]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/scsi/aic7xxx/aic79xx.seq
Linux-2.6.12-rc2
[mirror_ubuntu-bionic-kernel.git] / drivers / scsi / aic7xxx / aic79xx.seq
1 /*
2 * Adaptec U320 device driver firmware for Linux and FreeBSD.
3 *
4 * Copyright (c) 1994-2001 Justin T. Gibbs.
5 * Copyright (c) 2000-2002 Adaptec Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15 * substantially similar to the "NO WARRANTY" disclaimer below
16 * ("Disclaimer") and any redistribution must be conditioned upon
17 * including a substantially similar Disclaimer requirement for further
18 * binary redistribution.
19 * 3. Neither the names of the above-listed copyright holders nor the names
20 * of any contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * Alternatively, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") version 2 as published by the Free
25 * Software Foundation.
26 *
27 * NO WARRANTY
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGES.
39 *
40 * $FreeBSD$
41 */
42
43 VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#99 $"
44 PATCH_ARG_LIST = "struct ahd_softc *ahd"
45 PREFIX = "ahd_"
46
47 #include "aic79xx.reg"
48 #include "scsi_message.h"
49
50 restart:
51 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
52 test SEQINTCODE, 0xFF jz idle_loop;
53 SET_SEQINTCODE(NO_SEQINT)
54 }
55
56 idle_loop:
57
58 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
59 /*
60 * Convert ERROR status into a sequencer
61 * interrupt to handle the case of an
62 * interrupt collision on the hardware
63 * setting of HWERR.
64 */
65 test ERROR, 0xFF jz no_error_set;
66 SET_SEQINTCODE(SAW_HWERR)
67 no_error_set:
68 }
69 SET_MODE(M_SCSI, M_SCSI)
70 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus;
71 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus;
72 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus;
73 /*
74 * ENSELO is cleared by a SELDO, so we must test for SELDO
75 * one last time.
76 */
77 BEGIN_CRITICAL;
78 test SSTAT0, SELDO jnz select_out;
79 END_CRITICAL;
80 call start_selection;
81 idle_loop_checkbus:
82 BEGIN_CRITICAL;
83 test SSTAT0, SELDO jnz select_out;
84 END_CRITICAL;
85 test SSTAT0, SELDI jnz select_in;
86 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq;
87 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq;
88 call unexpected_nonpkt_phase_find_ctxt;
89 idle_loop_check_nonpackreq:
90 test SSTAT2, NONPACKREQ jz . + 2;
91 call unexpected_nonpkt_phase_find_ctxt;
92 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
93 and A, FIFO0FREE|FIFO1FREE, DFFSTAT;
94 cmp A, FIFO0FREE|FIFO1FREE jne . + 3;
95 and SBLKCTL, ~DIAGLEDEN|DIAGLEDON;
96 jmp . + 2;
97 or SBLKCTL, DIAGLEDEN|DIAGLEDON;
98 }
99 call idle_loop_gsfifo_in_scsi_mode;
100 call idle_loop_service_fifos;
101 call idle_loop_cchan;
102 jmp idle_loop;
103
104 BEGIN_CRITICAL;
105 idle_loop_gsfifo:
106 SET_MODE(M_SCSI, M_SCSI)
107 idle_loop_gsfifo_in_scsi_mode:
108 test LQISTAT2, LQIGSAVAIL jz return;
109 /*
110 * We have received good status for this transaction. There may
111 * still be data in our FIFOs draining to the host. Complete
112 * the SCB only if all data has transferred to the host.
113 */
114 good_status_IU_done:
115 bmov SCBPTR, GSFIFO, 2;
116 clr SCB_SCSI_STATUS;
117 /*
118 * If a command completed before an attempted task management
119 * function completed, notify the host after disabling any
120 * pending select-outs.
121 */
122 test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally;
123 test SSTAT0, SELDO|SELINGO jnz . + 2;
124 and SCSISEQ0, ~ENSELO;
125 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
126 gsfifo_complete_normally:
127 or SCB_CONTROL, STATUS_RCVD;
128
129 /*
130 * Since this status did not consume a FIFO, we have to
131 * be a bit more dilligent in how we check for FIFOs pertaining
132 * to this transaction. There are two states that a FIFO still
133 * transferring data may be in.
134 *
135 * 1) Configured and draining to the host, with a FIFO handler.
136 * 2) Pending cfg4data, fifo not empty.
137 *
138 * Case 1 can be detected by noticing a non-zero FIFO active
139 * count in the SCB. In this case, we allow the routine servicing
140 * the FIFO to complete the SCB.
141 *
142 * Case 2 implies either a pending or yet to occur save data
143 * pointers for this same context in the other FIFO. So, if
144 * we detect case 1, we will properly defer the post of the SCB
145 * and achieve the desired result. The pending cfg4data will
146 * notice that status has been received and complete the SCB.
147 */
148 test SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode;
149 call complete;
150 END_CRITICAL;
151 jmp idle_loop_gsfifo_in_scsi_mode;
152
153 idle_loop_service_fifos:
154 SET_MODE(M_DFF0, M_DFF0)
155 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo;
156 call longjmp;
157 idle_loop_next_fifo:
158 SET_MODE(M_DFF1, M_DFF1)
159 test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp;
160 return:
161 ret;
162
163 idle_loop_cchan:
164 SET_MODE(M_CCHAN, M_CCHAN)
165 test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty;
166 or QOFF_CTLSTA, HS_MAILBOX_ACT;
167 mov LOCAL_HS_MAILBOX, HS_MAILBOX;
168 hs_mailbox_empty:
169 BEGIN_CRITICAL;
170 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle;
171 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog;
172 test CCSCBCTL, CCSCBDONE jz return;
173 END_CRITICAL;
174 /* FALLTHROUGH */
175 scbdma_tohost_done:
176 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone;
177 /*
178 * An SCB has been succesfully uploaded to the host.
179 * If the SCB was uploaded for some reason other than
180 * bad SCSI status (currently only for underruns), we
181 * queue the SCB for normal completion. Otherwise, we
182 * wait until any select-out activity has halted, and
183 * then notify the host so that the transaction can be
184 * dealt with.
185 */
186 test SCB_SCSI_STATUS, 0xff jnz scbdma_notify_host;
187 and CCSCBCTL, ~(CCARREN|CCSCBEN);
188 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
189 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
190 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
191 scbdma_notify_host:
192 SET_MODE(M_SCSI, M_SCSI)
193 test SCSISEQ0, ENSELO jnz return;
194 test SSTAT0, (SELDO|SELINGO) jnz return;
195 SET_MODE(M_CCHAN, M_CCHAN)
196 /*
197 * Remove SCB and notify host.
198 */
199 and CCSCBCTL, ~(CCARREN|CCSCBEN);
200 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
201 SET_SEQINTCODE(BAD_SCB_STATUS)
202 ret;
203 fill_qoutfifo_dmadone:
204 and CCSCBCTL, ~(CCARREN|CCSCBEN);
205 call qoutfifo_updated;
206 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL;
207 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4;
208 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return;
209 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4;
210 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret;
211
212 qoutfifo_updated:
213 /*
214 * If there are more commands waiting to be dma'ed
215 * to the host, always coalesce. Otherwise honor the
216 * host's wishes.
217 */
218 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
219 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
220 test LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt;
221
222 /*
223 * If we have relatively few commands outstanding, don't
224 * bother waiting for another command to complete.
225 */
226 test CMDS_PENDING[1], 0xFF jnz coalesce_by_count;
227 /* Add -1 so that jnc means <= not just < */
228 add A, -1, INT_COALESCING_MINCMDS;
229 add NONE, A, CMDS_PENDING;
230 jnc issue_cmdcmplt;
231
232 /*
233 * If coalescing, only coalesce up to the limit
234 * provided by the host driver.
235 */
236 coalesce_by_count:
237 mov A, INT_COALESCING_MAXCMDS;
238 add NONE, A, INT_COALESCING_CMDCOUNT;
239 jc issue_cmdcmplt;
240 /*
241 * If the timer is not currently active,
242 * fire it up.
243 */
244 test INTCTL, SWTMINTMASK jz return;
245 bmov SWTIMER, INT_COALESCING_TIMER, 2;
246 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
247 or INTCTL, SWTMINTEN|SWTIMER_START;
248 and INTCTL, ~SWTMINTMASK ret;
249
250 issue_cmdcmplt:
251 mvi INTSTAT, CMDCMPLT;
252 clr INT_COALESCING_CMDCOUNT;
253 or INTCTL, SWTMINTMASK ret;
254
255 BEGIN_CRITICAL;
256 fetch_new_scb_inprog:
257 test CCSCBCTL, ARRDONE jz return;
258 fetch_new_scb_done:
259 and CCSCBCTL, ~(CCARREN|CCSCBEN);
260 bmov REG0, SCBPTR, 2;
261 clr A;
262 add CMDS_PENDING, 1;
263 adc CMDS_PENDING[1], A;
264 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
265 /*
266 * "Short Luns" are not placed into outgoing LQ
267 * packets in the correct byte order. Use a full
268 * sized lun field instead and fill it with the
269 * one byte of lun information we support.
270 */
271 mov SCB_PKT_LUN[6], SCB_LUN;
272 }
273 /*
274 * The FIFO use count field is shared with the
275 * tag set by the host so that our SCB dma engine
276 * knows the correct location to store the SCB.
277 * Set it to zero before processing the SCB.
278 */
279 clr SCB_FIFO_USE_COUNT;
280 /* Update the next SCB address to download. */
281 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4;
282 mvi SCB_NEXT[1], SCB_LIST_NULL;
283 mvi SCB_NEXT2[1], SCB_LIST_NULL;
284 /* Increment our position in the QINFIFO. */
285 mov NONE, SNSCB_QOFF;
286 /*
287 * SCBs that want to send messages are always
288 * queued independently. This ensures that they
289 * are at the head of the SCB list to select out
290 * to a target and we will see the MK_MESSAGE flag.
291 */
292 test SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb;
293 shr SINDEX, 3, SCB_SCSIID;
294 and SINDEX, ~0x1;
295 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8);
296 bmov DINDEX, SINDEX, 2;
297 bmov SCBPTR, SINDIR, 2;
298 bmov DINDIR, REG0, 2;
299 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb;
300 bmov SCB_NEXT, REG0, 2 ret;
301 first_new_target_scb:
302 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb;
303 bmov SCBPTR, WAITING_TID_TAIL, 2;
304 bmov SCB_NEXT2, REG0, 2;
305 bmov WAITING_TID_TAIL, REG0, 2 ret;
306 first_new_scb:
307 bmov WAITING_TID_HEAD, REG0, 2;
308 bmov WAITING_TID_TAIL, REG0, 2 ret;
309 END_CRITICAL;
310
311 scbdma_idle:
312 /*
313 * Give precedence to downloading new SCBs to execute
314 * unless select-outs are currently frozen.
315 */
316 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2;
317 BEGIN_CRITICAL;
318 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb;
319 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb;
320 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return;
321 /* FALLTHROUGH */
322 fill_qoutfifo:
323 /*
324 * Keep track of the SCBs we are dmaing just
325 * in case the DMA fails or is aborted.
326 */
327 mov A, QOUTFIFO_ENTRY_VALID_TAG;
328 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2;
329 mvi CCSCBCTL, CCSCBRESET;
330 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4;
331 bmov SCBPTR, COMPLETE_SCB_HEAD, 2;
332 fill_qoutfifo_loop:
333 mov CCSCBRAM, SCBPTR;
334 or CCSCBRAM, A, SCBPTR[1];
335 mov NONE, SDSCB_QOFF;
336 inc INT_COALESCING_CMDCOUNT;
337 add CMDS_PENDING, -1;
338 adc CMDS_PENDING[1], -1;
339 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done;
340 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done;
341 test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done;
342 bmov SCBPTR, SCB_NEXT_COMPLETE, 2;
343 jmp fill_qoutfifo_loop;
344 fill_qoutfifo_done:
345 mov SCBHCNT, CCSCBADDR;
346 mvi CCSCBCTL, CCSCBEN|CCSCBRESET;
347 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
348 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret;
349
350 fetch_new_scb:
351 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4;
352 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb;
353 dma_complete_scb:
354 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2;
355 bmov SCBHADDR, SCB_BUSADDR, 4;
356 mvi CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb;
357 END_CRITICAL;
358
359 /*
360 * Either post or fetch an SCB from host memory. The caller
361 * is responsible for polling for transfer completion.
362 *
363 * Prerequisits: Mode == M_CCHAN
364 * SINDEX contains CCSCBCTL flags
365 * SCBHADDR set to Host SCB address
366 * SCBPTR set to SCB src location on "push" operations
367 */
368 SET_SRC_MODE M_CCHAN;
369 SET_DST_MODE M_CCHAN;
370 dma_scb:
371 mvi SCBHCNT, SCB_TRANSFER_SIZE;
372 mov CCSCBCTL, SINDEX ret;
373
374 BEGIN_CRITICAL;
375 setjmp:
376 bmov LONGJMP_ADDR, STACK, 2 ret;
377 setjmp_inline:
378 bmov LONGJMP_ADDR, STACK, 2;
379 longjmp:
380 bmov STACK, LONGJMP_ADDR, 2 ret;
381 END_CRITICAL;
382
383 /*************************** Chip Bug Work Arounds ****************************/
384 /*
385 * Must disable interrupts when setting the mode pointer
386 * register as an interrupt occurring mid update will
387 * fail to store the new mode value for restoration on
388 * an iret.
389 */
390 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
391 set_mode_work_around:
392 mvi SEQINTCTL, INTVEC1DSL;
393 mov MODE_PTR, SINDEX;
394 clr SEQINTCTL ret;
395
396 toggle_dff_mode_work_around:
397 mvi SEQINTCTL, INTVEC1DSL;
398 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
399 clr SEQINTCTL ret;
400 }
401
402
403 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
404 set_seqint_work_around:
405 mov SEQINTCODE, SINDEX;
406 mvi SEQINTCODE, NO_SEQINT ret;
407 }
408
409 /************************ Packetized LongJmp Routines *************************/
410 SET_SRC_MODE M_SCSI;
411 SET_DST_MODE M_SCSI;
412 start_selection:
413 BEGIN_CRITICAL;
414 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
415 /*
416 * Razor #494
417 * Rev A hardware fails to update LAST/CURR/NEXTSCB
418 * correctly after a packetized selection in several
419 * situations:
420 *
421 * 1) If only one command existed in the queue, the
422 * LAST/CURR/NEXTSCB are unchanged.
423 *
424 * 2) In a non QAS, protocol allowed phase change,
425 * the queue is shifted 1 too far. LASTSCB is
426 * the last SCB that was correctly processed.
427 *
428 * 3) In the QAS case, if the full list of commands
429 * was successfully sent, NEXTSCB is NULL and neither
430 * CURRSCB nor LASTSCB can be trusted. We must
431 * manually walk the list counting MAXCMDCNT elements
432 * to find the last SCB that was sent correctly.
433 *
434 * To simplify the workaround for this bug in SELDO
435 * handling, we initialize LASTSCB prior to enabling
436 * selection so we can rely on it even for case #1 above.
437 */
438 bmov LASTSCB, WAITING_TID_HEAD, 2;
439 }
440 bmov CURRSCB, WAITING_TID_HEAD, 2;
441 bmov SCBPTR, WAITING_TID_HEAD, 2;
442 shr SELOID, 4, SCB_SCSIID;
443 /*
444 * If we want to send a message to the device, ensure
445 * we are selecting with atn irregardless of our packetized
446 * agreement. Since SPI4 only allows target reset or PPR
447 * messages if this is a packetized connection, the change
448 * to our negotiation table entry for this selection will
449 * be cleared when the message is acted on.
450 */
451 test SCB_CONTROL, MK_MESSAGE jz . + 3;
452 mov NEGOADDR, SELOID;
453 or NEGCONOPTS, ENAUTOATNO;
454 or SCSISEQ0, ENSELO ret;
455 END_CRITICAL;
456
457 /*
458 * Allocate a FIFO for a non-packetized transaction.
459 * In RevA hardware, both FIFOs must be free before we
460 * can allocate a FIFO for a non-packetized transaction.
461 */
462 allocate_fifo_loop:
463 /*
464 * Do whatever work is required to free a FIFO.
465 */
466 call idle_loop_service_fifos;
467 SET_MODE(M_SCSI, M_SCSI)
468 allocate_fifo:
469 if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) {
470 and A, FIFO0FREE|FIFO1FREE, DFFSTAT;
471 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop;
472 } else {
473 test DFFSTAT, FIFO1FREE jnz allocate_fifo1;
474 test DFFSTAT, FIFO0FREE jz allocate_fifo_loop;
475 mvi DFFSTAT, B_CURRFIFO_0;
476 SET_MODE(M_DFF0, M_DFF0)
477 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
478 }
479 SET_SRC_MODE M_SCSI;
480 SET_DST_MODE M_SCSI;
481 allocate_fifo1:
482 mvi DFFSTAT, CURRFIFO_1;
483 SET_MODE(M_DFF1, M_DFF1)
484 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
485
486 /*
487 * We have been reselected as an initiator
488 * or selected as a target.
489 */
490 SET_SRC_MODE M_SCSI;
491 SET_DST_MODE M_SCSI;
492 select_in:
493 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
494 /*
495 * Test to ensure that the bus has not
496 * already gone free prior to clearing
497 * any stale busfree status. This avoids
498 * a window whereby a busfree just after
499 * a selection could be missed.
500 */
501 test SCSISIGI, BSYI jz . + 2;
502 mvi CLRSINT1,CLRBUSFREE;
503 or SIMODE1, ENBUSFREE;
504 }
505 or SXFRCTL0, SPIOEN;
506 and SAVED_SCSIID, SELID_MASK, SELID;
507 and A, OID, IOWNID;
508 or SAVED_SCSIID, A;
509 mvi CLRSINT0, CLRSELDI;
510 jmp ITloop;
511
512 /*
513 * We have successfully selected out.
514 *
515 * Clear SELDO.
516 * Dequeue all SCBs sent from the waiting queue
517 * Requeue all SCBs *not* sent to the tail of the waiting queue
518 * Take Razor #494 into account for above.
519 *
520 * In Packetized Mode:
521 * Return to the idle loop. Our interrupt handler will take
522 * care of any incoming L_Qs.
523 *
524 * In Non-Packetize Mode:
525 * Continue to our normal state machine.
526 */
527 SET_SRC_MODE M_SCSI;
528 SET_DST_MODE M_SCSI;
529 select_out:
530 BEGIN_CRITICAL;
531 /* Clear out all SCBs that have been successfully sent. */
532 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
533 /*
534 * For packetized, the LQO manager clears ENSELO on
535 * the assertion of SELDO. If we are non-packetized,
536 * LASTSCB and CURRSCB are accurate.
537 */
538 test SCSISEQ0, ENSELO jnz use_lastscb;
539
540 /*
541 * The update is correct for LQOSTAT1 errors. All
542 * but LQOBUSFREE are handled by kernel interrupts.
543 * If we see LQOBUSFREE, return to the idle loop.
544 * Once we are out of the select_out critical section,
545 * the kernel will cleanup the LQOBUSFREE and we will
546 * eventually restart the selection if appropriate.
547 */
548 test LQOSTAT1, LQOBUSFREE jnz idle_loop;
549
550 /*
551 * On a phase change oustside of packet boundaries,
552 * LASTSCB points to the currently active SCB context
553 * on the bus.
554 */
555 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb;
556
557 /*
558 * If the hardware has traversed the whole list, NEXTSCB
559 * will be NULL, CURRSCB and LASTSCB cannot be trusted,
560 * but MAXCMDCNT is accurate. If we stop part way through
561 * the list or only had one command to issue, NEXTSCB[1] is
562 * not NULL and LASTSCB is the last command to go out.
563 */
564 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb;
565
566 /*
567 * Brute force walk.
568 */
569 bmov SCBPTR, WAITING_TID_HEAD, 2;
570 mvi SEQINTCTL, INTVEC1DSL;
571 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG);
572 mov A, MAXCMDCNT;
573 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI);
574 clr SEQINTCTL;
575 find_lastscb_loop:
576 dec A;
577 test A, 0xFF jz found_last_sent_scb;
578 bmov SCBPTR, SCB_NEXT, 2;
579 jmp find_lastscb_loop;
580 use_lastscb:
581 bmov SCBPTR, LASTSCB, 2;
582 found_last_sent_scb:
583 bmov CURRSCB, SCBPTR, 2;
584 curscb_ww_done:
585 } else {
586 bmov SCBPTR, CURRSCB, 2;
587 }
588
589 /*
590 * Requeue any SCBs not sent, to the tail of the waiting Q.
591 */
592 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done;
593
594 /*
595 * We know that neither the per-TID list nor the list of
596 * TIDs is empty. Use this knowledge to our advantage.
597 */
598 bmov REG0, SCB_NEXT, 2;
599 bmov SCBPTR, WAITING_TID_TAIL, 2;
600 bmov SCB_NEXT2, REG0, 2;
601 bmov WAITING_TID_TAIL, REG0, 2;
602 jmp select_out_inc_tid_q;
603
604 select_out_list_done:
605 /*
606 * The whole list made it. Just clear our TID's tail pointer
607 * unless we were queued independently due to our need to
608 * send a message.
609 */
610 test SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q;
611 shr DINDEX, 3, SCB_SCSIID;
612 or DINDEX, 1; /* Want only the second byte */
613 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8);
614 mvi DINDIR, SCB_LIST_NULL;
615 select_out_inc_tid_q:
616 bmov SCBPTR, WAITING_TID_HEAD, 2;
617 bmov WAITING_TID_HEAD, SCB_NEXT2, 2;
618 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2;
619 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL;
620 bmov SCBPTR, CURRSCB, 2;
621 mvi CLRSINT0, CLRSELDO;
622 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase;
623 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase;
624
625 /*
626 * If this is a packetized connection, return to our
627 * idle_loop and let our interrupt handler deal with
628 * any connection setup/teardown issues. The only
629 * exceptions are the case of MK_MESSAGE and task management
630 * SCBs.
631 */
632 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) {
633 /*
634 * In the A, the LQO manager transitions to LQOSTOP0 even if
635 * we have selected out with ATN asserted and the target
636 * REQs in a non-packet phase.
637 */
638 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message;
639 test SCSISIGO, ATNO jnz select_out_non_packetized;
640 select_out_no_message:
641 }
642 test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized;
643 test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop;
644 SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE)
645 jmp idle_loop;
646
647 select_out_non_packetized:
648 /* Non packetized request. */
649 and SCSISEQ0, ~ENSELO;
650 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
651 /*
652 * Test to ensure that the bus has not
653 * already gone free prior to clearing
654 * any stale busfree status. This avoids
655 * a window whereby a busfree just after
656 * a selection could be missed.
657 */
658 test SCSISIGI, BSYI jz . + 2;
659 mvi CLRSINT1,CLRBUSFREE;
660 or SIMODE1, ENBUSFREE;
661 }
662 mov SAVED_SCSIID, SCB_SCSIID;
663 mov SAVED_LUN, SCB_LUN;
664 mvi SEQ_FLAGS, NO_CDB_SENT;
665 END_CRITICAL;
666 or SXFRCTL0, SPIOEN;
667
668 /*
669 * As soon as we get a successful selection, the target
670 * should go into the message out phase since we have ATN
671 * asserted.
672 */
673 mvi MSG_OUT, MSG_IDENTIFYFLAG;
674
675 /*
676 * Main loop for information transfer phases. Wait for the
677 * target to assert REQ before checking MSG, C/D and I/O for
678 * the bus phase.
679 */
680 mesgin_phasemis:
681 ITloop:
682 call phase_lock;
683
684 mov A, LASTPHASE;
685
686 test A, ~P_DATAIN_DT jz p_data;
687 cmp A,P_COMMAND je p_command;
688 cmp A,P_MESGOUT je p_mesgout;
689 cmp A,P_STATUS je p_status;
690 cmp A,P_MESGIN je p_mesgin;
691
692 SET_SEQINTCODE(BAD_PHASE)
693 jmp ITloop; /* Try reading the bus again. */
694
695 /*
696 * Command phase. Set up the DMA registers and let 'er rip.
697 */
698 p_command:
699 test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay;
700 SET_SEQINTCODE(PROTO_VIOLATION)
701 p_command_okay:
702 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
703 jnz p_command_allocate_fifo;
704 /*
705 * Command retry. Free our current FIFO and
706 * re-allocate a FIFO so transfer state is
707 * reset.
708 */
709 SET_SRC_MODE M_DFF1;
710 SET_DST_MODE M_DFF1;
711 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT;
712 SET_MODE(M_SCSI, M_SCSI)
713 p_command_allocate_fifo:
714 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2;
715 call allocate_fifo;
716 SET_SRC_MODE M_DFF1;
717 SET_DST_MODE M_DFF1;
718 add NONE, -17, SCB_CDB_LEN;
719 jnc p_command_embedded;
720 p_command_from_host:
721 bmov HADDR[0], SCB_HOST_CDB_PTR, 9;
722 mvi SG_CACHE_PRE, LAST_SEG;
723 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
724 jmp p_command_xfer;
725 p_command_embedded:
726 bmov SHCNT[0], SCB_CDB_LEN, 1;
727 bmov DFDAT, SCB_CDB_STORE, 16;
728 mvi DFCNTRL, SCSIEN;
729 p_command_xfer:
730 and SEQ_FLAGS, ~NO_CDB_SENT;
731 if ((ahd->features & AHD_FAST_CDB_DELIVERY) != 0) {
732 /*
733 * To speed up CDB delivery in Rev B, all CDB acks
734 * are "released" to the output sync as soon as the
735 * command phase starts. There is only one problem
736 * with this approach. If the target changes phase
737 * before all data are sent, we have left over acks
738 * that can go out on the bus in a data phase. Due
739 * to other chip contraints, this only happens if
740 * the target goes to data-in, but if the acks go
741 * out before we can test SDONE, we'll think that
742 * the transfer has completed successfully. Work
743 * around this by taking advantage of the 400ns or
744 * 800ns dead time between command phase and the REQ
745 * of the new phase. If the transfer has completed
746 * successfully, SCSIEN should fall *long* before we
747 * see a phase change. We thus treat any phasemiss
748 * that occurs before SCSIEN falls as an incomplete
749 * transfer.
750 */
751 test SSTAT1, PHASEMIS jnz p_command_xfer_failed;
752 test DFCNTRL, SCSIEN jnz . - 1;
753 } else {
754 test DFCNTRL, SCSIEN jnz .;
755 }
756 /*
757 * DMA Channel automatically disabled.
758 * Don't allow a data phase if the command
759 * was not fully transferred.
760 */
761 test SSTAT2, SDONE jnz ITloop;
762 p_command_xfer_failed:
763 or SEQ_FLAGS, NO_CDB_SENT;
764 jmp ITloop;
765
766
767 /*
768 * Status phase. Wait for the data byte to appear, then read it
769 * and store it into the SCB.
770 */
771 SET_SRC_MODE M_SCSI;
772 SET_DST_MODE M_SCSI;
773 p_status:
774 test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation;
775 p_status_okay:
776 mov SCB_SCSI_STATUS, SCSIDAT;
777 or SCB_CONTROL, STATUS_RCVD;
778 jmp ITloop;
779
780 /*
781 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full
782 * indentify message sequence and send it to the target. The host may
783 * override this behavior by setting the MK_MESSAGE bit in the SCB
784 * control byte. This will cause us to interrupt the host and allow
785 * it to handle the message phase completely on its own. If the bit
786 * associated with this target is set, we will also interrupt the host,
787 * thereby allowing it to send a message on the next selection regardless
788 * of the transaction being sent.
789 *
790 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message.
791 * This is done to allow the host to send messages outside of an identify
792 * sequence while protecting the seqencer from testing the MK_MESSAGE bit
793 * on an SCB that might not be for the current nexus. (For example, a
794 * BDR message in responce to a bad reselection would leave us pointed to
795 * an SCB that doesn't have anything to do with the current target).
796 *
797 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag,
798 * bus device reset).
799 *
800 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP,
801 * in case the target decides to put us in this phase for some strange
802 * reason.
803 */
804 p_mesgout_retry:
805 /* Turn on ATN for the retry */
806 mvi SCSISIGO, ATNO;
807 p_mesgout:
808 mov SINDEX, MSG_OUT;
809 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host;
810 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop;
811 p_mesgout_identify:
812 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN;
813 test SCB_CONTROL, DISCENB jnz . + 2;
814 and SINDEX, ~DISCENB;
815 /*
816 * Send a tag message if TAG_ENB is set in the SCB control block.
817 * Use SCB_NONPACKET_TAG as the tag value.
818 */
819 p_mesgout_tag:
820 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte;
821 mov SCSIDAT, SINDEX; /* Send the identify message */
822 call phase_lock;
823 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done;
824 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL;
825 call phase_lock;
826 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done;
827 mov SCBPTR jmp p_mesgout_onebyte;
828 /*
829 * Interrupt the driver, and allow it to handle this message
830 * phase and any required retries.
831 */
832 p_mesgout_from_host:
833 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte;
834 jmp host_message_loop;
835
836 p_mesgout_onebyte:
837 mvi CLRSINT1, CLRATNO;
838 mov SCSIDAT, SINDEX;
839
840 /*
841 * If the next bus phase after ATN drops is message out, it means
842 * that the target is requesting that the last message(s) be resent.
843 */
844 call phase_lock;
845 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry;
846
847 p_mesgout_done:
848 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */
849 mov LAST_MSG, MSG_OUT;
850 mvi MSG_OUT, MSG_NOOP; /* No message left */
851 jmp ITloop;
852
853 /*
854 * Message in phase. Bytes are read using Automatic PIO mode.
855 */
856 p_mesgin:
857 /* read the 1st message byte */
858 mvi ACCUM call inb_first;
859
860 test A,MSG_IDENTIFYFLAG jnz mesgin_identify;
861 cmp A,MSG_DISCONNECT je mesgin_disconnect;
862 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs;
863 cmp ALLZEROS,A je mesgin_complete;
864 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs;
865 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue;
866 cmp A,MSG_NOOP je mesgin_done;
867
868 /*
869 * Pushed message loop to allow the kernel to
870 * run it's own message state engine. To avoid an
871 * extra nop instruction after signaling the kernel,
872 * we perform the phase_lock before checking to see
873 * if we should exit the loop and skip the phase_lock
874 * in the ITloop. Performing back to back phase_locks
875 * shouldn't hurt, but why do it twice...
876 */
877 host_message_loop:
878 call phase_lock; /* Benign the first time through. */
879 SET_SEQINTCODE(HOST_MSG_LOOP)
880 cmp RETURN_1, EXIT_MSG_LOOP je ITloop;
881 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3;
882 mov SCSIDAT, RETURN_2;
883 jmp host_message_loop;
884 /* Must be CONT_MSG_LOOP_READ */
885 mov NONE, SCSIDAT; /* ACK Byte */
886 jmp host_message_loop;
887
888 mesgin_ign_wide_residue:
889 mov SAVED_MODE, MODE_PTR;
890 SET_MODE(M_SCSI, M_SCSI)
891 shr NEGOADDR, 4, SAVED_SCSIID;
892 mov A, NEGCONOPTS;
893 RESTORE_MODE(SAVED_MODE)
894 test A, WIDEXFER jz mesgin_reject;
895 /* Pull the residue byte */
896 mvi REG0 call inb_next;
897 cmp REG0, 0x01 jne mesgin_reject;
898 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2;
899 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done;
900 SET_SEQINTCODE(IGN_WIDE_RES)
901 jmp mesgin_done;
902
903 mesgin_proto_violation:
904 SET_SEQINTCODE(PROTO_VIOLATION)
905 jmp mesgin_done;
906 mesgin_reject:
907 mvi MSG_MESSAGE_REJECT call mk_mesg;
908 mesgin_done:
909 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/
910 jmp ITloop;
911
912 #define INDEX_DISC_LIST(scsiid, lun) \
913 and A, 0xC0, scsiid; \
914 or SCBPTR, A, lun; \
915 clr SCBPTR[1]; \
916 and SINDEX, 0x30, scsiid; \
917 shr SINDEX, 3; /* Multiply by 2 */ \
918 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \
919 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF)
920
921 mesgin_identify:
922 /*
923 * Determine whether a target is using tagged or non-tagged
924 * transactions by first looking at the transaction stored in
925 * the per-device, disconnected array. If there is no untagged
926 * transaction for this target, this must be a tagged transaction.
927 */
928 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A;
929 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
930 bmov DINDEX, SINDEX, 2;
931 bmov REG0, SINDIR, 2;
932 cmp REG0[1], SCB_LIST_NULL je snoop_tag;
933 /* Untagged. Clear the busy table entry and setup the SCB. */
934 bmov DINDIR, ALLONES, 2;
935 bmov SCBPTR, REG0, 2;
936 jmp setup_SCB;
937
938 /*
939 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message.
940 * If we get one, we use the tag returned to find the proper
941 * SCB. After receiving the tag, look for the SCB at SCB locations tag and
942 * tag + 256.
943 */
944 snoop_tag:
945 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
946 or SEQ_FLAGS, 0x80;
947 }
948 mov NONE, SCSIDAT; /* ACK Identify MSG */
949 call phase_lock;
950 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
951 or SEQ_FLAGS, 0x1;
952 }
953 cmp LASTPHASE, P_MESGIN jne not_found_ITloop;
954 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
955 or SEQ_FLAGS, 0x2;
956 }
957 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found;
958 get_tag:
959 clr SCBPTR[1];
960 mvi SCBPTR call inb_next; /* tag value */
961 verify_scb:
962 test SCB_CONTROL,DISCONNECTED jz verify_other_scb;
963 mov A, SAVED_SCSIID;
964 cmp SCB_SCSIID, A jne verify_other_scb;
965 mov A, SAVED_LUN;
966 cmp SCB_LUN, A je setup_SCB_disconnected;
967 verify_other_scb:
968 xor SCBPTR[1], 1;
969 test SCBPTR[1], 0xFF jnz verify_scb;
970 jmp not_found;
971
972 /*
973 * Ensure that the SCB the tag points to is for
974 * an SCB transaction to the reconnecting target.
975 */
976 setup_SCB:
977 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
978 or SEQ_FLAGS, 0x10;
979 }
980 test SCB_CONTROL,DISCONNECTED jz not_found;
981 setup_SCB_disconnected:
982 and SCB_CONTROL,~DISCONNECTED;
983 clr SEQ_FLAGS; /* make note of IDENTIFY */
984 test SCB_SGPTR, SG_LIST_NULL jnz . + 3;
985 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2;
986 call allocate_fifo;
987 /* See if the host wants to send a message upon reconnection */
988 test SCB_CONTROL, MK_MESSAGE jz mesgin_done;
989 mvi HOST_MSG call mk_mesg;
990 jmp mesgin_done;
991
992 not_found:
993 SET_SEQINTCODE(NO_MATCH)
994 jmp mesgin_done;
995
996 not_found_ITloop:
997 SET_SEQINTCODE(NO_MATCH)
998 jmp ITloop;
999
1000 /*
1001 * We received a "command complete" message. Put the SCB on the complete
1002 * queue and trigger a completion interrupt via the idle loop. Before doing
1003 * so, check to see if there
1004 * is a residual or the status byte is something other than STATUS_GOOD (0).
1005 * In either of these conditions, we upload the SCB back to the host so it can
1006 * process this information. In the case of a non zero status byte, we
1007 * additionally interrupt the kernel driver synchronously, allowing it to
1008 * decide if sense should be retrieved. If the kernel driver wishes to request
1009 * sense, it will fill the kernel SCB with a request sense command, requeue
1010 * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting
1011 * RETURN_1 to SEND_SENSE.
1012 */
1013 mesgin_complete:
1014
1015 /*
1016 * If ATN is raised, we still want to give the target a message.
1017 * Perhaps there was a parity error on this last message byte.
1018 * Either way, the target should take us to message out phase
1019 * and then attempt to complete the command again. We should use a
1020 * critical section here to guard against a timeout triggering
1021 * for this command and setting ATN while we are still processing
1022 * the completion.
1023 test SCSISIGI, ATNI jnz mesgin_done;
1024 */
1025
1026 /*
1027 * If we are identified and have successfully sent the CDB,
1028 * any status will do. Optimize this fast path.
1029 */
1030 test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation;
1031 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted;
1032
1033 /*
1034 * If the target never sent an identify message but instead went
1035 * to mesgin to give an invalid message, let the host abort us.
1036 */
1037 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation;
1038
1039 /*
1040 * If we recevied good status but never successfully sent the
1041 * cdb, abort the command.
1042 */
1043 test SCB_SCSI_STATUS,0xff jnz complete_accepted;
1044 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation;
1045 complete_accepted:
1046
1047 /*
1048 * See if we attempted to deliver a message but the target ingnored us.
1049 */
1050 test SCB_CONTROL, MK_MESSAGE jz complete_nomsg;
1051 SET_SEQINTCODE(MKMSG_FAILED)
1052 complete_nomsg:
1053 call queue_scb_completion;
1054 jmp await_busfree;
1055
1056 freeze_queue:
1057 /* Cancel any pending select-out. */
1058 test SSTAT0, SELDO|SELINGO jnz . + 2;
1059 and SCSISEQ0, ~ENSELO;
1060 mov ACCUM_SAVE, A;
1061 clr A;
1062 add QFREEZE_COUNT, 1;
1063 adc QFREEZE_COUNT[1], A;
1064 or SEQ_FLAGS2, SELECTOUT_QFROZEN;
1065 mov A, ACCUM_SAVE ret;
1066
1067 /*
1068 * Complete the current FIFO's SCB if data for this same
1069 * SCB is not transferring in the other FIFO.
1070 */
1071 SET_SRC_MODE M_DFF1;
1072 SET_DST_MODE M_DFF1;
1073 pkt_complete_scb_if_fifos_idle:
1074 bmov ARG_1, SCBPTR, 2;
1075 mvi DFFSXFRCTL, CLRCHN;
1076 SET_MODE(M_SCSI, M_SCSI)
1077 bmov SCBPTR, ARG_1, 2;
1078 test SCB_FIFO_USE_COUNT, 0xFF jnz return;
1079 queue_scb_completion:
1080 test SCB_SCSI_STATUS,0xff jnz bad_status;
1081 /*
1082 * Check for residuals
1083 */
1084 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */
1085 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */
1086 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb;
1087 complete:
1088 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
1089 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
1090 bad_status:
1091 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb;
1092 call freeze_queue;
1093 upload_scb:
1094 /*
1095 * Restore SCB TAG since we reuse this field
1096 * in the sequencer. We don't want to corrupt
1097 * it on the host.
1098 */
1099 bmov SCB_TAG, SCBPTR, 2;
1100 bmov SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2;
1101 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2;
1102 or SCB_SGPTR, SG_STATUS_VALID ret;
1103
1104 /*
1105 * Is it a disconnect message? Set a flag in the SCB to remind us
1106 * and await the bus going free. If this is an untagged transaction
1107 * store the SCB id for it in our untagged target table for lookup on
1108 * a reselction.
1109 */
1110 mesgin_disconnect:
1111 /*
1112 * If ATN is raised, we still want to give the target a message.
1113 * Perhaps there was a parity error on this last message byte
1114 * or we want to abort this command. Either way, the target
1115 * should take us to message out phase and then attempt to
1116 * disconnect again.
1117 * XXX - Wait for more testing.
1118 test SCSISIGI, ATNI jnz mesgin_done;
1119 */
1120 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT
1121 jnz mesgin_proto_violation;
1122 or SCB_CONTROL,DISCONNECTED;
1123 test SCB_CONTROL, TAG_ENB jnz await_busfree;
1124 queue_disc_scb:
1125 bmov REG0, SCBPTR, 2;
1126 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
1127 bmov DINDEX, SINDEX, 2;
1128 bmov DINDIR, REG0, 2;
1129 bmov SCBPTR, REG0, 2;
1130 /* FALLTHROUGH */
1131 await_busfree:
1132 and SIMODE1, ~ENBUSFREE;
1133 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) {
1134 /*
1135 * In the BUSFREEREV_BUG case, the
1136 * busfree status was cleared at the
1137 * beginning of the connection.
1138 */
1139 mvi CLRSINT1,CLRBUSFREE;
1140 }
1141 mov NONE, SCSIDAT; /* Ack the last byte */
1142 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
1143 jnz await_busfree_not_m_dff;
1144 SET_SRC_MODE M_DFF1;
1145 SET_DST_MODE M_DFF1;
1146 await_busfree_clrchn:
1147 mvi DFFSXFRCTL, CLRCHN;
1148 await_busfree_not_m_dff:
1149 call clear_target_state;
1150 test SSTAT1,REQINIT|BUSFREE jz .;
1151 test SSTAT1, BUSFREE jnz idle_loop;
1152 SET_SEQINTCODE(MISSED_BUSFREE)
1153
1154
1155 /*
1156 * Save data pointers message:
1157 * Copying RAM values back to SCB, for Save Data Pointers message, but
1158 * only if we've actually been into a data phase to change them. This
1159 * protects against bogus data in scratch ram and the residual counts
1160 * since they are only initialized when we go into data_in or data_out.
1161 * Ack the message as soon as possible.
1162 */
1163 SET_SRC_MODE M_DFF1;
1164 SET_DST_MODE M_DFF1;
1165 mesgin_sdptrs:
1166 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/
1167 test SEQ_FLAGS, DPHASE jz ITloop;
1168 call save_pointers;
1169 jmp ITloop;
1170
1171 save_pointers:
1172 /*
1173 * If we are asked to save our position at the end of the
1174 * transfer, just mark us at the end rather than perform a
1175 * full save.
1176 */
1177 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full;
1178 or SCB_SGPTR, SG_LIST_NULL ret;
1179
1180 save_pointers_full:
1181 /*
1182 * The SCB_DATAPTR becomes the current SHADDR.
1183 * All other information comes directly from our residual
1184 * state.
1185 */
1186 bmov SCB_DATAPTR, SHADDR, 8;
1187 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret;
1188
1189 /*
1190 * Restore pointers message? Data pointers are recopied from the
1191 * SCB anytime we enter a data phase for the first time, so all
1192 * we need to do is clear the DPHASE flag and let the data phase
1193 * code do the rest. We also reset/reallocate the FIFO to make
1194 * sure we have a clean start for the next data or command phase.
1195 */
1196 mesgin_rdptrs:
1197 and SEQ_FLAGS, ~DPHASE;
1198 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo;
1199 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT;
1200 SET_MODE(M_SCSI, M_SCSI)
1201 msgin_rdptrs_get_fifo:
1202 call allocate_fifo;
1203 jmp mesgin_done;
1204
1205 clear_target_state:
1206 mvi LASTPHASE, P_BUSFREE;
1207 /* clear target specific flags */
1208 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret;
1209
1210 phase_lock:
1211 if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) {
1212 /*
1213 * Don't ignore persistent REQ assertions just because
1214 * they were asserted within the bus settle delay window.
1215 * This allows us to tolerate devices like the GEM318
1216 * that violate the SCSI spec. We are careful not to
1217 * count REQ while we are waiting for it to fall during
1218 * an async phase due to our asserted ACK. Each
1219 * sequencer instruction takes ~25ns, so the REQ must
1220 * last at least 100ns in order to be counted as a true
1221 * REQ.
1222 */
1223 test SCSIPHASE, 0xFF jnz phase_locked;
1224 test SCSISIGI, ACKI jnz phase_lock;
1225 test SCSISIGI, REQI jz phase_lock;
1226 test SCSIPHASE, 0xFF jnz phase_locked;
1227 test SCSISIGI, ACKI jnz phase_lock;
1228 test SCSISIGI, REQI jz phase_lock;
1229 phase_locked:
1230 } else {
1231 test SCSIPHASE, 0xFF jz .;
1232 }
1233 test SSTAT1, SCSIPERR jnz phase_lock;
1234 phase_lock_latch_phase:
1235 and LASTPHASE, PHASE_MASK, SCSISIGI ret;
1236
1237 /*
1238 * Functions to read data in Automatic PIO mode.
1239 *
1240 * An ACK is not sent on input from the target until SCSIDATL is read from.
1241 * So we wait until SCSIDATL is latched (the usual way), then read the data
1242 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN
1243 * line, or we just want to acknowledge the byte, then we do a dummy read
1244 * from SCISDATL. The SCSI spec guarantees that the target will hold the
1245 * data byte on the bus until we send our ACK.
1246 *
1247 * The assumption here is that these are called in a particular sequence,
1248 * and that REQ is already set when inb_first is called. inb_{first,next}
1249 * use the same calling convention as inb.
1250 */
1251 inb_next:
1252 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/
1253 inb_next_wait:
1254 /*
1255 * If there is a parity error, wait for the kernel to
1256 * see the interrupt and prepare our message response
1257 * before continuing.
1258 */
1259 test SCSIPHASE, 0xFF jz .;
1260 test SSTAT1, SCSIPERR jnz inb_next_wait;
1261 inb_next_check_phase:
1262 and LASTPHASE, PHASE_MASK, SCSISIGI;
1263 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis;
1264 inb_first:
1265 clr DINDEX[1];
1266 mov DINDEX,SINDEX;
1267 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/
1268 inb_last:
1269 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/
1270
1271 mk_mesg:
1272 mvi SCSISIGO, ATNO;
1273 mov MSG_OUT,SINDEX ret;
1274
1275 SET_SRC_MODE M_DFF1;
1276 SET_DST_MODE M_DFF1;
1277 disable_ccsgen:
1278 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done;
1279 clr CCSGCTL;
1280 disable_ccsgen_fetch_done:
1281 clr SG_STATE ret;
1282
1283 service_fifo:
1284 /*
1285 * Do we have any prefetch left???
1286 */
1287 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail;
1288
1289 /*
1290 * Can this FIFO have access to the S/G cache yet?
1291 */
1292 test CCSGCTL, SG_CACHE_AVAIL jz return;
1293
1294 /* Did we just finish fetching segs? */
1295 test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete;
1296
1297 /* Are we actively fetching segments? */
1298 test CCSGCTL, CCSGENACK jnz return;
1299
1300 /*
1301 * We fetch a "cacheline aligned" and sized amount of data
1302 * so we don't end up referencing a non-existant page.
1303 * Cacheline aligned is in quotes because the kernel will
1304 * set the prefetch amount to a reasonable level if the
1305 * cacheline size is unknown.
1306 */
1307 bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4;
1308 mvi SGHCNT, SG_PREFETCH_CNT;
1309 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) {
1310 /*
1311 * Need two instruction between "touches" of SGHADDR.
1312 */
1313 nop;
1314 }
1315 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR;
1316 mvi CCSGCTL, CCSGEN|CCSGRESET;
1317 or SG_STATE, FETCH_INPROG ret;
1318 idle_sgfetch_complete:
1319 /*
1320 * Guard against SG_CACHE_AVAIL activating during sg fetch
1321 * request in the other FIFO.
1322 */
1323 test SG_STATE, FETCH_INPROG jz return;
1324 clr CCSGCTL;
1325 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR;
1326 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED;
1327 idle_sg_avail:
1328 /* Does the hardware have space for another SG entry? */
1329 test DFSTATUS, PRELOAD_AVAIL jz return;
1330 /*
1331 * On the A, preloading a segment before HDMAENACK
1332 * comes true can clobber the shaddow address of the
1333 * first segment in the S/G FIFO. Wait until it is
1334 * safe to proceed.
1335 */
1336 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) {
1337 test DFCNTRL, HDMAENACK jz return;
1338 }
1339 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1340 bmov HADDR, CCSGRAM, 8;
1341 } else {
1342 bmov HADDR, CCSGRAM, 4;
1343 }
1344 bmov HCNT, CCSGRAM, 3;
1345 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1;
1346 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
1347 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3];
1348 }
1349 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1350 /* Skip 4 bytes of pad. */
1351 add CCSGADDR, 4;
1352 }
1353 sg_advance:
1354 clr A; /* add sizeof(struct scatter) */
1355 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF;
1356 adc SCB_RESIDUAL_SGPTR[1],A;
1357 adc SCB_RESIDUAL_SGPTR[2],A;
1358 adc SCB_RESIDUAL_SGPTR[3],A;
1359 mov SINDEX, SCB_RESIDUAL_SGPTR[0];
1360 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3;
1361 or SINDEX, LAST_SEG;
1362 clr SG_STATE;
1363 mov SG_CACHE_PRE, SINDEX;
1364 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1365 /*
1366 * Use SCSIENWRDIS so that SCSIEN is never
1367 * modified by this operation.
1368 */
1369 or DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS;
1370 } else {
1371 or DFCNTRL, PRELOADEN|HDMAEN;
1372 }
1373 /*
1374 * Do we have another segment in the cache?
1375 */
1376 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR;
1377 jnc return;
1378 and SG_STATE, ~SEGS_AVAIL ret;
1379
1380 /*
1381 * Initialize the DMA address and counter from the SCB.
1382 */
1383 load_first_seg:
1384 bmov HADDR, SCB_DATAPTR, 11;
1385 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0];
1386 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2;
1387 or REG_ISR, LAST_SEG;
1388 mov SG_CACHE_PRE, REG_ISR;
1389 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
1390 /*
1391 * Since we've are entering a data phase, we will
1392 * rely on the SCB_RESID* fields. Initialize the
1393 * residual and clear the full residual flag.
1394 */
1395 and SCB_SGPTR[0], ~SG_FULL_RESID;
1396 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5;
1397 /* If we need more S/G elements, tell the idle loop */
1398 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2;
1399 mvi SG_STATE, LOADING_NEEDED ret;
1400 clr SG_STATE ret;
1401
1402 p_data_handle_xfer:
1403 call setjmp;
1404 test SG_STATE, LOADING_NEEDED jnz service_fifo;
1405 p_data_clear_handler:
1406 or LONGJMP_ADDR[1], INVALID_ADDR ret;
1407
1408 p_data:
1409 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed;
1410 SET_SEQINTCODE(PROTO_VIOLATION)
1411 p_data_allowed:
1412
1413 test SEQ_FLAGS, DPHASE jz data_phase_initialize;
1414
1415 /*
1416 * If we re-enter the data phase after going through another
1417 * phase, our transfer location has almost certainly been
1418 * corrupted by the interveining, non-data, transfers. Ask
1419 * the host driver to fix us up based on the transfer residual
1420 * unless we already know that we should be bitbucketing.
1421 */
1422 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
1423 SET_SEQINTCODE(PDATA_REINIT)
1424 jmp data_phase_inbounds;
1425
1426 p_data_bitbucket:
1427 /*
1428 * Turn on `Bit Bucket' mode, wait until the target takes
1429 * us to another phase, and then notify the host.
1430 */
1431 mov SAVED_MODE, MODE_PTR;
1432 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
1433 jnz bitbucket_not_m_dff;
1434 /*
1435 * Ensure that any FIFO contents are cleared out and the
1436 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET
1437 * doesn't discard data already in the FIFO.
1438 */
1439 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT;
1440 SET_MODE(M_SCSI, M_SCSI)
1441 bitbucket_not_m_dff:
1442 or SXFRCTL1,BITBUCKET;
1443 /* Wait for non-data phase. */
1444 test SCSIPHASE, ~DATA_PHASE_MASK jz .;
1445 and SXFRCTL1, ~BITBUCKET;
1446 RESTORE_MODE(SAVED_MODE)
1447 SET_SRC_MODE M_DFF1;
1448 SET_DST_MODE M_DFF1;
1449 SET_SEQINTCODE(DATA_OVERRUN)
1450 jmp ITloop;
1451
1452 data_phase_initialize:
1453 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
1454 call load_first_seg;
1455 data_phase_inbounds:
1456 /* We have seen a data phase at least once. */
1457 or SEQ_FLAGS, DPHASE;
1458 mov SAVED_MODE, MODE_PTR;
1459 test SG_STATE, LOADING_NEEDED jz data_group_dma_loop;
1460 call p_data_handle_xfer;
1461 data_group_dma_loop:
1462 /*
1463 * The transfer is complete if either the last segment
1464 * completes or the target changes phase. Both conditions
1465 * will clear SCSIEN.
1466 */
1467 call idle_loop_service_fifos;
1468 call idle_loop_cchan;
1469 call idle_loop_gsfifo;
1470 RESTORE_MODE(SAVED_MODE)
1471 test DFCNTRL, SCSIEN jnz data_group_dma_loop;
1472
1473 data_group_dmafinish:
1474 /*
1475 * The transfer has terminated either due to a phase
1476 * change, and/or the completion of the last segment.
1477 * We have two goals here. Do as much other work
1478 * as possible while the data fifo drains on a read
1479 * and respond as quickly as possible to the standard
1480 * messages (save data pointers/disconnect and command
1481 * complete) that usually follow a data phase.
1482 */
1483 call calc_residual;
1484
1485 /*
1486 * Go ahead and shut down the DMA engine now.
1487 */
1488 test DFCNTRL, DIRECTION jnz data_phase_finish;
1489 data_group_fifoflush:
1490 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1491 or DFCNTRL, FIFOFLUSH;
1492 }
1493 /*
1494 * We have enabled the auto-ack feature. This means
1495 * that the controller may have already transferred
1496 * some overrun bytes into the data FIFO and acked them
1497 * on the bus. The only way to detect this situation is
1498 * to wait for LAST_SEG_DONE to come true on a completed
1499 * transfer and then test to see if the data FIFO is
1500 * non-empty. We know there is more data yet to transfer
1501 * if SG_LIST_NULL is not yet set, thus there cannot be
1502 * an overrun.
1503 */
1504 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish;
1505 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .;
1506 test DFSTATUS, FIFOEMP jnz data_phase_finish;
1507 /* Overrun */
1508 jmp p_data;
1509 data_phase_finish:
1510 /*
1511 * If the target has left us in data phase, loop through
1512 * the dma code again. We will only loop if there is a
1513 * data overrun.
1514 */
1515 if ((ahd->flags & AHD_TARGETROLE) != 0) {
1516 test SSTAT0, TARGET jnz data_phase_done;
1517 }
1518 if ((ahd->flags & AHD_INITIATORROLE) != 0) {
1519 test SSTAT1, REQINIT jz .;
1520 test SCSIPHASE, DATA_PHASE_MASK jnz p_data;
1521 }
1522
1523 data_phase_done:
1524 /* Kill off any pending prefetch */
1525 call disable_ccsgen;
1526 or LONGJMP_ADDR[1], INVALID_ADDR;
1527
1528 if ((ahd->flags & AHD_TARGETROLE) != 0) {
1529 test SEQ_FLAGS, DPHASE_PENDING jz ITloop;
1530 /*
1531 and SEQ_FLAGS, ~DPHASE_PENDING;
1532 * For data-in phases, wait for any pending acks from the
1533 * initiator before changing phase. We only need to
1534 * send Ignore Wide Residue messages for data-in phases.
1535 test DFCNTRL, DIRECTION jz target_ITloop;
1536 test SSTAT1, REQINIT jnz .;
1537 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop;
1538 SET_MODE(M_SCSI, M_SCSI)
1539 test NEGCONOPTS, WIDEXFER jz target_ITloop;
1540 */
1541 /*
1542 * Issue an Ignore Wide Residue Message.
1543 mvi P_MESGIN|BSYO call change_phase;
1544 mvi MSG_IGN_WIDE_RESIDUE call target_outb;
1545 mvi 1 call target_outb;
1546 jmp target_ITloop;
1547 */
1548 } else {
1549 jmp ITloop;
1550 }
1551
1552 /*
1553 * We assume that, even though data may still be
1554 * transferring to the host, that the SCSI side of
1555 * the DMA engine is now in a static state. This
1556 * allows us to update our notion of where we are
1557 * in this transfer.
1558 *
1559 * If, by chance, we stopped before being able
1560 * to fetch additional segments for this transfer,
1561 * yet the last S/G was completely exhausted,
1562 * call our idle loop until it is able to load
1563 * another segment. This will allow us to immediately
1564 * pickup on the next segment on the next data phase.
1565 *
1566 * If we happened to stop on the last segment, then
1567 * our residual information is still correct from
1568 * the idle loop and there is no need to perform
1569 * any fixups.
1570 */
1571 residual_before_last_seg:
1572 test MDFFSTAT, SHVALID jnz sgptr_fixup;
1573 /*
1574 * Can never happen from an interrupt as the packetized
1575 * hardware will only interrupt us once SHVALID or
1576 * LAST_SEG_DONE.
1577 */
1578 call idle_loop_service_fifos;
1579 RESTORE_MODE(SAVED_MODE)
1580 /* FALLTHROUGH */
1581 calc_residual:
1582 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg;
1583 /* Record if we've consumed all S/G entries */
1584 test MDFFSTAT, SHVALID jz . + 2;
1585 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
1586 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret;
1587
1588 sgptr_fixup:
1589 /*
1590 * Fixup the residual next S/G pointer. The S/G preload
1591 * feature of the chip allows us to load two elements
1592 * in addition to the currently active element. We
1593 * store the bottom byte of the next S/G pointer in
1594 * the SG_CACHE_PTR register so we can restore the
1595 * correct value when the DMA completes. If the next
1596 * sg ptr value has advanced to the point where higher
1597 * bytes in the address have been affected, fix them
1598 * too.
1599 */
1600 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done;
1601 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done;
1602 add SCB_RESIDUAL_SGPTR[1], -1;
1603 adc SCB_RESIDUAL_SGPTR[2], -1;
1604 adc SCB_RESIDUAL_SGPTR[3], -1;
1605 sgptr_fixup_done:
1606 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW;
1607 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */
1608 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
1609
1610 export timer_isr:
1611 call issue_cmdcmplt;
1612 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
1613 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
1614 /*
1615 * In H2A4, the mode pointer is not saved
1616 * for intvec2, but is restored on iret.
1617 * This can lead to the restoration of a
1618 * bogus mode ptr. Manually clear the
1619 * intmask bits and do a normal return
1620 * to compensate.
1621 */
1622 and SEQINTCTL, ~(INTMASK2|INTMASK1) ret;
1623 } else {
1624 or SEQINTCTL, IRET ret;
1625 }
1626
1627 export seq_isr:
1628 if ((ahd->features & AHD_RTI) == 0) {
1629 /*
1630 * On RevA Silicon, if the target returns us to data-out
1631 * after we have already trained for data-out, it is
1632 * possible for us to transition the free running clock to
1633 * data-valid before the required 100ns P1 setup time (8 P1
1634 * assertions in fast-160 mode). This will only happen if
1635 * this L-Q is a continuation of a data transfer for which
1636 * we have already prefetched data into our FIFO (LQ/Data
1637 * followed by LQ/Data for the same write transaction).
1638 * This can cause some target implementations to miss the
1639 * first few data transfers on the bus. We detect this
1640 * situation by noticing that this is the first data transfer
1641 * after an LQ (LQIWORKONLQ true), that the data transfer is
1642 * a continuation of a transfer already setup in our FIFO
1643 * (SAVEPTRS interrupt), and that the transaction is a write
1644 * (DIRECTION set in DFCNTRL). The delay is performed by
1645 * disabling SCSIEN until we see the first REQ from the
1646 * target.
1647 *
1648 * First instruction in an ISR cannot be a branch on
1649 * Rev A. Snapshot LQISTAT2 so the status is not missed
1650 * and deffer the test by one instruction.
1651 */
1652 mov REG_ISR, LQISTAT2;
1653 test REG_ISR, LQIWORKONLQ jz main_isr;
1654 test SEQINTSRC, SAVEPTRS jz main_isr;
1655 test LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo;
1656 /*
1657 * Switch to the active FIFO after clearing the snapshot
1658 * savepointer in the current FIFO. We do this so that
1659 * a pending CTXTDONE or SAVEPTR is visible in the active
1660 * FIFO. This status is the only way we can detect if we
1661 * have lost the race (e.g. host paused us) and our attepts
1662 * to disable the channel occurred after all REQs were
1663 * already seen and acked (REQINIT never comes true).
1664 */
1665 mvi DFFSXFRCTL, CLRCHN;
1666 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
1667 test DFCNTRL, DIRECTION jz interrupt_return;
1668 and DFCNTRL, ~SCSIEN;
1669 snapshot_wait_data_valid:
1670 test SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz snapshot_data_valid;
1671 test SSTAT1, REQINIT jz snapshot_wait_data_valid;
1672 snapshot_data_valid:
1673 or DFCNTRL, SCSIEN;
1674 or SEQINTCTL, IRET ret;
1675 snapshot_saveptr:
1676 mvi DFFSXFRCTL, CLRCHN;
1677 or SEQINTCTL, IRET ret;
1678 main_isr:
1679 }
1680 test SEQINTSRC, CFG4DATA jnz cfg4data_intr;
1681 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr;
1682 test SEQINTSRC, SAVEPTRS jnz saveptr_intr;
1683 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr;
1684 SET_SEQINTCODE(INVALID_SEQINT)
1685
1686 /*
1687 * There are two types of save pointers interrupts:
1688 * The first is a snapshot save pointers where the current FIFO is not
1689 * active and contains a snapshot of the current poniter information.
1690 * This happens between packets in a stream for a single L_Q. Since we
1691 * are not performing a pointer save, we can safely clear the channel
1692 * so it can be used for other transactions. On RTI capable controllers,
1693 * where snapshots can, and are, disabled, the code to handle this type
1694 * of snapshot is not active.
1695 *
1696 * The second case is a save pointers on an active FIFO which occurs
1697 * if the target changes to a new L_Q or busfrees/QASes and the transfer
1698 * has a residual. This should occur coincident with a ctxtdone. We
1699 * disable the interrupt and allow our active routine to handle the
1700 * save.
1701 */
1702 saveptr_intr:
1703 if ((ahd->features & AHD_RTI) == 0) {
1704 test LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr;
1705 }
1706 saveptr_active_fifo:
1707 and SEQIMODE, ~ENSAVEPTRS;
1708 or SEQINTCTL, IRET ret;
1709
1710 cfg4data_intr:
1711 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count;
1712 call load_first_seg;
1713 call pkt_handle_xfer;
1714 inc SCB_FIFO_USE_COUNT;
1715 interrupt_return:
1716 or SEQINTCTL, IRET ret;
1717
1718 cfg4istat_intr:
1719 call freeze_queue;
1720 add NONE, -13, SCB_CDB_LEN;
1721 jnc cfg4istat_have_sense_addr;
1722 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr;
1723 /*
1724 * Host sets up address/count and enables transfer.
1725 */
1726 SET_SEQINTCODE(CFG4ISTAT_INTR)
1727 jmp cfg4istat_setup_handler;
1728 cfg4istat_have_sense_addr:
1729 bmov HADDR, SCB_SENSE_BUSADDR, 4;
1730 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8);
1731 mvi SG_CACHE_PRE, LAST_SEG;
1732 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN;
1733 cfg4istat_setup_handler:
1734 /*
1735 * Status pkt is transferring to host.
1736 * Wait in idle loop for transfer to complete.
1737 * If a command completed before an attempted
1738 * task management function completed, notify the host.
1739 */
1740 test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func;
1741 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
1742 cfg4istat_no_taskmgmt_func:
1743 call pkt_handle_status;
1744 or SEQINTCTL, IRET ret;
1745
1746 cfg4icmd_intr:
1747 /*
1748 * In the case of DMAing a CDB from the host, the normal
1749 * CDB buffer is formatted with an 8 byte address followed
1750 * by a 1 byte count.
1751 */
1752 bmov HADDR[0], SCB_HOST_CDB_PTR, 9;
1753 mvi SG_CACHE_PRE, LAST_SEG;
1754 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
1755 call pkt_handle_cdb;
1756 or SEQINTCTL, IRET ret;
1757
1758 /*
1759 * See if the target has gone on in this context creating an
1760 * overrun condition. For the write case, the hardware cannot
1761 * ack bytes until data are provided. So, if the target begins
1762 * another packet without changing contexts, implying we are
1763 * not sitting on a packet boundary, we are in an overrun
1764 * situation. For the read case, the hardware will continue to
1765 * ack bytes into the FIFO, and may even ack the last overrun packet
1766 * into the FIFO. If the FIFO should become non-empty, we are in
1767 * a read overrun case.
1768 */
1769 #define check_overrun \
1770 /* Not on a packet boundary. */ \
1771 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \
1772 test DFSTATUS, FIFOEMP jz pkt_handle_overrun
1773
1774 pkt_handle_xfer:
1775 test SG_STATE, LOADING_NEEDED jz pkt_last_seg;
1776 call setjmp;
1777 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
1778 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
1779 test SCSISIGO, ATNO jnz . + 2;
1780 test SSTAT2, NONPACKREQ jz pkt_service_fifo;
1781 /*
1782 * Defer handling of this NONPACKREQ until we
1783 * can be sure it pertains to this FIFO. SAVEPTRS
1784 * will not be asserted if the NONPACKREQ is for us,
1785 * so we must simulate it if shaddow is valid. If
1786 * shaddow is not valid, keep running this FIFO until we
1787 * have satisfied the transfer by loading segments and
1788 * waiting for either shaddow valid or last_seg_done.
1789 */
1790 test MDFFSTAT, SHVALID jnz pkt_saveptrs;
1791 pkt_service_fifo:
1792 test SG_STATE, LOADING_NEEDED jnz service_fifo;
1793 pkt_last_seg:
1794 call setjmp;
1795 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
1796 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done;
1797 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
1798 test SCSISIGO, ATNO jnz . + 2;
1799 test SSTAT2, NONPACKREQ jz return;
1800 test MDFFSTAT, SHVALID jz return;
1801 /* FALLTHROUGH */
1802
1803 /*
1804 * Either a SAVEPTRS interrupt condition is pending for this FIFO
1805 * or we have a pending NONPACKREQ for this FIFO. We differentiate
1806 * between the two by capturing the state of the SAVEPTRS interrupt
1807 * prior to clearing this status and executing the common code for
1808 * these two cases.
1809 */
1810 pkt_saveptrs:
1811 BEGIN_CRITICAL;
1812 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1813 or DFCNTRL, FIFOFLUSH;
1814 }
1815 mov REG0, SEQINTSRC;
1816 call calc_residual;
1817 call save_pointers;
1818 mvi CLRSEQINTSRC, CLRSAVEPTRS;
1819 call disable_ccsgen;
1820 or SEQIMODE, ENSAVEPTRS;
1821 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status;
1822 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status;
1823 /*
1824 * Keep a handler around for this FIFO until it drains
1825 * to the host to guarantee that we don't complete the
1826 * command to the host before the data arrives.
1827 */
1828 pkt_saveptrs_wait_fifoemp:
1829 call setjmp;
1830 test DFSTATUS, FIFOEMP jz return;
1831 pkt_saveptrs_check_status:
1832 or LONGJMP_ADDR[1], INVALID_ADDR;
1833 test REG0, SAVEPTRS jz unexpected_nonpkt_phase;
1834 dec SCB_FIFO_USE_COUNT;
1835 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
1836 mvi DFFSXFRCTL, CLRCHN ret;
1837 END_CRITICAL;
1838
1839 /*
1840 * LAST_SEG_DONE status has been seen in the current FIFO.
1841 * This indicates that all of the allowed data for this
1842 * command has transferred across the SCSI and host buses.
1843 * Check for overrun and see if we can complete this command.
1844 */
1845 pkt_last_seg_done:
1846 BEGIN_CRITICAL;
1847 /*
1848 * Mark transfer as completed.
1849 */
1850 or SCB_SGPTR, SG_LIST_NULL;
1851
1852 /*
1853 * Wait for the current context to finish to verify that
1854 * no overrun condition has occurred.
1855 */
1856 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
1857 call setjmp;
1858 pkt_wait_ctxt_done_loop:
1859 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
1860 /*
1861 * A sufficiently large overrun or a NONPACKREQ may
1862 * prevent CTXTDONE from ever asserting, so we must
1863 * poll for these statuses too.
1864 */
1865 check_overrun;
1866 test SSTAT2, NONPACKREQ jz return;
1867 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
1868 /* FALLTHROUGH */
1869
1870 pkt_ctxt_done:
1871 check_overrun;
1872 or LONGJMP_ADDR[1], INVALID_ADDR;
1873 /*
1874 * If status has been received, it is safe to skip
1875 * the check to see if another FIFO is active because
1876 * LAST_SEG_DONE has been observed. However, we check
1877 * the FIFO anyway since it costs us only one extra
1878 * instruction to leverage common code to perform the
1879 * SCB completion.
1880 */
1881 dec SCB_FIFO_USE_COUNT;
1882 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
1883 mvi DFFSXFRCTL, CLRCHN ret;
1884 END_CRITICAL;
1885
1886 /*
1887 * Must wait until CDB xfer is over before issuing the
1888 * clear channel.
1889 */
1890 pkt_handle_cdb:
1891 call setjmp;
1892 test SG_CACHE_SHADOW, LAST_SEG_DONE jz return;
1893 or LONGJMP_ADDR[1], INVALID_ADDR;
1894 mvi DFFSXFRCTL, CLRCHN ret;
1895
1896 /*
1897 * Watch over the status transfer. Our host sense buffer is
1898 * large enough to take the maximum allowed status packet.
1899 * None-the-less, we must still catch and report overruns to
1900 * the host. Additionally, properly catch unexpected non-packet
1901 * phases that are typically caused by CRC errors in status packet
1902 * transmission.
1903 */
1904 pkt_handle_status:
1905 call setjmp;
1906 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
1907 test SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq;
1908 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
1909 pkt_status_IU_done:
1910 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1911 or DFCNTRL, FIFOFLUSH;
1912 }
1913 test DFSTATUS, FIFOEMP jz return;
1914 BEGIN_CRITICAL;
1915 or LONGJMP_ADDR[1], INVALID_ADDR;
1916 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE;
1917 or SCB_CONTROL, STATUS_RCVD;
1918 jmp pkt_complete_scb_if_fifos_idle;
1919 END_CRITICAL;
1920 pkt_status_check_overrun:
1921 /*
1922 * Status PKT overruns are uncerimoniously recovered with a
1923 * bus reset. If we've overrun, let the host know so that
1924 * recovery can be performed.
1925 *
1926 * LAST_SEG_DONE has been observed. If either CTXTDONE or
1927 * a NONPACKREQ phase change have occurred and the FIFO is
1928 * empty, there is no overrun.
1929 */
1930 test DFSTATUS, FIFOEMP jz pkt_status_report_overrun;
1931 test SEQINTSRC, CTXTDONE jz . + 2;
1932 test DFSTATUS, FIFOEMP jnz pkt_status_IU_done;
1933 test SCSIPHASE, ~DATA_PHASE_MASK jz return;
1934 test DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq;
1935 pkt_status_report_overrun:
1936 SET_SEQINTCODE(STATUS_OVERRUN)
1937 /* SEQUENCER RESTARTED */
1938 pkt_status_check_nonpackreq:
1939 /*
1940 * CTXTDONE may be held off if a NONPACKREQ is associated with
1941 * the current context. If a NONPACKREQ is observed, decide
1942 * if it is for the current context. If it is for the current
1943 * context, we must defer NONPACKREQ processing until all data
1944 * has transferred to the host.
1945 */
1946 test SCSIPHASE, ~DATA_PHASE_MASK jz return;
1947 test SCSISIGO, ATNO jnz . + 2;
1948 test SSTAT2, NONPACKREQ jz return;
1949 test SEQINTSRC, CTXTDONE jnz pkt_status_IU_done;
1950 test DFSTATUS, FIFOEMP jz return;
1951 /*
1952 * The unexpected nonpkt phase handler assumes that any
1953 * data channel use will have a FIFO reference count. It
1954 * turns out that the status handler doesn't need a refernce
1955 * count since the status received flag, and thus completion
1956 * processing, cannot be set until the handler is finished.
1957 * We increment the count here to make the nonpkt handler
1958 * happy.
1959 */
1960 inc SCB_FIFO_USE_COUNT;
1961 /* FALLTHROUGH */
1962
1963 /*
1964 * Nonpackreq is a polled status. It can come true in three situations:
1965 * we have received an L_Q, we have sent one or more L_Qs, or there is no
1966 * L_Q context associated with this REQ (REQ occurs immediately after a
1967 * (re)selection). Routines that know that the context responsible for this
1968 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the
1969 * top level idle loop, we exhaust all active contexts prior to determining that
1970 * we simply do not have the full I_T_L_Q for this phase.
1971 */
1972 unexpected_nonpkt_phase_find_ctxt:
1973 /*
1974 * This nonpackreq is most likely associated with one of the tags
1975 * in a FIFO or an outgoing LQ. Only treat it as an I_T only
1976 * nonpackreq if we've cleared out the FIFOs and handled any
1977 * pending SELDO.
1978 */
1979 SET_SRC_MODE M_SCSI;
1980 SET_DST_MODE M_SCSI;
1981 and A, FIFO1FREE|FIFO0FREE, DFFSTAT;
1982 cmp A, FIFO1FREE|FIFO0FREE jne return;
1983 test SSTAT0, SELDO jnz return;
1984 mvi SCBPTR[1], SCB_LIST_NULL;
1985 unexpected_nonpkt_phase:
1986 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
1987 jnz unexpected_nonpkt_mode_cleared;
1988 SET_SRC_MODE M_DFF0;
1989 SET_DST_MODE M_DFF0;
1990 or LONGJMP_ADDR[1], INVALID_ADDR;
1991 dec SCB_FIFO_USE_COUNT;
1992 mvi DFFSXFRCTL, CLRCHN;
1993 unexpected_nonpkt_mode_cleared:
1994 mvi CLRSINT2, CLRNONPACKREQ;
1995 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase;
1996 SET_SEQINTCODE(ENTERING_NONPACK)
1997 jmp ITloop;
1998
1999 illegal_phase:
2000 SET_SEQINTCODE(ILLEGAL_PHASE)
2001 jmp ITloop;
2002
2003 /*
2004 * We have entered an overrun situation. If we have working
2005 * BITBUCKET, flip that on and let the hardware eat any overrun
2006 * data. Otherwise use an overrun buffer in the host to simulate
2007 * BITBUCKET.
2008 */
2009 pkt_handle_overrun_inc_use_count:
2010 inc SCB_FIFO_USE_COUNT;
2011 pkt_handle_overrun:
2012 SET_SEQINTCODE(CFG4OVERRUN)
2013 call freeze_queue;
2014 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) {
2015 or DFFSXFRCTL, DFFBITBUCKET;
2016 SET_SRC_MODE M_DFF1;
2017 SET_DST_MODE M_DFF1;
2018 } else {
2019 call load_overrun_buf;
2020 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN);
2021 }
2022 call setjmp;
2023 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
2024 test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done;
2025 call load_overrun_buf;
2026 or DFCNTRL, PRELOADEN;
2027 overrun_load_done:
2028 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end;
2029 } else {
2030 test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end;
2031 }
2032 test SSTAT2, NONPACKREQ jz return;
2033 pkt_overrun_end:
2034 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID;
2035 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
2036 dec SCB_FIFO_USE_COUNT;
2037 or LONGJMP_ADDR[1], INVALID_ADDR;
2038 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
2039 mvi DFFSXFRCTL, CLRCHN ret;
2040
2041 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
2042 load_overrun_buf:
2043 /*
2044 * Load a dummy segment if preload space is available.
2045 */
2046 mov HADDR[0], SHARED_DATA_ADDR;
2047 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1];
2048 mov ACCUM_SAVE, A;
2049 clr A;
2050 adc HADDR[2], A, SHARED_DATA_ADDR[2];
2051 adc HADDR[3], A, SHARED_DATA_ADDR[3];
2052 mov A, ACCUM_SAVE;
2053 bmov HADDR[4], ALLZEROS, 4;
2054 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */
2055 clr HCNT[0];
2056 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF);
2057 clr HCNT[2] ret;
2058 }