7444 */
7445
7446 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7447 advansys_wide_enable_wdtr(iop_base, tidmask);
7448 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7449 advansys_wide_enable_sdtr(iop_base, tidmask);
7450 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7451 advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7452
7453 /*
7454 * Tag Queuing is disabled for the BIOS which runs in polled
7455 * mode and would see no benefit from Tag Queuing. Also by
7456 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7457 * bugs will at least work with the BIOS.
7458 */
7459 if ((adv_dvc->tagqng_able & tidmask) &&
7460 sdev->tagged_supported) {
7461 unsigned short cfg_word;
7462 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7463 cfg_word |= tidmask;
7464 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7465 cfg_word);
7466 AdvWriteByteLram(iop_base,
7467 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7468 adv_dvc->max_dvc_qng);
7469 }
7470 }
7471
7472 if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7473 scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7474 }
7475
7476 /*
7477 * Set the number of commands to queue per device for the
7478 * specified host adapter.
7479 */
7480 static int advansys_slave_configure(struct scsi_device *sdev)
7481 {
7482 struct asc_board *boardp = shost_priv(sdev->host);
7483
7484 if (ASC_NARROW_BOARD(boardp))
7485 advansys_narrow_slave_configure(sdev,
7486 &boardp->dvc_var.asc_dvc_var);
7487 else
7488 advansys_wide_slave_configure(sdev,
7489 &boardp->dvc_var.adv_dvc_var);
7490
7491 return 0;
7492 }
7493
7494 static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
7495 {
7496 struct asc_board *board = shost_priv(scp->device->host);
7497
7498 scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7499 SCSI_SENSE_BUFFERSIZE,
7500 DMA_FROM_DEVICE);
7501 if (dma_mapping_error(board->dev, scp->SCp.dma_handle)) {
7502 ASC_DBG(1, "failed to map sense buffer\n");
7503 return 0;
7504 }
7505 return cpu_to_le32(scp->SCp.dma_handle);
7506 }
7507
7508 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7509 struct asc_scsi_q *asc_scsi_q)
7510 {
7511 struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7512 int use_sg;
7513 u32 srb_tag;
7514
7515 memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7516
7517 /*
7518 * Set the srb_tag to the command tag + 1, as
7519 * srb_tag '0' is used internally by the chip.
7520 */
7521 srb_tag = scp->request->tag + 1;
7522 asc_scsi_q->q2.srb_tag = srb_tag;
7523
7524 /*
7525 * Build the ASC_SCSI_Q request.
7526 */
7527 asc_scsi_q->cdbptr = &scp->cmnd[0];
7528 asc_scsi_q->q2.cdb_len = scp->cmd_len;
7529 asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7530 asc_scsi_q->q1.target_lun = scp->device->lun;
7531 asc_scsi_q->q2.target_ix =
7532 ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7533 asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
7534 asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7535 if (!asc_scsi_q->q1.sense_addr)
7536 return ASC_BUSY;
7537
7538 /*
7539 * If there are any outstanding requests for the current target,
7540 * then every 255th request send an ORDERED request. This heuristic
7541 * tries to retain the benefit of request sorting while preventing
7542 * request starvation. 255 is the max number of tags or pending commands
7543 * a device may have outstanding.
7544 *
7545 * The request count is incremented below for every successfully
7546 * started request.
7547 *
7548 */
7549 if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7550 (boardp->reqcnt[scp->device->id] % 255) == 0) {
7551 asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7552 } else {
7553 asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7554 }
7555
7556 /* Build ASC_SCSI_Q */
7557 use_sg = scsi_dma_map(scp);
7558 if (use_sg < 0) {
7559 ASC_DBG(1, "failed to map sglist\n");
7560 return ASC_BUSY;
7561 } else if (use_sg > 0) {
7562 int sgcnt;
7563 struct scatterlist *slp;
7564 struct asc_sg_head *asc_sg_head;
7565
7566 if (use_sg > scp->device->host->sg_tablesize) {
7567 scmd_printk(KERN_ERR, scp, "use_sg %d > "
7568 "sg_tablesize %d\n", use_sg,
7569 scp->device->host->sg_tablesize);
7570 scsi_dma_unmap(scp);
7571 scp->result = HOST_BYTE(DID_ERROR);
7572 return ASC_ERROR;
7573 }
7574
7575 asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7576 use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7577 if (!asc_sg_head) {
7578 scsi_dma_unmap(scp);
7579 scp->result = HOST_BYTE(DID_SOFT_ERROR);
7580 return ASC_ERROR;
7581 }
7582
7583 asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7584 asc_scsi_q->sg_head = asc_sg_head;
7585 asc_scsi_q->q1.data_cnt = 0;
7586 asc_scsi_q->q1.data_addr = 0;
7587 /* This is a byte value, otherwise it would need to be swapped. */
7588 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7589 ASC_STATS_ADD(scp->device->host, xfer_elem,
7590 asc_sg_head->entry_cnt);
7591
7592 /*
7593 * Convert scatter-gather list into ASC_SG_HEAD list.
7594 */
7595 scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7596 asc_sg_head->sg_list[sgcnt].addr =
7597 cpu_to_le32(sg_dma_address(slp));
7598 asc_sg_head->sg_list[sgcnt].bytes =
7599 cpu_to_le32(sg_dma_len(slp));
7600 ASC_STATS_ADD(scp->device->host, xfer_sect,
7601 DIV_ROUND_UP(sg_dma_len(slp), 512));
7602 }
7603 }
7604
7605 ASC_STATS(scp->device->host, xfer_cnt);
7606
7607 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7608 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7609
7610 return ASC_NOERROR;
7611 }
7612
7613 /*
7614 * Build scatter-gather list for Adv Library (Wide Board).
7615 *
7616 * Additional ADV_SG_BLOCK structures will need to be allocated
7617 * if the total number of scatter-gather elements exceeds
7618 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7619 * assumed to be physically contiguous.
7620 *
7621 * Return:
7622 * ADV_SUCCESS(1) - SG List successfully created
7623 * ADV_ERROR(-1) - SG List creation failed
7624 */
7625 static int
7626 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
7627 ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
7628 {
7629 adv_sgblk_t *sgblkp, *prev_sgblkp;
7630 struct scatterlist *slp;
7631 int sg_elem_cnt;
7632 ADV_SG_BLOCK *sg_block, *prev_sg_block;
7633 dma_addr_t sgblk_paddr;
7634 int i;
7635
7636 slp = scsi_sglist(scp);
7637 sg_elem_cnt = use_sg;
7638 prev_sgblkp = NULL;
7639 prev_sg_block = NULL;
7640 reqp->sgblkp = NULL;
7641
7642 for (;;) {
7643 /*
7644 * Allocate a 'adv_sgblk_t' structure from the board free
7645 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7646 * (15) scatter-gather elements.
7647 */
7648 sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
7649 &sgblk_paddr);
7650 if (!sgblkp) {
7651 ASC_DBG(1, "no free adv_sgblk_t\n");
7652 ASC_STATS(scp->device->host, adv_build_nosg);
7653
7654 /*
7655 * Allocation failed. Free 'adv_sgblk_t' structures
7656 * already allocated for the request.
7657 */
7658 while ((sgblkp = reqp->sgblkp) != NULL) {
7659 /* Remove 'sgblkp' from the request list. */
7660 reqp->sgblkp = sgblkp->next_sgblkp;
7661 sgblkp->next_sgblkp = NULL;
7662 dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
7663 sgblkp->sg_addr);
7664 }
7665 return ASC_BUSY;
7666 }
7667 /* Complete 'adv_sgblk_t' board allocation. */
7668 sgblkp->sg_addr = sgblk_paddr;
7669 sgblkp->next_sgblkp = NULL;
7670 sg_block = &sgblkp->sg_block;
7671
7672 /*
7673 * Check if this is the first 'adv_sgblk_t' for the
7674 * request.
7675 */
7676 if (reqp->sgblkp == NULL) {
7677 /* Request's first scatter-gather block. */
7678 reqp->sgblkp = sgblkp;
7679
7680 /*
7681 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7682 * address pointers.
7683 */
7684 scsiqp->sg_list_ptr = sg_block;
7685 scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
7686 } else {
7687 /* Request's second or later scatter-gather block. */
7688 prev_sgblkp->next_sgblkp = sgblkp;
7689
7690 /*
7691 * Point the previous ADV_SG_BLOCK structure to
7692 * the newly allocated ADV_SG_BLOCK structure.
7693 */
7694 prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
7695 }
7696
7697 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
7698 sg_block->sg_list[i].sg_addr =
7699 cpu_to_le32(sg_dma_address(slp));
7700 sg_block->sg_list[i].sg_count =
7701 cpu_to_le32(sg_dma_len(slp));
7702 ASC_STATS_ADD(scp->device->host, xfer_sect,
7703 DIV_ROUND_UP(sg_dma_len(slp), 512));
7704
7705 if (--sg_elem_cnt == 0) {
7706 /*
7707 * Last ADV_SG_BLOCK and scatter-gather entry.
7708 */
7709 sg_block->sg_cnt = i + 1;
7710 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
7711 return ADV_SUCCESS;
7712 }
7713 slp = sg_next(slp);
7714 }
7715 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
7716 prev_sg_block = sg_block;
7717 prev_sgblkp = sgblkp;
7718 }
7719 }
7720
7721 /*
7722 * Build a request structure for the Adv Library (Wide Board).
7723 *
7724 * If an adv_req_t can not be allocated to issue the request,
7725 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7726 *
7727 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7728 * microcode for DMA addresses or math operations are byte swapped
7729 * to little-endian order.
7730 */
7731 static int
7732 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7733 adv_req_t **adv_reqpp)
7734 {
7735 u32 srb_tag = scp->request->tag;
7736 adv_req_t *reqp;
7737 ADV_SCSI_REQ_Q *scsiqp;
7738 int ret;
7739 int use_sg;
7740 dma_addr_t sense_addr;
7741
7742 /*
7743 * Allocate an adv_req_t structure from the board to execute
7744 * the command.
7745 */
7746 reqp = &boardp->adv_reqp[srb_tag];
7747 if (reqp->cmndp && reqp->cmndp != scp ) {
7748 ASC_DBG(1, "no free adv_req_t\n");
7749 ASC_STATS(scp->device->host, adv_build_noreq);
7750 return ASC_BUSY;
7751 }
7752
7753 reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
7754
7755 scsiqp = &reqp->scsi_req_q;
7756
7757 /*
7758 * Initialize the structure.
7759 */
7760 scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
7761
7762 /*
7763 * Set the srb_tag to the command tag.
7764 */
7765 scsiqp->srb_tag = srb_tag;
7766
7767 /*
7768 * Set 'host_scribble' to point to the adv_req_t structure.
7769 */
7770 reqp->cmndp = scp;
7771 scp->host_scribble = (void *)reqp;
7772
7773 /*
7774 * Build the ADV_SCSI_REQ_Q request.
7775 */
7776
7777 /* Set CDB length and copy it to the request structure. */
7778 scsiqp->cdb_len = scp->cmd_len;
7779 /* Copy first 12 CDB bytes to cdb[]. */
7780 memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
7781 /* Copy last 4 CDB bytes, if present, to cdb16[]. */
7782 if (scp->cmd_len > 12) {
7783 int cdb16_len = scp->cmd_len - 12;
7784
7785 memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
7786 }
7787
7788 scsiqp->target_id = scp->device->id;
7789 scsiqp->target_lun = scp->device->lun;
7790
7791 sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
7792 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7793 if (dma_mapping_error(boardp->dev, sense_addr)) {
7794 ASC_DBG(1, "failed to map sense buffer\n");
7795 ASC_STATS(scp->device->host, adv_build_noreq);
7796 return ASC_BUSY;
7797 }
7798 scsiqp->sense_addr = cpu_to_le32(sense_addr);
7799 scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
7800
7801 /* Build ADV_SCSI_REQ_Q */
7802
7803 use_sg = scsi_dma_map(scp);
7804 if (use_sg < 0) {
7805 ASC_DBG(1, "failed to map SG list\n");
7806 ASC_STATS(scp->device->host, adv_build_noreq);
7807 return ASC_BUSY;
7808 } else if (use_sg == 0) {
7809 /* Zero-length transfer */
7810 reqp->sgblkp = NULL;
7811 scsiqp->data_cnt = 0;
7812
7813 scsiqp->data_addr = 0;
7814 scsiqp->sg_list_ptr = NULL;
7815 scsiqp->sg_real_addr = 0;
7816 } else {
7817 if (use_sg > ADV_MAX_SG_LIST) {
7818 scmd_printk(KERN_ERR, scp, "use_sg %d > "
7819 "ADV_MAX_SG_LIST %d\n", use_sg,
7820 scp->device->host->sg_tablesize);
7821 scsi_dma_unmap(scp);
7822 scp->result = HOST_BYTE(DID_ERROR);
7823 reqp->cmndp = NULL;
7824 scp->host_scribble = NULL;
7825
7826 return ASC_ERROR;
7827 }
7828
7829 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
7830
7831 ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
7832 if (ret != ADV_SUCCESS) {
7833 scsi_dma_unmap(scp);
7834 scp->result = HOST_BYTE(DID_ERROR);
7835 reqp->cmndp = NULL;
7836 scp->host_scribble = NULL;
7837
7838 return ret;
7839 }
7840
7841 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
7842 }
7843
7844 ASC_STATS(scp->device->host, xfer_cnt);
7845
7846 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
7847 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7848
7849 *adv_reqpp = reqp;
7850
7851 return ASC_NOERROR;
7852 }
7853
7854 static int AscSgListToQueue(int sg_list)
7855 {
7856 int n_sg_list_qs;
7857
7858 n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
7859 if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
7860 n_sg_list_qs++;
7861 return n_sg_list_qs + 1;
7862 }
7863
7864 static uint
7865 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
7866 {
7867 uint cur_used_qs;
7868 uint cur_free_qs;
7869 ASC_SCSI_BIT_ID_TYPE target_id;
7870 uchar tid_no;
7871
7872 target_id = ASC_TIX_TO_TARGET_ID(target_ix);
7873 tid_no = ASC_TIX_TO_TID(target_ix);
7874 if ((asc_dvc->unit_not_ready & target_id) ||
7875 (asc_dvc->queue_full_or_busy & target_id)) {
7876 return 0;
7877 }
7878 if (n_qs == 1) {
7879 cur_used_qs = (uint) asc_dvc->cur_total_qng +
7880 (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
7881 } else {
7882 cur_used_qs = (uint) asc_dvc->cur_total_qng +
7883 (uint) ASC_MIN_FREE_Q;
7884 }
7885 if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
7886 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
7887 if (asc_dvc->cur_dvc_qng[tid_no] >=
7888 asc_dvc->max_dvc_qng[tid_no]) {
7889 return 0;
7890 }
7891 return cur_free_qs;
7892 }
7893 if (n_qs > 1) {
7894 if ((n_qs > asc_dvc->last_q_shortage)
7895 && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
7896 asc_dvc->last_q_shortage = n_qs;
7897 }
7898 }
7899 return 0;
7900 }
7901
7902 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
7903 {
7904 ushort q_addr;
7905 uchar next_qp;
7906 uchar q_status;
7907
7908 q_addr = ASC_QNO_TO_QADDR(free_q_head);
7909 q_status = (uchar)AscReadLramByte(iop_base,
7910 (ushort)(q_addr +
7911 ASC_SCSIQ_B_STATUS));
7912 next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
7913 if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
7914 return next_qp;
7915 return ASC_QLINK_END;
7916 }
7917
7918 static uchar
7919 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
7920 {
7921 uchar i;
7922
7923 for (i = 0; i < n_free_q; i++) {
7924 free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
7925 if (free_q_head == ASC_QLINK_END)
7926 break;
7927 }
7928 return free_q_head;
7929 }
7930
7931 /*
7932 * void
7933 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7934 *
7935 * Calling/Exit State:
7936 * none
7937 *
7938 * Description:
7939 * Output an ASC_SCSI_Q structure to the chip
7940 */
7941 static void
7942 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7943 {
7944 int i;
7945
7946 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
7947 AscSetChipLramAddr(iop_base, s_addr);
7948 for (i = 0; i < 2 * words; i += 2) {
7949 if (i == 4 || i == 20) {
7950 continue;
7951 }
7952 outpw(iop_base + IOP_RAM_DATA,
7953 ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
7954 }
7955 }
7956
7957 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7958 {
7959 ushort q_addr;
7960 uchar tid_no;
7961 uchar sdtr_data;
7962 uchar syn_period_ix;
7963 uchar syn_offset;
7964 PortAddr iop_base;
7965
7966 iop_base = asc_dvc->iop_base;
7967 if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
7968 ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
7969 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
7970 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7971 syn_period_ix =
7972 (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
7973 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
7974 AscMsgOutSDTR(asc_dvc,
7975 asc_dvc->sdtr_period_tbl[syn_period_ix],
7976 syn_offset);
7977 scsiq->q1.cntl |= QC_MSG_OUT;
7978 }
7979 q_addr = ASC_QNO_TO_QADDR(q_no);
7980 if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
7981 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
7982 }
7983 scsiq->q1.status = QS_FREE;
7984 AscMemWordCopyPtrToLram(iop_base,
7985 q_addr + ASC_SCSIQ_CDB_BEG,
7986 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
7987
7988 DvcPutScsiQ(iop_base,
7989 q_addr + ASC_SCSIQ_CPY_BEG,
7990 (uchar *)&scsiq->q1.cntl,
7991 ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
7992 AscWriteLramWord(iop_base,
7993 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
7994 (ushort)(((ushort)scsiq->q1.
7995 q_no << 8) | (ushort)QS_READY));
7996 return 1;
7997 }
7998
7999 static int
8000 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8001 {
8002 int sta;
8003 int i;
8004 ASC_SG_HEAD *sg_head;
8005 ASC_SG_LIST_Q scsi_sg_q;
8006 __le32 saved_data_addr;
8007 __le32 saved_data_cnt;
8008 PortAddr iop_base;
8009 ushort sg_list_dwords;
8010 ushort sg_index;
8011 ushort sg_entry_cnt;
8012 ushort q_addr;
8013 uchar next_qp;
8014
8015 iop_base = asc_dvc->iop_base;
8016 sg_head = scsiq->sg_head;
8017 saved_data_addr = scsiq->q1.data_addr;
8018 saved_data_cnt = scsiq->q1.data_cnt;
8019 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8020 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8021 /*
8022 * Set sg_entry_cnt to be the number of SG elements that
8023 * will fit in the allocated SG queues. It is minus 1, because
8024 * the first SG element is handled above.
8025 */
8026 sg_entry_cnt = sg_head->entry_cnt - 1;
8027
8028 if (sg_entry_cnt != 0) {
8029 scsiq->q1.cntl |= QC_SG_HEAD;
8030 q_addr = ASC_QNO_TO_QADDR(q_no);
8031 sg_index = 1;
8032 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8033 scsi_sg_q.sg_head_qp = q_no;
8034 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8035 for (i = 0; i < sg_head->queue_cnt; i++) {
8036 scsi_sg_q.seq_no = i + 1;
8037 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8038 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8039 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8040 if (i == 0) {
8041 scsi_sg_q.sg_list_cnt =
8042 ASC_SG_LIST_PER_Q;
8043 scsi_sg_q.sg_cur_list_cnt =
8044 ASC_SG_LIST_PER_Q;
8045 } else {
8046 scsi_sg_q.sg_list_cnt =
8047 ASC_SG_LIST_PER_Q - 1;
8048 scsi_sg_q.sg_cur_list_cnt =
8049 ASC_SG_LIST_PER_Q - 1;
8050 }
8051 } else {
8052 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8053 sg_list_dwords = sg_entry_cnt << 1;
8054 if (i == 0) {
8055 scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8056 scsi_sg_q.sg_cur_list_cnt =
8057 sg_entry_cnt;
8058 } else {
8059 scsi_sg_q.sg_list_cnt =
8060 sg_entry_cnt - 1;
8061 scsi_sg_q.sg_cur_list_cnt =
8062 sg_entry_cnt - 1;
8063 }
8064 sg_entry_cnt = 0;
8065 }
8066 next_qp = AscReadLramByte(iop_base,
8067 (ushort)(q_addr +
8068 ASC_SCSIQ_B_FWD));
8069 scsi_sg_q.q_no = next_qp;
8070 q_addr = ASC_QNO_TO_QADDR(next_qp);
8071 AscMemWordCopyPtrToLram(iop_base,
8072 q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8073 (uchar *)&scsi_sg_q,
8074 sizeof(ASC_SG_LIST_Q) >> 1);
8075 AscMemDWordCopyPtrToLram(iop_base,
8076 q_addr + ASC_SGQ_LIST_BEG,
8077 (uchar *)&sg_head->
8078 sg_list[sg_index],
8079 sg_list_dwords);
8080 sg_index += ASC_SG_LIST_PER_Q;
8081 scsiq->next_sg_index = sg_index;
8082 }
8083 } else {
8084 scsiq->q1.cntl &= ~QC_SG_HEAD;
8085 }
8086 sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8087 scsiq->q1.data_addr = saved_data_addr;
8088 scsiq->q1.data_cnt = saved_data_cnt;
8089 return (sta);
8090 }
8091
8092 static int
8093 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8094 {
8095 PortAddr iop_base;
8096 uchar free_q_head;
8097 uchar next_qp;
8098 uchar tid_no;
8099 uchar target_ix;
8100 int sta;
8101
8102 iop_base = asc_dvc->iop_base;
8103 target_ix = scsiq->q2.target_ix;
8104 tid_no = ASC_TIX_TO_TID(target_ix);
8105 sta = 0;
8106 free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8107 if (n_q_required > 1) {
8108 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8109 (uchar)n_q_required);
8110 if (next_qp != ASC_QLINK_END) {
8111 asc_dvc->last_q_shortage = 0;
8112 scsiq->sg_head->queue_cnt = n_q_required - 1;
8113 scsiq->q1.q_no = free_q_head;
8114 sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8115 free_q_head);
8116 }
8117 } else if (n_q_required == 1) {
8118 next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8119 if (next_qp != ASC_QLINK_END) {
8120 scsiq->q1.q_no = free_q_head;
8121 sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8122 }
8123 }
8124 if (sta == 1) {
8125 AscPutVarFreeQHead(iop_base, next_qp);
8126 asc_dvc->cur_total_qng += n_q_required;
8127 asc_dvc->cur_dvc_qng[tid_no]++;
8128 }
8129 return sta;
8130 }
8131
8132 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
8133 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8134 INQUIRY,
8135 REQUEST_SENSE,
8136 READ_CAPACITY,
8137 READ_TOC,
8138 MODE_SELECT,
8139 MODE_SENSE,
8140 MODE_SELECT_10,
8141 MODE_SENSE_10,
8142 0xFF,
8143 0xFF,
8144 0xFF,
8145 0xFF,
8146 0xFF,
8147 0xFF,
8148 0xFF,
8149 0xFF
8150 };
8151
8152 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8153 {
8154 PortAddr iop_base;
8155 int sta;
8156 int n_q_required;
8157 bool disable_syn_offset_one_fix;
8158 int i;
8159 u32 addr;
8160 ushort sg_entry_cnt = 0;
8161 ushort sg_entry_cnt_minus_one = 0;
8162 uchar target_ix;
8163 uchar tid_no;
8164 uchar sdtr_data;
8165 uchar extra_bytes;
8166 uchar scsi_cmd;
8167 uchar disable_cmd;
8168 ASC_SG_HEAD *sg_head;
8169 unsigned long data_cnt;
8170
8171 iop_base = asc_dvc->iop_base;
8172 sg_head = scsiq->sg_head;
8173 if (asc_dvc->err_code != 0)
8174 return ASC_ERROR;
8175 scsiq->q1.q_no = 0;
8176 if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8177 scsiq->q1.extra_bytes = 0;
8178 }
8179 sta = 0;
8180 target_ix = scsiq->q2.target_ix;
8181 tid_no = ASC_TIX_TO_TID(target_ix);
8182 n_q_required = 1;
8183 if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8184 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8185 asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8186 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8187 AscMsgOutSDTR(asc_dvc,
8188 asc_dvc->
8189 sdtr_period_tbl[(sdtr_data >> 4) &
8190 (uchar)(asc_dvc->
8191 max_sdtr_index -
8192 1)],
8193 (uchar)(sdtr_data & (uchar)
8194 ASC_SYN_MAX_OFFSET));
8195 scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8196 }
8197 }
8198 if (asc_dvc->in_critical_cnt != 0) {
8199 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8200 return ASC_ERROR;
8201 }
8202 asc_dvc->in_critical_cnt++;
8203 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8204 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8205 asc_dvc->in_critical_cnt--;
8206 return ASC_ERROR;
8207 }
8208 if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8209 asc_dvc->in_critical_cnt--;
8210 return ASC_ERROR;
8211 }
8212 if (sg_entry_cnt == 1) {
8213 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8214 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8215 scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8216 }
8217 sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8218 }
8219 scsi_cmd = scsiq->cdbptr[0];
8220 disable_syn_offset_one_fix = false;
8221 if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8222 !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8223 if (scsiq->q1.cntl & QC_SG_HEAD) {
8224 data_cnt = 0;
8225 for (i = 0; i < sg_entry_cnt; i++) {
8226 data_cnt += le32_to_cpu(sg_head->sg_list[i].
8227 bytes);
8228 }
8229 } else {
8230 data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8231 }
8232 if (data_cnt != 0UL) {
8233 if (data_cnt < 512UL) {
8234 disable_syn_offset_one_fix = true;
8235 } else {
8236 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8237 i++) {
8238 disable_cmd =
8239 _syn_offset_one_disable_cmd[i];
8240 if (disable_cmd == 0xFF) {
8241 break;
8242 }
8243 if (scsi_cmd == disable_cmd) {
8244 disable_syn_offset_one_fix =
8245 true;
8246 break;
8247 }
8248 }
8249 }
8250 }
8251 }
8252 if (disable_syn_offset_one_fix) {
8253 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8254 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8255 ASC_TAG_FLAG_DISABLE_DISCONNECT);
8256 } else {
8257 scsiq->q2.tag_code &= 0x27;
8258 }
8259 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8260 if (asc_dvc->bug_fix_cntl) {
8261 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8262 if ((scsi_cmd == READ_6) ||
8263 (scsi_cmd == READ_10)) {
8264 addr = le32_to_cpu(sg_head->
8265 sg_list
8266 [sg_entry_cnt_minus_one].
8267 addr) +
8268 le32_to_cpu(sg_head->
8269 sg_list
8270 [sg_entry_cnt_minus_one].
8271 bytes);
8272 extra_bytes =
8273 (uchar)((ushort)addr & 0x0003);
8274 if ((extra_bytes != 0)
8275 &&
8276 ((scsiq->q2.
8277 tag_code &
8278 ASC_TAG_FLAG_EXTRA_BYTES)
8279 == 0)) {
8280 scsiq->q2.tag_code |=
8281 ASC_TAG_FLAG_EXTRA_BYTES;
8282 scsiq->q1.extra_bytes =
8283 extra_bytes;
8284 data_cnt =
8285 le32_to_cpu(sg_head->
8286 sg_list
8287 [sg_entry_cnt_minus_one].
8288 bytes);
8289 data_cnt -= extra_bytes;
8290 sg_head->
8291 sg_list
8292 [sg_entry_cnt_minus_one].
8293 bytes =
8294 cpu_to_le32(data_cnt);
8295 }
8296 }
8297 }
8298 }
8299 sg_head->entry_to_copy = sg_head->entry_cnt;
8300 n_q_required = AscSgListToQueue(sg_entry_cnt);
8301 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8302 (uint) n_q_required)
8303 || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8304 if ((sta =
8305 AscSendScsiQueue(asc_dvc, scsiq,
8306 n_q_required)) == 1) {
8307 asc_dvc->in_critical_cnt--;
8308 return (sta);
8309 }
8310 }
8311 } else {
8312 if (asc_dvc->bug_fix_cntl) {
8313 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8314 if ((scsi_cmd == READ_6) ||
8315 (scsi_cmd == READ_10)) {
8316 addr =
8317 le32_to_cpu(scsiq->q1.data_addr) +
8318 le32_to_cpu(scsiq->q1.data_cnt);
8319 extra_bytes =
8320 (uchar)((ushort)addr & 0x0003);
8321 if ((extra_bytes != 0)
8322 &&
8323 ((scsiq->q2.
8324 tag_code &
8325 ASC_TAG_FLAG_EXTRA_BYTES)
8326 == 0)) {
8327 data_cnt =
8328 le32_to_cpu(scsiq->q1.
8329 data_cnt);
8330 if (((ushort)data_cnt & 0x01FF)
8331 == 0) {
8332 scsiq->q2.tag_code |=
8333 ASC_TAG_FLAG_EXTRA_BYTES;
8334 data_cnt -= extra_bytes;
8335 scsiq->q1.data_cnt =
8336 cpu_to_le32
8337 (data_cnt);
8338 scsiq->q1.extra_bytes =
8339 extra_bytes;
8340 }
8341 }
8342 }
8343 }
8344 }
8345 n_q_required = 1;
8346 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8347 ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8348 if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8349 n_q_required)) == 1) {
8350 asc_dvc->in_critical_cnt--;
8351 return (sta);
8352 }
8353 }
8354 }
8355 asc_dvc->in_critical_cnt--;
8356 return (sta);
8357 }
8358
8359 /*
8360 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8361 *
8362 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8363 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
8364 * RISC to notify it a new command is ready to be executed.
8365 *
8366 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8367 * set to SCSI_MAX_RETRY.
8368 *
8369 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8370 * for DMA addresses or math operations are byte swapped to little-endian
8371 * order.
8372 *
8373 * Return:
8374 * ADV_SUCCESS(1) - The request was successfully queued.
8375 * ADV_BUSY(0) - Resource unavailable; Retry again after pending
8376 * request completes.
8377 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
8378 * host IC error.
8379 */
8380 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
8381 {
8382 AdvPortAddr iop_base;
8383 ADV_CARR_T *new_carrp;
8384 ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
8385
8386 /*
8387 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8388 */
8389 if (scsiq->target_id > ADV_MAX_TID) {
8390 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8391 scsiq->done_status = QD_WITH_ERROR;
8392 return ADV_ERROR;
8393 }
8394
8395 iop_base = asc_dvc->iop_base;
8396
8397 /*
8398 * Allocate a carrier ensuring at least one carrier always
8399 * remains on the freelist and initialize fields.
8400 */
8401 new_carrp = adv_get_next_carrier(asc_dvc);
8402 if (!new_carrp) {
8403 ASC_DBG(1, "No free carriers\n");
8404 return ADV_BUSY;
8405 }
8406
8407 asc_dvc->carr_pending_cnt++;
8408
8409 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8410 scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
8411 scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
8412
8413 scsiq->carr_va = asc_dvc->icq_sp->carr_va;
8414 scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8415
8416 /*
8417 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8418 * the microcode. The newly allocated stopper will become the new
8419 * stopper.
8420 */
8421 asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
8422
8423 /*
8424 * Set the 'next_vpa' pointer for the old stopper to be the
8425 * physical address of the new stopper. The RISC can only
8426 * follow physical addresses.
8427 */
8428 asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8429
8430 /*
8431 * Set the host adapter stopper pointer to point to the new carrier.
8432 */
8433 asc_dvc->icq_sp = new_carrp;
8434
8435 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8436 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8437 /*
8438 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8439 */
8440 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8441 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8442 /*
8443 * Clear the tickle value. In the ASC-3550 the RISC flag
8444 * command 'clr_tickle_a' does not work unless the host
8445 * value is cleared.
8446 */
8447 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8448 ADV_TICKLE_NOP);
8449 }
8450 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8451 /*
8452 * Notify the RISC a carrier is ready by writing the physical
8453 * address of the new carrier stopper to the COMMA register.
8454 */
8455 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8456 le32_to_cpu(new_carrp->carr_pa));
8457 }
8458
8459 return ADV_SUCCESS;
8460 }
8461
8462 /*
8463 * Execute a single 'struct scsi_cmnd'.
8464 */
8465 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8466 {
8467 int ret, err_code;
8468 struct asc_board *boardp = shost_priv(scp->device->host);
8469
8470 ASC_DBG(1, "scp 0x%p\n", scp);
8471
8472 if (ASC_NARROW_BOARD(boardp)) {
8473 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8474 struct asc_scsi_q asc_scsi_q;
8475
8476 ret = asc_build_req(boardp, scp, &asc_scsi_q);
8477 if (ret != ASC_NOERROR) {
8478 ASC_STATS(scp->device->host, build_error);
8479 return ret;
8480 }
8481
8482 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8483 kfree(asc_scsi_q.sg_head);
8484 err_code = asc_dvc->err_code;
8485 } else {
8486 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8487 adv_req_t *adv_reqp;
8488
8489 switch (adv_build_req(boardp, scp, &adv_reqp)) {
8490 case ASC_NOERROR:
8491 ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8492 break;
8493 case ASC_BUSY:
8494 ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8495 /*
8496 * The asc_stats fields 'adv_build_noreq' and
8497 * 'adv_build_nosg' count wide board busy conditions.
8498 * They are updated in adv_build_req and
8499 * adv_get_sglist, respectively.
8500 */
8501 return ASC_BUSY;
8502 case ASC_ERROR:
8503 default:
8504 ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8505 ASC_STATS(scp->device->host, build_error);
8506 return ASC_ERROR;
8507 }
8508
8509 ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
8510 err_code = adv_dvc->err_code;
8511 }
8512
8513 switch (ret) {
8514 case ASC_NOERROR:
8515 ASC_STATS(scp->device->host, exe_noerror);
8516 /*
8517 * Increment monotonically increasing per device
8518 * successful request counter. Wrapping doesn't matter.
8519 */
8520 boardp->reqcnt[scp->device->id]++;
8521 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8522 break;
8523 case ASC_BUSY:
8524 ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8525 ASC_STATS(scp->device->host, exe_busy);
8526 break;
8527 case ASC_ERROR:
8528 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8529 "err_code 0x%x\n", err_code);
8530 ASC_STATS(scp->device->host, exe_error);
8531 scp->result = HOST_BYTE(DID_ERROR);
8532 break;
8533 default:
8534 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8535 "err_code 0x%x\n", err_code);
8536 ASC_STATS(scp->device->host, exe_unknown);
8537 scp->result = HOST_BYTE(DID_ERROR);
8538 break;
8539 }
8540
8541 ASC_DBG(1, "end\n");
8542 return ret;
8543 }
8544
8545 /*
8546 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8547 *
8548 * This function always returns 0. Command return status is saved
8549 * in the 'scp' result field.
8550 */
8551 static int
8552 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
8553 {
8554 struct Scsi_Host *shost = scp->device->host;
8555 int asc_res, result = 0;
8556
8557 ASC_STATS(shost, queuecommand);
8558 scp->scsi_done = done;
8559
8560 asc_res = asc_execute_scsi_cmnd(scp);
8561
8562 switch (asc_res) {
8563 case ASC_NOERROR:
8564 break;
8565 case ASC_BUSY:
8566 result = SCSI_MLQUEUE_HOST_BUSY;
8567 break;
8568 case ASC_ERROR:
8569 default:
8570 asc_scsi_done(scp);
8571 break;
8572 }
8573
8574 return result;
8575 }
8576
8577 static DEF_SCSI_QCMD(advansys_queuecommand)
8578
8579 static ushort AscGetEisaChipCfg(PortAddr iop_base)
8580 {
8581 PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8582 (PortAddr) (ASC_EISA_CFG_IOP_MASK);
8583 return inpw(eisa_cfg_iop);
8584 }
8585
8586 /*
8587 * Return the BIOS address of the adapter at the specified
8588 * I/O port and with the specified bus type.
8589 */
8590 static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
8591 unsigned short bus_type)
8592 {
8593 unsigned short cfg_lsw;
8594 unsigned short bios_addr;
8595
8596 /*
8597 * The PCI BIOS is re-located by the motherboard BIOS. Because
8598 * of this the driver can not determine where a PCI BIOS is
8599 * loaded and executes.
8600 */
8601 if (bus_type & ASC_IS_PCI)
8602 return 0;
8603
8604 if ((bus_type & ASC_IS_EISA) != 0) {
8605 cfg_lsw = AscGetEisaChipCfg(iop_base);
8606 cfg_lsw &= 0x000F;
8607 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
8608 return bios_addr;
8609 }
8610
8611 cfg_lsw = AscGetChipCfgLsw(iop_base);
8612
8613 /*
8614 * ISA PnP uses the top bit as the 32K BIOS flag
8615 */
8616 if (bus_type == ASC_IS_ISAPNP)
8617 cfg_lsw &= 0x7FFF;
8618 bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
8619 return bios_addr;
8620 }
8621
8622 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
8623 {
8624 ushort cfg_lsw;
8625
8626 if (AscGetChipScsiID(iop_base) == new_host_id) {
8627 return (new_host_id);
8628 }
8629 cfg_lsw = AscGetChipCfgLsw(iop_base);
8630 cfg_lsw &= 0xF8FF;
8631 cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
8632 AscSetChipCfgLsw(iop_base, cfg_lsw);
8633 return (AscGetChipScsiID(iop_base));
8634 }
8635
8636 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
8637 {
8638 unsigned char sc;
8639
8640 AscSetBank(iop_base, 1);
8641 sc = inp(iop_base + IOP_REG_SC);
8642 AscSetBank(iop_base, 0);
8643 return sc;
8644 }
8645
8646 static unsigned char AscGetChipVersion(PortAddr iop_base,
8647 unsigned short bus_type)
8648 {
8649 if (bus_type & ASC_IS_EISA) {
8650 PortAddr eisa_iop;
8651 unsigned char revision;
8652 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8653 (PortAddr) ASC_EISA_REV_IOP_MASK;
8654 revision = inp(eisa_iop);
8655 return ASC_CHIP_MIN_VER_EISA - 1 + revision;
8656 }
8657 return AscGetChipVerNo(iop_base);
8658 }
8659
8660 #ifdef CONFIG_ISA
8661 static void AscEnableIsaDma(uchar dma_channel)
8662 {
8663 if (dma_channel < 4) {
8664 outp(0x000B, (ushort)(0xC0 | dma_channel));
8665 outp(0x000A, dma_channel);
8666 } else if (dma_channel < 8) {
8667 outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
8668 outp(0x00D4, (ushort)(dma_channel - 4));
8669 }
8670 }
8671 #endif /* CONFIG_ISA */
8672
8673 static int AscStopQueueExe(PortAddr iop_base)
8674 {
8675 int count = 0;
8676
8677 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
8678 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8679 ASC_STOP_REQ_RISC_STOP);
8680 do {
8681 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
8682 ASC_STOP_ACK_RISC_STOP) {
8683 return (1);
8684 }
8685 mdelay(100);
8686 } while (count++ < 20);
8687 }
8688 return (0);
8689 }
8690
8691 static unsigned int AscGetMaxDmaCount(ushort bus_type)
8692 {
8693 if (bus_type & ASC_IS_ISA)
8694 return ASC_MAX_ISA_DMA_COUNT;
8695 else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
8696 return ASC_MAX_VL_DMA_COUNT;
8697 return ASC_MAX_PCI_DMA_COUNT;
8698 }
8699
8700 #ifdef CONFIG_ISA
8701 static ushort AscGetIsaDmaChannel(PortAddr iop_base)
8702 {
8703 ushort channel;
8704
8705 channel = AscGetChipCfgLsw(iop_base) & 0x0003;
8706 if (channel == 0x03)
8707 return (0);
8708 else if (channel == 0x00)
8709 return (7);
8710 return (channel + 4);
8711 }
8712
8713 static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
8714 {
8715 ushort cfg_lsw;
8716 uchar value;
8717
8718 if ((dma_channel >= 5) && (dma_channel <= 7)) {
8719 if (dma_channel == 7)
8720 value = 0x00;
8721 else
8722 value = dma_channel - 4;
8723 cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
8724 cfg_lsw |= value;
8725 AscSetChipCfgLsw(iop_base, cfg_lsw);
8726 return (AscGetIsaDmaChannel(iop_base));
8727 }
8728 return 0;
8729 }
8730
8731 static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
8732 {
8733 uchar speed_value;
8734
8735 AscSetBank(iop_base, 1);
8736 speed_value = AscReadChipDmaSpeed(iop_base);
8737 speed_value &= 0x07;
8738 AscSetBank(iop_base, 0);
8739 return speed_value;
8740 }
8741
8742 static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
8743 {
8744 speed_value &= 0x07;
8745 AscSetBank(iop_base, 1);
8746 AscWriteChipDmaSpeed(iop_base, speed_value);
8747 AscSetBank(iop_base, 0);
8748 return AscGetIsaDmaSpeed(iop_base);
8749 }
8750 #endif /* CONFIG_ISA */
8751
8752 static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
8753 {
8754 int i;
8755 PortAddr iop_base;
8756 uchar chip_version;
8757
8758 iop_base = asc_dvc->iop_base;
8759 asc_dvc->err_code = 0;
8760 if ((asc_dvc->bus_type &
8761 (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
8762 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
8763 }
8764 AscSetChipControl(iop_base, CC_HALT);
8765 AscSetChipStatus(iop_base, 0);
8766 asc_dvc->bug_fix_cntl = 0;
8767 asc_dvc->pci_fix_asyn_xfer = 0;
8768 asc_dvc->pci_fix_asyn_xfer_always = 0;
8769 /* asc_dvc->init_state initialized in AscInitGetConfig(). */
8770 asc_dvc->sdtr_done = 0;
8771 asc_dvc->cur_total_qng = 0;
8772 asc_dvc->is_in_int = false;
8773 asc_dvc->in_critical_cnt = 0;
8774 asc_dvc->last_q_shortage = 0;
8775 asc_dvc->use_tagged_qng = 0;
8776 asc_dvc->no_scam = 0;
8777 asc_dvc->unit_not_ready = 0;
8778 asc_dvc->queue_full_or_busy = 0;
8779 asc_dvc->redo_scam = 0;
8780 asc_dvc->res2 = 0;
8781 asc_dvc->min_sdtr_index = 0;
8782 asc_dvc->cfg->can_tagged_qng = 0;
8783 asc_dvc->cfg->cmd_qng_enabled = 0;
8784 asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
8785 asc_dvc->init_sdtr = 0;
8786 asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
8787 asc_dvc->scsi_reset_wait = 3;
8788 asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
8789 asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
8790 asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
8791 asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
8792 asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
8793 chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
8794 asc_dvc->cfg->chip_version = chip_version;
8795 asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
8796 asc_dvc->max_sdtr_index = 7;
8797 if ((asc_dvc->bus_type & ASC_IS_PCI) &&
8798 (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
8799 asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
8800 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
8801 asc_dvc->max_sdtr_index = 15;
8802 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
8803 AscSetExtraControl(iop_base,
8804 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8805 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
8806 AscSetExtraControl(iop_base,
8807 (SEC_ACTIVE_NEGATE |
8808 SEC_ENABLE_FILTER));
8809 }
8810 }
8811 if (asc_dvc->bus_type == ASC_IS_PCI) {
8812 AscSetExtraControl(iop_base,
8813 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8814 }
8815
8816 asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
8817 #ifdef CONFIG_ISA
8818 if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
8819 if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
8820 AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
8821 asc_dvc->bus_type = ASC_IS_ISAPNP;
8822 }
8823 asc_dvc->cfg->isa_dma_channel =
8824 (uchar)AscGetIsaDmaChannel(iop_base);
8825 }
8826 #endif /* CONFIG_ISA */
8827 for (i = 0; i <= ASC_MAX_TID; i++) {
8828 asc_dvc->cur_dvc_qng[i] = 0;
8829 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
8830 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
8831 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
8832 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
8833 }
8834 }
8835
8836 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
8837 {
8838 int retry;
8839
8840 for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
8841 unsigned char read_back;
8842 AscSetChipEEPCmd(iop_base, cmd_reg);
8843 mdelay(1);
8844 read_back = AscGetChipEEPCmd(iop_base);
8845 if (read_back == cmd_reg)
8846 return 1;
8847 }
8848 return 0;
8849 }
8850
8851 static void AscWaitEEPRead(void)
8852 {
8853 mdelay(1);
8854 }
8855
8856 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
8857 {
8858 ushort read_wval;
8859 uchar cmd_reg;
8860
8861 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8862 AscWaitEEPRead();
8863 cmd_reg = addr | ASC_EEP_CMD_READ;
8864 AscWriteEEPCmdReg(iop_base, cmd_reg);
8865 AscWaitEEPRead();
8866 read_wval = AscGetChipEEPData(iop_base);
8867 AscWaitEEPRead();
8868 return read_wval;
8869 }
8870
8871 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8872 ushort bus_type)
8873 {
8874 ushort wval;
8875 ushort sum;
8876 ushort *wbuf;
8877 int cfg_beg;
8878 int cfg_end;
8879 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8880 int s_addr;
8881
8882 wbuf = (ushort *)cfg_buf;
8883 sum = 0;
8884 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8885 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8886 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8887 sum += *wbuf;
8888 }
8889 if (bus_type & ASC_IS_VL) {
8890 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8891 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8892 } else {
8893 cfg_beg = ASC_EEP_DVC_CFG_BEG;
8894 cfg_end = ASC_EEP_MAX_DVC_ADDR;
8895 }
8896 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8897 wval = AscReadEEPWord(iop_base, (uchar)s_addr);
8898 if (s_addr <= uchar_end_in_config) {
8899 /*
8900 * Swap all char fields - must unswap bytes already swapped
8901 * by AscReadEEPWord().
8902 */
8903 *wbuf = le16_to_cpu(wval);
8904 } else {
8905 /* Don't swap word field at the end - cntl field. */
8906 *wbuf = wval;
8907 }
8908 sum += wval; /* Checksum treats all EEPROM data as words. */
8909 }
8910 /*
8911 * Read the checksum word which will be compared against 'sum'
8912 * by the caller. Word field already swapped.
8913 */
8914 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8915 return sum;
8916 }
8917
8918 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
8919 {
8920 PortAddr iop_base;
8921 ushort q_addr;
8922 ushort saved_word;
8923 int sta;
8924
8925 iop_base = asc_dvc->iop_base;
8926 sta = 0;
8927 q_addr = ASC_QNO_TO_QADDR(241);
8928 saved_word = AscReadLramWord(iop_base, q_addr);
8929 AscSetChipLramAddr(iop_base, q_addr);
8930 AscSetChipLramData(iop_base, 0x55AA);
8931 mdelay(10);
8932 AscSetChipLramAddr(iop_base, q_addr);
8933 if (AscGetChipLramData(iop_base) == 0x55AA) {
8934 sta = 1;
8935 AscWriteLramWord(iop_base, q_addr, saved_word);
8936 }
8937 return (sta);
8938 }
8939
8940 static void AscWaitEEPWrite(void)
8941 {
8942 mdelay(20);
8943 }
8944
8945 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
8946 {
8947 ushort read_back;
8948 int retry;
8949
8950 retry = 0;
8951 while (true) {
8952 AscSetChipEEPData(iop_base, data_reg);
8953 mdelay(1);
8954 read_back = AscGetChipEEPData(iop_base);
8955 if (read_back == data_reg) {
8956 return (1);
8957 }
8958 if (retry++ > ASC_EEP_MAX_RETRY) {
8959 return (0);
8960 }
8961 }
8962 }
8963
8964 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
8965 {
8966 ushort read_wval;
8967
8968 read_wval = AscReadEEPWord(iop_base, addr);
8969 if (read_wval != word_val) {
8970 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
8971 AscWaitEEPRead();
8972 AscWriteEEPDataReg(iop_base, word_val);
8973 AscWaitEEPRead();
8974 AscWriteEEPCmdReg(iop_base,
8975 (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
8976 AscWaitEEPWrite();
8977 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8978 AscWaitEEPRead();
8979 return (AscReadEEPWord(iop_base, addr));
8980 }
8981 return (read_wval);
8982 }
8983
8984 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8985 ushort bus_type)
8986 {
8987 int n_error;
8988 ushort *wbuf;
8989 ushort word;
8990 ushort sum;
8991 int s_addr;
8992 int cfg_beg;
8993 int cfg_end;
8994 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8995
8996 wbuf = (ushort *)cfg_buf;
8997 n_error = 0;
8998 sum = 0;
8999 /* Write two config words; AscWriteEEPWord() will swap bytes. */
9000 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9001 sum += *wbuf;
9002 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9003 n_error++;
9004 }
9005 }
9006 if (bus_type & ASC_IS_VL) {
9007 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9008 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9009 } else {
9010 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9011 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9012 }
9013 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9014 if (s_addr <= uchar_end_in_config) {
9015 /*
9016 * This is a char field. Swap char fields before they are
9017 * swapped again by AscWriteEEPWord().
9018 */
9019 word = cpu_to_le16(*wbuf);
9020 if (word !=
9021 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9022 n_error++;
9023 }
9024 } else {
9025 /* Don't swap word field at the end - cntl field. */
9026 if (*wbuf !=
9027 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9028 n_error++;
9029 }
9030 }
9031 sum += *wbuf; /* Checksum calculated from word values. */
9032 }
9033 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9034 *wbuf = sum;
9035 if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9036 n_error++;
9037 }
9038
9039 /* Read EEPROM back again. */
9040 wbuf = (ushort *)cfg_buf;
9041 /*
9042 * Read two config words; Byte-swapping done by AscReadEEPWord().
9043 */
9044 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9045 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9046 n_error++;
9047 }
9048 }
9049 if (bus_type & ASC_IS_VL) {
9050 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9051 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9052 } else {
9053 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9054 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9055 }
9056 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9057 if (s_addr <= uchar_end_in_config) {
9058 /*
9059 * Swap all char fields. Must unswap bytes already swapped
9060 * by AscReadEEPWord().
9061 */
9062 word =
9063 le16_to_cpu(AscReadEEPWord
9064 (iop_base, (uchar)s_addr));
9065 } else {
9066 /* Don't swap word field at the end - cntl field. */
9067 word = AscReadEEPWord(iop_base, (uchar)s_addr);
9068 }
9069 if (*wbuf != word) {
9070 n_error++;
9071 }
9072 }
9073 /* Read checksum; Byte swapping not needed. */
9074 if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
9075 n_error++;
9076 }
9077 return n_error;
9078 }
9079
9080 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9081 ushort bus_type)
9082 {
9083 int retry;
9084 int n_error;
9085
9086 retry = 0;
9087 while (true) {
9088 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
9089 bus_type)) == 0) {
9090 break;
9091 }
9092 if (++retry > ASC_EEP_MAX_RETRY) {
9093 break;
9094 }
9095 }
9096 return n_error;
9097 }
9098
9099 static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
9100 {
9101 ASCEEP_CONFIG eep_config_buf;
9102 ASCEEP_CONFIG *eep_config;
9103 PortAddr iop_base;
9104 ushort chksum;
9105 ushort warn_code;
9106 ushort cfg_msw, cfg_lsw;
9107 int i;
9108 int write_eep = 0;
9109
9110 iop_base = asc_dvc->iop_base;
9111 warn_code = 0;
9112 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
9113 AscStopQueueExe(iop_base);
9114 if ((AscStopChip(iop_base)) ||
9115 (AscGetChipScsiCtrl(iop_base) != 0)) {
9116 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
9117 AscResetChipAndScsiBus(asc_dvc);
9118 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
9119 }
9120 if (!AscIsChipHalted(iop_base)) {
9121 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
9122 return (warn_code);
9123 }
9124 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
9125 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
9126 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
9127 return (warn_code);
9128 }
9129 eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
9130 cfg_msw = AscGetChipCfgMsw(iop_base);
9131 cfg_lsw = AscGetChipCfgLsw(iop_base);
9132 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9133 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9134 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9135 AscSetChipCfgMsw(iop_base, cfg_msw);
9136 }
9137 chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
9138 ASC_DBG(1, "chksum 0x%x\n", chksum);
9139 if (chksum == 0) {
9140 chksum = 0xaa55;
9141 }
9142 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9143 warn_code |= ASC_WARN_AUTO_CONFIG;
9144 if (asc_dvc->cfg->chip_version == 3) {
9145 if (eep_config->cfg_lsw != cfg_lsw) {
9146 warn_code |= ASC_WARN_EEPROM_RECOVER;
9147 eep_config->cfg_lsw =
9148 AscGetChipCfgLsw(iop_base);
9149 }
9150 if (eep_config->cfg_msw != cfg_msw) {
9151 warn_code |= ASC_WARN_EEPROM_RECOVER;
9152 eep_config->cfg_msw =
9153 AscGetChipCfgMsw(iop_base);
9154 }
9155 }
9156 }
9157 eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9158 eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
9159 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
9160 if (chksum != eep_config->chksum) {
9161 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
9162 ASC_CHIP_VER_PCI_ULTRA_3050) {
9163 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9164 eep_config->init_sdtr = 0xFF;
9165 eep_config->disc_enable = 0xFF;
9166 eep_config->start_motor = 0xFF;
9167 eep_config->use_cmd_qng = 0;
9168 eep_config->max_total_qng = 0xF0;
9169 eep_config->max_tag_qng = 0x20;
9170 eep_config->cntl = 0xBFFF;
9171 ASC_EEP_SET_CHIP_ID(eep_config, 7);
9172 eep_config->no_scam = 0;
9173 eep_config->adapter_info[0] = 0;
9174 eep_config->adapter_info[1] = 0;
9175 eep_config->adapter_info[2] = 0;
9176 eep_config->adapter_info[3] = 0;
9177 eep_config->adapter_info[4] = 0;
9178 /* Indicate EEPROM-less board. */
9179 eep_config->adapter_info[5] = 0xBB;
9180 } else {
9181 ASC_PRINT
9182 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9183 write_eep = 1;
9184 warn_code |= ASC_WARN_EEPROM_CHKSUM;
9185 }
9186 }
9187 asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9188 asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9189 asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9190 asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
9191 asc_dvc->start_motor = eep_config->start_motor;
9192 asc_dvc->dvc_cntl = eep_config->cntl;
9193 asc_dvc->no_scam = eep_config->no_scam;
9194 asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9195 asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9196 asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9197 asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9198 asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9199 asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9200 if (!AscTestExternalLram(asc_dvc)) {
9201 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9202 ASC_IS_PCI_ULTRA)) {
9203 eep_config->max_total_qng =
9204 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9205 eep_config->max_tag_qng =
9206 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9207 } else {
9208 eep_config->cfg_msw |= 0x0800;
9209 cfg_msw |= 0x0800;
9210 AscSetChipCfgMsw(iop_base, cfg_msw);
9211 eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9212 eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9213 }
9214 } else {
9215 }
9216 if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9217 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9218 }
9219 if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9220 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9221 }
9222 if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9223 eep_config->max_tag_qng = eep_config->max_total_qng;
9224 }
9225 if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9226 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9227 }
9228 asc_dvc->max_total_qng = eep_config->max_total_qng;
9229 if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9230 eep_config->use_cmd_qng) {
9231 eep_config->disc_enable = eep_config->use_cmd_qng;
9232 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9233 }
9234 ASC_EEP_SET_CHIP_ID(eep_config,
9235 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9236 asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9237 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9238 !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9239 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9240 }
9241
9242 for (i = 0; i <= ASC_MAX_TID; i++) {
9243 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9244 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9245 asc_dvc->cfg->sdtr_period_offset[i] =
9246 (uchar)(ASC_DEF_SDTR_OFFSET |
9247 (asc_dvc->min_sdtr_index << 4));
9248 }
9249 eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9250 if (write_eep) {
9251 if ((i = AscSetEEPConfig(iop_base, eep_config,
9252 asc_dvc->bus_type)) != 0) {
9253 ASC_PRINT1
9254 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9255 i);
9256 } else {
9257 ASC_PRINT
9258 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9259 }
9260 }
9261 return (warn_code);
9262 }
9263
9264 static int AscInitGetConfig(struct Scsi_Host *shost)
9265 {
9266 struct asc_board *board = shost_priv(shost);
9267 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9268 unsigned short warn_code = 0;
9269
9270 asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9271 if (asc_dvc->err_code != 0)
9272 return asc_dvc->err_code;
9273
9274 if (AscFindSignature(asc_dvc->iop_base)) {
9275 AscInitAscDvcVar(asc_dvc);
9276 warn_code = AscInitFromEEP(asc_dvc);
9277 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9278 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9279 asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9280 } else {
9281 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9282 }
9283
9284 switch (warn_code) {
9285 case 0: /* No error */
9286 break;
9287 case ASC_WARN_IO_PORT_ROTATE:
9288 shost_printk(KERN_WARNING, shost, "I/O port address "
9289 "modified\n");
9290 break;
9291 case ASC_WARN_AUTO_CONFIG:
9292 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9293 "enabled\n");
9294 break;
9295 case ASC_WARN_EEPROM_CHKSUM:
9296 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9297 break;
9298 case ASC_WARN_IRQ_MODIFIED:
9299 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9300 break;
9301 case ASC_WARN_CMD_QNG_CONFLICT:
9302 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9303 "disconnects\n");
9304 break;
9305 default:
9306 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9307 warn_code);
9308 break;
9309 }
9310
9311 if (asc_dvc->err_code != 0)
9312 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9313 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9314
9315 return asc_dvc->err_code;
9316 }
9317
9318 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9319 {
9320 struct asc_board *board = shost_priv(shost);
9321 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9322 PortAddr iop_base = asc_dvc->iop_base;
9323 unsigned short cfg_msw;
9324 unsigned short warn_code = 0;
9325
9326 asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9327 if (asc_dvc->err_code != 0)
9328 return asc_dvc->err_code;
9329 if (!AscFindSignature(asc_dvc->iop_base)) {
9330 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9331 return asc_dvc->err_code;
9332 }
9333
9334 cfg_msw = AscGetChipCfgMsw(iop_base);
9335 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9336 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9337 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9338 AscSetChipCfgMsw(iop_base, cfg_msw);
9339 }
9340 if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9341 asc_dvc->cfg->cmd_qng_enabled) {
9342 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9343 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9344 }
9345 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9346 warn_code |= ASC_WARN_AUTO_CONFIG;
9347 }
9348 #ifdef CONFIG_PCI
9349 if (asc_dvc->bus_type & ASC_IS_PCI) {
9350 cfg_msw &= 0xFFC0;
9351 AscSetChipCfgMsw(iop_base, cfg_msw);
9352 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9353 } else {
9354 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9355 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9356 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9357 asc_dvc->bug_fix_cntl |=
9358 ASC_BUG_FIX_ASYN_USE_SYN;
9359 }
9360 }
9361 } else
9362 #endif /* CONFIG_PCI */
9363 if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
9364 if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
9365 == ASC_CHIP_VER_ASYN_BUG) {
9366 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
9367 }
9368 }
9369 if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9370 asc_dvc->cfg->chip_scsi_id) {
9371 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9372 }
9373 #ifdef CONFIG_ISA
9374 if (asc_dvc->bus_type & ASC_IS_ISA) {
9375 AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
9376 AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
9377 }
9378 #endif /* CONFIG_ISA */
9379
9380 asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9381
9382 switch (warn_code) {
9383 case 0: /* No error. */
9384 break;
9385 case ASC_WARN_IO_PORT_ROTATE:
9386 shost_printk(KERN_WARNING, shost, "I/O port address "
9387 "modified\n");
9388 break;
9389 case ASC_WARN_AUTO_CONFIG:
9390 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9391 "enabled\n");
9392 break;
9393 case ASC_WARN_EEPROM_CHKSUM:
9394 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9395 break;
9396 case ASC_WARN_IRQ_MODIFIED:
9397 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9398 break;
9399 case ASC_WARN_CMD_QNG_CONFLICT:
9400 shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9401 "disconnects\n");
9402 break;
9403 default:
9404 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9405 warn_code);
9406 break;
9407 }
9408
9409 if (asc_dvc->err_code != 0)
9410 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9411 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9412
9413 return asc_dvc->err_code;
9414 }
9415
9416 /*
9417 * EEPROM Configuration.
9418 *
9419 * All drivers should use this structure to set the default EEPROM
9420 * configuration. The BIOS now uses this structure when it is built.
9421 * Additional structure information can be found in a_condor.h where
9422 * the structure is defined.
9423 *
9424 * The *_Field_IsChar structs are needed to correct for endianness.
9425 * These values are read from the board 16 bits at a time directly
9426 * into the structs. Because some fields are char, the values will be
9427 * in the wrong order. The *_Field_IsChar tells when to flip the
9428 * bytes. Data read and written to PCI memory is automatically swapped
9429 * on big-endian platforms so char fields read as words are actually being
9430 * unswapped on big-endian platforms.
9431 */
9432 #ifdef CONFIG_PCI
9433 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9434 ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
9435 0x0000, /* cfg_msw */
9436 0xFFFF, /* disc_enable */
9437 0xFFFF, /* wdtr_able */
9438 0xFFFF, /* sdtr_able */
9439 0xFFFF, /* start_motor */
9440 0xFFFF, /* tagqng_able */
9441 0xFFFF, /* bios_scan */
9442 0, /* scam_tolerant */
9443 7, /* adapter_scsi_id */
9444 0, /* bios_boot_delay */
9445 3, /* scsi_reset_delay */
9446 0, /* bios_id_lun */
9447 0, /* termination */
9448 0, /* reserved1 */
9449 0xFFE7, /* bios_ctrl */
9450 0xFFFF, /* ultra_able */
9451 0, /* reserved2 */
9452 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */
9453 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
9454 0, /* dvc_cntl */
9455 0, /* bug_fix */
9456 0, /* serial_number_word1 */
9457 0, /* serial_number_word2 */
9458 0, /* serial_number_word3 */
9459 0, /* check_sum */
9460 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9461 , /* oem_name[16] */
9462 0, /* dvc_err_code */
9463 0, /* adv_err_code */
9464 0, /* adv_err_addr */
9465 0, /* saved_dvc_err_code */
9466 0, /* saved_adv_err_code */
9467 0, /* saved_adv_err_addr */
9468 0 /* num_of_err */
9469 };
9470
9471 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9472 0, /* cfg_lsw */
9473 0, /* cfg_msw */
9474 0, /* -disc_enable */
9475 0, /* wdtr_able */
9476 0, /* sdtr_able */
9477 0, /* start_motor */
9478 0, /* tagqng_able */
9479 0, /* bios_scan */
9480 0, /* scam_tolerant */
9481 1, /* adapter_scsi_id */
9482 1, /* bios_boot_delay */
9483 1, /* scsi_reset_delay */
9484 1, /* bios_id_lun */
9485 1, /* termination */
9486 1, /* reserved1 */
9487 0, /* bios_ctrl */
9488 0, /* ultra_able */
9489 0, /* reserved2 */
9490 1, /* max_host_qng */
9491 1, /* max_dvc_qng */
9492 0, /* dvc_cntl */
9493 0, /* bug_fix */
9494 0, /* serial_number_word1 */
9495 0, /* serial_number_word2 */
9496 0, /* serial_number_word3 */
9497 0, /* check_sum */
9498 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9499 , /* oem_name[16] */
9500 0, /* dvc_err_code */
9501 0, /* adv_err_code */
9502 0, /* adv_err_addr */
9503 0, /* saved_dvc_err_code */
9504 0, /* saved_adv_err_code */
9505 0, /* saved_adv_err_addr */
9506 0 /* num_of_err */
9507 };
9508
9509 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9510 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9511 0x0000, /* 01 cfg_msw */
9512 0xFFFF, /* 02 disc_enable */
9513 0xFFFF, /* 03 wdtr_able */
9514 0x4444, /* 04 sdtr_speed1 */
9515 0xFFFF, /* 05 start_motor */
9516 0xFFFF, /* 06 tagqng_able */
9517 0xFFFF, /* 07 bios_scan */
9518 0, /* 08 scam_tolerant */
9519 7, /* 09 adapter_scsi_id */
9520 0, /* bios_boot_delay */
9521 3, /* 10 scsi_reset_delay */
9522 0, /* bios_id_lun */
9523 0, /* 11 termination_se */
9524 0, /* termination_lvd */
9525 0xFFE7, /* 12 bios_ctrl */
9526 0x4444, /* 13 sdtr_speed2 */
9527 0x4444, /* 14 sdtr_speed3 */
9528 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
9529 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
9530 0, /* 16 dvc_cntl */
9531 0x4444, /* 17 sdtr_speed4 */
9532 0, /* 18 serial_number_word1 */
9533 0, /* 19 serial_number_word2 */
9534 0, /* 20 serial_number_word3 */
9535 0, /* 21 check_sum */
9536 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9537 , /* 22-29 oem_name[16] */
9538 0, /* 30 dvc_err_code */
9539 0, /* 31 adv_err_code */
9540 0, /* 32 adv_err_addr */
9541 0, /* 33 saved_dvc_err_code */
9542 0, /* 34 saved_adv_err_code */
9543 0, /* 35 saved_adv_err_addr */
9544 0, /* 36 reserved */
9545 0, /* 37 reserved */
9546 0, /* 38 reserved */
9547 0, /* 39 reserved */
9548 0, /* 40 reserved */
9549 0, /* 41 reserved */
9550 0, /* 42 reserved */
9551 0, /* 43 reserved */
9552 0, /* 44 reserved */
9553 0, /* 45 reserved */
9554 0, /* 46 reserved */
9555 0, /* 47 reserved */
9556 0, /* 48 reserved */
9557 0, /* 49 reserved */
9558 0, /* 50 reserved */
9559 0, /* 51 reserved */
9560 0, /* 52 reserved */
9561 0, /* 53 reserved */
9562 0, /* 54 reserved */
9563 0, /* 55 reserved */
9564 0, /* 56 cisptr_lsw */
9565 0, /* 57 cisprt_msw */
9566 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
9567 PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */
9568 0, /* 60 reserved */
9569 0, /* 61 reserved */
9570 0, /* 62 reserved */
9571 0 /* 63 reserved */
9572 };
9573
9574 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
9575 0, /* 00 cfg_lsw */
9576 0, /* 01 cfg_msw */
9577 0, /* 02 disc_enable */
9578 0, /* 03 wdtr_able */
9579 0, /* 04 sdtr_speed1 */
9580 0, /* 05 start_motor */
9581 0, /* 06 tagqng_able */
9582 0, /* 07 bios_scan */
9583 0, /* 08 scam_tolerant */
9584 1, /* 09 adapter_scsi_id */
9585 1, /* bios_boot_delay */
9586 1, /* 10 scsi_reset_delay */
9587 1, /* bios_id_lun */
9588 1, /* 11 termination_se */
9589 1, /* termination_lvd */
9590 0, /* 12 bios_ctrl */
9591 0, /* 13 sdtr_speed2 */
9592 0, /* 14 sdtr_speed3 */
9593 1, /* 15 max_host_qng */
9594 1, /* max_dvc_qng */
9595 0, /* 16 dvc_cntl */
9596 0, /* 17 sdtr_speed4 */
9597 0, /* 18 serial_number_word1 */
9598 0, /* 19 serial_number_word2 */
9599 0, /* 20 serial_number_word3 */
9600 0, /* 21 check_sum */
9601 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9602 , /* 22-29 oem_name[16] */
9603 0, /* 30 dvc_err_code */
9604 0, /* 31 adv_err_code */
9605 0, /* 32 adv_err_addr */
9606 0, /* 33 saved_dvc_err_code */
9607 0, /* 34 saved_adv_err_code */
9608 0, /* 35 saved_adv_err_addr */
9609 0, /* 36 reserved */
9610 0, /* 37 reserved */
9611 0, /* 38 reserved */
9612 0, /* 39 reserved */
9613 0, /* 40 reserved */
9614 0, /* 41 reserved */
9615 0, /* 42 reserved */
9616 0, /* 43 reserved */
9617 0, /* 44 reserved */
9618 0, /* 45 reserved */
9619 0, /* 46 reserved */
9620 0, /* 47 reserved */
9621 0, /* 48 reserved */
9622 0, /* 49 reserved */
9623 0, /* 50 reserved */
9624 0, /* 51 reserved */
9625 0, /* 52 reserved */
9626 0, /* 53 reserved */
9627 0, /* 54 reserved */
9628 0, /* 55 reserved */
9629 0, /* 56 cisptr_lsw */
9630 0, /* 57 cisprt_msw */
9631 0, /* 58 subsysvid */
9632 0, /* 59 subsysid */
9633 0, /* 60 reserved */
9634 0, /* 61 reserved */
9635 0, /* 62 reserved */
9636 0 /* 63 reserved */
9637 };
9638
9639 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
9640 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9641 0x0000, /* 01 cfg_msw */
9642 0xFFFF, /* 02 disc_enable */
9643 0xFFFF, /* 03 wdtr_able */
9644 0x5555, /* 04 sdtr_speed1 */
9645 0xFFFF, /* 05 start_motor */
9646 0xFFFF, /* 06 tagqng_able */
9647 0xFFFF, /* 07 bios_scan */
9648 0, /* 08 scam_tolerant */
9649 7, /* 09 adapter_scsi_id */
9650 0, /* bios_boot_delay */
9651 3, /* 10 scsi_reset_delay */
9652 0, /* bios_id_lun */
9653 0, /* 11 termination_se */
9654 0, /* termination_lvd */
9655 0xFFE7, /* 12 bios_ctrl */
9656 0x5555, /* 13 sdtr_speed2 */
9657 0x5555, /* 14 sdtr_speed3 */
9658 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
9659 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
9660 0, /* 16 dvc_cntl */
9661 0x5555, /* 17 sdtr_speed4 */
9662 0, /* 18 serial_number_word1 */
9663 0, /* 19 serial_number_word2 */
9664 0, /* 20 serial_number_word3 */
9665 0, /* 21 check_sum */
9666 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9667 , /* 22-29 oem_name[16] */
9668 0, /* 30 dvc_err_code */
9669 0, /* 31 adv_err_code */
9670 0, /* 32 adv_err_addr */
9671 0, /* 33 saved_dvc_err_code */
9672 0, /* 34 saved_adv_err_code */
9673 0, /* 35 saved_adv_err_addr */
9674 0, /* 36 reserved */
9675 0, /* 37 reserved */
9676 0, /* 38 reserved */
9677 0, /* 39 reserved */
9678 0, /* 40 reserved */
9679 0, /* 41 reserved */
9680 0, /* 42 reserved */
9681 0, /* 43 reserved */
9682 0, /* 44 reserved */
9683 0, /* 45 reserved */
9684 0, /* 46 reserved */
9685 0, /* 47 reserved */
9686 0, /* 48 reserved */
9687 0, /* 49 reserved */
9688 0, /* 50 reserved */
9689 0, /* 51 reserved */
9690 0, /* 52 reserved */
9691 0, /* 53 reserved */
9692 0, /* 54 reserved */
9693 0, /* 55 reserved */
9694 0, /* 56 cisptr_lsw */
9695 0, /* 57 cisprt_msw */
9696 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
9697 PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */
9698 0, /* 60 reserved */
9699 0, /* 61 reserved */
9700 0, /* 62 reserved */
9701 0 /* 63 reserved */
9702 };
9703
9704 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
9705 0, /* 00 cfg_lsw */
9706 0, /* 01 cfg_msw */
9707 0, /* 02 disc_enable */
9708 0, /* 03 wdtr_able */
9709 0, /* 04 sdtr_speed1 */
9710 0, /* 05 start_motor */
9711 0, /* 06 tagqng_able */
9712 0, /* 07 bios_scan */
9713 0, /* 08 scam_tolerant */
9714 1, /* 09 adapter_scsi_id */
9715 1, /* bios_boot_delay */
9716 1, /* 10 scsi_reset_delay */
9717 1, /* bios_id_lun */
9718 1, /* 11 termination_se */
9719 1, /* termination_lvd */
9720 0, /* 12 bios_ctrl */
9721 0, /* 13 sdtr_speed2 */
9722 0, /* 14 sdtr_speed3 */
9723 1, /* 15 max_host_qng */
9724 1, /* max_dvc_qng */
9725 0, /* 16 dvc_cntl */
9726 0, /* 17 sdtr_speed4 */
9727 0, /* 18 serial_number_word1 */
9728 0, /* 19 serial_number_word2 */
9729 0, /* 20 serial_number_word3 */
9730 0, /* 21 check_sum */
9731 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9732 , /* 22-29 oem_name[16] */
9733 0, /* 30 dvc_err_code */
9734 0, /* 31 adv_err_code */
9735 0, /* 32 adv_err_addr */
9736 0, /* 33 saved_dvc_err_code */
9737 0, /* 34 saved_adv_err_code */
9738 0, /* 35 saved_adv_err_addr */
9739 0, /* 36 reserved */
9740 0, /* 37 reserved */
9741 0, /* 38 reserved */
9742 0, /* 39 reserved */
9743 0, /* 40 reserved */
9744 0, /* 41 reserved */
9745 0, /* 42 reserved */
9746 0, /* 43 reserved */
9747 0, /* 44 reserved */
9748 0, /* 45 reserved */
9749 0, /* 46 reserved */
9750 0, /* 47 reserved */
9751 0, /* 48 reserved */
9752 0, /* 49 reserved */
9753 0, /* 50 reserved */
9754 0, /* 51 reserved */
9755 0, /* 52 reserved */
9756 0, /* 53 reserved */
9757 0, /* 54 reserved */
9758 0, /* 55 reserved */
9759 0, /* 56 cisptr_lsw */
9760 0, /* 57 cisprt_msw */
9761 0, /* 58 subsysvid */
9762 0, /* 59 subsysid */
9763 0, /* 60 reserved */
9764 0, /* 61 reserved */
9765 0, /* 62 reserved */
9766 0 /* 63 reserved */
9767 };
9768
9769 /*
9770 * Wait for EEPROM command to complete
9771 */
9772 static void AdvWaitEEPCmd(AdvPortAddr iop_base)
9773 {
9774 int eep_delay_ms;
9775
9776 for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
9777 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
9778 ASC_EEP_CMD_DONE) {
9779 break;
9780 }
9781 mdelay(1);
9782 }
9783 if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
9784 0)
9785 BUG();
9786 }
9787
9788 /*
9789 * Read the EEPROM from specified location
9790 */
9791 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
9792 {
9793 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9794 ASC_EEP_CMD_READ | eep_word_addr);
9795 AdvWaitEEPCmd(iop_base);
9796 return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
9797 }
9798
9799 /*
9800 * Write the EEPROM from 'cfg_buf'.
9801 */
9802 static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
9803 ADVEEP_3550_CONFIG *cfg_buf)
9804 {
9805 ushort *wbuf;
9806 ushort addr, chksum;
9807 ushort *charfields;
9808
9809 wbuf = (ushort *)cfg_buf;
9810 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9811 chksum = 0;
9812
9813 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9814 AdvWaitEEPCmd(iop_base);
9815
9816 /*
9817 * Write EEPROM from word 0 to word 20.
9818 */
9819 for (addr = ADV_EEP_DVC_CFG_BEGIN;
9820 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9821 ushort word;
9822
9823 if (*charfields++) {
9824 word = cpu_to_le16(*wbuf);
9825 } else {
9826 word = *wbuf;
9827 }
9828 chksum += *wbuf; /* Checksum is calculated from word values. */
9829 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9830 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9831 ASC_EEP_CMD_WRITE | addr);
9832 AdvWaitEEPCmd(iop_base);
9833 mdelay(ADV_EEP_DELAY_MS);
9834 }
9835
9836 /*
9837 * Write EEPROM checksum at word 21.
9838 */
9839 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9840 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9841 AdvWaitEEPCmd(iop_base);
9842 wbuf++;
9843 charfields++;
9844
9845 /*
9846 * Write EEPROM OEM name at words 22 to 29.
9847 */
9848 for (addr = ADV_EEP_DVC_CTL_BEGIN;
9849 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9850 ushort word;
9851
9852 if (*charfields++) {
9853 word = cpu_to_le16(*wbuf);
9854 } else {
9855 word = *wbuf;
9856 }
9857 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9858 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9859 ASC_EEP_CMD_WRITE | addr);
9860 AdvWaitEEPCmd(iop_base);
9861 }
9862 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9863 AdvWaitEEPCmd(iop_base);
9864 }
9865
9866 /*
9867 * Write the EEPROM from 'cfg_buf'.
9868 */
9869 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
9870 ADVEEP_38C0800_CONFIG *cfg_buf)
9871 {
9872 ushort *wbuf;
9873 ushort *charfields;
9874 ushort addr, chksum;
9875
9876 wbuf = (ushort *)cfg_buf;
9877 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9878 chksum = 0;
9879
9880 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9881 AdvWaitEEPCmd(iop_base);
9882
9883 /*
9884 * Write EEPROM from word 0 to word 20.
9885 */
9886 for (addr = ADV_EEP_DVC_CFG_BEGIN;
9887 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9888 ushort word;
9889
9890 if (*charfields++) {
9891 word = cpu_to_le16(*wbuf);
9892 } else {
9893 word = *wbuf;
9894 }
9895 chksum += *wbuf; /* Checksum is calculated from word values. */
9896 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9897 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9898 ASC_EEP_CMD_WRITE | addr);
9899 AdvWaitEEPCmd(iop_base);
9900 mdelay(ADV_EEP_DELAY_MS);
9901 }
9902
9903 /*
9904 * Write EEPROM checksum at word 21.
9905 */
9906 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9907 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9908 AdvWaitEEPCmd(iop_base);
9909 wbuf++;
9910 charfields++;
9911
9912 /*
9913 * Write EEPROM OEM name at words 22 to 29.
9914 */
9915 for (addr = ADV_EEP_DVC_CTL_BEGIN;
9916 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9917 ushort word;
9918
9919 if (*charfields++) {
9920 word = cpu_to_le16(*wbuf);
9921 } else {
9922 word = *wbuf;
9923 }
9924 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9925 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9926 ASC_EEP_CMD_WRITE | addr);
9927 AdvWaitEEPCmd(iop_base);
9928 }
9929 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9930 AdvWaitEEPCmd(iop_base);
9931 }
9932
9933 /*
9934 * Write the EEPROM from 'cfg_buf'.
9935 */
9936 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
9937 ADVEEP_38C1600_CONFIG *cfg_buf)
9938 {
9939 ushort *wbuf;
9940 ushort *charfields;
9941 ushort addr, chksum;
9942
9943 wbuf = (ushort *)cfg_buf;
9944 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9945 chksum = 0;
9946
9947 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9948 AdvWaitEEPCmd(iop_base);
9949
9950 /*
9951 * Write EEPROM from word 0 to word 20.
9952 */
9953 for (addr = ADV_EEP_DVC_CFG_BEGIN;
9954 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9955 ushort word;
9956
9957 if (*charfields++) {
9958 word = cpu_to_le16(*wbuf);
9959 } else {
9960 word = *wbuf;
9961 }
9962 chksum += *wbuf; /* Checksum is calculated from word values. */
9963 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9964 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9965 ASC_EEP_CMD_WRITE | addr);
9966 AdvWaitEEPCmd(iop_base);
9967 mdelay(ADV_EEP_DELAY_MS);
9968 }
9969
9970 /*
9971 * Write EEPROM checksum at word 21.
9972 */
9973 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9974 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9975 AdvWaitEEPCmd(iop_base);
9976 wbuf++;
9977 charfields++;
9978
9979 /*
9980 * Write EEPROM OEM name at words 22 to 29.
9981 */
9982 for (addr = ADV_EEP_DVC_CTL_BEGIN;
9983 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9984 ushort word;
9985
9986 if (*charfields++) {
9987 word = cpu_to_le16(*wbuf);
9988 } else {
9989 word = *wbuf;
9990 }
9991 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9992 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9993 ASC_EEP_CMD_WRITE | addr);
9994 AdvWaitEEPCmd(iop_base);
9995 }
9996 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9997 AdvWaitEEPCmd(iop_base);
9998 }
9999
10000 /*
10001 * Read EEPROM configuration into the specified buffer.
10002 *
10003 * Return a checksum based on the EEPROM configuration read.
10004 */
10005 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
10006 ADVEEP_3550_CONFIG *cfg_buf)
10007 {
10008 ushort wval, chksum;
10009 ushort *wbuf;
10010 int eep_addr;
10011 ushort *charfields;
10012
10013 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10014 wbuf = (ushort *)cfg_buf;
10015 chksum = 0;
10016
10017 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10018 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10019 wval = AdvReadEEPWord(iop_base, eep_addr);
10020 chksum += wval; /* Checksum is calculated from word values. */
10021 if (*charfields++) {
10022 *wbuf = le16_to_cpu(wval);
10023 } else {
10024 *wbuf = wval;
10025 }
10026 }
10027 /* Read checksum word. */
10028 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10029 wbuf++;
10030 charfields++;
10031
10032 /* Read rest of EEPROM not covered by the checksum. */
10033 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10034 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10035 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10036 if (*charfields++) {
10037 *wbuf = le16_to_cpu(*wbuf);
10038 }
10039 }
10040 return chksum;
10041 }
10042
10043 /*
10044 * Read EEPROM configuration into the specified buffer.
10045 *
10046 * Return a checksum based on the EEPROM configuration read.
10047 */
10048 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
10049 ADVEEP_38C0800_CONFIG *cfg_buf)
10050 {
10051 ushort wval, chksum;
10052 ushort *wbuf;
10053 int eep_addr;
10054 ushort *charfields;
10055
10056 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10057 wbuf = (ushort *)cfg_buf;
10058 chksum = 0;
10059
10060 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10061 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10062 wval = AdvReadEEPWord(iop_base, eep_addr);
10063 chksum += wval; /* Checksum is calculated from word values. */
10064 if (*charfields++) {
10065 *wbuf = le16_to_cpu(wval);
10066 } else {
10067 *wbuf = wval;
10068 }
10069 }
10070 /* Read checksum word. */
10071 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10072 wbuf++;
10073 charfields++;
10074
10075 /* Read rest of EEPROM not covered by the checksum. */
10076 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10077 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10078 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10079 if (*charfields++) {
10080 *wbuf = le16_to_cpu(*wbuf);
10081 }
10082 }
10083 return chksum;
10084 }
10085
10086 /*
10087 * Read EEPROM configuration into the specified buffer.
10088 *
10089 * Return a checksum based on the EEPROM configuration read.
10090 */
10091 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
10092 ADVEEP_38C1600_CONFIG *cfg_buf)
10093 {
10094 ushort wval, chksum;
10095 ushort *wbuf;
10096 int eep_addr;
10097 ushort *charfields;
10098
10099 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10100 wbuf = (ushort *)cfg_buf;
10101 chksum = 0;
10102
10103 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10104 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10105 wval = AdvReadEEPWord(iop_base, eep_addr);
10106 chksum += wval; /* Checksum is calculated from word values. */
10107 if (*charfields++) {
10108 *wbuf = le16_to_cpu(wval);
10109 } else {
10110 *wbuf = wval;
10111 }
10112 }
10113 /* Read checksum word. */
10114 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10115 wbuf++;
10116 charfields++;
10117
10118 /* Read rest of EEPROM not covered by the checksum. */
10119 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10120 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10121 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10122 if (*charfields++) {
10123 *wbuf = le16_to_cpu(*wbuf);
10124 }
10125 }
10126 return chksum;
10127 }
10128
10129 /*
10130 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10131 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10132 * all of this is done.
10133 *
10134 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10135 *
10136 * For a non-fatal error return a warning code. If there are no warnings
10137 * then 0 is returned.
10138 *
10139 * Note: Chip is stopped on entry.
10140 */
10141 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
10142 {
10143 AdvPortAddr iop_base;
10144 ushort warn_code;
10145 ADVEEP_3550_CONFIG eep_config;
10146
10147 iop_base = asc_dvc->iop_base;
10148
10149 warn_code = 0;
10150
10151 /*
10152 * Read the board's EEPROM configuration.
10153 *
10154 * Set default values if a bad checksum is found.
10155 */
10156 if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
10157 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10158
10159 /*
10160 * Set EEPROM default values.
10161 */
10162 memcpy(&eep_config, &Default_3550_EEPROM_Config,
10163 sizeof(ADVEEP_3550_CONFIG));
10164
10165 /*
10166 * Assume the 6 byte board serial number that was read from
10167 * EEPROM is correct even if the EEPROM checksum failed.
10168 */
10169 eep_config.serial_number_word3 =
10170 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10171
10172 eep_config.serial_number_word2 =
10173 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10174
10175 eep_config.serial_number_word1 =
10176 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10177
10178 AdvSet3550EEPConfig(iop_base, &eep_config);
10179 }
10180 /*
10181 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10182 * EEPROM configuration that was read.
10183 *
10184 * This is the mapping of EEPROM fields to Adv Library fields.
10185 */
10186 asc_dvc->wdtr_able = eep_config.wdtr_able;
10187 asc_dvc->sdtr_able = eep_config.sdtr_able;
10188 asc_dvc->ultra_able = eep_config.ultra_able;
10189 asc_dvc->tagqng_able = eep_config.tagqng_able;
10190 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10191 asc_dvc->max_host_qng = eep_config.max_host_qng;
10192 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10193 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10194 asc_dvc->start_motor = eep_config.start_motor;
10195 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10196 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10197 asc_dvc->no_scam = eep_config.scam_tolerant;
10198 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10199 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10200 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10201
10202 /*
10203 * Set the host maximum queuing (max. 253, min. 16) and the per device
10204 * maximum queuing (max. 63, min. 4).
10205 */
10206 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10207 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10208 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10209 /* If the value is zero, assume it is uninitialized. */
10210 if (eep_config.max_host_qng == 0) {
10211 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10212 } else {
10213 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10214 }
10215 }
10216
10217 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10218 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10219 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10220 /* If the value is zero, assume it is uninitialized. */
10221 if (eep_config.max_dvc_qng == 0) {
10222 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10223 } else {
10224 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10225 }
10226 }
10227
10228 /*
10229 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10230 * set 'max_dvc_qng' to 'max_host_qng'.
10231 */
10232 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10233 eep_config.max_dvc_qng = eep_config.max_host_qng;
10234 }
10235
10236 /*
10237 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10238 * values based on possibly adjusted EEPROM values.
10239 */
10240 asc_dvc->max_host_qng = eep_config.max_host_qng;
10241 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10242
10243 /*
10244 * If the EEPROM 'termination' field is set to automatic (0), then set
10245 * the ADV_DVC_CFG 'termination' field to automatic also.
10246 *
10247 * If the termination is specified with a non-zero 'termination'
10248 * value check that a legal value is set and set the ADV_DVC_CFG
10249 * 'termination' field appropriately.
10250 */
10251 if (eep_config.termination == 0) {
10252 asc_dvc->cfg->termination = 0; /* auto termination */
10253 } else {
10254 /* Enable manual control with low off / high off. */
10255 if (eep_config.termination == 1) {
10256 asc_dvc->cfg->termination = TERM_CTL_SEL;
10257
10258 /* Enable manual control with low off / high on. */
10259 } else if (eep_config.termination == 2) {
10260 asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10261
10262 /* Enable manual control with low on / high on. */
10263 } else if (eep_config.termination == 3) {
10264 asc_dvc->cfg->termination =
10265 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10266 } else {
10267 /*
10268 * The EEPROM 'termination' field contains a bad value. Use
10269 * automatic termination instead.
10270 */
10271 asc_dvc->cfg->termination = 0;
10272 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10273 }
10274 }
10275
10276 return warn_code;
10277 }
10278
10279 /*
10280 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10281 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10282 * all of this is done.
10283 *
10284 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10285 *
10286 * For a non-fatal error return a warning code. If there are no warnings
10287 * then 0 is returned.
10288 *
10289 * Note: Chip is stopped on entry.
10290 */
10291 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10292 {
10293 AdvPortAddr iop_base;
10294 ushort warn_code;
10295 ADVEEP_38C0800_CONFIG eep_config;
10296 uchar tid, termination;
10297 ushort sdtr_speed = 0;
10298
10299 iop_base = asc_dvc->iop_base;
10300
10301 warn_code = 0;
10302
10303 /*
10304 * Read the board's EEPROM configuration.
10305 *
10306 * Set default values if a bad checksum is found.
10307 */
10308 if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10309 eep_config.check_sum) {
10310 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10311
10312 /*
10313 * Set EEPROM default values.
10314 */
10315 memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10316 sizeof(ADVEEP_38C0800_CONFIG));
10317
10318 /*
10319 * Assume the 6 byte board serial number that was read from
10320 * EEPROM is correct even if the EEPROM checksum failed.
10321 */
10322 eep_config.serial_number_word3 =
10323 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10324
10325 eep_config.serial_number_word2 =
10326 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10327
10328 eep_config.serial_number_word1 =
10329 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10330
10331 AdvSet38C0800EEPConfig(iop_base, &eep_config);
10332 }
10333 /*
10334 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10335 * EEPROM configuration that was read.
10336 *
10337 * This is the mapping of EEPROM fields to Adv Library fields.
10338 */
10339 asc_dvc->wdtr_able = eep_config.wdtr_able;
10340 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10341 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10342 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10343 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10344 asc_dvc->tagqng_able = eep_config.tagqng_able;
10345 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10346 asc_dvc->max_host_qng = eep_config.max_host_qng;
10347 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10348 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10349 asc_dvc->start_motor = eep_config.start_motor;
10350 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10351 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10352 asc_dvc->no_scam = eep_config.scam_tolerant;
10353 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10354 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10355 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10356
10357 /*
10358 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10359 * are set, then set an 'sdtr_able' bit for it.
10360 */
10361 asc_dvc->sdtr_able = 0;
10362 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10363 if (tid == 0) {
10364 sdtr_speed = asc_dvc->sdtr_speed1;
10365 } else if (tid == 4) {
10366 sdtr_speed = asc_dvc->sdtr_speed2;
10367 } else if (tid == 8) {
10368 sdtr_speed = asc_dvc->sdtr_speed3;
10369 } else if (tid == 12) {
10370 sdtr_speed = asc_dvc->sdtr_speed4;
10371 }
10372 if (sdtr_speed & ADV_MAX_TID) {
10373 asc_dvc->sdtr_able |= (1 << tid);
10374 }
10375 sdtr_speed >>= 4;
10376 }
10377
10378 /*
10379 * Set the host maximum queuing (max. 253, min. 16) and the per device
10380 * maximum queuing (max. 63, min. 4).
10381 */
10382 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10383 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10384 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10385 /* If the value is zero, assume it is uninitialized. */
10386 if (eep_config.max_host_qng == 0) {
10387 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10388 } else {
10389 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10390 }
10391 }
10392
10393 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10394 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10395 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10396 /* If the value is zero, assume it is uninitialized. */
10397 if (eep_config.max_dvc_qng == 0) {
10398 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10399 } else {
10400 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10401 }
10402 }
10403
10404 /*
10405 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10406 * set 'max_dvc_qng' to 'max_host_qng'.
10407 */
10408 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10409 eep_config.max_dvc_qng = eep_config.max_host_qng;
10410 }
10411
10412 /*
10413 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10414 * values based on possibly adjusted EEPROM values.
10415 */
10416 asc_dvc->max_host_qng = eep_config.max_host_qng;
10417 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10418
10419 /*
10420 * If the EEPROM 'termination' field is set to automatic (0), then set
10421 * the ADV_DVC_CFG 'termination' field to automatic also.
10422 *
10423 * If the termination is specified with a non-zero 'termination'
10424 * value check that a legal value is set and set the ADV_DVC_CFG
10425 * 'termination' field appropriately.
10426 */
10427 if (eep_config.termination_se == 0) {
10428 termination = 0; /* auto termination for SE */
10429 } else {
10430 /* Enable manual control with low off / high off. */
10431 if (eep_config.termination_se == 1) {
10432 termination = 0;
10433
10434 /* Enable manual control with low off / high on. */
10435 } else if (eep_config.termination_se == 2) {
10436 termination = TERM_SE_HI;
10437
10438 /* Enable manual control with low on / high on. */
10439 } else if (eep_config.termination_se == 3) {
10440 termination = TERM_SE;
10441 } else {
10442 /*
10443 * The EEPROM 'termination_se' field contains a bad value.
10444 * Use automatic termination instead.
10445 */
10446 termination = 0;
10447 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10448 }
10449 }
10450
10451 if (eep_config.termination_lvd == 0) {
10452 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
10453 } else {
10454 /* Enable manual control with low off / high off. */
10455 if (eep_config.termination_lvd == 1) {
10456 asc_dvc->cfg->termination = termination;
10457
10458 /* Enable manual control with low off / high on. */
10459 } else if (eep_config.termination_lvd == 2) {
10460 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10461
10462 /* Enable manual control with low on / high on. */
10463 } else if (eep_config.termination_lvd == 3) {
10464 asc_dvc->cfg->termination = termination | TERM_LVD;
10465 } else {
10466 /*
10467 * The EEPROM 'termination_lvd' field contains a bad value.
10468 * Use automatic termination instead.
10469 */
10470 asc_dvc->cfg->termination = termination;
10471 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10472 }
10473 }
10474
10475 return warn_code;
10476 }
10477
10478 /*
10479 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10480 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10481 * all of this is done.
10482 *
10483 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10484 *
10485 * For a non-fatal error return a warning code. If there are no warnings
10486 * then 0 is returned.
10487 *
10488 * Note: Chip is stopped on entry.
10489 */
10490 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10491 {
10492 AdvPortAddr iop_base;
10493 ushort warn_code;
10494 ADVEEP_38C1600_CONFIG eep_config;
10495 uchar tid, termination;
10496 ushort sdtr_speed = 0;
10497
10498 iop_base = asc_dvc->iop_base;
10499
10500 warn_code = 0;
10501
10502 /*
10503 * Read the board's EEPROM configuration.
10504 *
10505 * Set default values if a bad checksum is found.
10506 */
10507 if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10508 eep_config.check_sum) {
10509 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10510 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10511
10512 /*
10513 * Set EEPROM default values.
10514 */
10515 memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10516 sizeof(ADVEEP_38C1600_CONFIG));
10517
10518 if (PCI_FUNC(pdev->devfn) != 0) {
10519 u8 ints;
10520 /*
10521 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10522 * and old Mac system booting problem. The Expansion
10523 * ROM must be disabled in Function 1 for these systems
10524 */
10525 eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10526 /*
10527 * Clear the INTAB (bit 11) if the GPIO 0 input
10528 * indicates the Function 1 interrupt line is wired
10529 * to INTB.
10530 *
10531 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10532 * 1 - Function 1 interrupt line wired to INT A.
10533 * 0 - Function 1 interrupt line wired to INT B.
10534 *
10535 * Note: Function 0 is always wired to INTA.
10536 * Put all 5 GPIO bits in input mode and then read
10537 * their input values.
10538 */
10539 AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10540 ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10541 if ((ints & 0x01) == 0)
10542 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10543 }
10544
10545 /*
10546 * Assume the 6 byte board serial number that was read from
10547 * EEPROM is correct even if the EEPROM checksum failed.
10548 */
10549 eep_config.serial_number_word3 =
10550 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10551 eep_config.serial_number_word2 =
10552 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10553 eep_config.serial_number_word1 =
10554 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10555
10556 AdvSet38C1600EEPConfig(iop_base, &eep_config);
10557 }
10558
10559 /*
10560 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10561 * EEPROM configuration that was read.
10562 *
10563 * This is the mapping of EEPROM fields to Adv Library fields.
10564 */
10565 asc_dvc->wdtr_able = eep_config.wdtr_able;
10566 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10567 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10568 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10569 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10570 asc_dvc->ppr_able = 0;
10571 asc_dvc->tagqng_able = eep_config.tagqng_able;
10572 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10573 asc_dvc->max_host_qng = eep_config.max_host_qng;
10574 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10575 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
10576 asc_dvc->start_motor = eep_config.start_motor;
10577 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10578 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10579 asc_dvc->no_scam = eep_config.scam_tolerant;
10580
10581 /*
10582 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10583 * are set, then set an 'sdtr_able' bit for it.
10584 */
10585 asc_dvc->sdtr_able = 0;
10586 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
10587 if (tid == 0) {
10588 sdtr_speed = asc_dvc->sdtr_speed1;
10589 } else if (tid == 4) {
10590 sdtr_speed = asc_dvc->sdtr_speed2;
10591 } else if (tid == 8) {
10592 sdtr_speed = asc_dvc->sdtr_speed3;
10593 } else if (tid == 12) {
10594 sdtr_speed = asc_dvc->sdtr_speed4;
10595 }
10596 if (sdtr_speed & ASC_MAX_TID) {
10597 asc_dvc->sdtr_able |= (1 << tid);
10598 }
10599 sdtr_speed >>= 4;
10600 }
10601
10602 /*
10603 * Set the host maximum queuing (max. 253, min. 16) and the per device
10604 * maximum queuing (max. 63, min. 4).
10605 */
10606 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10607 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10608 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10609 /* If the value is zero, assume it is uninitialized. */
10610 if (eep_config.max_host_qng == 0) {
10611 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10612 } else {
10613 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10614 }
10615 }
10616
10617 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10618 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10619 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10620 /* If the value is zero, assume it is uninitialized. */
10621 if (eep_config.max_dvc_qng == 0) {
10622 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10623 } else {
10624 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10625 }
10626 }
10627
10628 /*
10629 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10630 * set 'max_dvc_qng' to 'max_host_qng'.
10631 */
10632 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10633 eep_config.max_dvc_qng = eep_config.max_host_qng;
10634 }
10635
10636 /*
10637 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10638 * values based on possibly adjusted EEPROM values.
10639 */
10640 asc_dvc->max_host_qng = eep_config.max_host_qng;
10641 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10642
10643 /*
10644 * If the EEPROM 'termination' field is set to automatic (0), then set
10645 * the ASC_DVC_CFG 'termination' field to automatic also.
10646 *
10647 * If the termination is specified with a non-zero 'termination'
10648 * value check that a legal value is set and set the ASC_DVC_CFG
10649 * 'termination' field appropriately.
10650 */
10651 if (eep_config.termination_se == 0) {
10652 termination = 0; /* auto termination for SE */
10653 } else {
10654 /* Enable manual control with low off / high off. */
10655 if (eep_config.termination_se == 1) {
10656 termination = 0;
10657
10658 /* Enable manual control with low off / high on. */
10659 } else if (eep_config.termination_se == 2) {
10660 termination = TERM_SE_HI;
10661
10662 /* Enable manual control with low on / high on. */
10663 } else if (eep_config.termination_se == 3) {
10664 termination = TERM_SE;
10665 } else {
10666 /*
10667 * The EEPROM 'termination_se' field contains a bad value.
10668 * Use automatic termination instead.
10669 */
10670 termination = 0;
10671 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10672 }
10673 }
10674
10675 if (eep_config.termination_lvd == 0) {
10676 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
10677 } else {
10678 /* Enable manual control with low off / high off. */
10679 if (eep_config.termination_lvd == 1) {
10680 asc_dvc->cfg->termination = termination;
10681
10682 /* Enable manual control with low off / high on. */
10683 } else if (eep_config.termination_lvd == 2) {
10684 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10685
10686 /* Enable manual control with low on / high on. */
10687 } else if (eep_config.termination_lvd == 3) {
10688 asc_dvc->cfg->termination = termination | TERM_LVD;
10689 } else {
10690 /*
10691 * The EEPROM 'termination_lvd' field contains a bad value.
10692 * Use automatic termination instead.
10693 */
10694 asc_dvc->cfg->termination = termination;
10695 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10696 }
10697 }
10698
10699 return warn_code;
10700 }
10701
10702 /*
10703 * Initialize the ADV_DVC_VAR structure.
10704 *
10705 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10706 *
10707 * For a non-fatal error return a warning code. If there are no warnings
10708 * then 0 is returned.
10709 */
10710 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10711 {
10712 struct asc_board *board = shost_priv(shost);
10713 ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
10714 unsigned short warn_code = 0;
10715 AdvPortAddr iop_base = asc_dvc->iop_base;
10716 u16 cmd;
10717 int status;
10718
10719 asc_dvc->err_code = 0;
10720
10721 /*
10722 * Save the state of the PCI Configuration Command Register
10723 * "Parity Error Response Control" Bit. If the bit is clear (0),
10724 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10725 * DMA parity errors.
10726 */
10727 asc_dvc->cfg->control_flag = 0;
10728 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
10729 if ((cmd & PCI_COMMAND_PARITY) == 0)
10730 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
10731
10732 asc_dvc->cfg->chip_version =
10733 AdvGetChipVersion(iop_base, asc_dvc->bus_type);
10734
10735 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10736 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
10737 (ushort)ADV_CHIP_ID_BYTE);
10738
10739 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10740 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
10741 (ushort)ADV_CHIP_ID_WORD);
10742
10743 /*
10744 * Reset the chip to start and allow register writes.
10745 */
10746 if (AdvFindSignature(iop_base) == 0) {
10747 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10748 return ADV_ERROR;
10749 } else {
10750 /*
10751 * The caller must set 'chip_type' to a valid setting.
10752 */
10753 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
10754 asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
10755 asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
10756 asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
10757 return ADV_ERROR;
10758 }
10759
10760 /*
10761 * Reset Chip.
10762 */
10763 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10764 ADV_CTRL_REG_CMD_RESET);
10765 mdelay(100);
10766 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10767 ADV_CTRL_REG_CMD_WR_IO_REG);
10768
10769 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
10770 status = AdvInitFrom38C1600EEP(asc_dvc);
10771 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10772 status = AdvInitFrom38C0800EEP(asc_dvc);
10773 } else {
10774 status = AdvInitFrom3550EEP(asc_dvc);
10775 }
10776 warn_code |= status;
10777 }
10778
10779 if (warn_code != 0)
10780 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
10781
10782 if (asc_dvc->err_code)
10783 shost_printk(KERN_ERR, shost, "error code 0x%x\n",
10784 asc_dvc->err_code);
10785
10786 return asc_dvc->err_code;
10787 }
10788 #endif
10789
10790 static struct scsi_host_template advansys_template = {
10791 .proc_name = DRV_NAME,
10792 #ifdef CONFIG_PROC_FS
10793 .show_info = advansys_show_info,
10794 #endif
10795 .name = DRV_NAME,
10796 .info = advansys_info,
10797 .queuecommand = advansys_queuecommand,
10798 .eh_host_reset_handler = advansys_reset,
10799 .bios_param = advansys_biosparam,
10800 .slave_configure = advansys_slave_configure,
10801 /*
10802 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
10803 * must be set. The flag will be cleared in advansys_board_found
10804 * for non-ISA adapters.
10805 */
10806 .unchecked_isa_dma = true,
10807 };
10808
10809 static int advansys_wide_init_chip(struct Scsi_Host *shost)
10810 {
10811 struct asc_board *board = shost_priv(shost);
10812 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10813 size_t sgblk_pool_size;
10814 int warn_code, err_code;
10815
10816 /*
10817 * Allocate buffer carrier structures. The total size
10818 * is about 8 KB, so allocate all at once.
10819 */
10820 adv_dvc->carrier = dma_alloc_coherent(board->dev,
10821 ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
10822 ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
10823
10824 if (!adv_dvc->carrier)
10825 goto kmalloc_failed;
10826
10827 /*
10828 * Allocate up to 'max_host_qng' request structures for the Wide
10829 * board. The total size is about 16 KB, so allocate all at once.
10830 * If the allocation fails decrement and try again.
10831 */
10832 board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
10833 if (board->adv_reqp_size & 0x1f) {
10834 ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
10835 board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
10836 }
10837 board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
10838 &board->adv_reqp_addr, GFP_KERNEL);
10839
10840 if (!board->adv_reqp)
10841 goto kmalloc_failed;
10842
10843 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
10844 adv_dvc->max_host_qng, board->adv_reqp_size);
10845
10846 /*
10847 * Allocate up to ADV_TOT_SG_BLOCK request structures for
10848 * the Wide board. Each structure is about 136 bytes.
10849 */
10850 sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
10851 board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
10852 sgblk_pool_size, 32, 0);
10853
10854 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
10855 sizeof(adv_sgblk_t), sgblk_pool_size);
10856
10857 if (!board->adv_sgblk_pool)
10858 goto kmalloc_failed;
10859
10860 if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
10861 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10862 warn_code = AdvInitAsc3550Driver(adv_dvc);
10863 } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10864 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10865 warn_code = AdvInitAsc38C0800Driver(adv_dvc);
10866 } else {
10867 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10868 warn_code = AdvInitAsc38C1600Driver(adv_dvc);
10869 }
10870 err_code = adv_dvc->err_code;
10871
10872 if (warn_code || err_code) {
10873 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
10874 "0x%x\n", warn_code, err_code);
10875 }
10876
10877 goto exit;
10878
10879 kmalloc_failed:
10880 shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
10881 err_code = ADV_ERROR;
10882 exit:
10883 return err_code;
10884 }
10885
10886 static void advansys_wide_free_mem(struct asc_board *board)
10887 {
10888 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10889
10890 if (adv_dvc->carrier) {
10891 dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
10892 adv_dvc->carrier, adv_dvc->carrier_addr);
10893 adv_dvc->carrier = NULL;
10894 }
10895 if (board->adv_reqp) {
10896 dma_free_coherent(board->dev, board->adv_reqp_size,
10897 board->adv_reqp, board->adv_reqp_addr);
10898 board->adv_reqp = NULL;
10899 }
10900 if (board->adv_sgblk_pool) {
10901 dma_pool_destroy(board->adv_sgblk_pool);
10902 board->adv_sgblk_pool = NULL;
10903 }
10904 }
10905
10906 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
10907 int bus_type)
10908 {
10909 struct pci_dev *pdev;
10910 struct asc_board *boardp = shost_priv(shost);
10911 ASC_DVC_VAR *asc_dvc_varp = NULL;
10912 ADV_DVC_VAR *adv_dvc_varp = NULL;
10913 int share_irq, warn_code, ret;
10914
10915 pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
10916
10917 if (ASC_NARROW_BOARD(boardp)) {
10918 ASC_DBG(1, "narrow board\n");
10919 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
10920 asc_dvc_varp->bus_type = bus_type;
10921 asc_dvc_varp->drv_ptr = boardp;
10922 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
10923 asc_dvc_varp->iop_base = iop;
10924 } else {
10925 #ifdef CONFIG_PCI
10926 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
10927 adv_dvc_varp->drv_ptr = boardp;
10928 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
10929 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
10930 ASC_DBG(1, "wide board ASC-3550\n");
10931 adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
10932 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
10933 ASC_DBG(1, "wide board ASC-38C0800\n");
10934 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
10935 } else {
10936 ASC_DBG(1, "wide board ASC-38C1600\n");
10937 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
10938 }
10939
10940 boardp->asc_n_io_port = pci_resource_len(pdev, 1);
10941 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
10942 if (!boardp->ioremap_addr) {
10943 shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
10944 "returned NULL\n",
10945 (long)pci_resource_start(pdev, 1),
10946 boardp->asc_n_io_port);
10947 ret = -ENODEV;
10948 goto err_shost;
10949 }
10950 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
10951 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
10952
10953 /*
10954 * Even though it isn't used to access wide boards, other
10955 * than for the debug line below, save I/O Port address so
10956 * that it can be reported.
10957 */
10958 boardp->ioport = iop;
10959
10960 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10961 (ushort)inp(iop + 1), (ushort)inpw(iop));
10962 #endif /* CONFIG_PCI */
10963 }
10964
10965 if (ASC_NARROW_BOARD(boardp)) {
10966 /*
10967 * Set the board bus type and PCI IRQ before
10968 * calling AscInitGetConfig().
10969 */
10970 switch (asc_dvc_varp->bus_type) {
10971 #ifdef CONFIG_ISA
10972 case ASC_IS_ISA:
10973 shost->unchecked_isa_dma = true;
10974 share_irq = 0;
10975 break;
10976 case ASC_IS_VL:
10977 shost->unchecked_isa_dma = false;
10978 share_irq = 0;
10979 break;
10980 case ASC_IS_EISA:
10981 shost->unchecked_isa_dma = false;
10982 share_irq = IRQF_SHARED;
10983 break;
10984 #endif /* CONFIG_ISA */
10985 #ifdef CONFIG_PCI
10986 case ASC_IS_PCI:
10987 shost->unchecked_isa_dma = false;
10988 share_irq = IRQF_SHARED;
10989 break;
10990 #endif /* CONFIG_PCI */
10991 default:
10992 shost_printk(KERN_ERR, shost, "unknown adapter type: "
10993 "%d\n", asc_dvc_varp->bus_type);
10994 shost->unchecked_isa_dma = false;
10995 share_irq = 0;
10996 break;
10997 }
10998
10999 /*
11000 * NOTE: AscInitGetConfig() may change the board's
11001 * bus_type value. The bus_type value should no
11002 * longer be used. If the bus_type field must be
11003 * referenced only use the bit-wise AND operator "&".
11004 */
11005 ASC_DBG(2, "AscInitGetConfig()\n");
11006 ret = AscInitGetConfig(shost) ? -ENODEV : 0;
11007 } else {
11008 #ifdef CONFIG_PCI
11009 /*
11010 * For Wide boards set PCI information before calling
11011 * AdvInitGetConfig().
11012 */
11013 shost->unchecked_isa_dma = false;
11014 share_irq = IRQF_SHARED;
11015 ASC_DBG(2, "AdvInitGetConfig()\n");
11016
11017 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11018 #else
11019 share_irq = 0;
11020 ret = -ENODEV;
11021 #endif /* CONFIG_PCI */
11022 }
11023
11024 if (ret)
11025 goto err_unmap;
11026
11027 /*
11028 * Save the EEPROM configuration so that it can be displayed
11029 * from /proc/scsi/advansys/[0...].
11030 */
11031 if (ASC_NARROW_BOARD(boardp)) {
11032
11033 ASCEEP_CONFIG *ep;
11034
11035 /*
11036 * Set the adapter's target id bit in the 'init_tidmask' field.
11037 */
11038 boardp->init_tidmask |=
11039 ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
11040
11041 /*
11042 * Save EEPROM settings for the board.
11043 */
11044 ep = &boardp->eep_config.asc_eep;
11045
11046 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
11047 ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
11048 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
11049 ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
11050 ep->start_motor = asc_dvc_varp->start_motor;
11051 ep->cntl = asc_dvc_varp->dvc_cntl;
11052 ep->no_scam = asc_dvc_varp->no_scam;
11053 ep->max_total_qng = asc_dvc_varp->max_total_qng;
11054 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
11055 /* 'max_tag_qng' is set to the same value for every device. */
11056 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
11057 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
11058 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
11059 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
11060 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
11061 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
11062 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
11063
11064 /*
11065 * Modify board configuration.
11066 */
11067 ASC_DBG(2, "AscInitSetConfig()\n");
11068 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
11069 if (ret)
11070 goto err_unmap;
11071 } else {
11072 ADVEEP_3550_CONFIG *ep_3550;
11073 ADVEEP_38C0800_CONFIG *ep_38C0800;
11074 ADVEEP_38C1600_CONFIG *ep_38C1600;
11075
11076 /*
11077 * Save Wide EEP Configuration Information.
11078 */
11079 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
11080 ep_3550 = &boardp->eep_config.adv_3550_eep;
11081
11082 ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
11083 ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
11084 ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11085 ep_3550->termination = adv_dvc_varp->cfg->termination;
11086 ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
11087 ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
11088 ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
11089 ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
11090 ep_3550->ultra_able = adv_dvc_varp->ultra_able;
11091 ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
11092 ep_3550->start_motor = adv_dvc_varp->start_motor;
11093 ep_3550->scsi_reset_delay =
11094 adv_dvc_varp->scsi_reset_wait;
11095 ep_3550->serial_number_word1 =
11096 adv_dvc_varp->cfg->serial1;
11097 ep_3550->serial_number_word2 =
11098 adv_dvc_varp->cfg->serial2;
11099 ep_3550->serial_number_word3 =
11100 adv_dvc_varp->cfg->serial3;
11101 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
11102 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
11103
11104 ep_38C0800->adapter_scsi_id =
11105 adv_dvc_varp->chip_scsi_id;
11106 ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
11107 ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11108 ep_38C0800->termination_lvd =
11109 adv_dvc_varp->cfg->termination;
11110 ep_38C0800->disc_enable =
11111 adv_dvc_varp->cfg->disc_enable;
11112 ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
11113 ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
11114 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11115 ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11116 ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11117 ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11118 ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11119 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11120 ep_38C0800->start_motor = adv_dvc_varp->start_motor;
11121 ep_38C0800->scsi_reset_delay =
11122 adv_dvc_varp->scsi_reset_wait;
11123 ep_38C0800->serial_number_word1 =
11124 adv_dvc_varp->cfg->serial1;
11125 ep_38C0800->serial_number_word2 =
11126 adv_dvc_varp->cfg->serial2;
11127 ep_38C0800->serial_number_word3 =
11128 adv_dvc_varp->cfg->serial3;
11129 } else {
11130 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
11131
11132 ep_38C1600->adapter_scsi_id =
11133 adv_dvc_varp->chip_scsi_id;
11134 ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
11135 ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11136 ep_38C1600->termination_lvd =
11137 adv_dvc_varp->cfg->termination;
11138 ep_38C1600->disc_enable =
11139 adv_dvc_varp->cfg->disc_enable;
11140 ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
11141 ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
11142 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11143 ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11144 ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11145 ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11146 ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11147 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11148 ep_38C1600->start_motor = adv_dvc_varp->start_motor;
11149 ep_38C1600->scsi_reset_delay =
11150 adv_dvc_varp->scsi_reset_wait;
11151 ep_38C1600->serial_number_word1 =
11152 adv_dvc_varp->cfg->serial1;
11153 ep_38C1600->serial_number_word2 =
11154 adv_dvc_varp->cfg->serial2;
11155 ep_38C1600->serial_number_word3 =
11156 adv_dvc_varp->cfg->serial3;
11157 }
11158
11159 /*
11160 * Set the adapter's target id bit in the 'init_tidmask' field.
11161 */
11162 boardp->init_tidmask |=
11163 ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
11164 }
11165
11166 /*
11167 * Channels are numbered beginning with 0. For AdvanSys one host
11168 * structure supports one channel. Multi-channel boards have a
11169 * separate host structure for each channel.
11170 */
11171 shost->max_channel = 0;
11172 if (ASC_NARROW_BOARD(boardp)) {
11173 shost->max_id = ASC_MAX_TID + 1;
11174 shost->max_lun = ASC_MAX_LUN + 1;
11175 shost->max_cmd_len = ASC_MAX_CDB_LEN;
11176
11177 shost->io_port = asc_dvc_varp->iop_base;
11178 boardp->asc_n_io_port = ASC_IOADR_GAP;
11179 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
11180
11181 /* Set maximum number of queues the adapter can handle. */
11182 shost->can_queue = asc_dvc_varp->max_total_qng;
11183 } else {
11184 shost->max_id = ADV_MAX_TID + 1;
11185 shost->max_lun = ADV_MAX_LUN + 1;
11186 shost->max_cmd_len = ADV_MAX_CDB_LEN;
11187
11188 /*
11189 * Save the I/O Port address and length even though
11190 * I/O ports are not used to access Wide boards.
11191 * Instead the Wide boards are accessed with
11192 * PCI Memory Mapped I/O.
11193 */
11194 shost->io_port = iop;
11195
11196 shost->this_id = adv_dvc_varp->chip_scsi_id;
11197
11198 /* Set maximum number of queues the adapter can handle. */
11199 shost->can_queue = adv_dvc_varp->max_host_qng;
11200 }
11201
11202 /*
11203 * Set the maximum number of scatter-gather elements the
11204 * adapter can handle.
11205 */
11206 if (ASC_NARROW_BOARD(boardp)) {
11207 /*
11208 * Allow two commands with 'sg_tablesize' scatter-gather
11209 * elements to be executed simultaneously. This value is
11210 * the theoretical hardware limit. It may be decreased
11211 * below.
11212 */
11213 shost->sg_tablesize =
11214 (((asc_dvc_varp->max_total_qng - 2) / 2) *
11215 ASC_SG_LIST_PER_Q) + 1;
11216 } else {
11217 shost->sg_tablesize = ADV_MAX_SG_LIST;
11218 }
11219
11220 /*
11221 * The value of 'sg_tablesize' can not exceed the SCSI
11222 * mid-level driver definition of SG_ALL. SG_ALL also
11223 * must not be exceeded, because it is used to define the
11224 * size of the scatter-gather table in 'struct asc_sg_head'.
11225 */
11226 if (shost->sg_tablesize > SG_ALL) {
11227 shost->sg_tablesize = SG_ALL;
11228 }
11229
11230 ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11231
11232 /* BIOS start address. */
11233 if (ASC_NARROW_BOARD(boardp)) {
11234 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11235 asc_dvc_varp->bus_type);
11236 } else {
11237 /*
11238 * Fill-in BIOS board variables. The Wide BIOS saves
11239 * information in LRAM that is used by the driver.
11240 */
11241 AdvReadWordLram(adv_dvc_varp->iop_base,
11242 BIOS_SIGNATURE, boardp->bios_signature);
11243 AdvReadWordLram(adv_dvc_varp->iop_base,
11244 BIOS_VERSION, boardp->bios_version);
11245 AdvReadWordLram(adv_dvc_varp->iop_base,
11246 BIOS_CODESEG, boardp->bios_codeseg);
11247 AdvReadWordLram(adv_dvc_varp->iop_base,
11248 BIOS_CODELEN, boardp->bios_codelen);
11249
11250 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11251 boardp->bios_signature, boardp->bios_version);
11252
11253 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11254 boardp->bios_codeseg, boardp->bios_codelen);
11255
11256 /*
11257 * If the BIOS saved a valid signature, then fill in
11258 * the BIOS code segment base address.
11259 */
11260 if (boardp->bios_signature == 0x55AA) {
11261 /*
11262 * Convert x86 realmode code segment to a linear
11263 * address by shifting left 4.
11264 */
11265 shost->base = ((ulong)boardp->bios_codeseg << 4);
11266 } else {
11267 shost->base = 0;
11268 }
11269 }
11270
11271 /*
11272 * Register Board Resources - I/O Port, DMA, IRQ
11273 */
11274
11275 /* Register DMA Channel for Narrow boards. */
11276 shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */
11277 #ifdef CONFIG_ISA
11278 if (ASC_NARROW_BOARD(boardp)) {
11279 /* Register DMA channel for ISA bus. */
11280 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
11281 shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
11282 ret = request_dma(shost->dma_channel, DRV_NAME);
11283 if (ret) {
11284 shost_printk(KERN_ERR, shost, "request_dma() "
11285 "%d failed %d\n",
11286 shost->dma_channel, ret);
11287 goto err_unmap;
11288 }
11289 AscEnableIsaDma(shost->dma_channel);
11290 }
11291 }
11292 #endif /* CONFIG_ISA */
11293
11294 /* Register IRQ Number. */
11295 ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11296
11297 ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11298 DRV_NAME, shost);
11299
11300 if (ret) {
11301 if (ret == -EBUSY) {
11302 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11303 "already in use\n", boardp->irq);
11304 } else if (ret == -EINVAL) {
11305 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11306 "not valid\n", boardp->irq);
11307 } else {
11308 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11309 "failed with %d\n", boardp->irq, ret);
11310 }
11311 goto err_free_dma;
11312 }
11313
11314 /*
11315 * Initialize board RISC chip and enable interrupts.
11316 */
11317 if (ASC_NARROW_BOARD(boardp)) {
11318 ASC_DBG(2, "AscInitAsc1000Driver()\n");
11319
11320 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11321 if (!asc_dvc_varp->overrun_buf) {
11322 ret = -ENOMEM;
11323 goto err_free_irq;
11324 }
11325 warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11326
11327 if (warn_code || asc_dvc_varp->err_code) {
11328 shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11329 "warn 0x%x, error 0x%x\n",
11330 asc_dvc_varp->init_state, warn_code,
11331 asc_dvc_varp->err_code);
11332 if (!asc_dvc_varp->overrun_dma) {
11333 ret = -ENODEV;
11334 goto err_free_mem;
11335 }
11336 }
11337 } else {
11338 if (advansys_wide_init_chip(shost)) {
11339 ret = -ENODEV;
11340 goto err_free_mem;
11341 }
11342 }
11343
11344 ASC_DBG_PRT_SCSI_HOST(2, shost);
11345
11346 ret = scsi_add_host(shost, boardp->dev);
11347 if (ret)
11348 goto err_free_mem;
11349
11350 scsi_scan_host(shost);
11351 return 0;
11352
11353 err_free_mem:
11354 if (ASC_NARROW_BOARD(boardp)) {
11355 if (asc_dvc_varp->overrun_dma)
11356 dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11357 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11358 kfree(asc_dvc_varp->overrun_buf);
11359 } else
11360 advansys_wide_free_mem(boardp);
11361 err_free_irq:
11362 free_irq(boardp->irq, shost);
11363 err_free_dma:
11364 #ifdef CONFIG_ISA
11365 if (shost->dma_channel != NO_ISA_DMA)
11366 free_dma(shost->dma_channel);
11367 #endif
11368 err_unmap:
11369 if (boardp->ioremap_addr)
11370 iounmap(boardp->ioremap_addr);
11371 #ifdef CONFIG_PCI
11372 err_shost:
11373 #endif
11374 return ret;
11375 }
11376
11377 /*
11378 * advansys_release()
11379 *
11380 * Release resources allocated for a single AdvanSys adapter.
11381 */
11382 static int advansys_release(struct Scsi_Host *shost)
11383 {
11384 struct asc_board *board = shost_priv(shost);
11385 ASC_DBG(1, "begin\n");
11386 scsi_remove_host(shost);
11387 free_irq(board->irq, shost);
11388 #ifdef CONFIG_ISA
11389 if (shost->dma_channel != NO_ISA_DMA) {
11390 ASC_DBG(1, "free_dma()\n");
11391 free_dma(shost->dma_channel);
11392 }
11393 #endif
11394 if (ASC_NARROW_BOARD(board)) {
11395 dma_unmap_single(board->dev,
11396 board->dvc_var.asc_dvc_var.overrun_dma,
11397 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11398 kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11399 } else {
11400 iounmap(board->ioremap_addr);
11401 advansys_wide_free_mem(board);
11402 }
11403 scsi_host_put(shost);
11404 ASC_DBG(1, "end\n");
11405 return 0;
11406 }
11407
11408 #define ASC_IOADR_TABLE_MAX_IX 11
11409
11410 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11411 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11412 0x0210, 0x0230, 0x0250, 0x0330
11413 };
11414
11415 /*
11416 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
11417 * 00: 10
11418 * 01: 11
11419 * 10: 12
11420 * 11: 15
11421 */
11422 static unsigned int advansys_isa_irq_no(PortAddr iop_base)
11423 {
11424 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11425 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
11426 if (chip_irq == 13)
11427 chip_irq = 15;
11428 return chip_irq;
11429 }
11430
11431 static int advansys_isa_probe(struct device *dev, unsigned int id)
11432 {
11433 int err = -ENODEV;
11434 PortAddr iop_base = _asc_def_iop_base[id];
11435 struct Scsi_Host *shost;
11436 struct asc_board *board;
11437
11438 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11439 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11440 return -ENODEV;
11441 }
11442 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11443 if (!AscFindSignature(iop_base))
11444 goto release_region;
11445 if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
11446 goto release_region;
11447
11448 err = -ENOMEM;
11449 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11450 if (!shost)
11451 goto release_region;
11452
11453 board = shost_priv(shost);
11454 board->irq = advansys_isa_irq_no(iop_base);
11455 board->dev = dev;
11456 board->shost = shost;
11457
11458 err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
11459 if (err)
11460 goto free_host;
11461
11462 dev_set_drvdata(dev, shost);
11463 return 0;
11464
11465 free_host:
11466 scsi_host_put(shost);
11467 release_region:
11468 release_region(iop_base, ASC_IOADR_GAP);
11469 return err;
11470 }
11471
11472 static int advansys_isa_remove(struct device *dev, unsigned int id)
11473 {
11474 int ioport = _asc_def_iop_base[id];
11475 advansys_release(dev_get_drvdata(dev));
11476 release_region(ioport, ASC_IOADR_GAP);
11477 return 0;
11478 }
11479
11480 static struct isa_driver advansys_isa_driver = {
11481 .probe = advansys_isa_probe,
11482 .remove = advansys_isa_remove,
11483 .driver = {
11484 .owner = THIS_MODULE,
11485 .name = DRV_NAME,
11486 },
11487 };
11488
11489 /*
11490 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
11491 * 000: invalid
11492 * 001: 10
11493 * 010: 11
11494 * 011: 12
11495 * 100: invalid
11496 * 101: 14
11497 * 110: 15
11498 * 111: invalid
11499 */
11500 static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11501 {
11502 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11503 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11504 if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11505 return 0;
11506 return chip_irq;
11507 }
11508
11509 static int advansys_vlb_probe(struct device *dev, unsigned int id)
11510 {
11511 int err = -ENODEV;
11512 PortAddr iop_base = _asc_def_iop_base[id];
11513 struct Scsi_Host *shost;
11514 struct asc_board *board;
11515
11516 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11517 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11518 return -ENODEV;
11519 }
11520 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11521 if (!AscFindSignature(iop_base))
11522 goto release_region;
11523 /*
11524 * I don't think this condition can actually happen, but the old
11525 * driver did it, and the chances of finding a VLB setup in 2007
11526 * to do testing with is slight to none.
11527 */
11528 if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
11529 goto release_region;
11530
11531 err = -ENOMEM;
11532 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11533 if (!shost)
11534 goto release_region;
11535
11536 board = shost_priv(shost);
11537 board->irq = advansys_vlb_irq_no(iop_base);
11538 board->dev = dev;
11539 board->shost = shost;
11540
11541 err = advansys_board_found(shost, iop_base, ASC_IS_VL);
11542 if (err)
11543 goto free_host;
11544
11545 dev_set_drvdata(dev, shost);
11546 return 0;
11547
11548 free_host:
11549 scsi_host_put(shost);
11550 release_region:
11551 release_region(iop_base, ASC_IOADR_GAP);
11552 return -ENODEV;
11553 }
11554
11555 static struct isa_driver advansys_vlb_driver = {
11556 .probe = advansys_vlb_probe,
11557 .remove = advansys_isa_remove,
11558 .driver = {
11559 .owner = THIS_MODULE,
11560 .name = "advansys_vlb",
11561 },
11562 };
11563
11564 static struct eisa_device_id advansys_eisa_table[] = {
11565 { "ABP7401" },
11566 { "ABP7501" },
11567 { "" }
11568 };
11569
11570 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
11571
11572 /*
11573 * EISA is a little more tricky than PCI; each EISA device may have two
11574 * channels, and this driver is written to make each channel its own Scsi_Host
11575 */
11576 struct eisa_scsi_data {
11577 struct Scsi_Host *host[2];
11578 };
11579
11580 /*
11581 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
11582 * 000: 10
11583 * 001: 11
11584 * 010: 12
11585 * 011: invalid
11586 * 100: 14
11587 * 101: 15
11588 * 110: invalid
11589 * 111: invalid
11590 */
11591 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
11592 {
11593 unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
11594 unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
11595 if ((chip_irq == 13) || (chip_irq > 15))
11596 return 0;
11597 return chip_irq;
11598 }
11599
11600 static int advansys_eisa_probe(struct device *dev)
11601 {
11602 int i, ioport, irq = 0;
11603 int err;
11604 struct eisa_device *edev = to_eisa_device(dev);
11605 struct eisa_scsi_data *data;
11606
11607 err = -ENOMEM;
11608 data = kzalloc(sizeof(*data), GFP_KERNEL);
11609 if (!data)
11610 goto fail;
11611 ioport = edev->base_addr + 0xc30;
11612
11613 err = -ENODEV;
11614 for (i = 0; i < 2; i++, ioport += 0x20) {
11615 struct asc_board *board;
11616 struct Scsi_Host *shost;
11617 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
11618 printk(KERN_WARNING "Region %x-%x busy\n", ioport,
11619 ioport + ASC_IOADR_GAP - 1);
11620 continue;
11621 }
11622 if (!AscFindSignature(ioport)) {
11623 release_region(ioport, ASC_IOADR_GAP);
11624 continue;
11625 }
11626
11627 /*
11628 * I don't know why we need to do this for EISA chips, but
11629 * not for any others. It looks to be equivalent to
11630 * AscGetChipCfgMsw, but I may have overlooked something,
11631 * so I'm not converting it until I get an EISA board to
11632 * test with.
11633 */
11634 inw(ioport + 4);
11635
11636 if (!irq)
11637 irq = advansys_eisa_irq_no(edev);
11638
11639 err = -ENOMEM;
11640 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11641 if (!shost)
11642 goto release_region;
11643
11644 board = shost_priv(shost);
11645 board->irq = irq;
11646 board->dev = dev;
11647 board->shost = shost;
11648
11649 err = advansys_board_found(shost, ioport, ASC_IS_EISA);
11650 if (!err) {
11651 data->host[i] = shost;
11652 continue;
11653 }
11654
11655 scsi_host_put(shost);
11656 release_region:
11657 release_region(ioport, ASC_IOADR_GAP);
11658 break;
11659 }
11660
11661 if (err)
11662 goto free_data;
11663 dev_set_drvdata(dev, data);
11664 return 0;
11665
11666 free_data:
11667 kfree(data->host[0]);
11668 kfree(data->host[1]);
11669 kfree(data);
11670 fail:
11671 return err;
11672 }
11673
11674 static int advansys_eisa_remove(struct device *dev)
11675 {
11676 int i;
11677 struct eisa_scsi_data *data = dev_get_drvdata(dev);
11678
11679 for (i = 0; i < 2; i++) {
11680 int ioport;
11681 struct Scsi_Host *shost = data->host[i];
11682 if (!shost)
11683 continue;
11684 ioport = shost->io_port;
11685 advansys_release(shost);
11686 release_region(ioport, ASC_IOADR_GAP);
11687 }
11688
11689 kfree(data);
11690 return 0;
11691 }
11692
11693 static struct eisa_driver advansys_eisa_driver = {
11694 .id_table = advansys_eisa_table,
11695 .driver = {
11696 .name = DRV_NAME,
11697 .probe = advansys_eisa_probe,
11698 .remove = advansys_eisa_remove,
11699 }
11700 };
11701
11702 /* PCI Devices supported by this driver */
11703 static struct pci_device_id advansys_pci_tbl[] = {
11704 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
11705 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11706 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
11707 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11708 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
11709 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11710 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
11711 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11712 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
11713 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11714 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
11715 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11716 {}
11717 };
11718
11719 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
11720
11721 static void advansys_set_latency(struct pci_dev *pdev)
11722 {
11723 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
11724 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
11725 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
11726 } else {
11727 u8 latency;
11728 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
11729 if (latency < 0x20)
11730 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
11731 }
11732 }
11733
11734 static int advansys_pci_probe(struct pci_dev *pdev,
11735 const struct pci_device_id *ent)
11736 {
11737 int err, ioport;
11738 struct Scsi_Host *shost;
11739 struct asc_board *board;
11740
11741 err = pci_enable_device(pdev);
11742 if (err)
11743 goto fail;
11744 err = pci_request_regions(pdev, DRV_NAME);
11745 if (err)
11746 goto disable_device;
11747 pci_set_master(pdev);
11748 advansys_set_latency(pdev);
11749
11750 err = -ENODEV;
11751 if (pci_resource_len(pdev, 0) == 0)
11752 goto release_region;
11753
11754 ioport = pci_resource_start(pdev, 0);
11755
11756 err = -ENOMEM;
11757 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11758 if (!shost)
11759 goto release_region;
11760
11761 board = shost_priv(shost);
11762 board->irq = pdev->irq;
11763 board->dev = &pdev->dev;
11764 board->shost = shost;
11765
11766 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
11767 pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
11768 pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
11769 board->flags |= ASC_IS_WIDE_BOARD;
11770 }
11771
11772 err = advansys_board_found(shost, ioport, ASC_IS_PCI);
11773 if (err)
11774 goto free_host;
11775
11776 pci_set_drvdata(pdev, shost);
11777 return 0;
11778
11779 free_host:
11780 scsi_host_put(shost);
11781 release_region:
11782 pci_release_regions(pdev);
11783 disable_device:
11784 pci_disable_device(pdev);
11785 fail:
11786 return err;
11787 }
11788
11789 static void advansys_pci_remove(struct pci_dev *pdev)
11790 {
11791 advansys_release(pci_get_drvdata(pdev));
11792 pci_release_regions(pdev);
11793 pci_disable_device(pdev);
11794 }
11795
11796 static struct pci_driver advansys_pci_driver = {
11797 .name = DRV_NAME,
11798 .id_table = advansys_pci_tbl,
11799 .probe = advansys_pci_probe,
11800 .remove = advansys_pci_remove,
11801 };
11802
11803 static int __init advansys_init(void)
11804 {
11805 int error;
11806
11807 error = isa_register_driver(&advansys_isa_driver,
11808 ASC_IOADR_TABLE_MAX_IX);
11809 if (error)
11810 goto fail;
11811
11812 error = isa_register_driver(&advansys_vlb_driver,
11813 ASC_IOADR_TABLE_MAX_IX);
11814 if (error)
11815 goto unregister_isa;
11816
11817 error = eisa_driver_register(&advansys_eisa_driver);
11818 if (error)
11819 goto unregister_vlb;
11820
11821 error = pci_register_driver(&advansys_pci_driver);
11822 if (error)
11823 goto unregister_eisa;
11824
11825 return 0;
11826
11827 unregister_eisa:
11828 eisa_driver_unregister(&advansys_eisa_driver);
11829 unregister_vlb:
11830 isa_unregister_driver(&advansys_vlb_driver);
11831 unregister_isa:
11832 isa_unregister_driver(&advansys_isa_driver);
11833 fail:
11834 return error;
11835 }
11836
11837 static void __exit advansys_exit(void)
11838 {
11839 pci_unregister_driver(&advansys_pci_driver);
11840 eisa_driver_unregister(&advansys_eisa_driver);
11841 isa_unregister_driver(&advansys_vlb_driver);
11842 isa_unregister_driver(&advansys_isa_driver);
11843 }
11844
11845 module_init(advansys_init);
11846 module_exit(advansys_exit);
11847
11848 MODULE_LICENSE("GPL");
11849 MODULE_FIRMWARE("advansys/mcode.bin");
11850 MODULE_FIRMWARE("advansys/3550.bin");
11851 MODULE_FIRMWARE("advansys/38C0800.bin");
11852 MODULE_FIRMWARE("advansys/38C1600.bin");